-
1Academic Journal
المؤلفون: Е. А. Krasilnikova, V. D. Zavadovskaya, V. A. Zhelev, J. O. Lyulko, S. P. Ermolenko, M. A. Zorkaltsev, Е. А. Красильникова, В. Д. Завадовская, В. А. Желев, Ю. О. Люлько, С. П. Ермоленко, М. А. Зоркальцев
المصدر: Diagnostic radiology and radiotherapy; Том 12, № 2 (2021); 59-69 ; Лучевая диагностика и терапия; Том 12, № 2 (2021); 59-69 ; 2079-5343
مصطلحات موضوعية: пневмония, premature infants, X-ray changes in the lungs, hyaline membranes, pulmonary hemorrhages, bronchopulmonary dysplasia, pneumonia, недоношенные новорожденные, рентгенологические изменения легких, гиалиновые мембраны, легочные геморрагии, бронхолегочная дисплазия
وصف الملف: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/623/485; Sharma D., Padmavathi I.V., Tabatabaii S.A., Farahbakhsh N. Late preterm: a new high risk group in neonatology // J. Matern. Fetal Neonatal Med. 2019. Oct. 1. Р. 1–14, doi:10.1080/14767058.2019.1670796.; Байбарина Е.Н., Антонов А.Г., Ленюшкина А.А. Клинические рекомендации по уходу за новорожденными с экстремально низкой массой тела при рождении // Вопросы практической педиатрии. 2006. Т. 4, № 1. С. 96–97.; Овсянников Д.Ю., Кузьменко Л.Г., Дегтярева Е.А., Кустова О.В., Болибок А.М., Маркарян О.В., Пагадаева Н.П., Полянин Д.В. Возможности высокоразрешающей компьютерной томографии в диагностике бронхолегочной дисплазии у детей первых двух лет жизни // Педиатрия. Журнал им. Г.Н.Сперанского. 2010. № 1.; Thébaud В., Goss K.N., Laughon M. et al. Bronchopulmonary dysplasia: Author manuscript // Nat. Rev. Dis Primers. 2019. Nov. 14, Vol. 5, No. 1. Р. 78. doi:10.1038/s41572–019–0127–7.; Dominguez MC, Alvares BR. Pulmonary atelectasis in newborns with clinically treatable diseases who are on mechanical ventilation: clinical and radiological aspects // Radiol. Bras. 2018. Vol. 51, No. 1. Р. 20–25. doi:10.1590/0100-3984.2016.0157.; Reuter S., Moser C., Baack M. // Pediatr Rev. 2014. Oct; Vol. 35, No. 10. Р. 417–428; quiz 429. doi:10.1542/pir.35-10-417.; Agrons G.A., Courtney S.E., Stocker J.Th., Markowitz R.I. Lung Disease in Premature Neonates: Radiologic-Pathologic Correlation // Anales de Radiología México. 2005. Vol. 4, No. 3. Р. 1047–1073. doi:10.1148/rg.254055019.; Lovrensky J. Lung ultrasonography of pulmonary complications in preterm infants with respiratory distress syndrome // Upsala Journal of Medical Sciences. 2012. Vol. 117. Р. 10–17. doi:10.3109/03009734.2011.643510.; Lee M., Wu К., Yu A., Roumiantsev S., Shailam R., Nimkin K., Sagar P. Pulmonary hemorrhage in neonatal respiratory distress syndrome: Radiographic evolution, course, complications and long-term clinical outcomes // J. Neonatal. Perinatal. Med. 2019. Vol. 12, No. 2. Р. 161–171. doi:10.3233/NPM-1867.; Hiles М., Culpan A.-M., Watts С., Munyombwe Т., Wolstenhulme S. Neonatal respiratory distress syndrome: Chest X-ray or lung ultrasound. A systematic review // Ultrasound. 2017. Vol. 25, No. 2. Р. 80–91, doi:10.1177/1742271X16689374.; Shui-Wen Chen 1, Wei Fu, Jing Liu, Yan Wang. Routine application of lung ultrasonography in the neonatal intensive care unit // Observational Study Medicine (Baltimore). 2017. Vol. 96, No. 2. Р. e5826, doi:10.1097/MD.0000000000005826.; Park Ji Soo, Choi Yun Jung, Kim Young Tae et al. Pediatric Case Report on an Interstitial Lung Disease with a Novel Mutation of SFTPC Successfully Treated with Lung Transplantation // J. Korean. Med. Sci. 2018. May 28; Vol. 33, No. 22. e159. doi:10.3346/jkms.2018.33.e159.; https://radiag.bmoc-spb.ru/jour/article/view/623
-
2Academic Journal
المؤلفون: E. A. Krasil’nikova, R. Z. Shaikhutdinova, T. E. Svetoch, M. E. Platonov, T. I. Kombarova, S. A. Ivanov, S. V. Dentovskaya, A. P. Anisimov, Е. А. Красильникова, Р. З. Шайхутдинова, Т. Э. Светоч, М. Е. Платонов, Т. И. Комбарова, С. А. Иванов, С. В. Дентовская, А. П. Анисимов
المصدر: Problems of Particularly Dangerous Infections; № 2 (2020); 86-90 ; Проблемы особо опасных инфекций; № 2 (2020); 86-90 ; 2658-719X ; 0370-1069 ; 10.21055/0370-1069-2020-2
مصطلحات موضوعية: вирулентность, Hsp90, HtpG, virulence
وصف الملف: application/pdf
