-
1Academic Journal
المؤلفون: О. Крестьянинов, Д. Хелимский, А. Бадоян, К. Рзаева, Д. Пономарев, А. Чернявский
المصدر: Патология кровообращения и кардиохирургия, Vol 24, Iss 3S (2020)
مصطلحات موضوعية: клинический результат, технический успех, чрескожное коронарное вмешательство, хроническая окклюзия коронарной артерии, Surgery, RD1-811
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Д. Хелимский, О. Крестьянинов, А. Бадоян, Д. Пономарев, Е. Покушалов
المصدر: Патология кровообращения и кардиохирургия, Vol 22, Iss 4 (2018)
مصطلحات موضوعية: окклюзия, реканализация, технический успех, хроническая окклюзия коронарных артерий, чрескожное коронарное вмешательство, шкала, Surgery, RD1-811
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: K. Grigoreva N., V. Bitsadze O., J. Khizroeva Kh., M. Tretyakova V., D. Ponomarev A., K. Tsvetnova Yu., D. Doronicheva A., A. Mamaeva R., K. Mekhedova V., G. Rizzo, J.-C. Gris, I. Elalamy, A. Makatsariya D., К. Григорьева Н., В. Бицадзе О., Д. Хизроева Х., М. Третьякова В., Д. Пономарев А., К. Цветнова Ю., Д. Дороничева А., А. Мамаева Р., К. Мехедова В., Д. Риццо, Ж.-К. Гри, И. Элалами, А. Макацария Д.
المصدر: Obstetrics, Gynecology and Reproduction; Vol 15, No 1 (2021); 93-106 ; Акушерство, Гинекология и Репродукция; Vol 15, No 1 (2021); 93-106 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: von Willebrand factor, ADAMTS-13, thrombotic thrombocytopenic purpura, фактор фон Виллебранда, тромботическая тромбоцитопеническая пурпура
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/936/895; Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc NY Pathol Soc. 1924;24:21-4.; Moschcowitz E. An acute febrile pleiochromic anemia with hyaline thrombosis of the terminal arterioles and capillaries: an undescribed disease. Am J Med. 1952;13(5):567-9. https://doi.org/10.1016/0002-9343(52)90022-3.; SoRelle R. Clopidogrel-associated thrombotic thrombocytopenic purpura identified. Circulation. 2000;101(18):Е9036-7. https://doi.org/10.1161/01.cir.101.18.e9036.; Schulman I., Pierce M., Lukens A., Currimbhoy Z. Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production; chronic thrombocytopenia due to its deficiency. Blood. 1960;16:943-57.; Upshaw J.D. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med. 1978;298(24):1350-2. https://doi.org/10.1056/NEJM197806152982407.; Rennard S., Abe S. Decreased cold-insoluble globulin in congenital thrombocytopenia (Upshaw-Schulman syndrome). N Engl J Med. 1979;300(7):368. https://doi.org/10.1056/NEJM197902153000718.; Kinoshita S., Yoshioka A., Park Y.D. et al. Upshaw-Schulman syndrome revisited: a concept ofcongenital thrombotic thrombocytopenic purpura. Int J Hematol. 2001;74(1):101-8. https://doi.org/10.1007/BF02982558.; Amorosi E., Ultmann J. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45(2):139-60. https://doi.org/10.1097/00005792-196603000-00003.; Bell W.R., Braine H.G., Ness P.M., Kickler T.S. Improved survival in thrombotic thrombocytopenic purpura hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med. 1991;325(6):398-403. https://doi.org/10.1056/NEJM199108083250605.; Tsai H.M., Lian E.C. 1998. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339:1585-94. https://doi.org/10.1056/NEJM199811263392203.; Rock G.A., Shumak K.H., Buskard N.A. et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N Engl J Med. 1991;325(6):393-7. https://doi.org/10.1056/NEJM199108083250604.; Moake J.L., Rudy C.K., Troll J.H. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;(23)307:1432-5. https://doi.org/10.1056/NEJM198212023072306.; Furlan M., Robles R., Solenthaler M. et al. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood. 1997;89(9):3097-103.; Tsai H.M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87(10):4235-44.; Furlan M., Robles R., Solenthaler M., Lammle B. Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura. Blood. 1998;91(8):2839-46.; Furlan M., Robles R., Lammle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223-34.; Fujikawa K., Suzuki H., McMullen B., Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood. 2001;98(6):1662-6. https://doi.org/10.1182/blood.v98.6.1662.; Gerritsen H.E., Robles R., Lammle B., Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood. 2001;98(6):1654-61. https://doi.org/10.1182/blood.v98.6.1654.; Zheng X., Chung D., Takayama T.K. et al. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem. 2001;276(44):41059-63. https://doi.org/10.1074/jbc.C100515200.; Plaimauer B., Zimmermann K., Volkel D. et al. Cloning, expression, and functional characterization of the von Willebrand factor-cleaving protease (ADAMTS13). Blood. 2002;100(10):3626-32. https://doi.org/10.1182/blood-2002-05-1397.; Zheng X., Nishio K., Majerus E.M. et al. 2003. Cleavage of von Willebrand factor requires the spacer domain of the metalloprotease ADAMTS13. J Biol Chem. 2003;278(32):30136-41. https://doi.org/10.1074/jbc.M305331200.; Plautz W.E., Raval J.S., Dyer M.R. et al. ADAMTS13: origins, applications and prospects. Transfusion. 2018;58(10):2453-62. https://doi.org/10.1111/trf.14804.; South K., Luken B.M., Crawley J.T. et al. Conformational activation of ADAMTS13. Proc Natl Acad Sci U S A. 2014;111(52):18578-83. https://doi.org/10.1073/pnas.1411979112.; South K., Freitas M.O., Lane D.A. A model for the conformational activation of the structurally quiescent metalloprotease ADAMTS13 by von Willebrand factor. J Biol Chem. 2017;292(14):5760-9. https://doi.org/10.1074/jbc.M117.776732.; Sadler J.E. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395-424. https://doi.org/10.1146/annurev.biochem.67.1.395.; Roth G.J., Titani K., Hoyer L.W. et al. Localization of binding sites within human von Willebrand factor for monomeric type III collagen. Biochemistry. 1986;25(26):8357-61. https://doi.org/10.1021/bi00374a004.; Tsai H.-M. Shear stress and von Willebrand factor in health and disease. Semin Thromb Hemost. 2003;29(5):479-88. https://doi.org/10.1055/s-2003-44556.; Sadler J.E. Von Willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura. Blood. 2008;112(1):11-8. https://doi.org/10.1182/blood-2008-02-078170.; Hobbs W.E., Moore E.E., Penkala R.A. et al. Cocaine and specific cocaine metabolites induce von Willebrand factor release from endothelial cells in a tissue-specific manner. Arterioscler Thromb Vasc Biol. 2013;33(6):1230-7. https://doi.org/10.1161/ATVBAHA.113.301436.; de Groot R., Bardhan A., Ramroop N. et al. Essential role of the disintegrin-like domain in ADAMTS13 function. Blood. 20098;113(22):5609-16. https://doi.org/10.1182/blood-2008-11-187914.; de Groot R., Lane D.A., Crawley J.T. The role of the ADAMTS13 cysteine-rich domain in VWF binding and proteolysis. Blood. 2015;125(12):1968-7. https://doi.org/10.1182/blood-2014-08-594556.; Schaller M., Studt J.D., Voorberg J., Kremer Hovinga J.A. Acquired thrombotic thrombocytopenic purpura. Development of an autoimmune response. Hamostaseologie. 2013;33(2):121-30. https://doi.org/10.5482/HAMO-12-12-0023.; Molvarec A., Rigo J., Boze T. et al. Increased plasma von Willebrand factor antigen levels but normal von Willebrand factor cleaving protease (ADAMTS13) activity in preeclampsia. Thromb Haemost. 2009;101(2):305-11.; Sanchez-Luceros A., Meschengieser S.S., Marchese C. et al. Factor VIII and von Willebrand factor changes during normal pregnancy and puerperium. Blood Coagul Fibrinolysis. 2003;14(7):647-5. https://doi.org/10.1097/00001721-200310000-00005.; Aref S., Goda H. Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology. 2013;18(4):237-41. https://doi.org/10.1179/1607845412Y.0000000070.; Stepanian A., Cohen-Moatti M., Sanglier T. et al. Von Willebrand factor and ADAMTS13: a candidate couple for preeclampsia pathophysiology. Arterioscler Thromb Vasc Biol. 2011;31(7):1703-9. https://doi.org/10.1161/ATVBAHA.111.223610.; Laurence J. Atypical hemolytic uremic syndrome (aHUS): making the diagnosis. Clin Adv Hematol Oncol. 2012;10(10 Suppl 17):1-12.; Levi M., van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38-44. https://doi.org/10.1016/j.thromres.2016.11.007.; Schwameis M., Schorgenhofer C., Assinger A. et al. VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb Haemost. 2015;113(3):708-18. https://doi.org/10.1160/TH14-09-0731.; Bockmeyer C.L., Claus R.A., Budde U et al. Inflammation-associated ADAMTS-13 deficiency promotes formation of ultra-large von Willebrand factor. Haematologica. 2008;93(1):137-40. https://doi.org/10.3324/haematol.11677.; Turner N.A., Moake J. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis thrombosis. PLoS One. 2013;8(3):e59372. https://doi.org/10.1371/journal.pone.0059372.; Xu J., Zhang X., Pelayo R. et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318-21. https://doi.org/10.1038/nm.2053.; Kim J.E., Lee N., Gu J.-Y. et al. Circulating levels of DNA-histone complex and dsDN are independent prognostic factors of disseminated intravascular coagulation. Thromb Res. 2015;135(6):1064-9. https://doi.org/10.1016/j.thromres.2015.03.014.; Fuchs T.A., Kremer Hovinga J.A., Schatzberg D. et al. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood. 2012;120(6):1157-64. https://doi.org/10.1182/blood-2012-02-412197.; Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS-13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528-34. https://doi.org/10.1182/blood-2005-03-1087.; Crawley J.T., Lam J.K., Rance J.B. et al. Proteolytic inactivation of ADAMTS-13 by thrombin and plasmin. Blood. 2005;105(3)1085-93. https://doi.org/10.1182/blood-2004-03-1101.; Bernardo A., Ball C., Nolasco L. et al. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004;104(1):100-6. https://doi.org/10.1182/blood-2004-01-0107.; Bonnefoy A., Daenens K., Feys H.B. et al. Thrombospondin-1 controls vascular platelet recruitment and thrombus adherence in mice by protecting (sub)endothelial VWF from cleavage by ADAMTS-13. Blood. 2006;10(3):955-64. https://doi.org/10.1182/blood-2004-12-4856.; Schwameis M., Schorgenhofer C., Assinger A. et al. VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb Haemost. 2015;113(4):708-18. https://doi.org/10.1160/TH14-09-0731.; Habe K., Wada H., Ito-Habe N. et al. Plasma ADAMTS-13, von Willebrand factor (VWF) and VWF propeptide profiles in patients with DIC and related diseases. Thromb Res. 2012;129(5):598-602. https://doi.org/10.1016/j.thromres.2011.10.011.; Kremer Hovinga J.A., Zeerleder S., Kessler P. et al. ADAMTS-13, von Willebrand factor and related parameters in severe sepsis and septic shock. J Thromb Haemost. 2007;5(11):2284-90. https://doi.org/10.1111/j.1538-7836.2007.02743.x.; Peigne V., Azoulay E., Coquet I. et al. The prognostic value of ADAMTS-13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation. Crit Care. 2013;17(6):R273. https://doi.org/10.1186/cc13115.; Thachil J., Tang N., Gando S. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-6. https://doi.org/10.1111/jth.14810.; McGonagle D., O'Donnell J.S., Sharif K. et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437-45. https://doi.org/10.1016/S2665-9913(20)30121-1.; Driggin E., Madhavan M.V., Bikdeli B. et al. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. J Am Coll Cardiol. 2020;75(18):2352-71. https://doi.org/10.1016/j.jacc.2020.03.031.; Rotzinger D.C., Beigelman-Aubry C., von Garnier C., Qanadli S.D. Pulmonary embolism in patients with COVID-19: time to change the paradigm of computed tomography. Thromb Res. 2020;190:58-9. https://doi.org/10.1016/j.thromres.2020.04.011.; Wang J., Hajizadeh N., Moore E.E. et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost. 2020;18(7):1752-5. https://doi.org/10.1111/jth.14828.; Wang T, Chen R., Liu C., et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol. 2020;7(5):e362-3. https://doi.org/10.1016/S2352-3026(20)30109-5.; Tang N., Bai H., Chen X. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-9. https://doi.org/10.1111/jth.14817.; Danzi G.B., Loffi M., Galeazzi G., Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J. 2020;41(19):1858. https://doi.org/10.1093/eurheartj/ehaa254.; Nguyen T.C., Liu A., Liu L. et al. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica. 2007;92(1):121-4. https://doi.org/10.3324/haematol.10262.; Morici N., Bottiroli M., Fumagalli R. et al. Role of von Willebrand factor and ADAMTS-13 in the pathogenesis of thrombi in SARS-CoV-2 infection: time to rethink. Thromb Haemost. 