-
1Academic Journal
المؤلفون: K. V. Dergilev, Z. I. Tsokolaeva, I. B. Beloglazova, D. O. Traktuev, M. T. Rasulova, E. V. Parfenova, К. В. Дергилев, З. И. Цоколаева, И. Б. Белоглазова, Д. О. Трактуев, М. Т. Расулова, Е. В. Парфенова
المساهمون: Работа выполнена при финансовой поддержке гранта РФФИ 19-29-04164.
المصدر: General Reanimatology; Том 19, № 1 (2023); 43-49 ; Общая реаниматология; Том 19, № 1 (2023); 43-49 ; 2411-7110 ; 1813-9779
مصطلحات موضوعية: сфероид, гипоксия, репарация сердца, hypoxia, cardiac repair
وصف الملف: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/2292/1699; https://www.reanimatology.com/rmt/article/view/2292/1708; https://www.reanimatology.com/rmt/article/downloadSuppFile/2292/744; https://www.reanimatology.com/rmt/article/downloadSuppFile/2292/745; https://www.reanimatology.com/rmt/article/downloadSuppFile/2292/746; https://www.reanimatology.com/rmt/article/downloadSuppFile/2292/747; https://www.reanimatology.com/rmt/article/downloadSuppFile/2292/748; https://www.reanimatology.com/rmt/article/downloadSuppFile/2292/749; https://www.reanimatology.com/rmt/article/downloadSuppFile/2292/750; Mendis S., Graham I., Narula J. Addressing the global burden of cardiovascular diseases; need for scalable and sustainable frameworks. Glob Heart. 2022; 17 (1): 48. DOI:10.5334/gh.1139. PMID: 36051329.; Raziyeva K., Kim Y., Zharkinbekov Z., Temirkhanova K., Saparov A. Novel therapies for the treatment of cardiac fibrosis following myocardial infarction. Biomedicines. 2022; 10 (9): 2178. DOI:10.3390/biomedicines10092178.; Scridon A., Balan A.I. Targeting myocardial fibrosisa magic pill in cardiovascular medicine? Pharmaceutics. 2022; 14 (8): 1599. DOI:10.3390/pharmaceutics14081599. PMID: 36015225.; Braitsch C.M., Kanisicak O., van Berlo J.H., Molkentin J.D., Yutzey K.E. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J Mol Cell Cardiol. 2013; 65: 108–119. DOI:10.1016/j.yjmcc.2013.10.005. PMID: 24140724.; Wei X., Hou Y., Long M., Jiang L., Du Y. Molecular mechanisms underlying the role of hypoxia-inducible factor-1 α in metabolic reprogramming in renal fibrosis. Front Endocrinol (Lausanne). 2022; 13: 927329. DOI:10.3389/fendo.2022.927329. PMID: 35957825.; Steiner C.A., Cartwright I.M., Taylor C.T., Colgan S.P. Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am J Physiol Cell Physiol. 2022; 323 (3): C866-C878. DOI:10.1152/ajpcell.00227.2022. PMID: 35912990.; van den Berg N.W.E., Kawasaki M., Fabrizi B., Nariswari F.A., Verduijn A.C., Neefs J., Wesselink R., Al-Shama R.F.M., van der Wal A.C., de Boer O.J., Aten J., Driessen A.H.G., Jongejan A., de Groot J.R. Epicardial and endothelial cell activation concurs with extracellular matrix remodeling in atrial fibrillation. Clin Transl Med. 2021; 11 (11): e558. DOI:10.1002/ctm2.558. PMID: 34841686.; Ismail A., Saliba Y., Fares N. Early development of cardiac fibrosis in young old-father offspring. Oxid Med Cell Longev. 2022; 2022: 8770136. DOI:10.1155/2022/8770136. PMID: 36193084.; Дергилев К.В., Комова А.В., Цоколаева З.И., Белоглазова И.Б., Парфенова Е.В. Эпикард как новая мишень для регенеративных технологий в кардиологии. Гены и клетки. 2020; 14 (2): 33–40. DOI:10.23868/202004016; Дергилев К.В., Цоколаева З.И., Белоглазова И.Б., Ратнер Е.И., Молокотина Ю.Д., Парфенова Е.В. Характеристика ангиогенных свойств с-kit+ клеток миокарда. Гены и клетки. 2018; 14 (3): 86–93. DOI:10.23868/201811038.; Dergilev K.V., Tsokolaeva Z.I., Beloglazova I.B., Ratner E.I., Parfenova E.V. Transforming growth factor beta (TGF-β1) induces pro-reparative phenotypic changes in epicardial cells in mice. Bull Exp Biol Med. 2021; 170 (4): 565–570. DOI:10.1007/s10517-021-05107-5. PMID: 33730328.; Massimini M., Romanucci M., De Maria R., Della Salda L. Histological evaluation of long-term collagen type I culture. Methods Mol Biol. 2022; 2514: 95–105. DOI:10.1007/978-10716-2403-6_10. PMID: 35771422.; Maselli D., Matos R.S., Johnson R.D., Chiappini C., Camelliti P., Campagnolo P. Epicardial slices: an innovative 3D organotypic model to study epicardial cell physiology and activation. NPJ Regen Med. 2022; 7 (1): 7. DOI:10.1038/s41536021-00202-7. PMID: 35039552.; Kalluri R., Neilson E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003; 112 (12): 1776–1784. DOI:10.1172/JCI20530. PMID: 14679171.; Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004; 15 (1): 1–12. DOI:10.1097/01.asn.0000106015.29070.e7. PMID: 14694152.; Iwano M., Neilson E.G. Mechanisms of tubulointerstitial fibrosis. Curr Opin Nephrol Hypertens. 2004; 13 (3): 279–284. DOI:10.1097/00041552-200405000-00003. PMID: 15073485.; Strutz F., Okada H., Lo C.W., Danoff T., Carone R.L., Tomaszewski J.E., Neilson E.G. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol. 1995; 130 (2): 393–405. DOI:10.1083/jcb.130.2.393. PMID: 7615639.; Higgins D.F., Kimura K., Bernhardt W.M., Shrimanker N., Akai Y., Hohenstein B., Saito Y., Johnson R.S., Kretzler M., Cohen C.D., Eckardt K-U., Iwano M., Haase V.H. