يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"Е. А. Крупина"', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Diagnostic radiology and radiotherapy; Том 14, № 4 (2023); 52-59 ; Лучевая диагностика и терапия; Том 14, № 4 (2023); 52-59 ; 2079-5343

    وصف الملف: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/939/622; Selvarajah S., Schneider E.B., Becker D., Sadowsky C., Haider A.H., Hammond E.R. The Epidemiology of Childhood and Adolescent Traumatic Spinal Cord Injury in the United States: 2007–2010 // J. Neurotrauma. 2014. Vol. 31, No. 18. P. 1548–1560. doi:10.1089/neu.2014.3332.; Denslow E. Spinal Cord Injury in Children: Looking at Statistics and the Recovery Process // Flint Rehab. 2022.; Vogel L.C., Hickey K.J., Klaas S.J., Anderson C.J. Unique issues in pediatric spinal cord injury // Orthop. Nurs. 2004. Vol. 23. P. 300–308. doi:10.1097/00006416-200409000-00004.; Galvin J., Scheinberg A., New P.W. A retrospective case series of pediatric spinal cord injury and disease in Victoria, Australia // Spine (Phila Pa 1976). 2013. Vol. 38. E878–82. doi:10.1097/BRS.0b013e318294e839.; Chen Y., Tang Y., Vogel L.C., DeVivo M.J. Causes of spinal cord injury // Top Spinal Cord Inj. Rehabil. 2013. Vol. 19. P. 1–8. doi:10.1310/sci1901-1.; Osorio M., Reyes M.R., Massagli T.L. Pediatric Spinal Cord Injury // Curr. Phys. Med. Rehabil. Rep. 2014. Vol. 2. P. 158–168. doi:10.1007/s40141-014-0054-1.; Mahajan P., Jaffe D.M., Olsen C.S., Leonard J.R., Nigrovic L.E., Rogers A.J., Kuppermann N., Leonard J.C. Spinal cord injury without radiographic abnormality in children imaged with magnetic resonance imaging // J. Trauma Acute Care Surg. 2013. Vol. 75, No. 5. P. 843–847. doi:10.1097/TA.0b013e3182a74abd.; Hale A.T., Alvarado A., Bey A.K., Pruthi S., Mencio G.A., Bonfield C.M. et al. X-ray vs. CT in identifying significant C-spine injuries in the pediatric population // Childs Nerv. Syst. 2017. Vol. 33. P. 1977–1983. doi:10.1007/s00381-017-3448-4.; Cirak B., Ziegfeld S., Knight V.M., Chang D., Avellino A.M., Paidas C.N. et al. Spinal injuries in children // J. Pediatr. Surg. 2004. Vol. 39. P. 607–612. doi:10.1016/j.jpedsurg.2003.12.011.; Booth T.N. Cervical spine evaluation in pediatric trauma // AJR Am. J. Roentgenol. 2012. Vol. 198. W417–425. doi:10.2214/AJR.11.8150.; Saksena S., Mohamed F.B., Middleton D.M., Krisa L., Alizadeh M., Shahrampour S. et al. Diffusion Tensor Imaging Assessment of Regional White Matter Changes in the Cervical and Thoracic Spinal Cord in Pediatric Subjects // J. Neurotrauma. 2019. Vol. 36, No. 6. P. 853–861. doi:10.1089/neu.2018.5826.; Alkadeem R.M.D.E.A.A., El-Shafey M.H.R., Eldein A.E.M.S., Nagy H.A. Magnetic resonance diffusion tensor imaging of acute spinal cord injury in spinal trauma // Egypt. J. Radiol. Nucl. Med. 2021. 52. 70. doi:10.1186/s43055-021-00450.; Vaccaro A.R., Zeiller S.C., Hulbert R.J., Anderson P.A., Harris M., Hedlund R. et al. The Thoracolumbar Injury Severity Score: A Proposed Treatment Algorithm // Clinical Spine Surgery. 2015. Vol. 18. P. 209–215.; Henry M.K., Zonfrillo M.R., French B., Song L., Feudtner C., Wood J.N. Hospital Variation in Cervical Spine Imaging of Young Children with Traumatic Brain Injury // Acad. Pediatr. 2016. Vol. 16, No. 7. P. 684–691. doi:10.1016/j.acap.2016.01.017.; Powell E.C., Leonard J.R., Olsen C.S., Jaffe D.M., Anders J., Leonard J.C. Atlantoaxial Rotatory Subluxation in Children // Pediatr. Emerg. Care. 2017. 33, No. 2. P. 86–91. doi:10.1097/PEC.0000000000001023.; Leonard J.R., Jaffe D.M., Kuppermann N., Olsen C.S., Leonard J.C., Pediatric Emergency Care Applied Research Network (PECARN) Cervical Spine Study Group et al. Cervical spine injury patterns in children // Pediatrics. 2014. Vol. 133. P. 1179–1188. doi:10.1542/peds.2013-3505.; Browne L.R., Schwartz D.H., Ahmad F.A., Wallendorf M., Kuppermann N., Lerner E.B. et al. Interobserver Agreement In Pediatric CSI Assessment // Academic Emergency Medicine. 