2020;120(9):1339-42. https://doi.org/10.1055/s-0040-1713400.; Tiscia G.L., Favuzzi G., De Laurenzo A. et al. Reduction of ADAMTS13 levels predicts mortality in SARS-CoV-2 patients. TH Open. 2020;4(3):e203-6. https://doi.org/10.1055/s-0040-1716379.; Bazzan M., Montaruli B., Sciascia S. et al. Low ADAMTS 13 plasma levels are predictors of mortality in COVID-19 patients. Intern Emerg Med. 2020;15(5):861-3. https://doi.org/10.1007/s11739-11020-02394-11730.; Iba T., Levi M., Levy J.H. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Semin Thromb Hemost. 2020;46(1):89-95. https://doi.org/10.1055/s-0039-1694995.; Schonrich G., Raftery M.J., Samstag Y. Devilishly radical NETwork in COVID-19: oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul. 2020;77:100741. https://doi.org/10.1016/j.jbior.2020.100741.; Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19. medRxiv. 2020 Apr 14;2020.04.09.20059626. https://doi.org/10.1101/2020.04.09.20059626.Preprint.; He Y., Yang F.-Y., Sun E.-W. Neutrophil extracellular traps in autoimmune diseases. Chin Med J (Engl). 2018;131(13):1513-9. https://doi.org/10.4103/0366-6999.235122.; Cao W., Krishnaswamy S., Camire R.M. et al. Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS-13. Proc Natl Acad Sci U S A. 2008;105(21):7416-21. https://doi.org/10.1073/pnas.0801735105.; Gavriilaki E., Chrysanthopoulou A., Sakellari I. et al. Linking complement activation, coagulation, and neutrophils in transplant-associated thrombotic microangiopathy. Thromb Haemost. 2019;119(9):1433-40. https://doi.org/10.1055/s-0039-1692721.; Rutten B., Maseri A., Cianflone D. et al. Plasma levels of active Von Willebrand factor are increased in patients with first ST-segment elevation myocardial infarction: a multicenter and multiethnic study. Eur Heart J Acute Cardiovasc Care. 2015;4(1):64-74. https://doi.org/10.1177/2048872614534388.; Maino A., Siegrink B., Lotta L.A. et al. Plasma ADAMTS-13 levels and the risk of myocardial infarction: an individual patient data meta-analysis. J Thromb Haemost. 2015;13(8):1396-404. https://doi.org/10.1111/jth13032.; Horii M., Uemura S., Uemura M., M. Matsumoto et al. Acute myocardial infarction as a systemic prothrombotic condition evidenced by increased von Willebrand factor protein over ADAMTS13 activity in coronary and systemic circulation. Heart Vessels. 2008;23(5):301-7. https://doi.org/10.1007/s00380-008-1053-x.; Anderson H.M., Siegerink B., Luken B.M. et al. High VWF, low ADAMTS13, and oral contraceptives increase the risk of ischemic stroke and myocardial infarction in young women. Blood. 2012;119(6):1555-60. https://doi.org/10.1182/blood-2011-09-380618.; Zhao B.Q., Chauhan A.K., Canault M., et al. von Willebrand factorcleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood. 2009;114(15):3329-34. https://doi.org/10.1182/blood-2009-03-213264.; Fujioka M., Hayakawa K., Mishima K. et al. ADAMTS13 gene deletion aggravates ischemic brain damage: a possible neuroprotective role of ADAMTS13 by ameliorating postischemic hypoperfusion. Blood. 2010;115(8):1650-3. https://doi.org/10.1182/blood-2009-06-230110.; Akyol O., Akyol S., Chen C.-H. et al. Update on ADAMTS13 and VWF in cardiovascular and hematological disorders. Clin Chim Acta. 2016;463:109-18. https://doi.org/10.1016/j.cca.2016.10.017.; Lambers M., Goldenberg N.A., Kenet G. et al. Role of reduced ADAMTS13 in arterial ischemic stroke: a pediatric cohort study. Ann Neurol. 2013;73(1):58-64. https://doi.org/10.1002/ana.23735.; Sonneveld M., de Maat M.P.M, Leebeek F.W.G. Von Willebrand factor and ADAMTS13 in arterial thrombosis: a systemic review and meta-analysis. Blood Rev. 2014;28(4):167-78. https://doi.org/10.1016/j.blre.2014.04.003.; Folsom A.R., Rosamond W.D., Shahar E. et al. Prospective study of markers of hemostatic function with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Circulation. 1999;100(7):736-42. https://doi.org/10.1161/01.cir.100.7.736.; Tzoulaki I., Murray G.M., Lee A.J. et al. Relative value of inflammatory, hemostatic, and rheological factors for incident myocardial infarction and stroke: the Edinburgh Artery Study. Circulation. 2007;115(16):2119-27. https://doi.org/10.1161/CIRCULATIONAHA.106.635029.; Gottesman R.F., Cummiskey C., Chambless L. et al. Hemostatic factors and subclinical brain infarction in a community-based sample: the ARIC study. Cerebrovasc Dis. 2009;28(6):589-94. https://doi.org/10.1159/000247603.; Knuiman M.W., Folsom A.R., Chambless L.E. et al. Association of hemostatic variables with MRI-detected cerebral abnormalities: the atherosclerosis risk in communities study. Neuroepidemiology. 2001;20(2):96-104. https://doi.org/10.1159/000054767.; Kozuka K., Kohriyama T., Nomura E. et al. Endothelial markers and adhesion molecules in acute ischemic stroke - sequential change and differences in stroke subtype. Atherosclerosis. 2002;161(1):161-8. https://doi.org/10.1016/s0021-9150(01)00635-9.; Hanson E., Jood K., Karlsson S. et al. Plasma levels of von Willebrand factor in the etiologic subtypes of ischemic stroke. J Thromb Haemost. 2011;9(2):275-81. https://doi.org/10.1111/j.1538-7836.2010.04134.x.; Jansson J.H., Nilsson T.K., Johnson O. von Willebrand factor, tissue plasminogen activator, and dehydroepiandrosterone sulphate predict cardiovascular death in a 10 year follow up survivors of acute myocardial infarction. Heart. 1998;80(4):334-7. https://doi.org/10.1136/hrt.80.4.334.; Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70(1):165-72.; Andrew M., Vegh P., Johnston M. et al. Maturation of the hemostatic system during childhood. Blood. 1992;80(8):1998-2005.; Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the healthy premature infant. Blood. 1988;72(5):1651-7.; Ehrenforth S., Junker R., Koch H.G. et al. Multicentre evaluation of combined prothrombotic defects associated with thrombophilia in childhood. Childhood Thrombophilia Study Group. Eur J Pediatr. 1999;158(Suppl 3):S97-104. https://doi.org/10.1007/pl00014359.; Thomas K.B., Sutor A.H., Altinkaya N. et al. von Willebrand factor-collagen binding activity is increased in newborns and infants. Acta Paediatr. 1995;84(6):697-9. https://doi.org/10.1111/j.1651-2227.1995.tb13733.x.; Hellstrom-Westas L., Ley D., Berg A.C. et al. VWF-cleaving protease (ADAMTS13) in premature infants. Acta Paediatr. 2005;94(2):205-10. https://doi.org/10.1111/j.1651-2227.2005.tb01892.x.; Feys H.B., Canciani M.T., Peyvandi F. et al. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br J Haematol. 2007;138(4):534-40. https://doi.org/10.1111/j.1365-2141.2007.06688.x.; Kavakli K., Canciani M.T., Mannucci P.M. Plasma levels of the von Willebrand factor-cleaving protease in physiological and pathological conditions in children. Pediatr Hematol Oncol. 2002;19(7):467-73. https://doi.org/10.1080/08880010290097288.; Mannucci P.M., Canciani M.T., Forza I. et al. Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood. 2001;98(9):2730-5. https://doi.org/10.1182/blood.v98.9.2730.; Schmugge M., Dunn M.S., Amankwah K.S. et al. The activity of the von Willebrand factor cleaving protease ADAMTS-13 in newborn infants. J Thromb Haemost. 2004;2:228-33. https://doi.org/10.1046/j.1538-7933.2003.00575.x.; Tsai H.M., Sarode R., Downes K.A. Ultralarge von Willebrand factor multimers and normal ADAMTS13 activity in the umbilical cord blood. Thromb Res. 2002;108(2-3):121-5. https://doi.org/10.1016/s0049-3848(02)00396-1.; Reiter R.A., Varadi K., Turecek P.L. et al. Changes in ADAMTS13 (vonWillebrand-factor-cleaving protease) activity after induced release of von Willebrand factor during acute systemic inflammation. Thromb Haemost. 2005;93(3):554-8. https://doi.org/10.1160/TH04-08-0467.; Levitan N., Dowlati A., Remick S.C. et al. Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Medicine (Baltimore). 1999;78:285-91. https://doi.org/10.1097/00005792-199909000-00001.; Pabinger I, Thaler J, Ay C. Biomarkers for prediction of venous thromboembolism in cancer. Blood. 2013;122(12):2011-8. https://doi.org/10.1182/blood-2013-04-460147.; Koo B.H., Oh D., Chung S.Y. et al. Deficiency of von Willebrand factorcleaving protease activity in the plasma of malignant patients. Thromb Res. 2002;105(6):471-6. https://doi.org/10.1016/S0049-3848(02)00053-1.; Wang W.S., Lin J.K., Lin T.C. et al. Plasma von Willebrand factor level as a prognostic indicator of patients with metastatic colorectal carcinoma. World J Gastroenterol. 2005;11(14):2166-70. https://doi.org/10.3748/wjg.v11.i14.2166.; Nossent A.Y., VAN Marion V., VAN Tilburg N.H. et al. von Willebrand factor and its propeptide: the influence of secretion and clearance on protein levels and the risk of venous thrombosis. J Thromb Haemost. 2006;4(12):2556-62. https://doi.org/10.1111/j.1538-7836.2006.02273.x.; Koster T., Blann A.D., Briet E. et al. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep vein thrombosis. Lancet. 1995;345(8943):152-5. https://doi.org/10.1016/s0140-6736(95)90166-3.; Lancellotti S., Basso M., Veca V. et al. Presence of portal vein thrombosis in liver cirrhosis is strongly associated with low levels of ADAMTS-13: a pilot study. Intern Emerg Med. 2016;11(7):959-67. https://doi.org/10.1007/s11739-016-1467-x.; Mazetto B.M., Orsi F.L., Barnabe A. et al. Increased ADAMTS13 activity in patients with venous thromboembolism. Thromb Res. 2012;130(6):889-93. https://doi.org/10.1016/j.thromres.2012.09.009.; Franchini M., Montagnana M., Targher G., Lippi G. Reduced von Willebrand factor-cleaving protease levels in secondary thrombotic microangiopathies and other diseases. Semin Thromb Hemost. 2007;33(8):787-77. https://doi.org/10.1055/s-2007-1000365.; Lotta L.A., Tuana G., Yu J. et al. Next generation sequencing study finds an excess of rare, coding single nucleotide variants of ADAMTS13 in patients with deep vein thrombosis. J Thromb Haemost. 2013;11(7):1228-39. https://doi.org/10.1111/jth.12291.; Bittar L.F., de Paula E.V., Mello T.B. et al. Polymorphisms and mutations in vWF and ADAMTS13 genes and their correlation with plasma levels of FVIII and vWF in patients with deep venous thrombosis. Clin Appl Thromb Hemost. 2011;17(5):514-8. https://doi.org/10.1177/1076029610375815.; Dean S.A., Mathis B., Litzky L.A., Hood I.C. Sudden death by occult metastatic carcinoma. J Forensic Sci. 2015;60(6):1637-9. https://doi.org/10.1111/1556-4029.12837.; Abe H., Hino R., Fukayama M. Platelet-derived growth factor-A and vascular endothelial growth factor-C contribute to the development of pulmonary tumor thrombotic microangiopathy in gastric cancer. Virchows Arch. 2013;462(5):523-31. https://doi.org/10.1007/s00428-013-1403-7.; Hotta M., Ishida M., Kojima F. et al. Pulmonary tumor thrombotic microangiopathy caused by lung adenocarcinoma: case report with review of theliterature. Oncol Lett. 2011;2(3):435-7. https://doi.org/10.3892/ol.2011.270.; Zwicker J.I., Liebman H.A., Neuberg D. et al. Tumor-derived tissue factorbearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15(22):6830-40. https://doi.org/10.1158/1078-0432.CCR-09-0371.; Grange S., Coppo P.; Centre de reference des microangiopathies thrombotiques (CNR-MAT). Thrombotic microangiopathies and antineoplastic agents. Nephrol Ther. 2017;13(Suppl 1):S109-13. https://doi.org/10.1016/j.nephro.2017.01.016.; Izzedine H., Escudier B., Lhomme C. et al. Kidney disease associated with anti-vascular endothelial growth factor (VEGF): an 8-year observational study at a single center. Medicine (Baltimore). 2014;93(24):333-9. https://doi.org/10.1097/MD.0000000000000207.; Griffin P.T., Jaglal M. Metastatic prostate cancer mimicking thrombotic thrombocytopenic pupura. Blood. 2015;125(8):1349. https://doi.org/10.1182/blood-2014-11-608828.; Al-Nouri Z.L., Reese J.A., Terrell D.R. et al. Drug-induced thrombotic microangiopathy: a systematic review of published reports. Blood. 2015;125(4):616-8. https://doi.org/10.1182/blood-2014-11-611335.; https://www.gynecology.su/jour/article/view/936
-
4Academic Journal
المؤلفون: A. Vorobev V., A. Makatsariya D., V. Bitsadze O., A. Solopova G., D. Ponomarev A., А. Воробьев В., А. Макацария Д., В. Бицадзе О., А. Солопова Г., Д. Пономарев А.