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-tomesenchymal transition. J Clin Invest. 2007; 117 (12): 3810–3820. DOI:10.1172/JCI30487. PMID: 18037992.; Orphanides C., Fine L.G., Norman J.T. Hypoxia stimulates proximal tubular cell matrix production via a TGF-beta1independent mechanism. Kidney Int. 1997; 52 (3): 637–647. DOI:10.1038/ki.1997.377. PMID: 9291182.; Kietzmann T., Roth U., Jungermann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood. 1999; 94 (12): 4177–4185. DOI:10.1182/blood.V94.12.4177.; Higgins D.F., Biju M.P., Akai Y. Wutz A., Johnson R.S., Haase V.H. Hypoxic induction of Ctgf is directly mediated by Hif-1. Am J Physiol Renal Physiol. 2004; 287 (6): F1223–F1232. DOI:10.1152/ajprenal.00245.2004. PMID: 15315937.; https://www.reanimatology.com/rmt/article/view/2292
-
2Academic Journal
المؤلفون: К. V. Dergilev, Z. I. Tsokolaeva, I. B. Beloglazova, Yu. D. Vasilets, D. O. Traktuev, N. B. Kulbitsky, E. V. Parfenova, К. В. Дергилев, З. И. Цоколаева, И. Б. Белоглазова, Ю. Д. Василец, Д. О. Трактуев, Б. Н. Кульбицкий, Е. В. Парфенова
المساهمون: This work was supported by the Russian Science Foundation grants 17-15-01368P and RFBR 19-015-00231, Работа выполнена при финансовой поддержке грантов РНФ 17-15-01368П и РФФИ 19-015-00231
المصدر: General Reanimatology; Том 18, № 2 (2022); 76-82 ; Общая реаниматология; Том 18, № 2 (2022); 76-82 ; 2411-7110 ; 1813-9779
مصطلحات موضوعية: ангиогенез, vasculogenic cells, vasculogenesis, angiogenesis, васкулогенные клетки, васкулогенез
وصف الملف: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/2215/1605; https://www.reanimatology.com/rmt/article/view/2215/1614; Arjmand B., Abedi M., Arabi M., Alavi-Moghadam S., Rezaei-Tavirani M., Hadavandkhani M., Tayanloo-Beik A., Kordi R., Roudsari P. P., Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol. 2021; 9: 704903. DOI:10.3389/fcell.2021.704903.; Vidal-Calés P., Cepas-Guillén P. L., Brugaletta S., Sabaté M. New Interventional Therapies beyond Stenting to Treat ST-Segment Elevation Acute Myocardial Infarction. J Cardiovasc Dev Dis. 2021; 8 (9): 100. DOI:10.3390/jcdd8090100.; Viola M., de Jager S. C. A., Sluijter J. P. G. Targeting Inflammation after Myocardial Infarction: A Therapeutic Opportunity for Extracellular Vesicles? Int J Mol Sci. 2021; 22 (15): 7831. DOI:10.3390/ijms22157831.; He L., Huang X., Kanisicak O., Li Yi., Wang Y., Li Y., Pu W., Liu Q., Zhang H., Tian X., Zhao H., Liu X., Zhang S., Nie Yu., Hu S., Miao X., Dong Wang Q., Wang F., Chen T., Xu Q., Lui K., Molkentin J. D, Zhou B. Preexisting endothelial cells mediate cardiac neovascularization after injury. J Clin Invest. 2017. DOI:10.1172/JCI93868. PMID: 2865034. PMID: 28650345. PMCID: PMC5531398.; Дергилев К. В. Характеристика ангиогенных свойств с-kit+ клеток миокарда / К. В. Дергилев [и др.] // Гены и клетки. – 2018. – 14 (3): 86–93. DOI:10.23868/201811038.; Scalise M., Marino F., Cianflone E., Mancuso T., Marotta P., Aquila I., Torella M., Nadal-Ginard B., Torella D. Heterogeneity of Adult Cardiac Stem Cells. Adv Exp Med Biol. 2019; 1169: 141–178. DOI:10.1007/978-3-030-24108-7_8. PMID: 31487023.; Bhartiya D., Flora Y., Sharma D., Mohammad S. A. Two Stem Cell Populations Including VSELs and CSCs Detected in the Pericardium of Adult Mouse Heart. Stem Cell Rev Rep. 2021; 17 (2): 685–693. DOI:10.1007/s12015-021-10119-9.; Iancu C. B., Iancu D., Renţea I., Hostiuc S., Dermengiu D., Rusu M. C. Molecular signatures of cardiac stem cells. Rom J Morphol Embryol. 2015; 56 (4): 1255–1262. PMID: 26743269.; Santi L. A., Napolitano F., Montuori N., Ragno P. The Urokinase Recep-tor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci. 2021; 22 (8): 4111. DOI:10.3390/ijms22084111. PMID: 33923400. PMCID: PMC8073738.; Dergilev K. V., Stepanova V. V., Beloglazova I. B., Tsokolayev Z. I., Parfenova E. V. Multifaced Roles of the Urokinase System in the Regulation of Stem Cell Niches. Acta Naturae. 2018; 10 (4): 19–32. PMID: 30713759. PMCID: PMC6351041.; Baart V. M., Houvast R. D., de Geus-Oei L. F., Quax P. H. A., Kuppen P. J. K., Vahrmeijer A. L, Sier C. F. M. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res. 2020; 10 (1): 87. DOI:10.1186/s13550-020-00673-7. PMID: 32725278. PMCID: PMC7387399.; Dewerchin M., Nuffelen A. V., Wallays G., Bouché A., Moons L., Carmeliet P., Mulligan R. C., Collen D. Generation and characterization of urokinase receptor-deficient mice. J Clin Invest. 1996; 97 (3): 870–878. PMID: 8609247. PMCID: PMC507128. DOI:10.1172/JCI118489.; Dergilev K. V., Tsokolaeva Z. I., Beloglazova I. B., Ratner E. I., Molokotina Yu. D., Parfenova E. V. Angiogenic properties of myocardial c-kit+ cells. Genes & Cells. 2018; 13 (3): 82–88. DOI:10.23868/201811038.; Xiao Q., Zeng L., Zhang Z., Margariti A., Ali Z. A., Channon K. M., Xu Q., Hu Y. Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler Thromb Vasc Biol. 2006; 26 (10): 2244–2251. DOI:10.1161/01.ATV.0000240251.50215.50.; Dergilev K. V., Tsokolaeva Z. I., Beloglazova I. B., Zubkova E. S., Ratner E. I., Molokotina Y. D., Parfenova E. V. Urokinase Receptor Regulates Adhesion of Progenitor Cardiac Cells to Vitronectin. Bull Exp Biol Med. 2019; 167 (3): 315–319. DOI:10.1007/s10517-019-04517-w. PMID: 31346863.; Li Santi A., Napolitano F., Montuori N., Ragno P. The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci. 2021; 22 (8): 4111. DOI:10.3390/ijms22084111.; Jia C., Malone H. M., Keasey M. P., Lovins C., Elam J., Hagg T. Blood Vitronectin Induces Detrimental Brain Interleukin-6 and Correlates With Outcomes After Stroke Only in Female Mice. Stroke. 2020; 51 (5): 1587–1595. DOI:10.1161/STROKEAHA.120.029036.; Keasey M. P., Jia C., Pimentel L. F., Sante R. R., Lovins C., Hagg T. Blood vitronectin is a major activator of LIF and IL-6 in the brain through integrin-FAK and uPAR signaling. J Cell Sci. 2018; 131 (3): jcs202580. DOI:10.1242/jcs.202580.; Napolitano F., Montuori N. The Role of the Plasminogen Activation System in Angioedema: Novel Insights on the Pathogenesis. J Clin Med. 2021; 10 (3): 518. DOI:10.3390/jcm10030518.; Gorrasi A., Petrone A. M., Li Santi A., Alfieri M., Montuori N., Ragno P. New Pieces in the Puzzle of uPAR Role in Cell Migration Mechanisms. Cells. 2020; 9 (12): 2531. DOI:10.3390/cells9122531.; Heydarkhan-Hagvall S., Gluck J. M., Delman C., Jung M., Ehsani N., Full S., Shemin R. J. The effect of vitronectin on the differentiation of embryonic stem cells in a 3D culture system. Biomaterials. 2012 (7): 2032–2040. DOI:10.1016/j.biomaterials.2011.11.065. PMID: 22169822. PMCID: PMC7731733.; Ferraris G. M., Schulte C., Buttiglione V., De Lorenzi V., Piontini A., Galluzzi M., Podestà A., Madsen C. D., Sidenius N. The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins. EMBO J. 2014; 33 (21): 2458–2472. DOI:10.15252/embj.201387611. PMID: 25168639.; Chillà A., Margheri F., Biagioni A., Del Rosso M., Fibbi G., Laurenzana A. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis. J Exp Clin Cancer Res. 2018; 37 (1): 74. DOI:10.1186/s13046-018-0742-2.; Manetti M., Rosa I., Fazi M., Guiducci S., Carmeliet P., Ibba-Manneschi L., Matucci-Cerinic M. Systemic sclerosis-like histopathological features in the myocardium of uPAR-deficient mice. Ann Rheum Dis. 2016; 75 (2): 474–478. DOI:10.1136/annrheumdis-2015-207803 PMID: 26269399.; Manetti M., Rosa I., Milia A. F., Guiducci S., Carmeliet P., Ibba-Manneschi L., Matucci-Cerinic M. Inactivation of urokinase-type plasminogen activator receptor (uPAR) gene induces dermal and pulmonary fibrosis and peripheral microvasculopathy in mice: a new model of experimental scleroderma? Ann Rheum Dis. 2014; 73 (9): 1700–1709. DOI:10.1136/annrheumdis-2013-203706. PMID: 23852693.; D’Alessio S., Fibbi G., Cinelli M., Guiducci S., Del Rosso A., Margheri F., Serratì S., Pucci M., Kahaleh B., Fan P., Annunziato F., Cosmi L., Liotta F., Matucci-Cerinic M., Del Rosso M. Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum. 2004; 50 (10): 3275–3285. DOI:10.1002/art.20562. PMID: 15476218.; Serratì S., Cinelli M., Margheri F., Guiducci S., Del Rosso A., Pucci M., Fibbi G., Bazzichi L., Bombardieri S., Matucci-Cerinic M., Del Rosso M. Systemic sclerosis fibroblasts inhibit in vitro angiogenesis by MMP-12-dependent cleavage of the endothelial cell urokinase receptor. J Pathol. 2006; 210 (2): 240–248. DOI:10.1002/path.2048. PMID: 16917801.; Margheri F., Luciani C., Taddei M. L., Giannoni E., Laurenzana A., Biagioni A., Chillà A., Chiarugi P., Fibbi G., Del Rosso M. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style. Oncotarget. 2014 30; 5 (6): 1538–1553. DOI:10.18632/oncotarget.1754. PMID: 24681666.; Bernstein A. M., Twining S. S., Warejcka D. J., Tall E., Masur S. K. Urokinase receptor cleavage: a crucial step in fibroblast-to-myofibroblast differentiation. Mol Biol Cell. 2007; 18 (7): 2716–2727. DOI:10.1091/mbc.e06-10-0912. PMID: 17507651.; Bernstein A. M., Greenberg R. S., Taliana L., Masur S. K. Urokinase anchors uPAR to the actin cytoskeleton. Invest Ophthalmol Vis Sci. 2004; 45 (9): 2967–2977. DOI:10.1167/iovs.04-0030. PMID: 15326109.; https://www.reanimatology.com/rmt/article/view/2215
-
3Academic Journal
المؤلفون: K. V. Dergilev, Z. I. Tsokolayeva, I. B. Beloglazova, Yu. D. Vasilets, D. O. Traktuyev, B. N. Kulbitsky, E. V. Parfenova, К. В. Дергилев, З. И. Цоколаева, И. Б. Белоглазова, Ю. Д. Василец, Д. О. Трактуев, Б. Н. Кульбицкий, Е. В. Парфенова
المساهمون: This work was supported by the Russian Science Foundation grant 17-15-01368P and the Russian Foundation for Basic Research 19-29-04164 (epicardial cell-based spheroids assembly)., Работа выполнена при финансовой поддержке гранта РНФ 17-15-01368П и РФФИ 19-29-04164 (сборка сфероидов на основе клеток эпикарда).