2017. Vol. 24, No. 12. P. 1501–1510. doi:10.1111/acem.13312.; Schottler J., Vogel L.C., Sturm P. Spinal cord injuries in young children: a review of children injured at 5 years of age and younger // Dev. Med. Child Neurol. 2012. Vol. 54, No. 12. P. 1138–1143. doi:10.1111/j.1469-8749.2012.04411.x.; Залетина А.В., Виссарионов С.В., Баиндурашвили А.Г., Садовой М.А., Соловьева К.С., Купцова О.А. Структура повреждений позвоночника у детей в регионах Российской Федерации // Хирургия позвоночника. 2017. Т. 14, № 4. С. 52–60. doi:10.14531/ss2017.4.52-60.; D’Amato C. Pediatric spinal trauma: injuries in very young children // Clin. Orthop. Relat. Res. 2005. 432. P. 34–40.; Садофьева В.И. Нормальная рентгеноанатомия костно-суставной системы у детей. Л.: Медицина, 1990. 222 c.; Adib O., Berthier E., Loisel D., Aubé C. Pediatric cervical spine in emergency: radiographic features of normal anatomy, variants and pitfalls // Skeletal Radiol. 2016. Vol. 45, No. 12. P. 1607–1617. doi:10.1007/s00256-016-2481-9.; Sanderson S.P., Houten J.K. Fracture through the C2 synchondrosis in a young child // Pediatr. Neurosurg. 2002. Vol. 36, No. 5. P. 277–278. doi:10.1159/000058434.; Fassett D.R., McCall T., Brockmeyer D.L. Odontoid synchondrosis fractures in children // Neurosurg Focus. 2006. Vol. 20, No. 2. E7.; Hernandez J.A., Chupik C., Swischuk L.E. Cervical spine trauma in children under 5 years: productivity of CT // Emerg. Radiol. 2004. Vol. 10, No. 4. P. 176–178. doi:10.1007/s10140-003-0320-5.; Pang D., Wilberger J.E. Jr. Spinal cord injury without radiographic abnormalities in children // J. Neurosurg. 1982. Vol. 57, No. 1. P. 114–129. doi:10.3171/jns.1982.57.1.0114.; Kulkarni M.V., Bondurant F.J., Rose S.L., Narayana P.A. 1.5 tesla magnetic resonance imaging of acute spinal trauma // Radiographics. 1988. Vol. 8, No. 6. P. 1059–1082. doi:10.1148/radiographics.8.6.3205929.; Tator C.H. Spinal cord syndromes with physiological and anatomic correlations // Principles of Spinal Surgery / еdited by А. Menezes, V. Sonntag. New York: McGraw Hill, 1996. P. 785–799.; Boese C.K., Lechler P. Spinal cord injury without radiologic abnormalities in adults: a systematic review // J. Trauma Acute Care Surg. 2013. Vol. 75, No. 2. P. 320–330. doi:10.1097/TA.0b013e31829243c9.; Smith P., Linscott L.L., Vadivelu S., Zhang B., Leach J.L. Normal Development and Measurements of the Occipital Condyle-C1 Interval in Children and Young Adults // AJNR Am. J. Neuroradiol. 2016. Vol. 37, No. 5. P. 952–957. doi:10.3174/ajnr.A4543.; Davis P.C., Reisner A., Hudgins P.A., Davis W.E., O’Brien M.S. Spinal injuries in children: role of MR // AJNR Am.J.Neuroradiol. 1993. Vol. 14, No. 3. P. 607–617.; Dundamadappa K., Cauley K.A. MR imaging of acute cervical spinal ligamentous and soft tissue trauma // S. Emerg Radiol. 2012. Vol. 19. P. 277–286. doi:10.1007/s10140-012-1033-4.; Gopinathan N.R., Viswanathan V.K., Crawford A.H. Cervical Spine Evaluation in Pediatric Trauma: A Review and an Update of Current Concepts // Indian. J. Orthop. 2018. Vol. 52, No. 5. P. 489–500. doi:10.4103/ortho.IJOrtho_607_17.; Aarabi B., Koltz M., Ibrahimi D. Hyperextension cervical spine injuries and traumatic central cord syndrome // Neurosurg. Focus. 2008. Vol. 25, No. 5. E9. doi:10.3171/FOC.2008.25.11.E9.; Miranda P., Gomez P., Alday R. Acute traumatic central cord syndrome: analysis of clinical and radiological correlations // J. Neurosurg. Sci. 2008. Vol. 52. P. 107–112.; Madroñero-Mariscal R., LópezDolado E. Pediatric SCIWORA-Type Injuries Revisited: What Should be the Most Discerning Definition of SCIWORA at the Current Days? // Ortho Res Online J. 2021. Vol. 8, No. 5. OPROJ. 000697.; https://radiag.bmoc-spb.ru/jour/article/view/939

  2. 2
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 16, № 3 (2019); 310-316 ; Офтальмология; Том 16, № 3 (2019); 310-316 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2019-3