المصدر: Obstetrics, Gynecology and Reproduction; Vol 15, No 3 (2021); 228-235 ; Акушерство, Гинекология и Репродукция; Vol 15, No 3 (2021); 228-235 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: genetic and acquired thrombophilia, thrombotic complications, anticoagulant therapy, circulating antiphospholipid antibodies, APA, thrombosis risk factors, генетическая и приобретенная тромбофилия, тромботические осложнения, антикоагулянтная терапия, циркуляция антифосфолипидных антител, АФА, факторы риска тромбозов
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1003/918; Khorana A.A., Francis C.W., Culakova E. et al. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost. 2007;5(3):632–4. https://doi.org/10.1111/j.1538-7836.2007.02374.x.; Horsted F., West J., Grainge M.J. Risk of venous thromboembolism in patients with cancer: a systematic review and meta-analysis. PLoS Med. 2012;9(7):e1001275. https://doi.org/10.1371/journal.pmed.1001275.; Kim A.S., Khorana A.A., McCrae K.R. Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res. 2020;225:33–53. https://doi.org/10.1016/j.trsl.2020.06.012.; Blom J.W., Doggen C.J.M., Osanto S., Rosendaal F.R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA. 2005;293(6):715–22. https://doi.org/10.1001/jama.293.6.715.; Khorana A.A., Dalal M., Lin J., Connolly G.C. Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer. 2013;119(3):648–55. https://doi.org/10.1002/cncr.27772.; Noble S., Pasi J. Epidemiology and pathophysiology of cancer-associated thrombosis. Br J Cancer. 2010;102 Suppl 1(Suppl 1):S2–9. https://doi.org/10.1038/sj.bjc.6605599.; Khorana A.A., Kuderer N.M., Culakova E. et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2015;111(10):4902–8. https://doi.org/10.1182/blood-2007-10-116327.; Ay C., Dunkler D., Marosi C. et al. Prediction of venous thromboembolism in cancer patients. Blood. 2010;116(24):5377–82. https://doi.org/10.1182/blood-2010-02-270116.; Pabinger I., van Es N., Heinze G. et al. A clinical prediction model for cancer-associated venous thromboembolism: a development and validation studyin two independent prospective cohorts. Lancet Haematol. 2018;5(7):e289–e298. https://doi.org/10.1016/S2352-3026(18)30063-2.; Martín A.J.M, Ortega I., Font C. et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer. Br J Cancer. 2018;118(8):1056–61. https://doi.org/10.1038/s41416-018-0027-8.; Murthy S.B., Cushman M., Bobrow D. et al. Ability of the Khorana score to predict recurrent thromboembolism in cancer patients with ischemic stroke. J Clin Neurosci. 2018;57:111–5. https://doi.org/10.1016/j.jocn.2018.08.018.; Pabinger I., Ay C., Dunkler D. et al. Factor V Leiden mutation increases the risk for venous thromboembolism in cancer patients – results from the Vienna Cancer And Thrombosis Study (CATS). J Thromb Haemost. 2015;13(1):17–22. https://doi.org/10.1111/jth.12778.; Soria J.M., Morange P.-E., Vila J. et al. Multilocus genetic risk scores for venous thromboembolism risk assessment. J Am Heart Assoc. 2014;3(5):e001060. https://doi.org/10.1161/JAHA.114.001060.; Gran O.V., Smith E.N., Brækkan S.K. et al. Joint effects of cancer and variants in the factor 5 gene on the risk of venous thromboembolism. Haematologica. 2016;101(9):1046–53. https://doi.org/10.3324/haematol.2016.147405.; Kennedy M., Andreescu A.C.M., Greenblatt М. S. et al. Factor V Leiden, prothrombin 20210A and the risk of venous thrombosis among cancer patients. Br J Haematol. 2005;128(3):386–8. https://doi.org/10.1111/j.1365-2141.2004.05327.x.; Heraudeau A., Delluc A., Le Henaff M. et al. Risk of venous thromboembolism in association with factor V leiden in cancer patients – The EDITH case-control study. PLoS One. 2018;13(5):e0194973. https://doi.org/10.1371/journal.pone.0194973.; https://www.gynecology.su/jour/article/view/1003
-
5Academic Journal
المؤلفون: M. S. Dukhinova, E. D. Ponomarev, М. С. Духинова, Е. Д. Пономарёв
المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 73, № 3 (2018); 125-131 ; Вестник Московского университета. Серия 16. Биология; Том 73, № 3 (2018); 125-131 ; 0137-0952
مصطلحات موضوعية: болезнь Альцгеймера, neuroinflammation, neurovascular disorders, brain injury, stroke, Alzheimer’s disease, нейровоспаление, нейрососудистые заболевания, травмы головного мозга, инсульт
وصف الملف: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/617/431; McNicol A., Israels S. Platelet dence granules: Structure, function and implications for haemostasis // Thromb. Res. 1999. Vol. 95. N 1. P. 1–8.; Harrison P., Cramer E. Platelet α-granules // Blood Rev. 1993. Vol. 7. N 1. P. 52–62.; Reed G., Fitzgerald M.L., Polgar J. Molecular mechanisms of platelet exocytosis: insights into the “secrete” life of thrombocytes // Blood. 2000. Vol. 96. N 10. P. 3334–3342.; Varon D., Shai E. Platelets and their microparticles as key players in pathophysiological responses // J. Thromb. Haemost. 2015. Vol. 13. N S1. P. S40–S46.; Rondina M., Weyrich A., Zimmerman G. Platelets as cellular effectors of inflammation in vascular diseases // Circ. Res. 2013. Vol. 112. N 11. P. 1506–1519.; Swieringa F., Baaten C., Verdoold R., Mastenbroek T., Rijnveld N., van der Laan K., Breel E., Collins P., Lancé M., Henskens Y., Cosemans J., Heemskerk J., van der Meijden P. Platelet control of fibrin distribution and microelasticity in thrombus formation under flow // Arterioscler. Thromb. Vasc. Biol. 2016. Vol. 36. N 4. P. 692–699.; Gleissner C., von Hundelshausen P., Ley K. Platelet chemokines in vascular disease // Arterioscler Thromb. Vasc. Biol. 2008. Vol. 28. N 11. P. 1920–1927.; Massberg S., Brand K., Grüner S., Page S., Müller E., Müller I., Bergmeier W., Richter T., Lorenz M., Konrad I., Nieswandt B., Gawaz M. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation // J. Exp. Med. 2002. Vol. 196. N 7. P. 887–896.; Martínez C., Smith P., Palma-Alvarado V. The influence of platelet-derived products on angiogenesis and tissue repair: a concise update // Front. Physiol. 2015. DOI:10.3389/fphys.2015.00290.; Naidech A., Bendok B., Garg R., Bernstein R., Alberts M., Bleck T., Batjer H. Reduced platelet activity is associated with more intraventricular hemorrhage // Neurosurgery. 2009. Vol. 65. N 4. P. 684–688.; Zhang Y., Ying G., Ren C., Jizhang Y., Brogan D., Liu Z., Li S., Ding Y., Borlongan C., Zhang J., Ji X. Administration of human platelet-rich plasma reduces infarction volume and improves motor function in adult rats with focal ischemic stroke // Brain Res. 2015. Vol. 1594. P. 267–273.; Sehba F., Mostafa G., Friedrich V.J., Bederson J. Acute microvascular platelet aggregation after subarachnoid hemorrhage // J. Neurosurg. 2005. Vol. 102. N 6. P. 1094–1100.; Midura E., Jernigan P., Kuethe J., Friend L., Veile R., Makley A., Caldwell C., Goodman M. Microparticles impact coagulation after traumatic brain injury // J. Surg. Res. 2015. Vol. 197. N 1. P. 25–31.; Lukasik M., Rozalski M., Luzak B., Michalak S., Kozubski W., Watala C. Platelet activation and reactivity in the convalescent phase of ischaemic stroke // Thromb. Haemost. 2010. Vol. 104. N 3. P. 644–650.; Kraft P., Schuhmann M., Fluri F., Lorenz K., Zernecke A., Stoll G., Nieswandt B., Kleinschnitz C. Efficacy and safety of platelet glycoprotein receptor blockade in aged and comorbid mice with acute experimental stroke // Stroke. 2015. Vol. 46. N 12. P. 3502–3506.; May A., Seizer P., Gawaz M. Platelets: Inflammatory firebugs of vascular walls // Arterioscler. Thromb. Vasc. Biol. 2008. Vol. 28. N 3. P. S5–S10.; Nguyen K., Hamzeh-Cognasse H., Palle S., AnselmeBertrand I., Chavarin C.P., Pozzetto B., Garraud O., Cognasse F. Role of Siglec-7 in apoptosis in human platelets // PLoS One. 2014. Vol. 9. N. 19. e106239.; Nording H., Langer H. Complement links platelets to innate immunity // Semin. Immunol. 2018. Vol. 37. P. 43–52.; Li C., Li J., Li Y., Lang S., Yougbare S., Zhu G., Chen P., Ni H. Crosstalk between platelets and the immune system: Old systems with new discoveries // Adv. Hematol. 2012. Vol. 2012. Article ID 384685.; Li Z., Yang F., Dunn S., Gross A., Smyth S. Platelets as immune mediators: Their role in host defense responses and sepsis // Thromb. Res. 2011. Vol. 127. N 3. P. 184–188.; Wang Z., Zhao O., Zhang D., Sun C., Bao C., Yi M., Xing L., Luo D. Essential roles for platelets during neutrophil-dependent or lymphocyte-mediated defense against bacterial pathogens // Blood Coagul. Fibrinolysis. 2016. Vol. 27. N 6. P. 667–672.; Chapman L., Aggrey A., Field D., Srivastava K., Ture S., Yui K., Topham D., Baldwin III W., Morrell C. Platelets present antigen in the context of MHC class I // J. Immunol. 2012. Vol. 189. N. 2. P. 916–923.; Tian L., Ma L., Kaarela T., Li Z. Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases // J. Neuroinflammation. 2012. Vol. 9:155.; O’Sullivan S., O’Sullivan C., Healy L., Dev K., Sheridan G. Sphingosine 1-phosphate receptors regulate TLR4- induced CXCL5 release from astrocytes and microglia // J. Neurochem. 2018. Vol. 144. N 6. P. 736–747.; Skaper S., Facci L., Zusso M., Giusti P. Neuroinflammation, mast cells, and glia: dangerous liaisons // Neuroscientist. 2017. Vol. 23. N 5. P. 478–498.; Amor S., Puentes F., Baker D., van der Valk P. Inflammation in neurodegenerative diseases // Immunology. 2010. Vol. 129. N 2. P. 154–169.; Veremeyko T., Yung A., Dukhinova M., Kuznetsova I., Pomytkin I., Lyundup A., Strekalova T., Barteneva N., Ponomarev E. Cyclic AMP pathway suppress autoimmune Neuroinflammation by inhibiting functions of encephalitogenic CD4 T cells and enhancing M2 macrophage polarization at the site of inflammation // Front. Immunol. 2018. DOI:10.3389/fimmu.2018.00050.; Mracsko E., Javidi E., Na S.Y., Kahn A., Liesz A., Veltkamp R. Leukocyte invasion of the brain after experimental intracerebral hemorrhage in mice // Stroke. 2014. Vol. 45. N 7. P. 2107–2114.; Almolda B., González B., Castellano B. Are microglial cells the regulators of lymphocyte responses in the CNS? // Front. Cell. Neurosci. 2015. Vol. 9:440.; Frelinger A., Torres A., Caiafa A., Morton C., BernyLang M., Gerrits A., Carmichael S., Neculaes V., Michelson A. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation. Procoagulant markers, growth factor release and cell proliferation // Platelets. 2016. Vol. 27. N 2. P. 128–135.; Jonnalagadda D., Izu L., Whiteheart S. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner // Blood. 2012. Vol. 120. N 26. P. 5209–5216.; Dinkla S., van Cranenbroek B., van der Heijden W., He X., Wallbrecher R., Dumitriu IE., Koenen H., Joosten I. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin // Blood. 2016. Vol. 127. N 16. P. 1976–1986.; Bhat S., Goel R., Shukla R., Hanif K. Platelet CD40L induces activation of astrocytes and microglia in hypertension // Brain Behav. Immun. 2017. Vol. 59. P. 173–189.; Giles J., Greenhalgh A., Denes A., Nieswandt B., Coutts G., McColl B., Allan S. Neutrophil infiltration to the brain is platelet-dependent, and is reversed by blockade of platelet GPIbα // Immunology. 2018. Vol. 154. N 2. P. 322–328.; Schuhmann M., Guthmann J., Stoll G., Nieswandt B., Kraft P., Kleinschnitz C. Blocking of platelet glycoprotein receptor Ib reduces “thrombo-inflammation” in mice with acute ischemic stroke // J. Neuroinflammation. 2017. Vol. 14:18.; Vasina E., Cauwenberghs S., Feijge M., Heemskerk J., Weber C., Koenen R. Microparticles from apoptotic platelets promoteresident macrophage differentiation // Cell Death Dis. 2011. Vol. 2. N 9. e210.; Starossom S., Veremeyko T., Yung Y., Dukhinova M., Au C, Lau A., Weiner H., Ponomarev E. Platelets Play Differential role during the initiation and progression of autoimmune neuroinflammation // Circ. Res. 2015. Vol. 117. N 9. P. 779–792.; Sheremata W., Jy W., Horstman L., Ahn Y., Alexander J., Minagar A. Evidence of platelet activation in multiple sclerosis // J. Neuroinflammation. 2008. Vol. 5:27.; Starossom S., Veremeyko T., Dukhinova M., Yung A., Ponomarev E. Glatiramer acetate (copaxone) modulates platelet activation and inhibits thrombin-induced calcium influx: possible role of copaxone in targeting platelets during autoimmune neuroinflammation // PLoS One. 2014. Vol. 9. N 5. e96256.; Sotnikov I., Veremeyko T., Starossom S., Barteneva N., Weiner H., Ponomarev E. Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation // PLoS One. 2013. Vol. 8. N 3. e58979.; Singh M., Davidson D., Jackson J., Singh V., Silva J., Ramirez S., Maggirwar S. Characterization of plateletmonocyte complexes in HIV-1-infected individuals: possible role in HIV-associated neuroinflammation // J. Immunol. 2014. Vol. 192. N 10. P. 4674–4684.; Franks Z., Campbell R., Weyrich A., Rondina M. Platelet–leukocyte interactions link inflammatory and thromboembolic events in ischemic stroke // Ann. N.Y. Acad. Sci. 2010. Vol. 1207. P. 11–17.; Fang W., Zhang R., Sha L. Lv P., Shang E., Han D., Wei J., Geng X., Yang Q., Li Y. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain // J. Neurochem. 2014. Vol. 128. N 5. P. 662–671.; Barradas M., Mikhailidis D. The use of platelets as models for neurons: possible applications to the investigation of eating disorders // Biomed. Pharmacother. 1993. Vol. 47. N 1. P. 11–18.; Rainesalo S., Keranena T., Saransaari P., Honkaniemi J. GABA and glutamate transporters are expressed in human platelets // Brain Res. Mol. Brain Res. 2005. Vol. 141. N 2. P. 161–165.; Mercado C., Kilic F. Molecular mechanisms of SERT in platelets: Regulation of plasma serotonin levels // Mol. Interv. 2010. Vol. 10. N 4. P. 231–241.; Kaneez F., Saeed S. Investigating GABA and its function in platelets as compared to neurons // Platelets. 2009. Vol. 20. N. 5. P. 328–333.; Goubau C., Buyse G., Di Michele M, Van Geet C., Freson K. Regulated granule trafficking in platelets and neurons: A common molecular machinery // Eur. J. Paediatr. Neurol. 2013. Vol. 17. N 2. P. 117–125.; Bartsch I., Sandrock, K., Lanza F., Nurden P., Hainmann I., Pavlova A., Greinacher A., Tacke U., Barth M., Busse A., Oldenburg J., Bommer M., Strahm B., Superti-Furga A., Zieger B. Deletion of human GP1BB and SEPT5 is associated with Bernard-Soulier syndrome. Platelet secretion defect. Polymicrogyria, and developmental delay // Thromb. Haemost. 2011. Vol. 106. N 3. P. 475–483.; Pandey G., Ren X., Dwivedi Y., Pavuluri M. Decreased protein kinase C (PKC) in platelets of pediatric bipolar patients: effect of treatment with mood stabilizing drugs // J. Psychiatr. Res. 2008. Vol. 42. N 2. P. 106–116.; Cupello A., Favale E., Audenino D., Scarrone S., Gastaldi S., Albano C. Decrease of serotonin transporters in blood platelets after epileptic seizures // Neurochem. Res. 2005. Vol. 30. N 4. P. 425–458.; Bijl N., Thys C., Wittevrongel C., De la Marche W., Devriendt K., Peeters H., Van Geet C., Freson K. Platelet studies in autism spectrum disorder patients and first-degree relatives // Mol. Autism. 2015. Vol. 6:57.; Chacón-Fernández P., Säuberli K., Colzani M., Moreau T., Ghevaert C., Barde Y. Brain-derived Neurotrophic Factor in Megakaryocytes // J. Biol. Chem. 2016. Vol. 291. N 19. P. 9872–9881.; Gowert N., Donner L., Chatterjee M., et al. Blood platelets in the progression of Alzheimer’s disease // PLoS One. 2014. Vol. 9. N 2. e90523.; Vignini A., Morganti S., Salvolini E., Sartini D., Luzzi S., Fiorini R., Provinciali L., Di Primio R., Mazzanti L., Emanuelli M. Amyloid precursor protein expression is enhanced in human platelets from subjects with Alzheimer’s disease and Frontotemporal lobar degeneration: A Real-time PCR study // Exp. Gerontol. 2013. Vol. 48. N 12. P. 1505–1508.; Kokjohn T., Van Vickle G., Maarouf C., Kalback W., Hunter J., Daugs I., Luehrs D., Lopez J., Brune D., Sue L., Beach T., Castaño E., Roher A. Chemical characterization of pro-inflammatory amyloid-beta peptides in human atherosclerotic lesions and platelets // Biochim. Biophys. Acta. 2011. Vol. 1812. N 11. P. 1508–1514.; Kucheryavykh L., Dávila-Rodríguez J., RiveraAponte D., Zueva L., Washington A., Sanabria P., Inyushin M. Platelets are responsible for the accumulation of β-amyloid in blood clots inside and around blood vessels in mouse brain after thrombosis // Brain Res. Bull. 2017. Vol. 128. P. 98–105.; Friedrich V., Flores R., Muller A., Sehba F. Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage // Neuroscience. 2010. Vol. 165. N. 3. P. 968–975.; Langer H., Choi E., Zhou H. et al. Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis // Circ. Res. 2012. Vol. 110. N. 9. P. 1202–1210.; Cognasse F., Nguyen K., DamienP., McNicol A., Pozzetto B., Hamzeh-Cognasse H., Garraud O. The inflammatory role of platelets via their TLRs and siglec receptors // Front. Immunol. 2015. Vol. 6:83.; Schnaar R., Gerardy-Schahn R., Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration // Physiol. Rev. 2014. Vol. 94. N 2. P. 461–518.; Yamamoto H., Gurney M. Human platelets contain brain-derived neurotrophic factor // J. Neurosci. 1990. Vol. 10. N 11. P. 3469–3478.; Kniewallner, K., Grimm N., Humpel N. Platelet-derived nerve growth factor supports the survival of cholinergic neurons in organotypic rat brain slices // Neurosci. Lett. 2014. Vol. 574. P. 64–69.; Peng F., Dhillon N., Callen S., Yao H., Bokhari S., Zhu X., Baydoun H., Buch S. Platelet-derived growth factor protects neurons against gp120-mediated toxicity // J. Neurovirol. 2008. Vol. 14. N 1. P. 62–72.; Peng F., Yao H., Akturk H., Buch S. Platelet-derived growth factor CC-mediated neuroprotection against HIV Tat involves TRPC-mediated inactivation of GSK 3beta // PLoS One. 2012. Vol. 7. N 10. e47572.; Gouel F., Do Van B., Chou M., Jonneaux A., Moreau C., Bordet R., Burnouf T., Devedjian J., Devos D. The protective effect of human platelet lysate in models of neurodegenerative disease: involvement of the Akt and MEK pathways // J. Tissue Eng. Regen. Med. 2017. Vol. 11. N 11. P. 3236–3240.; Hayon Y., Dashevsky O., Shai E., Varon D., Leker R. Platelet lysates stimulate angiogenesis, neurogenesis and neuroprotection after stroke // Thromb. Haemost. 2013. Vol. 110. N 2. P. 323–330.; Kazanis I., Feichtner M., Lange S., Rotheneichner P., Hainzl S., Öller M., Schallmoser K., Rohde E., Reitsamer H., Couillard-Despres S., Bauer H., Franklin R., Aigner L., Rivera F. Lesion-induced accumulation of platelets promotes survival of adult neural stem / progenitor cells // Exp. Neurol. 2015. Vol. 269. P. 75–89.; Au A. E.-L., Sashindranath M., Borg R., Kleifeld O., Andrews R., Gardiner E., Medcalf R., Samson A. Activated platelets rescue apoptotic cells via paracrine activation of EGFR and DNA-dependent protein kinase // Cell Death Dis. 2014. Vol. 5. N. 9. e1410.; Wang Y., Reheman A., Spring C., Kalantari K., Marshall A., Wolberg A., Gross P., Weitz J., Rand M., Mosher D., Freedman J., Ni H. Plasma fibronectin supports hemostasis and regulates thrombosis // J. Clin. Invest. 2014. Vol. 124. N. 10. P. 4281–4293.; Blair P., Flaumenhaft R. Platelet α-granules: Basic biology and clinical correlates // Blood Rev. 2009. Vol. 23. N. 4. P. 177–189.; Morrissey J. Polyphosphate: a link between platelets, coagulation and inflammation // Expert. Rev. Hematol. 2012. Vol. 95. N. 4. P. 346–352.; Ziu E., Mercado C., Li Y., Singh P., Ahmed B., Freyaldenhoven S., Lensing S., Ware J., Kilic F. Down-regulation of the serotonin transporter in hyperreactive platelets counteracts the pro-thrombotic effect of serotonin // J. Mol. Cell. Cardiol. 2012. Vol. 52. N. 5. P. 1112–1121.; Mitsios J., Vini M., Stengel D., Ninio E., Tselepis A. Human platelets secrete the plasma type of platelet-activating factor acetylhydrolase primarily associated with microparticles // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. N 8. P. 1907–1913.; Ge S., Wittenberg N., Haynes C. Quantitative and real-time detection of secretion of chemical messengers from individual platelets // Biochemistry. 2008. Vol. 47. N. 27. P. 7020–7024.; Nurden A. Platelets, inflammation and tissue regeneration // Thromb. Haemost. 2011. Vol. 105. N S6. P. S13–S33.; Bell J., Thomas T., Lass E., Ai J., Wan H., Lifshitz J., Baker A., Macdonald R. Platelet-mediated changes to neuronal glutamate receptor expression at sites of microthrombosis following experimental subarachnoid hemorrhage // J. Neurosurg. 2014. Vol. 121. N 6. P. 1424–1431.; https://vestnik-bio-msu.elpub.ru/jour/article/view/617
-
6Academic Journal
المؤلفون: Д. Пономарёв В.
المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 11 (2015); 15-16 ; Новые огнеупоры; № 11 (2015); 15-16 ; 1683-4518 ; 10.17073/1683-4518-2015-11
مصطلحات موضوعية: Богдановичское ОАО «Огнеупоры», корундографитовые изделия, гидростат, стопор-моноблок, контроль за потоком металла
وصف الملف: application/pdf
Relation: https://newogneup.elpub.ru/jour/article/view/156/158; https://newogneup.elpub.ru/jour/article/view/156
-
7Academic Journal
المؤلفون: A. Markova K., A. Puzachenko Yu., T. van Kolfschoten, P. Kosintsev A., T. Kuznetsova V., A. Tikhonov N., O. Bachura N., D. Ponomarev V., J. van der Pliht, M. Cutiens, А. Маркова К., А. Пузаченко Ю., Т. ван Кольфсхотен, П. Косинцев А., Т. Кузнецова В., А. Тихонов Н., О. Бачура Н., Д. Пономарев В., Й. ван дер Плихт, М. Кутиенс
المساهمون: Нидерландская организация по научным исследованиям, НВО-РФФИ, РФФИ
المصدر: Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya; № 6 (2013); 110-121 ; Известия Российской академии наук. Серия географическая; № 6 (2013); 110-121 ; 2658-6975 ; 2587-5566
وصف الملف: application/pdf
Relation: https://izvestia.igras.ru/jour/article/view/82/77; Анисюткин Н.К., Борзяк И.А., Кетрару Н.А. Пеpвобытный человек в гpотах Тpинка I-Ш. Кишинев, Штиинца, 1986. 123 с.; Барышников Г.Ф. Order Artiodactyla / Каталог млекопитающих СССР (плиоцен – современность). Л.: Наука, 1981. С. 343–408.; Бендукидзе О.Г. Голоценовая фауна позвоночных Грузии. АН ГССР. Ин-т палеобиологии. Тбилиси: Мецниереба, 1979. 108 с.; Васильевский Р.С., Бурилов В.В., Дроздов Н.И. Археологические памятники Северного Приангарья. Новосибирск: Наука, 1988. 225 с.; Величко Ф.Ф., Фаустова М.А. Развитие оледенений в позднем плейстоцене // Палеоклиматы и палеоландшафты внетропического пространства Северного полушария. Поздний плейстоцен – голоцен. М.: ГЕОС, 2009. С. 32–41.; Верещагин Н.К., Барышников Г.Ф. Вымирание млекопитающих в четвертичном периоде Северной Евразии // Тр. Зоол. Ин-та АН СССР. Т. 131. 1985. С. 3–38.; Громова В.И. Первобытный зубр (Bison priscus Bojanus) в СССР // Тр. Зоол. Ин-та АН СССР. Л. Т. 2. Вып. 2–3. 1935.; Давид А.И. Формирование териофауны Молдавии в антропогене / А.И. Давид. Кишинёв: Штиинца, 1982. 152 с.; Данилкин А.А. Млекопитающие России и сопредельных регионов. Полорогие. М.: Товарищество научных изданий КМК, 2005. 550 с.; Дроздов Н.И. Археология, геология и палеогеография памятников юга Средней Сибири (Северо-Минусинская впадина, Кузнецкий Алатау и Восточный Саян). Красноярск, 1992. 129 с.; Дроздов Н.И., Чеха В.П., Лаухин С.А., Акимова Е.В. и др. Хроностратиграфия палеолитических памятников Средней Сибири (бассейн Енисея): (Экскурсия № 2): Путеводитель Междунар. симпоз. “Хроностратиграфия палеолита Сев., Центр., Вост. Азии и Америки (палеоэкол. аспект)”. К XIII конгр. INQVA (КНР, 1991). Новосибирск: 1990. 184 с.; Инешин Е.М., Клементьев А.В., Сулержитский Л.Д., Орлова Л.А. Фаунистические остатки Байкало-Потомского нагорья в свете радиоуглеродной хронологии // Изв. Лаборатории древних технологий. Иркутск, 2005. С. 49–59.; Кетрару Н.А. Памятники эпох палеолита и мезолита // Археологическая карта Молдавской ССР. Вып. 1. Кишинев: Штиинца, 1973. 179 с.; Косинцев П.А., Бобковская Н.Е. Крупные млекопитающие неоплейстоцена широтного отрезка Иртыша // Четвертичная палеозоология на Урале, Екатеринбург, 2003. С. 226–231.; Косинцев П.А., Бачура О.П., Сериков У.В., Орлова Л.А. Крупные млекопитающие севера Среднего Зауралья в конце позднего неоплейстоцена // Квартер-2005. IV Всероссийское совещание по изучению четвертичного периода. Сыктывкар, 2005. С. 203–205.; Кройтор Р., Критические замечания о бизонах (Bison, Bovidae, Mammalia) из плейстоцена Mолдовы// Revista Arheologocă, serie nouă, V. 5. № 1. 2010. P. 172–188.; Макеев В.М., Арсланов X.А., Барановская О.Ф., Пономарева Д.П. Стратиграфия, геохронология и палеогеография позднего плейстоцена и голоцена о-ва Котельного // Бюлл. Комиссии по изучению четвертичного периода. Т. 58. 1989. С. 58–69.; Марков К.К. Палеогеография (Историческое землеведение). Изд-во МГУ, 1960. 266 с.; Марков К.К., Лазуков Г.И., Николаев В.А. Четвертичный период (ледниковый – антропогеновый период). Т. 1. Территория СССР. Изд-во МГУ, 371 с. и Т. 2. Изд-во МГУ, 1965. 435 с.; Маркова А.К., Пузаченко А.Ю., ван дер Плихт Й., ван Кольфсхотен Т. и др. Новейшие данные о динамике ареала мамонта Mammuthus primigenius в Европе во второй половине позднего плейстоцена – голоцене // Доклады Академии Наук, 2010. Т. 431. № 4. С. 547–550.; Маркова А.К., ван Кольфсхотен Т., Бохнкке Ш., Косинцев П.А. и др. Эволюция экосистем Европы при переходе от плейстоцена к голоцену (24–8 тыс. л.н.). М.: Издательство КМК, 2008. 556 с.; Мочанов Ю.А. Дюктайская пещеpа – новый палеолитический памятник Северо-Восточной Азии / По следам дpевних культуp Якутии. Якутск, 1970. С. 40–64.; Мочанов Ю.А. Дpевнейшие этапы заселения человеком Севеpо-Восточной Азии. Новосибиpск: Наука, 1977. 263 с.; Немцев А.С., Раутиан Г.С., Пузаченко А.Ю., Сипко Т.П. и др. Зубр на Кавказе. М.: Майкоп: Качество, 2003. 292 с.; Новенко Е.Ю., Зюганова И.С., Писарева В.В., Фаустова М.А. и др. Палеоэкологические и палеоклиматические реконструкции для микулинского межледниковья и валдайского оледенения // Динамика лесных экосистем юга Валдайской возвышенности в позднем плейстоцене и голоцене. М.: ГЕОС, 2011. С. 52–67.; Пидопличко И.Г. Позднепалеолитические жилища из костей мамонта на Укpаине. Киев: Наукова Думка, 163 с.; Пономарев Д.В., Маркова А.К., ван Кольфсхотен T., ван Плихт Й. и др. Радиоуглеродные датировки остатков позднечетвертичных млекопитающих Архангельской области и их значение для реконструкций последнего ледникового покрова Восточной Европы // ДАН. 2012. Т. 444. № 6. С. 635–639.; Савич В.П. Позднепалеолитические поселения на горе Куличивка в г. Кременец (Тернопольский р-н УССР) // Бюл. комиссии по изучению четвертичного периода. 1975. № 44. С. 41–51, 529.; Смирнов Н.Г. Новое в четвертичной палеотериологии европейского северо-востока // Геология и минеральные ресурсы европейского северо-востока России: новые результаты и новые перспективы. Материалы XIII Геологического съезда Республики Коми. T. II. Сыктывкар, 1999. С. 286–288.; Сулержитский Л.Д., Романенко Ф.А. Возраст и расселение “мамонтовой” фауны азиатского Заполярья (по радиоуглеродным данным) // Криосфера земли. 1997. V. 1. № 4. P. 12–19.; Тихонов А.Н. Плейстоценовый овцебык (Ovibos pallantis) Урала и Западной Сибири // Тр. Зоол. ин-та РАН. Т. 256. 1994. С. 92–110.; Хотинский Н.А. Голоцен Северной Евразии. М.: Наука, 1977. 200 с.; Хотинский Н.А., Климанов В.А. Растительность голоцена // Динамика ландшафтных компонентов и внутренних морских бассейнов Северной Евразии за последние 130 000 лет. Развитие ландшафтов и климата Северной Евразии: поздний плейстоцен – голоцен – элементы прогноза. Атлас – монография. Вып. 2. Общая палеогеграфия. М.: ГЕОС, 2002. С. 89–104.; Фаустова М.А. Дегляциация и типы ледникового рельефа на территории европейской части СССР / Палеогеографическая основа современных ландшафтов. М.: Наука, 1994. С. 30–40.; Флеров К.К., Заблоцкий М.А. О причинах изменения ареала бизонов // Бюл. МОИП. Отд. биол. T. LXVI (6). 1961. С. 99–109.; Шер А.В. Млекопитающие и стратиграфия плейстоцена северо-востока СССР и Северной Америки. М.: Наука, 1971. 310 с.; Abramova Z.A. Terminal Paleolithic Adaptation / Еd. Soffer O., Praslov N. From Kostenki to Clovis: Upper Paleolithic-Paleo-Indian Adaptions (Interdisciplinary Contributions to Archaeology), 1993. Р. 85–100.; American Bison: Status Survey and Conservation Guidelines. Ed. by Gates C.C., Freese C.H., Gogan P.J.P., Kotzman M. // IUCN, Gland, Switzerland. 2009. 134 p.; Allsworth-Jones P. The Szeletian and the transition from Middle to Upper Palaeolithic in Central Europe. Clarendon press. Oxford, 1986. 249 p.; Bouchud J. Etude de la faune de l’abri Pataud, les Eyzies, Dordogne / Movius, H.L. / Ed., Excavation of the Abri Pataud, Les Eyzies (Dordogne). Contributors // Amer. School of Prehistoric Res. 30, Peabody Museum, Harvard University, Cambridge, 1975. P. 65–153.; Campos P., Willerslev E., Sher A., Orlando L. еt al. Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics // Proc Nat. Acad. Sci. USA 105. 2010. P. 8327–8332 (PR CO).; Currant A., Jacobi R. A formal mammalian biostratigraphy for the Late Pleistocene of Britain // Quat. Sci. Rev. 2001. V. 20. № 16–1. P. 1707–1716.; Damblon F., Haesaerts P. & van der Plicht J. New datings and considerations on the chronology of Upper Palaeolithic sites in the Great Eurasiatic Plain // Préhistoire Européenne. 1996. № 9. P. 177–231.; Evin J., Marien G., Pachiaudi Ch. Lyon natural radiocarbon measurements IV // Radiocarbon. 1973. V. 15. № 3. P. 514–533.; Fiebig M., Pacher M. Alpine cave bears and climate in marine isotope stage 3 //AUTH. 2006. № 9. P. 251–256.; Hedges R.E.M., Housley R.A., Law I.A., Perry C., Gowlett J.A.J. Radiocarbon dates from the Oxford AMS system: archaeometry datelist 6 //Archaeometry. 