المصدر: General Reanimatology; Том 17, № 6 (2021); 49-55 ; Общая реаниматология; Том 17, № 6 (2021); 49-55 ; 2411-7110 ; 1813-9779
مصطلحات موضوعية: урокиназный рецептор, epicardial mesothelium, urokinase receptor, эпикардиальный мезотелий
وصف الملف: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/2159/1574; https://www.reanimatology.com/rmt/article/view/2159/1583; Derrick C.J., Noël E.S. The ECM as a driver of heart development and repair. Development. 2021; 148 (5): DOI:10.1242/dev.191320. PMID: 33674261.; Nair N. Epidemiology and pathogenesis of heart failure with preserved ejection fraction. Review. Cardiovasc Med. 2020; 21 (4): 531–540. DOI:10.31083/j.rcm.2020.04.154.; Mocumbi A.O., Stothard J.R., Correia-de-Sá P., Yacoub M. Endomyocardial Fibrosis: an Update After 70 Years.Curr Cardiol Rep. 2019; 21 (11): 148. DOI:10.1007/s11886-019-1244-3. PMID: 317583524.; Zhou B., A. von Gise., Ma Q., Hu Y.W., Pu W.T. Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev. Biol. 338 (2010) 251–261. DOI:10.1016/j.ydbio.2009.12.007. PMID: 20025864. PMCID: PMC2815244; Wessels. A, van den Hoff M.J., Adamo R.F., Phelps A.L., Lockhart M.M., Sauls K., Briggs L.E., Norris R.A., van Wijk B., Perez-Pomares J.M., Dettman R.W., Burch J.B. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev. Biol. 2012; 366: 111–124. DOI:10.1016/j.ydbio.2012.04.020. PMID: 22546693. PMCID: PMC3358438; von Gise A., Zhou B., Honor L.B., Ma Q., Petryk A., Pu W.T. WT1 regulates epicardial epithelial to mesenchymal transition through betacatenin and retinoic acid signaling pathways, Dev. Biol. 2011; 356: 421–431. DOI:10.1016/j.ydbio.2011.05.668. PMID: 21663736. PMCID: PMC3147112; Braitsch C.M., Combs M.D., Quaggin, S.E., Yutzey K.E. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Dev. Biol. 2012; 368: 345–357. DOI:10.1016/j.ydbio.2012.06.002. PMID: 22687751. PMCID: PMC3414197; Acharya, A., Baek, S.T., Huang, G., Eskiocak, B., Goetsch, S., Sung, C.Y., Banfi, S., Sauer M.F., OlsenG.S., Duffield J.S. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012; 139: 2139–2149. DOI:10.1242/dev.079970. PMID: 22573622. PMCID: PMC3357908; Moore-Morris T., Cattaneo P., Guimaraes-Camboa N., Bogomolovas J., Cedenilla M., Banerjee I., Ricote M., Kisseleva T., Zhang L., Gu Y., Dalton N.D., Peterson K.L., Chen J., Puceat M., Evans S.M. Infarct fibroblasts do not derive from bone marrow lineages. Circ. Res. 2012; 122 (4): 583–590. DOI:10.1161/CIRCRESAHA.117.311490. PMID: 29269349. PMCID: PMC5815911; Moore-Morris T., Guimaraes-Camboa N., Banerjee I., Zambon A.C., Kisseleva T., Velayoudon A., Stallcup W.B., Gu Y. Dalton N.D, Cedenilla M., Gomez-Amaro R., Zhou B. Brenner D.A, Peterson K.L., Chen J., Evans S.M. Resident fibroblast lineages mediate pressure overloadinduced cardiac fibrosis. J Clin Invest. 2014; 124 (7): 2921–2934. DOI:10.1172/JCI7478.3. PMID: 24937432. PMCID: PMC4071409; Braitsch C.M., Kanisicak O., van Berlo J.H., Molkentin J.D, Yutzey K.E. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J. Mol. Cell. Cardiol. 2013; 65: 108–119. DOI:10.1016/j.yjmcc.2013.10.005. PMID: 24140724. PMCID: PMC3848425; Santi A.Li., Napolitano F., Montuori N., Ragno P. The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci. 2021; 22 (8): 4111. DOI:10.3390/ijms22084111. PMID: 33923400. PMCID: PMC8073738; Dergilev K.V., Stepanova V.V., Beloglazova I.B., Tsokolayev Z.I., Parfenova E.V. Multifaced Roles of the Urokinase System in the Regulation of Stem Cell Niches. Acta Naturae. 2018; 10 (4): 19–32. PMID: 30713759. PMCID: PMC6351041; Junqueira L.C., Bignolas G., Brentani R.R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J. 1979; 11: 447–455. DOI:10.1007/bf01002772; Dergilev K.V., Tsokolaeva Z.I., Beloglazova I.B., Ratner E.I., Parfenova E.V. Transforming Growth Factor Beta (TGF-β1) Induces Pro-Reparative Phenotypic Changes in Epicardial Cells in Mice.Bull Exp Biol Med. 2021; 170 (4): 565–570. DOI:10.1007/s10517-021-05107-5.; Baart V.M., Houvast R.D., de Geus-Oei L.F., Quax P.H.A., Kuppen P.J.K., Vahrmeijer A.L., Sier C.F.M. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res. 2020; 10 (1): 87. DOI:10.1186/s13550-020-00673-7. PMID: 32725278. PMCID: PMC7387399; Genua M., D'Alessio S., Cibella J., Gandelli A., Sala E., Correale C., Spinelli A., Arena V., Malesci A., Rutella S., Ploplis V.A., Vetrano S., Danese S. The urokinase plasminogen activator receptor (uPAR) controls macrophage phagocytosis in intestinal inflammation. Gut. 2015; 64 (4): 589–600. DOI:10.1136/gutjnl-2013-305933. PMID: 24848264; Jo M., Takimoto S., Montel V., Gonias S.L.The urokinase receptor promotes cancer metastasis independently of urokinase-type plasminogen activator in mice. Am J Pathol. 