Relation: https://journal.microbe.ru/jour/article/view/1329/1122; Wandinger S.K., Richter K., Buchner J. The Hsp90 chaperone machinery. J. Biol. Chem. 2008; 283:18473–7. DOI:10.1074/jbc.R800007200.; Bardwell, J.C., Craig, E.A. Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli. Proc. Natl. Acad. Sci. USA. 1987; 84(15):5177–88. DOI:10.1073/pnas.84.15.5177.; Guisbert E., Yura T., Rhodius V.A., Gross C.A. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol. Biol. Rev. MMBR. 2008; 72(3):545–54. DOI:10.1128/MMBR.00007-08.; Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 2001; 70:603–48. DOI:10.1146/annurev.biochem.70.1.603.; Choi S., Jang K., Yun H.-J., Kang D.-H. Identification of the Vibrio vulnificus htpG gene and its influence on cold shock recovery. J. Microbiol. 2012; 50:707–11. DOI:10.1007/s12275-012-2294-z.; Dang W., Hu Y.-H., Sun L. HtpG is involved in the pathogenesis of Edwardsiella tarda. Vet. Microbiol. 2011; 152(3–4):394–400. DOI:10.1016/j.vetmic.2011.05.030.; Tanaka N, Nakamoto H. HtpG is essential for the thermal stress management in cyanobacteria. FEBS Lett. 1999; 458(2):117– 23. DOI:10.1016/s0014-5793(99)01134-5.; Garcie C., Tronnet S., Garйnaux A., McCarthy A.J., Brachmann A.O., Pйnary M., Houle S., Nougayrиde J.P., Piel J., Taylor P.W., Dozois C.M., Genevaux P., Oswald E., Martin P. The bacterial stress-responsive Hsp90 chaperone (HtpG) is required for the production of the genotoxin colibactin and the siderophore yersiniabactin in Escherichia coli. J. Infect. Dis. 2016; 214(6):916–24. DOI:10.1093/infdis/jiw294.; Verbrugghe E., Van Parys A., Leyman B., Boyen F., Haesebrouck F., Pasmans F. HtpG contributes to Salmonella typhimurium intestinal persistence in pigs. Vet. Res. 2015; 46(1):118. DOI:10.1186/s13567-015-0261-5.; Weiss D.S., Brotcke A., Henry T., Margolis J.J., Chan K., Monack D.M. In vivo negative selection screen identifies genes required for Francisella virulence. Proc. Natl. Acad. Sci. USA. 2007; 104(14):6037–42. DOI:10.1073/pnas.0609675104.; King A.M., Bartpho T., Sermswan R.W., Bulach D.M., Eshghi A., Picardeau M., Adler B., Murray G.L. Leptospiral outer membrane protein LipL41 is not essential for acute leptospirosis, but requires a small chaperone, Lep, for stable expression. Infect. Immun. 2013; 81(8):2768–76. DOI:10.1128/IAI.00531-13.; Donnenberg M.S., Kaper J.B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positiveselection suicide vector. Infect. Immun. 1991; 59:4310–17. PMID: 1937792. PMCID: PMC259042; Datsenko K.A., Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 2000; 97(12):6640–5. DOI:10.1073/pnas.120163297.; Barnes M.G., Weiss A.A. BrkA protein of Bordetella pertussis inhibits the classical pathway of complement after C1 deposition. Infect. Immun. 2001; 69(5):3067–72. DOI:10.1128/IAI.69.5.30673072.2001; Prodromou C., Roe S.M., O’brien R., Ladbury J.E., Piper P.W., Pearl L.H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 Molecular chaperone. Cell. 1997; 90(1):65–75. DOI:10.1016/s0092-8674(00)80314-1.; Pearl L.H., Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 2006; 75:271–94. DOI:10.1146/annurev.biochem.75.103004.142738.; Hecker M., Schumann W., Vцlker U. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 1996; 19(3):417–28. DOI:10.1046/j.1365-2958.1996.396932.x.; Anisimov A.P., Dentovskaya S.V., Titareva G.M., Bakhteeva I.V., Shaikhutdinova R.Z., Balakhonov S.V., Lindner B, Kocharova N.A., Senchenkova S.N., Holst O., Pier G.B., Knirel Y.A. Intraspecies and temperature-dependent variations in susceptibility of Yersinia pestis to the bactericidal action of serum and to polymyxin B. Infect. Immun. 2005; 73(11):7324–31. DOI:10.1128/ IAI.73.11.7324-7331.2005.; Bardwell J.C., Craig E.A. Ancient heat shock gene is dispensable. J. Bacteriol. 1988; 170(7):2977–83. DOI:10.1128/jb.170.7.2977-2983.1988.; Schulz A., Schwab S., Homuth G., Versteeg S., Schumann W. The htpG gene of Bacillus subtilis belongs to class III heat shock genes and is under negative control. J. Bacteriol. 1997; 179(10): 3103–9 DOI:10.1128/jb.179.10.3103-3109.1997.; Thomas J.G., Baneyx F. Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG in vivo. J. Bacteriol. 1998; 180(19):5165–72. DOI:10.1128/JB.180.19.5165-5172.1998.; Winston J.L., Toth S.I., Roe B.A., Dyer D.W. Cloning and characterization of the Actinobacillus actinomycetemcomitans gene encoding a heat-shock protein 90 homologue. Gene. 1996; 179(2):199–204. DOI:10.1016/s0378-1119(96)00317-4.; Fang F., Barnum S.R. The heat shock gene, htpG, and thermotolerance in the cyanobacterium, Synechocystis sp. PCC 6803. Curr. Microbiol. 2003; 47:341–6. DOI:10.1007/s00284-002-4015-z.; Hossain M.M., Nakamoto H. Role for the cyanobacterial HtpG in protection from oxidative stress. Curr. Microbiol. 2003; 46:70–6. DOI:10.1007/s00284-002-3831-5.; https://journal.microbe.ru/jour/article/view/1329