1987. V. 29 (2). P. 289–306.; Iwase A., Hashizume J., Izuho M., Takahashi K., Sato H. Timing of megafaunal extinction in the Late Pleistocene on the Japanese Archipelago // Quat. Intern. 2012. V. 255. P. 114–124.; Kuznetsova T.V., Sulerzhitsky L.D., Siegert Ch. New data on the “Mammoth” fauna of the Laptev Shelf Land (Arctic Siberia) / Proceedings of the First International Congress “The World of Elephants”. Rome. 16–20 October. 2001. P. 289–292.; Lorenzen E.D., Nogues-Bravo D., Orlando L. et al. Species-specifi c responses of Late Quaternary megafauna to climate and humans // Nature. 2011. V. 479. P. 359–365.; MacPhee R., Tikhonov A.N., Mol D., Greenwood A.D. Late Quaternary loss of genetic diversity in muskox (Ovibos) // BMC Evolut. Biology. 2005. P. 5–49.; MacPhee R.D.E., Tikhonov A.N., Mol D., de Marliave C. et al. Radiocarbon chronologies and extinction dynamics of the Late Quaternary mammalian megafauna of the Taimyr Peninsula, Russian Federation // J. Archaeol. Sci. 2002. V. 29. № 10. P. 1017–1042.; Markova А.К., Puzachenko А.Yu., Kolfschoten T. van. The North Eurasian mammal assemblages during the end of MIS 3 (Brianskian-Late Karginian – Denekamp Interstadial) // Quat. Intern. 2010. P. 149–158.; Markova A.K., Smirnov N.G., Kosincev P.A., Khenzykhenova F.I. et al. Zoogeography of Holocene mammals in Northern Eurasia // Lynx, Praha, 2001. V. 32. P. 233–245.; Mol D., Post K., Reumer J., van der Plicht J. et al. The Eurogeul-fi rst of the palaentological, palynological and archaeological investigations of this part of the North Sea // Quat. Intern. 2006. V. 142–143. P. 178–185.; Musil R. Hunting game of the cultural layer of Pavlov / Ed. J. Svoboda, Pavlov I: Excavations 1952–1953. The Dolní Vestonice Studies 2 / ERAUL 66. Université de Liège, Liège. 1994. P. 183–201.; Orlova L.A., Kuzmin Ya.V., Dementiev V.N. A review of the evidence for extinction chronologies for five species of upper Pleistocene megafauna in Siberia // Radocarbon. 2004. V. 46. № 1. P. 301–329.; Pacher M. Die Höhlenbärenreste der Sammlung Groß aus der Uschowa Höhle (Potocka zijalka/Slowenien) // Carinthia II. 1998. V. 108. S. 633–642.; Rasmussen S.O., Andersen K.K., Svensson A.M., Steffensen J.P. et al. A new Greenland ice core chronology for the last glacial termination // J. Geophys. Res. 2006. V. 111. D06102, doi:10.1029/2005JD006079; Raynal J.-P., Pautrat Y. La Chapelle-aux-Saints et la Préhistoire en Corrèze // Еdité par l’ Association pour la Recherche Archéologique en Limousin, Limoges.1990. P. 28−35.; Ryziewicz Z. Systematic place of the fossil musk-ox from the Eurasian diluvium // Prace Wroclawsk. Towar. Naukow. Ser. B. 49. 1955. 74 p.; Shapiro B., Drummond A.J., Rambaut A., Wilson M.C. et al. // Sci. 2004. V. 306. P. 1561−1565.; Sher A.V., Kuzmina S.A., Kuznetsova T.V., Sulerzhitsky L.D. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals // Quat. Sci. Rev. 2005. V. 24. № 5–6. Р. 533−569.; Shpansky A.V. Quaternary mammals remains from the Krasniy Yar locality (Tomsk region, Russia) // Quat. Intern. 2006. V. 142–143. P. 203−207.; Stuart A.J., Lister A.M. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia //Quat. Sci. Rev. 2012. V. 51.Р. 1−17.; Stuiver M., Polach H.A. Discussion: Reporting of 14C Data // Radiocarbon. 1977. V. 19(3). P. 355–363.; Svensson A., Andersen K.K., Bigler M., Clausen H.B. еt al. A 60 000 year Greenland stratigraphic ice core chronology // Climate of the Past. 2008. V. 4. P. 47–57.; Zagwijn W.H. Vegetation, climate and radiocarbon datings in the Late Pleistocene of The Netherlands. Part II: Middle Weichselian // Mededelingen Rijks Geologische Dienst. V. 25. № 3. 1974.; Valladas H., Chadelle J.P., Geneste J.-M., Joron J.-L. еt al. Datations par la thermoluminescence de gisements mouste´riens du Sud de la France // L’Anthropologie 1987. V. 91. P. 211–226.; Vandenberghe J.F. The relation between climate and river processes, landforms and deposits during the Quaternary // Quat. Intern. 2002. V. 91. P. 17−23.; Van Huissteden J. Tundra rivers of the Last Glacial: sedimentation and geomorphological processes during the Middle Pleniglacial in the Dinkel valley (eastern Netherlands)// Mededelingen Rijks Geologische Dienst. 1990. V. 44-3. 1990. P. 3−138.; Vartanyan S.L., Arslanov K.A., Karhu J.A., Possnert G. еt al. Collection of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia // Quat. Res. 2008. V. 70. P. 51–72.; Von Königswald W., Taute W. Mensch und Fauna unter dem Einfl uß des Klimawandels an der Grenze vom Pleistozän zum Holozän// Nachrichten Deutsche Geologische Gesellschaft. 1974. V. 9. S. 145−150.; Wojtal P. Zooarchaeological studies of the Late Pleistocene sites in Poland. Krakow, 2007. 189 p.; https://izvestia.igras.ru/jour/article/view/82; undefined
-
8Electronic Resource
Additional Titles: ОСОБЕННОСТИ РАННЕГО ПЕРИОДА ПОСЛЕ МИНИИНВАЗИВНЫХ КАРДИОХИРУРГИЧЕСКИХ ОПЕРАЦИЙ
المؤلفون: V. Shmyrev A., D. Ponomarev N., P. Perovsky P., A. BogachevProkofyev V., I. Kornilov A., V. Lomivorotov V., В. Шмырев А.; Новосибирский научноисследовательский институт патологии кровообращения им. академика Е. Н. Мешалкина Минздрава РФ, Новосибирск, Д. Пономарев Н.; Новосибирский научноисследовательский институт патологии кровообращения им. академика Е. Н. Мешалкина Минздрава РФ, Новосибирск, П. Перовский П.; Новосибирский научноисследовательский институт патологии кровообращения им. академика Е. Н. Мешалкина Минздрава РФ, Новосибирск, А. БогачевПрокофьев В.; Новосибирский научноисследовательский институт патологии кровообращения им. академика Е. Н. Мешалкина Минздрава РФ, Новосибирск, И. Корнилов А.; Новосибирский научноисследовательский институт патологии кровообращения им. академика Е. Н. Мешалкина Минздрава РФ, Новосибирск, В. Ломиворотов В.; Новосибирский научноисследовательский институт патологии кровообращения им. академика Е. Н. Мешалкина Минздрава РФ, Новосибирск
المصدر: General Reanimatology; Том 10, № 4 (2014); 74-81; Общая реаниматология; Том 10, № 4 (2014); 74-81; 2411-7110; 1813-9779; 10.15360/1813-9779-2014-4
مصطلحات الفهرس: cardiosurgery; miniinvasive interventions; mitral valve defects; perioperative characteristics, кардиохирургия; минимально инвазивные вмешательства; пороки митрального клапана; периоперационные характеристики, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion
URL:
https://www.reanimatology.com/rmt/article/view/1413/848 https://www.reanimatology.com/rmt/article/view/1413/851 https://www.reanimatology.com/rmt/article/view/1413/848 https://www.reanimatology.com/rmt/article/view/1413/851
Cohn L.H., Adams D.H., Couper G.S., Bichell D.P., Rosborough D.M., SearsS.P., Aranki S.F. Minimally invasive cardiac valve surgery improves patient satisfaction while reducing costs of cardiac valve replacement and repair. Ann. Surg. 1997; 226 (4): 421—428. http://dx.doi.org/10.1097/0000065819971000000003. PMID: 9351710
Schmitto J.D., Mokashi S.A., Cohn L.H. Minimally invasive valve surgery. J. Am. Coll. Cardiol. 2010; 56 (6): 455—462. http://dx.doi.org/10.1016/j.jacc.2010.03.053. PMID: 20670754
Vernick W., Atluri P. Robotic and minimally invasive cardiac surgery. Anesthesiol. Clin. 2013; 31 (2): 299—320. http://dx.doi.org/10.1016/j.anclin.2012.12.002. PMID: 23711646
Iribarne A., Karpenko A., Russo M.J., Cheema F.H., Umann T., Oz M.C., Smith C.R., Argenziano M. Eightyear experience with minimallyinva sive cardiothoracic surgery. World J. Surg. 2010; 34 (4): 611—615. http://dx.doi.org/10. 1007/s0026800902607. PMID: 19838752
Bogachev Prokofyev A.V., Zheleznev S.I., Teleutaev R.M., Afanasyev A.V., Arkhipov A.N., Boboshko V.A., Nazarov V.M., Karaskov A.M. Lechenie SAMsindroma pri rekonstruktsii mitralnogo klapana s ispolzovaniem robotizirovannoi sistemy DA VINCI. [Treatment of SAM syndrome during mitral valve repair using the robotic DA VINCI system]. Kardiologiya i Serdechno Sosudistaya Khirurgiya. 2013; 6 (1): 85—87. [In Russ.]
Lomivorotov V.V., Shmyrev V.A., Efremov S.M., Ponomarev D.N., Moroz G.B., Shakhin D.G., Kornilov I.A., Shilova A.N., Lomivorotov V.N., Zheleznev S.I. Normotermichesky ili gipotermichesky rezhimy iskusstvennogo krovoobrashcheniya u patsientov s priobretennymi porokami serdtsa. Obshchaya Reanimatologiya. [Normothermal or hypothermal extracorpo real circulation regimens in patients with acquired heart disease. General Reanimatology]. 2013; 9 (4): 42—49. [In Russ.]
Nikiforov Yu.V., Krichevsky L.A. Patofiziologiya serdtsa i klinicheskaya kardioanesteziologiya. Obshchaya Reanimatologiya. [Pathophysiology of the heart and clinical cardiac anesthesiology. General Reanimatology]. 2012; 8 (4): 123—125. [In Russ.]
Krichevsky L.A., Rybakov V.Yu., Guseva O.G., Lyamin A.Yu.,Kharlamova I.E., Magilevets A.I. Rannyaya diagnostika kriticheskikh postperfuzionnykh rasstroistv krovoobrashcheniya. Obshchaya Reanimatologiya. [Early diagnosis of critical postperfusion circulatory disorders. General Reanimatology]. 2012; 8 (3): 25—30. [In Russ.]