2009; 175 (1): 190–200. DOI:10.2353/ajpath.2009.081053. PMID: 19497996. PMCID: PMC2708805; Jo M., Lester R.D., Montel V., Eastman B., Takimoto S., Gonias S.L. Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling J Biol Chem. 2009; 284 (34): 22825–22833 DOI:10.1074/jbc.M109.023960. PMID: 19546228. PMCID: PMC2755690; Hinz B., Phan S.H., Thannickal V.J., Prunotto M., Desmoulière A., Varga J., De Wever O., Mareel M., Gabbiani G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012; 180 (4): 1340–1355. DOI:10.1016/j.ajpath.2012.02.004. PMID: 22387320. PMCID: PMC3640252; Castella L.F., Buscemi L., Godbout C., Meister J.J., Hinz B. A new lockstep mechanism of matrix remodelling based on subcellular contractile events. J Cell Sci. 2010; 123 (Pt 10): 1751–1760. DOI:10.1242/jcs.066795. PMID: 20427321; Wang L., Ly C.M., Ko C.Y., Meyers E.E., Lawrence D.A., Bernstein A.M. uPA binding to PAI-1 induces corneal myofibroblast differentiation on vitronectin. Invest Ophthalmol Vis Sci. 2012; 53 (8): 4765–4775. DOI:10.1167/iovs.12-10042. PMID: 22700714. PMCID: PMC3949353; Stepanova V., Lebedeva T., Kuo A., Yarovoi S., Tkachuk S., Zaitsev S., Bdeir K., Dumler I., Marks M.S., Parfyonova Y., Tkachuk V.A., Higazi A.A., Cines D.B. Nuclear translocation of urokinase-type plasminogen activator. Blood. 2008; 112 (1): 100–110. DOI:10.1182/blood-2007-07-104455. PMID: 18337556. PMCID: PMC2435680; Semina E.V., Rubina K.A., Shmakova A.A., Rysenkova K.D., Klimovich P.S., Aleksanrushkina N. A., Sysoeva V. Y., Karagyaur M.N., Tkachuk V.A. Downregulation of uPAR promotes urokinase translocation into the nucleus and epithelial to mesenchymal transition in neuroblastoma. J Cell Physiol. 2020; 235 (9): 6268–6286. DOI:10.1002/jcp.29555. PMID: 31990070. PMCID: PMC7318179; Zhang G., Kernan K.A., Thomas A., Collins S., Song Y., Li L., Zhu W., Leboeuf R.C., Eddy A.A. A novel signaling pathway: fibroblast nicotinic receptor alpha1 binds urokinase and promotes renal fibrosis. J Biol Chem. 2009; 284 (42): 29050–29064. DOI:10.1074/jbc.M109.010249. PMID: 19690163. PMCID: PMC2781451; Manetti M., Rosa I., Fazi M., Guiducci S., Carmeliet P., Ibba-Manneschi L., Matucci-Cerinic M. Systemic sclerosis-like histopathological features in the myocardium of uPAR-deficient mice. Ann Rheum Dis. 2016; 75 (2): 474–478. DOI:10.1136/annrheumdis-2015-207803. PMID: 26269399; Mohameden M., Vashisht P., Sharman T. Scleroderma And Primary Myocardial Disease. 2021. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. PMID: 32491618; Nikitorowicz-Buniak J., Denton C.P., Abraham D., Stratton R. Partially Evoked Epithelial-Mesenchymal Transition (EMT) Is Associated with Increased TGFβ Signaling within Lesional Scleroderma Skin. PLoS One. 2015; 10 (7): e0134092. DOI:10.1371/journal.pone.0134092. PMID: 26217927; https://www.reanimatology.com/rmt/article/view/2159
-
4Academic Journal
المؤلفون: K. V. Dergilev, Z. I. Tsokolaeva, I. B. Beloglazova, D. O. Traktuev, A. V. Gorelova, А. V. Zubko, B. N. Kulbitsky, Е. V. Parfenova, К. В. Дергилев, З. И. Цоколаева, И. Б. Белоглазова, Д. О. Трактуев, А. В. Горелова, А. В. Зубко, Б. Н. Кульбицкий, Е. В. Парфенова
المساهمون: The study was supported financially by Russian Foundation for Basic Research grant No.18-015-00438 and Russian Science Foundation grant No.17-15-01368 (epicardial activation model ex vivo), Работа выполнена при финансовой поддержке гранта РФФИ № 18-015-00438 и гранта РНФ 17-15-01368 (модель активации эпикарда ex vivo)
المصدر: General Reanimatology; Том 16, № 6 (2020); 54-64 ; Общая реаниматология; Том 16, № 6 (2020); 54-64 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2020-6
مصطلحات موضوعية: репарация сердца, epicardial cells, platelet growth factor, vascularization, heart repair, клетки эпикарда, фактор роста тромбоцитов, васкуляризация