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1008/624; Kelly N.E., Wendel R.T. Vitreous surgery for idiopathic macular holes. Results of a pilot study. Arch. Ophthalmolog.1991;109:654–659.; Балашевич Л.И., Байбородов Я.В., Жоголев К.С. Хирургическое лечение патоло гии витреомакулярного интерфейса. Обзор литературы в вопросах и ответах. Офтальмохирургия. 2015;2:80–85. [Balashevich L.I., Baiborodov J.V., Zogolev K.S. Surgical treatment of the vitreo-macular interface pathology. Review of the for eign literature in questions and answers. Fyodorov Journal of Ophthalmic Surgery = Oftal’mokhirurgiya. 2015;2:80–85 (In Russ.)]. DOI:10.25276/0235-4160-2015-2-80-86; Sheidow T.G., Blinder K.J., Holekamp N., et al. Outcome results in macular hole surgery: an evaluation of internal limiting membrane peeling with and without indocyanine green. Ophthalmology. 2003;110(9):1697–1701. DOI:10.1016/S01616420(03)00562-1; Kumagai K., Furukawa M., Ogino N., et al. Vitreous surgery with and without internal limiting membrane peeling for macular hole repair. Retina. 2004;24(5):721–727.; Алпатов С.А., Щуко А.Г., Малышев В.В. Патогенез и лечение идиопатических макулярных разрывов. Новосибирск: Наука; 2005:192 [Alpatov S.A., Shchu ko A.G., Malyshev V.V Pathogenesis and treatment of Idiopatic macular holes. Novosibirsk: Science; 2005:192 (In Russ.)].; Белый Ю.А., Терещенко А.В., Шкворченко Д.О. и др. Новый подход к хи рургии больших идиопатических макулярных разрывов. Современные технологии в офтальмологии. 2015;1(5):24–27. [Beliy Yu.A., Tereshchenko A.V., Shkvorchenko D.O., et. al. New method of surgery of large idiopathic macular holes. Modern technologies in ophthalmology = Sovremennye tekhnologii v oftal’mologii. 2015;1(5):24–27 (In Russ.)].; Шпак А.А., Шкворченко Д.О., Шарафетдинов И.Х., Юханова О.А. Прогно зирование анатомического эффекта хирургического лечения идиопатиче ского макулярного разрыва. Современные технологии в офтальмологии. 2015;1:136–138. [Shpak A.A., Shkvorchenko D.O., Sharafetdinov I.Kh., Yuhanova O.A. Predicting the results of surgical treatment of idiopathic macular hole. Mod ern technologies in ophthalmology = Sovremennye tekhnologii v oftal’mologii. 2015;1:136–138 (In Russ.)]. DOI:10.25276/0235-4160-2015-2-55-61; Kwork A.K., Lai T.Y., Wong V.W. Idiopatic macular hole surgery in Chinese pa tients: a randomized study to compare indocyanin green-assisted internal limiting membrane peeling with no iternal limiting membran peeling. Hon Kong Med. J. 2005;11:259–266.; Baba T., Yamamoto S., Arai M., et al. Correlation of visual recovery and pres ence of photoreceptor inner/outer segment junction in optical coherence images after successful macular hole repair. Retina. 2008;28(3):453–458. DOI:10.1097/ IAE.0b013e3181571398; Engelmann K., Sievert U., Hölig K., Wittig D., Weßlau S., Domann S., Siegert G., Valtink M. Effect of autologous platelet concentrates on the anatomical and functional outcome of late stage macular hole surgery: A retrospective analysis. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2015;58:11–12. DOI:10.1007/s00103-015-2251-1; Gaudric A., Massin P., Paques M., et al. Autologous platelet concentrate for the treatment of full-thickness macular holes. Graefes Arch Clin Exp Ophthalmol.1995;233(9):549–554.; Kapoor K.G., Khan A.N., Tieu B.C., Khurshid G.S. Revisiting autologous platelets as an adjuvant in macular hole repair: chronic macular holes without prone positioning. Ophthalmic Surg Lasers Imaging. 2012;43(4):291–295. DOI:10.3928/15428877-20120426-03; Konstantinidis A., Hero M., Nanos P., Panos G.D. Efficacy of autologous platelets i n macular hole surgery. Clin Ophthalmol. 2013;7:45–50. DOI:10.2147/OPTH.S44440; Шкворченко Д.О., Захаров В.Д., Крупина Е.А., Письменская В.А., Какуни на С.А., Норманн К.С., Петерсен Е.