R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3900051070. URL http://www.Rproject.org/.
Navia J.L., Cosgrove D.M. Minimally invasive mitral valve operations. Ann. Thorac. Surg. 1996; 62 (5): 1542—1544. PMID: 8893611
Modi P., Hassan A., Chitwood W.R.Jr. Minimally invasive mitral valve surgery: a systematic review and metaanalysis. Eur. J. Cardiothorac. Surg. 2008; 34 (5): 943—952. http://dx.doi.org/10.1016/ j.ejcts.2008.07.057. PMID: 18829343
Zheleznev S.I., Bogachev Prokofyev A.V., Pivkin A.N., Nazarov V.M., Emeshkin M.I., Karaskov A.M. Sravnenie rezultatov konkomitantnoi protsedury Maze III i radiochastotnoi ablatsii predserdii u patsientov s klapannymi porokami serdtsa. [Comparing the results of a concomitant procedure of Maze III and atrial radiofrequency ablation in patients with valvular heart diseases]. Patologiya Krovoobrashcheniya i Kardiokhirurgiya. 2012;4: 9—14. [In Russ.]
de Vaumas C., Philip I., Daccache G., Depoix J.P., Lecharny J.B., Enguerand D., Desmonts J.M. Comparison of minithoracotomy and conventional sternotomy approaches for valve surgery. J. Cardiothorac. Vasc. Anesth. 2003; 17 (3): 325—328. http://dx.doi.org/10.1016/S10530770(03)00051X. PMID: 12827580
Krichevsky L.A., Semenychev N.V., Magilevets A.I., Rybakov V.Yu., Lapty A.V., Kharlamova I.E., Setyn T.V. Anesteziologicheskoe obespechenie miniinvazivnykh operatsii na klapanakh serdtsa. Obshchaya Reanimatologiya. [Anesthesia maintenance during miniinvasive cardiac valve surgery. General Reanimatology]. 2013; 9 (3): 48—53. [In Russ.]
Seeburger J., Borger M.A., Falk V., Kuntze T., Czesla M., Walther T., Doll N., Mohr F. Minimally invasive mitral valve repair for mitral regurgita tion: results of 1339 consecutive patients. Eur. J. Cardiothorac. Surg. 2008; 34 (4): 760—765. http://dx.doi.org/10.1016/j.ejcts.2008.05.015. PMID: 18586512
Iribarne A., Easterwood R., Russo M.J., Chan E.Y., Smith C.R., Argenziano M. Comparative effectiveness of minimally invasive versus traditional sternotomy mitral valve surgery in elderly patients. J. Thorac. Cardiovasc. Surg. 2012; 143 (Suppl 4): S86—S90. http://dx.doi.org/10.1016/j.jtcvs.2011.10.090. PMID: 22423605
Grossi E.A., LaPietra A., Ribakove G.H., Delianides J., Esposito R., Culliford A.T., Derivaux C.C., Applebaum R.M., Kronzon I., Steinberg B.M., Baumann F.G., Galloway A.C., Colvin S.B. Minimally invasive versus ster notomy approaches for mitral reconstruction: comparison of intermedi ateterm results. J. Thorac. Cardiovasc. Surg. 2001; 121 (4): 708—713. http://dx.doi.org/10.1067/mtc.2001.112626. PMID: 11279412
Mohr F.W., Falk V., Diegeler A., Walther T., van Son J.A., Autschbach R. Minimally invasive portaccess mitral valve surgery. J. Thorac. Cardiovasc. Surg. 1998; 115 (3): 567—574. http://dx.doi.org/10.1016/S00225223(98)703204. PMID: 9535444
Hamano K., Kawamura T., Gohra H., Katoh T., Fujimura Y., Zempo N., Miyamoto M., Tsuboi H., Tanimoto Y., Esato K. Stress caused by minimally invasive cardiac surgery versus conventional cardiac surgery: incidence of systemic inflammatory response syndrome. World J. Surg. 2001; 25 (2): 117—121. http://dx.doi.org/10.1007/s002680020048. PMID: 11338008
Grossi E.A., Loulmet D.F., Schwartz C.F., Ursomanno P., Zias E.A., Dellis S.L., Galloway A.C. Evolution of operative techniques and perfusion strategies for minimally invasive mitral valve repair. J. Thorac. Cardiovasc. Surg. 2012; 143 (Suppl 4): S68—S70. http://dx.doi.org/10.1016/j.jtcvs.2012.01.011. PMID: 22285326 -
9Electronic Resource
Additional Titles: Нормотермический или гипотермический режимы искусственного кровообращения у пациентов с приобретенными пороками сердца
المؤلفون: V. Lomivorotov V., V. Shmyrev A., S. Efremov M., D. Ponomarev N., G. Moroz B, D. Shakhin G., I. Kornilov A., A. Shilova N., V. Lomivorotov N., S. Zheleznev I., В. Ломиворотов В., В. Шмырев А., С. Ефремов М., Д. Пономарев Н., Г. Мороз Б., Д. Шахин Г., И. Корнилов А., А. Шилова Н., С. Железнев И.
المصدر: General Reanimatology; Том IX № 4 2013 г.; 42; Общая реаниматология; Том IX № 4 2013 г.; 42; 2411-7110; 1813-9779; 10.15360/1813-9779-2013-4
مصطلحات الفهرس: info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion
URL:
https://www.reanimatology.com/rmt/article/view/123/99 https://www.reanimatology.com/rmt/article/view/123/99
Ho K.M., Tan J.A.Cardiovasc. Ther.
Boodhwani M., Rubens F., Wozny D., Rodriguez R., Nathan H.J.Effects of sustained mild hypothermia on neurocognitive function after coronary artery bypass surgery: a randomized, double-blind study.J. Thorac. Cardiovasc. Surg.2007; 134 (6): 1443—1450.
Birdi I., Regragui I.A., Izzat M.B., Alonso C., Black A.M., Bryan A.J., Angelini G.D.Effects of cardiopulmonary bypass temperature on pulmonary gas exchange after coronary artery operations.Ann. Thorac. Surg.1996; 61 (1): 118—12
Boodhwani M., Rubens F.D., Wozny D., Nathan H.J.Effects of mild hypothermia and rewarming on renal function after coronary artery bypass grafting.Ann. Thorac. Surg.2009; 87 (2): 489—495.
De Paulis R., Penta De Peppo A., Colagrande L., Nardi P., Tomai F., Forlani S., Scafuri A., PicicheM., Chiariello L.Troponin I release after CABG surgery using two different strategies of myocardial protection and systemic per-fusion.J. Cardiovasc. Surg. (Torino).2002; 43 (2): 153—159.
Tosson R., Buchwald D., Klak K., Laczkovics A.The impact of normoth-ermia on the outcome of aortic valve surgery.Perfusion.2001; 16 (4): 319—324.
Nathan H.J., Lavallee G.The management of temperature during hypothermic cardiopulmonary bypass: I — Canadian Survey.Can. J. Anaesth.1995; 42 (8): 669—671.
Chen Y.B., ShuJ., Yang W.T., ShiL., GuoX.F., WangF.G., Qian Y.Y.Meta-analysis of randomized trials comparing the effectiveness of on-pump and off-pump coronary artery bypass.Chin. Med. J. (Engl).2012; 125 (2): 338—344.
Cohen G., Borger M.A., Weisel R.D., Rao V.Intraoperative myocardial protection: current trends and future perspectives.Ann. Thorac. Surg.1999; 68 (5): 1995—2001.
Takeda S., Nakanishi K., Ikezaki H., Kim C., Sakamoto A., Tanaka K., Ogawa R.Cardiac marker responses to coronary artery bypass graft surgery with cardiopulmonary bypass and aortic cross-clamping.J. Cardiothorac. Vasc. Anesth.2002; 16 (4): 421—425.
Lurati Buse G.A., Koller M.T., Grapow M., Bolliger D., Seeberger M., Filipovic M.The prognostic value of troponin release after adult cardiac surgery — A meta-amalysis.Eur.J. Cardiothorac. Surg.2010; 37 (2): 399—406.
Monaco F., Landoni G., Biselli C., De Luca M., Frau G., Bignami E., Januzzi J.L.Jr., Zangrillo A.Predictors of cardiac troponin release after mitral valve surgery.J. Cardiothorac. Vasc. Anesth.2010; 24 (6): 931—938.
Landoni G., Pappalardo F., Calabrd M.G., Boroli F., Sottocorna O., Aletti G., Crescenzi G., Zangrillo A.Myocardial necrosis biomarkers after different cardiac surgical operations.Minerva Anestesiol.2007; 73 (1—2): 49—56.
Sa M.P., Rueda F.G., Ferraz P.E., Chalegre S.T., Vasconcelos F.P., Lima R.C.Is there any difference between blood and crystalloid cardioplegia for myocardial protection during cardiac surgery? A meta-analysis of 5576 patients from 36 randomized trials.Perfusion.2012; 27 (6): 535—546.
Ning X.H., Xu C.S., Song Y.C., Xiao Y., Hu Y.J., Lupinetti F.M., Portman M.A.Hypothermia preserves function and signaling for mitochondrial biogenesis during subsequent ischemia in isolated rabbit heart.Am. J. Physiol.1998; 274 (3 Pt 2): H786—H793.
Qing M., Vazquez-Jimenez J.F., Schumacher K., Bhardwaj R.S., Klosterhalfen B., Minkenberg R., Messmer B.J., von Bernuth G., Seghaye M.C.Moderate hypothermia during cardiopulmonary bypass increases intramyocradial synthesis of heat shock protein 72.J. Thorac. Cardiovasc. Surg.2002; 124 (4): 724—731.
Vazquez-JimenezJ.F., Qing M., Hermanns B., Klosterhalfen B., Woltje M., Chakupurakal R., Schumacher K., Messmer B.J., von Bernuth G., Seghaye M.C.Moderate hypothermia during cardiopulmonary bypass reduces myocardial cell damage and myocardial cell death related to cardiac surgery.J. Am. Coll. Cardiol.2001; 38 (4): 1216—1223.
Qing M., Vazquez-Jimenez J.F., Klosterhalfen B., Sigler M., Schumacher K., DuchateauJ., Messmer BJ., von Bernuth G., Seghaye M.C.Influence of temperature during cardiopulmonary bypass on leukocyte activation, cytokine balance, and post-operative organ damage.Shock.2001; 15 (5): 372—377.
Birdi I., Caputo M., Underwood M., Angelini G.D., Bryan A.J.Influence of normothermic systemic perfusion temperature on cold myocardial protection during coronary artery bypass surgery.Cardiovasc. Surg.1999; 7 (3): 369—374.
Castedo E., Castejon R., Monguio E., Ramis S., Montero C.G., Serrano-Fiz S., Burgos R., Escudero C., UgarteJ.Influence of hypothermia on right atri-al cardiomyocyte apoptosis in patients undergoing aortic valve replacement.J. Cardiothorac. Surg.2007; 2: 7.
Attarian D.E., Jones R.N., Currie W.D., Hill R.C., Sink J.D., Olsen C.O., Chitwood W.RJr., Wechsler A.S.Characteristics of chronic left ventricular hypertrophy induced by subcoronary valvular aortic stenosis, II: response to ischemia.J. Thorac. Cardiovasc. Surg.1981; 81 (3): 389—395.
Mehta R.H., Bruckman D., Das S., Tsai T., Russman P., Karavite D., Monaghan H., Sonnad S., Shea M.J., Eagle K.A., Deeb G.M.Implications of increased left ventricular mass index on in-hospital outcomes in patients undergoing aortic valve surgery.J. Thorac. Cardiovasc. Surg.2001; 122 (5): 919—928.
Козлов И.А., Буржунова М.Г., Чумаков М.В., Тгимербаев В.Х.Пери-операционная динамика и клиническая значимость содержания на-трийуретического пептида В-типа в крови кардиохирургических больных.Общая реаниматология.2012; 8 (4): 133—138.
Козлов ИА., Романов А.А., Дзыбинская Е.В., Баландюк А.Е.Ингаляционный оксид азота для профилактики нарушения артериальной оксигенации при реваскуляризации миокарда с искусственным кровообращением.Общая реаниматология.2011; 7 (1): 31—35.