وصف الملف: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/1986/1464; https://www.reanimatology.com/rmt/article/view/1986/1465; Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020; 3. DOI:10.1038/s41569-020-0403-y.; Adams R., Alitalo K. Molecular regulation of angiogenesis and lym-phangiogenesis/ Nat Rev Mol Cell Biol. 2007; 8 (6): 464-478. DOI:10.1038/nrm2183.; Bergers G., Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005; 7 (4): 452-464. DOI:10.1215/S1152851705000232.; Ross R., Glomset J., Kariya B., Harker L.A. Platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci U S A. 1974; 71 (4): 1207-1210. DOI:10.1073/pnas.71.4.1207.; Guo P., Hu B., Gu W. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol. 2003; 162: 1083-1093. DOI:10.1016/S0002-9440(10)63905-3.; Affleck D.G., Bull D.A., Bailey S.H., Albanil A., Connors R., Stringham J.C., Karwande S.V. PDGF (BB) increases myocardial production of VEGF: shift in VEGF mRNA splice variants after direct injection of bFGF, PDGF (BB), and PDGF (AB). J Surg Res. 2002; 107: 203-209. DOI:10.1006/jsre.2002.6510; Sato N., Beitz J., Kato J., Yamamoto M., Clark J., Calabresi P., Raymond A., Frackelton A. Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am. J. Pathol. 1993; 142: 1119-1130. PMID: 7682762; Folestad E., Kunath A., Wagsdter D. PDGF-C and PDGF-D signaling in vascular diseases and animal models. Mol Aspects Med. 2018; 62: 1-11. DOI:10.1016/j.mam.2018.01.005.; Medamana J., Clark R.A., Butler J. Platelet-Derived Growth Factor in Heart Failure. Handb Exp Pharmacol. 2017; 243: 355-369. DOI:10.1007/164_2016_80.; Дергилев К., Комова А., Цоколаева З., Белоглазова И., Парфенова Е. Эпикард как новая мишень для регенеративных технологий в кардиологии. Гены & Клетки. 2020; 14 (2): 33-40.; Winter E.M., Gittenberger-de Groot A.C. Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci. 2007; 64: 692-703. DOI:10.1007/s00018-007-6522-3; Olivey H.E., Svensson E.C. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ Res. 2010; 106: 818-832. DOI:10.1161/CIRCRESAHA.109.209197; Дергилев К., Цоколаева З., Белоглазова И., Ратнер Е., Молоко-тина Ю., Парфенова Е. Характеристика ангиогенных свойств C-KIT+ — клеток миокарда. Гены & Клетки. 2018: 13 (3): 82-88 DOI:10.23868/201811038; Cao J., Poss K.D. The epicardium as a hub for heart regeneration. Nat Rev Cardiol. 2018; 15 (10): 631-647. DOI:10.1038/s41569-018-0046-4; Edelberg J.M., Tang, L., Hattori, K., Lyden, D., Rafii S. Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ. Res. 2002 90: 89-93. DOI:10.1161/01.res.0000020861.20064.7e; Wyler von Ballmoos M., YangZ., Volzmann J., Baumgartner I., Kalka C., Di Santo S. Endothelial progenitor cells induce a phenotype shift in differentiated endothelial cells towards PDGF/PDGFRe axis-mediated angiogenesis. PLoS One. 2010; 5 (11): 14107. DOI:10.1371/journal.pone.0014107; Wilkinson-Berka J.L., Babic S., De Gooyer T. Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am J Pathol. 2004; 164: 1263-1273. DOI:10.1016/S0002-9440(10)63214-2; Lindahl P., Johansson B.R., Leveen P., Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997; 277: 242-245. DOI:10.1126/science.277.5323.242; Leveen P., Pekny M., Gebre-Medhin S., Swolin B., Larsson E., Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994; 8: 1875-1887. DOI:10.1101/gad.8.16.1875; Soriano P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994; 8: 1888-1896. DOI:10.1101/gad.8.16.1888; Sano H., Sudo T., Yokode M. Functional blockade of platelet derived growth factor receptor-beta but not of receptor-alpha prevents vascular smooth muscle cell accumulation in fibrous cap lesions inapolipoprotein E-deficient mice. Circulation 2001; 103: 2955-2960. DOI:10.1161/01.cir.103.24.2955; Lavine K.J., Yu K., White A.C., Zhang X., Smith C., Partanen J., Ornitz D.M. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell. 2005; 8: 85-95. DOI:10.1016/j.devcel.2004.12.002; Pennisi D.J., Mikawa T. Normal patterning of the coronary capillaryplexus is dependent on the correct transmural gradient of FGF expression in the myocardium. Dev Biol. 2005; 279: 378-390. DOI:10.1016/j.ydbio.2004.12.028; Wang K., Shen H., Gan P., Cavallero S., Kumar S.R., Lien C.L., Sucov H.M. Differential roles of insulin like growth factor 1 receptor and insulin receptor during embryonic heart development. BMC Dev Biol. 2019; 19: 5. DOI:10.1186/s12861-019-0186-8; Ramjee V., Li D., Manderfield L.J., Liu F., Engleka K.A., Aghajanian H., Rodell C.B., Lu W., Ho V., Wang T. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest. 2017; 127: 899-911. DOI:10.1172/JCI88759; Balmer G.M., Bollini S., DubeK.N., Martinez-Barbera J.P., Williams O., Riley P.R. Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nat Commun. 2014; 5: 4054. DOI:10.1038/ncomms5054; https://www.reanimatology.com/rmt/article/view/1986
-
5Academic Journal
المؤلفون: Konstantin V. Dergilev, Zoya I. Tsokolaeva, Irina B. Beloglazova, Anastasia V. Komova, Sofia V. Pavlova, Dmitry O. Traktuev, Yelena V. Parfyonova, К. В. Дергилев, З. И. Цоколаева, И. Б. Белоглазова, А. В. Комова, С. В. Павлова, Д. О. Трактуев, Е. В. Парфенова
المساهمون: The work was financially supported by the RSCF grant No. 19-15-00384., Работа выполнена при финансовой поддержке гранта РНФ №19-15-00384.