В. Хирургическое лечение макулярных разрывов с применением богатой тромбоцитами плазмы крови. Офтальмохирургия. 2017;3:27–30. [Shkvorchenko D.O., Zakharov V.D., Krupina E.A., Pismen skaya V.A., Kakunina S.A., Norman K.S., Petersen E.V. Surgical treatment of primary macular hole using platelet-rich plasma. Fyodorov Journal of Ophthalmic Surgery = Oftal’mokhirurgiya 2017;3:27–30 (In Russ.)]. DOI:10.25276/0235-4160-2017-3-27-30; Захаров В.Д., Шкворченко Д.О., Крупина Е.А., Письменская В.А., Какунина С.А., Норман К.С. Эффективность богатой тромбоцитами плазмы крови в хирур гии больших макулярных разрывов. Практическая медицина.2016;9:118–121. [Zakharov V.D., Shkvorchenko D.O., Krupina E.A., Pismenskaya V.A., Kakunina S.A., Norman K.S. Efficacy of platelet-rich plasma in large macular holes surgery. Practical medicine = Prakticheskaya meditsina. 2016;9:118–121 (In Russ.)].; Tokayer J., Jia Y., Dhalla A. H., Huang D. Blood flow velocity quantification us ing split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed Opt Express. 2013;4:1909–1924. DOI:10.1364/BOE.4.001909; Gao S.S., Liu G., Huang D., Jia Y. Optimization of the split-spectrum amplitudedecorrelation angiography algorithm on a spectral optical coherence tomography system. Opt Letters. 2015;40:2305–2308.; Dmuchowska D.A. Сan optical coherence tomography replace fluorescein angi ography in detection of ischemic diabetic maculopathy? Graefes Arch. Clin. Exp. Ophthalmol. 2014;252(5):731–738. DOI:10.1007/s00417-013-2518; Jhon Choi W. Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography. PLoS One. 2013;8(12):e81499. DOI:10.1371/ journal.pone.0081499; Vaziri K., Schwartz S.G. Rates of Reoperation and Retinal Detachment Following Macular Hole Surgery. Ophthalmology. 2016;123(1):26–31. DOI:10.1016/j. ophtha.2015.09.015; Frechette J.P. Platalet rich plazma Dent. Res.2005; 84(5):434-439. DOI:10.1007/9783-642-40117-6_2; Новочадов В.В. Проблема управления клеточным заселением и ремоделиро ванием тканеинженерных матриц для восстановления суставного хряща (об зор литературы). Вестник Волгоградского государственного университета. Серия 11, Естественные науки. 2013;1(5):19–28. [Novochadov V.V. The problem of management of cell population and remodeling of tissue-engineering scaffolds for the articular cartilage reconstruction, Journal of Volgograd State University = Vestnik Volgogradskogo gosudarstvennogo universiteta. 2013;1(5):19–28 (In Russ.)].; Bringmann A., Pannicke T., Grosche J., Francke M., Wiedemann P., Skatchkov S.N., Osborne N.N., Reichenbach A. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25:397–424. DOI:10.1016/j.preteyeres.2006.05.003; Jadhav A.P., Roesch K., Cepko C.L. Development and neurogenic potential of Müller glial cells in the vertebrate retina. Prog Retin Eye Res. 2009;28:249–262. DOI:10.1016/j.preteyeres.2009.05.002; Ooka E., Mitamura Y., Baba T., Kitahashi M., Oshitari T., Yamamoto S. Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. Am J Ophthalmol. 2011;152(2):283–290. DOI:10.1016/j.ajo.2011.02.001; Ruiz-Moreno J.M., Arias L., Araiz J., García-Arumí J., Montero J.A., Piñero D.P. Spectral-domain optical coherence tomography study of macular structure as prognostic and determining factor for macular hole surgery outcome. Retina. 2013;33(6):1117–1122. DOI:10.1097/IAE.0b013e318285cc3b; Hashimoto Y., Saito W., Fujiya A. Changes in inner and outer retinal layer thicknesses after vitrectomy for idiopathic macular hole: implications for visual prognosis. PLoS One. 2015;10(8):e0135925. DOI:10.1371/journal. pone.0135925; Savastano M., Lumbroso B., Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015;(35)11:2196–2203.; Tadayoni R., Paques M., Massin P., et al. Dissociated optic nerve fiber layer appear ance of the fundus after idiopathic epiretinal membrane removal. Ophthalmology. 2001;108:2279–2283. DOI:10.1016/S0161-6420(01)00856-9; https://www.ophthalmojournal.com/opht/article/view/1008