Никифоров Ю.В., Кричевский Л.А.Патофизиология сердца и клиническая кардиоанестезиология.Общая реаниматология.2012; 8 (4): 123—1
Мороз В.В., Никифоров Ю.В., Кричевский Л.А., Асеев В.М., Гусева О.Г., Буржунова М.Г., Рыбаков В.Ю.Значение сердечного пептида NT-proBNP в оценке риска реваскуляризации миокарда у больных со сниженной фракцией изгнания левого желудочка.Общаяреаниматология.2010; 6 (2): 38—42.
Newman M.F., Wolman R., Kanchuger M., Marschall K., Mora-Mangano C., Roach G., Smith L.R., Aggarwal A., Nussmeier N., Herskowitz A., Mangano D.T.Multicenter preoperative stroke risk index for patients undergoing coronary artery bypass graft surgery. Multicenter Study of Perioperative Ischemia (McSPI) Research Group.Circulation.1996; 94 (9 Suppl): II74—II80.
Grigore A.M., Mathew J., Grocott H.P., Reves J.G., Blumenthal J.A., White W.D., Smith P.K., Jones R.H., Kirchner J.L., Mark D.B., Newman M.F.; Neurological Outcome Research Group; CARE Investigators of the Duke Heart Center. Cardiothoracic Anesthesia Research Endeavors.Prospective randomized trial of normothermic versus hypothermic car-diopulmonary bypass on cognitive function after coronary artery bypass graft surgery.Anesthesiology.2001; 95 (5): 1110—1119.
Tonz M., Mihaljevic T., von Segesser L.K., SchmidE.R.,Joller-Jemelka H.I., Pei P., Turina M.I.Normothermia versus hypothermia during cardiopul-monary bypass: a randomized, controlled trial.Ann. Thorac. Surg.1995; 59 (1): 137—143.
Speziale G., Ferroni P., Ruvolo G., Fattouch K., Pulcinelli F.M., Lenti L., Gazzaniga P.P., Marino B.Effect of normothermic versus hypothermic cardiopulmonary bypass on cytokine production and platelet function.J.Cardiovasc. Surg. (Torino).2000; 41 (6): 819—827.
Gaudino M., Zamparelli R., Andreotti F., Burzotta F., Iacoviello L., Glieca F., Benedett M., Maseri A., Schiavello R., Possati G.Normothermia does not improve postoperative hemostasis nor does it reduce inflammatory activation in patients undergoing primary isolated coronary artery bypass.J. Thorac. Cardiovasc. Surg.2002; 123 (6): 1092—1100.
Birdi I., Regragui I., Izzat M.B., Bryan A.J., Angelini G.D.Influence of normothermic systemic perfusion during coronary artery bypass operations: a randomized prospective study.J. Thorac. Cardiovasc. Surg.1997; 114 (3): 475—481.
Rasmussen B.S., Sollid J., Rees S.E., Kjaergaard S., Murley D., Toft E.Oxygenation within the first 120 h following coronary artery bypass grafting. Influence of systemic hypothermia (32 degrees C) or nor-mothermia (36 degrees C) during the cardiopulmonary bypass: a randomized clinical trial.Acta Anaesthesiol. Scand.2006; 50 (1): 64—71.
Dearani J.A., Axford T.C., Patel M.A., Healey N.A., Lavin P.T., Khuri S.F.Role of myocardialtemperature measurement in monitoring the adequacy of myocardialprotection during cardiac surgery.Ann. Thorac. Surg.2001; 72 (6): S2235—S2243.
Honore P.M., Jacquet L.M., Beale RJ., Renauld J.C., Valadi D., Noirhomme P., Goenen M.Effects of normothermia versus hypothermia on extravascular lung water and serum cytokines during cardiopul-monary bypass: a randomized, controlled trial.Crit. Care Med.2001; 29 (10): 1903—1909.
Birdi I., Caputo M., Underwood M., Bryan A.J., Angelini G.D.The effects of cardiopulmonary bypass temperature on inflammatory response following cardiopulmonary bypass.Eur.J. Cardiothorac. Surg.1999; 16 (5): 540—545. -
10Electronic Resource
Additional Titles: Применение дистанционного ишемического прекондиционирования у кардиохирургических больных
المؤلفون: V. Lomivorotov V., D. Ponomarev N., V. Shmyrev A., L. Knyazkova G., T. Mogutnova A., В. Ломиворотов В., Д. Пономарев Н., В. Шмырев А., Л. Князькова Г., Т. Могутнова А.
المصدر: General Reanimatology; Том VII № 3 2011 г.; 63; Общая реаниматология; Том VII № 3 2011 г.; 63; 2411-7110; 1813-9779; 10.15360/1813-9779-2011-3
مصطلحات الفهرس: info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion
URL:
https://www.reanimatology.com/rmt/article/view/305/245 https://www.reanimatology.com/rmt/article/view/305/245
Cameron D.
Kirino T., Tsujita Y., Tamura A.Induced tolerance to ischemia in ger-bil hippocampal neurons. J. Cereb. Blood Flow Metab. 1991; 11 (2): 299—307.
NandagopalK., Dawson T. M., Dawson V. L.Critical role for nitric oxide signaling in cardiac and neuronal ischemic preconditioning and tolerance. J. Pharmacol. Exp. Ther. 2001; 297 (2): 474—478.
Cutrn J. C, Perrelli M. G., Cavalieri B. et al.Microvascular dysfunction induced by reperfusion injury and protective effect of ischemic preconditioning. Free Radic. Biol. Med. 2002; 33 (9): 1200—1208.
Stenzel-Poore M. P., Stevens S. L., Xiong Z. et al.Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 2003; 362 (9389): 1028—1037.
Stenzel-Poore M. P., Stevens S. L., Simon R. P.Genomics of preconditioning. Stroke 2004; 35 (11 Suppl 1): 2683—268
Raeburn C. D., Cleveland J. C., Zimmerman M. A., Harken A. H.Organ preconditioning. Arch. Surg. 2001; 136 (11): 1263—1266.
Kirino T.Ischemic tolerance. J. Cereb. Blood Flow Metab. 2002; 22 (11): 1283—1296.
Murry C. E.,Jennings R. B., Reimer K. A.Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74 (5): 1124—1136.
Przyklenk K., Darling C. E., Dickson E. W., Whittaker P.Cardioprotection ‘outside the box’ — the evolving paradigm of remote preconditioning. Basic Res. Cardiol. 2003; 98 (3): 149—157.
Cheung M. M., Kharbanda R. K., Konstantinov I. E. et al.Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J. Am. Coll. Cardiol. 2006; 47 (11): 2277—2282.
Gunaydin B., Cakici I., Soncul H. et al.Does remote organ ischaemia trigger cardiac preconditioning during coronary artery surgery? Pharmacol. Res. 2000; 41 (4): 493—496.
Venugopal V., Hausenloy D. J., Ludman A. et al.Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold-blood cardioplegia: a randomised controlled trial. Heart 2009; 95 (19): 1567—1571.
Atluri P., Panlilio C. M., Liao G. P. et al.Transmyocardial revasculariza-tion to enhance myocardial vasculogenesis and hemodynamic function. J. Thorac. Cardiovasc. Surg. 2008; 135 (2): 283—291.
Nogueira C. R., Hueb W., Takiuti M. E. et al.Quality of life after on-pump and off-pump coronary artery bypass grafting surgery. Arq. Bras. Cardiol. 2008; 91 (4): 217—222.
Foussas S. G., Tsiaousis G. Z.Revascularization treatment in patients with coronary artery disease. Hippokratia 2008; 12 (1): 3—10.
Lattouf O. M., Thourani V. H., Kilgo P. D. et al.Influence of on-pump versus off-pump techniques and completeness of revascularization on long-term survival after coronary artery bypass. Ann. Thorac. Surg. 2008; 86 (3): 797—805.
Laffey J. G., Boylan J. F., Cheng D. C.The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology 2002; 97 (1): 215—252.
Thielmann M., Kottenberg E., Boengler K. et al.Remote ischemic preconditioning reduces myocardial injury after coronary artery bypass surgery with crystalloid cardioplegic arrest. Basic Res. Cardiol. 2010; 105 (5): 657—664.
Kharbanda R. K., Li J., Konstantinov I. E. et al.Remote ischaemic preconditioning protects against cardiopulmonary bypass-induced tissue injury: a preclinical study. Heart 2006; 92 (10): 1506—1511.
Przyklenk K., Bauer B., Ovize M. et al.Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993; 87 (3): 893—899.
Ali Z.. A., Callaghan C.J., Lim E. et al.Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation 2007; 116 (11 Suppl): 98—105.
Kanoria S., Jalan R., Seifalian A. M. et al.Protocols and mechanisms for remote ischemic preconditioning: a novel method for reducing ischemia reperfusion injury. Transplantation 2007; 84 (4): 445—458.
Hausenloy D. J., Yellon D. M.Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc. Res. 2008; 79 (3): 377—386.
Сергиенко В. И., Петросян Э. А., Оноприев В. И., Лайпанов Х. И.Морфологические изменения лёгких при моделировании и лечении ишемических и реперфузионных повреждений конечности. Общая реаниматология 2006; II (5—6): 129—132.
Miura T., Tanno M., Sato T.Mitochondrial kinase signalling pathways in myocardial protection from ischaemia/reperfusion-induced necrosis. Cardiovasc. Res. 2010; 88 (1): 7—15.
Yang X., Cohen M. V., DowneyJ. M.Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc. Drugs Ther. 2010; 24 (3): 225—234.
Marber M. S., Latchman D. S., Walker J. M., Yellon D. M.Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is
associated with resistance to myocardial. Circulation 1993; 88 (3): 1264—1272.
Baxter G. F., Marber M. S., Patel V. C., Yellon D. M.Adenosine receptor involvement in a delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation 1994; 90 (6): 2993—3000.
Konstantinov I. E., Arab S., Li J. et al.The remote ischemic preconditioning stimulus modifies gene expression in mouse myocardium. J. Thorac. Cardiovasc. Surg. 2005; 130 (5): 1326—1332.
Onody A., Zvara A., Hackler L. et al.Effect of classic preconditioning on the gene expression pattern of rat hearts: a DNA microarray study. FEBS Lett. 2003; 536 (1—3): 35—40.
Simkhovich B. Z., Marjoram P., Poizat C. et al.Brief episode of ischemia activates protective genetic program in rat heart: a gene chip study. Cardiovasc. Res. 2003; 59 (2): 450—459.
Amr Y. M., Yassin I. M.Cardiac protection during on-pump coronary artery bypass grafting: ischemic versus isoflurane preconditioning. Semin. Cardiothorac. Vasc. Anesth. 2010; 14 (3): 205—211.
Garcia C., Julier K., Bestmann L. et al.Preconditioning with sevoflurane decreases PECAM-1 expression and improves one-year cardiovascular outcome in coronary artery bypass graft surgery. Br. J. Anaesth. 2005; 94 (2): 159—165.
Meng Q. H., Zhu S., Sohn N. et al.Release of cardiac biochemical and inflammatory markers in patients on cardiopulmonary bypass undergoing coronary artery bypass grafting. J. Card. Surg. 2008; 23 (6): 681—687.
Hausenloy D. J., Mwamure P. K., Venugopal V. et al.Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet 2007; 370 (9587): 575—579.
Venugopal V., Ludman A., Yellon D. M., Hausenloy D. J.‘Conditioning’ the heart during surgery. Eur. J. Cardiothorac. Surg. 2009; 35 (6): 977—987.
Jenkins D. P., Pugsley W. B., Alkhulaifi A. M. et al.Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart 1997; 77 (4): 314—318.
Li L., Luo W., Huang L. et al.Remote perconditioning reduces myocar-dial injury in adult valve replacement: a randomized controlled trial. J. Surg. Res. 2010; 164 (1): e21—e26.
Hoole S. P., Khan S. N., White P. A. et al.Remote ischaemic preconditioning does not attenuate ischaemic left ventricular dysfunction in humans. Eur. J. Heart Fail. 2009; 11 (5): 497—505.