المصدر: General Reanimatology; Том 15, № 6 (2019); 38-49 ; Общая реаниматология; Том 15, № 6 (2019); 38-49 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2019-6
مصطلحات موضوعية: пласт клеток, myocardial infarction, epicardium, vascularization, tissue-engineered cellular structure, cellular sheet, инфаркт миокарда, эпикард, васкуляризация, тканеинженерная конструкция
وصف الملف: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/1831/1359; https://www.reanimatology.com/rmt/article/view/1831/1360; Cao J., Poss K.D. The epicardium as a hub for heart regeneration. Nat Rev Cardiol. 2018; 15 (10): 631–647. DOI:10.1038/s41569-018-0046-4.; Wei K., Serpooshan V., Hurtado C., Diez-Cuñado M., Zhao M., Maruyama S., Zhu W., Fajardo G., Noseda M., Nakamura K., Tian X., Liu Q., Wang A., Matsuura Y., Bushway P., Cai W., Savchenko A., Mahmoudi M., Schneider M.D., van den Hoff M.J., Butte M.J., Yang P.C., Walsh K., Zhou B., Bernstein D., Mercola M., Ruiz-Lozano P. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015; 525 (7570): 479–485.DOI:10.1038/nature15372; Дергилев К. В.,. Цоколаева З. И., Рыжков И. А., Парфенова Е. В. Трансплантация пластов мезенхимальных прогениторных клеток сердца для васкуляризации миокарда после инфаркта. Общая реаниматология. 2018; 14 (6): 28–40 DOI:10.15360/1813-9779-2018-6-28-40; Dergilev K.V., Tsokolayeva Z.I., Beloglazova I.B., Ratner E.I., Parfyonova E.V. Epicardial Transplantation of Cardiac Progenitor Cells Based Cells Sheets is More Promising Method for Stimulation of Myocardial Regeneration, Than Conventional Cell Injections. Kardiologiia. 2019; 59 (5): 53–60. DOI:10.18087/cardio.2019.5.2597. PMID: 31131768; Dergilev K., Tsokolaeva Z., Makarevich P., Beloglazova I., Zubkova E., Boldyreva M., Ratner E., Dyikanov D., Menshikov M., Ovchinnikov A., Ageev F., Parfyonova Y.C. Kit Cardiac Progenitor Cell Based Cell Sheet Improves Vascularization and Attenuates Cardiac Remodeling following Myocardial Infarction in Rats. Biomed Res Int. 2018 Jun 25; 2018: 3536854. DOI:10.1155/2018/3536854. eCollection 2018.PMID: 30046593; Traktuev D.O., Tsokolaeva Z.I., Shevelev A.A., Talitskiy K.A., Stepanova V.V., Johnstone B.H., Rahmat-Zade T.M., Kapustin A.N., Tkachuk V.A., March K.L., Parfyonova Y.V. Urokinase gene transfer augments angiogenesis in ischemic skeletal and myocardial muscle. Mol Ther. 2007; 15 (11): 1939–46. Epub 2007 Jul 24. PMID: 17653104; Gittenberger-de Groot A.C., Vrancken Peeters M.P., Bergwerff M., Mentink M.M., Poelmann R.E. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res. 2000; 87 (11): 969–971. PMID: 11090540 DOI:10.1161/01.res.87.11.969; Pérez-Pomares J.M., Carmona R., González-Iriarte M., Atencia G., Wessels A., Muñoz-Chápuli R Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol. 2002; 46 (8): 1005–1013. PMID: 12533024; Poelmann R.E., Lie-Venema H., Gittenberger-de Groot A.C. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Tex Heart Inst J. 2002; 29 (4): 255–261. PMID: 12484609; Schaefer K.S., Doughman Y.Q., Fisher S.A., Watanabe M. Dynamic patterns of apoptosis in the developing chicken heart. Dev Dyn. 2004; 229 (3): 489–499. PMID: 14991705; Zeng B., Ren X.F., Cao F., Zhou X.Y., Zhang J. Developmental patterns and characteristics of epicardial cell markers Tbx18 and Wt1 in murine embryonic heart.J Biomed Sci. 2011; 18: 67. DOI:10.1186/1423-0127-18-67. PMID: 21871065; Limana F., Bertolami C., Mangoni A., Di Carlo A., Avitabile D., Mocini D., Iannelli P., De Mori R., Marchetti C., Pozzoli O., Gentili C., Zacheo A., Germani A., Capogrossi M.C. Myocardial infarction induces embryonic reprogramming of epicardial c-kit (+) cells: role of the pericardial fluid J Mol Cell Cardiol. 2010; 48 (4): 609–618. Epub 2009 Dec 5. DOI:10.1016/j.yjmcc.2009.11.008. PMID: 19968998; Huang G.N., Thatcher J.E., McAnally J., Kong Y., Qi X., Tan W., DiMaio J.M., Amatruda J.F., Gerard R.D., Hill J.A., Bassel-Duby R., Olson E.N. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science. 2012; 338 (6114): 1599–1603. DOI:10.1126/science.1229765. Epub 2012 Nov 15. PMID: 23160954 PMCID: PMC3613149; von Gise A., Pu W.T. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease Circ Res. 2012; 110 (12): 1628–1645. DOI:10.1161/CIRCRESAHA.111.259960. Review.PMID: 22679138; Smits A.M., Riley P.R. Epicardium-Derived Heart Repair. J Dev Biol. 2014; 2 (2): 84–100. PMID: 27536554 PMCID: PMC4984950 DOI:10.3390/jdb2020084; Zhou B., Honor L.B., He. H., Ma. Q., Oh J.H., Butterfield C., Lin R.Z., Melero-Martin J.M., Dolmatova E., Duffy H.S., Gise Av., Zhou P., Hu Y.W., Wang G., Zhang B., Wang L., Hall J.L., Moses M.A., McGowan F.X., Pu W.T. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest. 2011; 121 (5): 1894–1904. DOI:10.1172/JCI45529. Epub 2011 Apr 18. PMID: 21505261 PMCID: PMC3083761 DOI:10.1172/JCI45529; van Wijk B., Gunst Q.D., Moorman A.F., van den Hoff M.J. Cardiac regeneration from activated epicardium. PLoS One. 2012; 7 (9): e44692. DOI:10.1371/journal.pone.0044692. Epub 2012 Sep 20. PMID: 23028582 PMCID: PMC3447884; Smart N., Bollini S., Dubé K.N., Vieira J.M., Zhou B., Riegler J., Price A.N., Lythgoe M.F., Davidson S., Yellon D., Pu W.T., Riley P.R. Myocardial regeneration: expanding the repertoire of thymosin β4 in the ischemic heart. Ann N Y Acad Sci. 2012; 1269: 92–101. PMID: 23045976 PMCID: PMC4084412 DOI:10.1111/j.1749-6632.2012.06708.x; Zangi L., Lui K.O., von Gise A., Ma Q., Ebina W., Ptaszek L.M., Später D., Xu H., Tabebordbar M., Gorbatov R., Sena B., Nahrendorf M., Briscoe D.M., Li R.A., Wagers A.J., Rossi D.J., Pu W.T., Chien K.R. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol. 2013; 31 (10): 898–907. Epub 2013 Sep 8. PMID: 24013197 PMCID: PMC4058317 DOI:10.1038/nbt.2682; Smart N., Dubé K.N., Riley P.R. Identification of Thymosin β4 as an effector of Hand1-mediated vascular development. Nat Commun. 2010; 1: 46. PMID: 20975697 PMCID: PMC2963826 DOI:10.1038/ncomms1041; Zhou B.I., Pu W.T. Epicardial epithelial-to-mesenchymal transition in injured heart. J Cell Mol Med. 2011; 15 (12): 2781–2783. PMID: 21914126 PMCID: PMC3226901 DOI:10.1111/j.1582-4934.2011.01450.x; Russell J.L., Goetsch S.C., Gaiano N.R., Hill J.A., Olson E.N., Schneider J.W. A dynamic notch injury response activates epicardium and contributes to fibrosis repair. Circ Res. 2011; 108 (1): 51–59. DOI:10.1161/CIRCRESAHA.110.233262. Epub 2010 Nov 24.PMID: 21106942; Winter E.M., Gittenberger-de Groot A.C. Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci. 2007; 64 (6): 692–703. Review.PMID: 17380310; Limana F., Zacheo A., Mocini D., Mangoni A., Borsellino G., Diamantini A., De Mori R., Battistini L., Vigna E., Santini M., Loiaconi V., Pompilio G., Germani A., Capogrossi M.C. Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res. 2007; 101 (12): 1255–1265. Epub 2007 Oct 18.PMID: 17947800; Zubkova E.S., Beloglazova I.B., Makarevich P.I., Boldyreva M.A., Sukhareva O.Y., Shestakova M.V., Dergilev K.V., Parfyonova Y.V., Menshikov M.Y. Regulation of Adipose Tissue Stem Cells Angiogenic Potential by Tumor Necrosis Factor-Alpha. J Cell Biochem. 2016; 117 (1): 180–196. DOI:10.1002/jcb.25263. PMID: 26096299; Hong S.J., Traktuev D.O., March K.L.Therapeutic potential of adiposederived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant. 2010; 15 (1): 86–91. DOI:10.1097/MOT.0b013e328334f074 PMID: 19949335; Saifi O., Ghandour B., Jaalouk D., Refaat M., Mahfouz R. Myocardial regeneration: role of epicardium and implicated genes. Mol Biol Rep. 2019. DOI:10.1007/s11033-019-05075-0. PMID: 31549371; Bargehr J., Ong L.P., Colzani M., Davaapil H., Hofsteen P., Bhandari S., Gambardella L., Le Novère N., Iyer D., Sampaziotis F., Weinberger F., Bertero A., Leonard A., Bernard W.G., Martinson A., Figg N., Regnier M., Bennett M.R., Murry C.E., Sinha S. Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration. Nat Biotechnol. 2019 Aug; 37 (8): 895–906. Epub 2019 Aug 2. PMID: 31375810 DOI:10.1038/s41587-019-0197-9; Wang S., Huang S., Gong L., Yuan Z., Wong J., Lee J., Si M.S. Human Neonatal Thymus Mesenchymal Stem Cells Promote Neovascularization and Cardiac Regeneration. Stem Cells Int. 2018; 2018: 8503468. DOI:10.1155/2018/8503468. eCollection 2018 PMID: 30305821; Rehman J., Traktuev D., Li J., Merfeld-Clauss S., Temm-Grove C.J., Bovenkerk J.E., Pell C.L., Johnstone B.H., Considine R.V., March K.L. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004; 109 (10): 1292–1298. Epub 2004; DOI:10.1161/01.CIR.0000121425.42966.F1 PMID: 14993122; Shevchenko E.K., Dergilev K.V., Tsokolaeva Z.I., Beloglazova I.B., Molokotina Y.D., Parfenova E.V., Men'shikov M.Y. Combination of Mesenchymal Stromal Cells and Cardiac Stem Cells in a Multilayer Cell Construct Promotes Activation of Notch Signaling and Initiation of Endothelial Differentiation. Bull Exp Biol Med. 2019; 166 (4): 548–552. DOI:10.1007/s10517-019-04390-7. Epub 2019 Feb 19. PMID: 30783844; Russell J.L., Goetsch S.C., Aguilar H.R., Frantz D.E., Schneider J.W. Targeting native adult heart progenitors with cardiogenic small molecules. ACS Chem Biol. 2012; 7 (6): 1067–1076. DOI:10.1021/cb200525q. Epub 2012 Apr 13.PMID: 22413910; del Monte G., Casanova J.C., Guadix J.A., MacGrogan D., Burch J.B., Pérez-Pomares J.M., de la Pompa J.L. Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 2011; 108 (7): 824–836. DOI:10.1161/CIRCRESAHA.110.229062. Epub 2011 Feb 10. PMID: 21311046; Grieskamp T., Rudat C., Lüdtke T.H., Norden J., Kispert A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 2011; 108 (7): 813–823. DOI:10.1161/CIRCRESAHA.110.228809. Epub 2011 Jan 20. PMID: 21252157; https://www.reanimatology.com/rmt/article/view/1831