يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"Д. О. Новиков"', وقت الاستعلام: 0.28s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Работа выполнена по государственному заданию ИМЕТ УрО РАН (№ госрегистрации темы: 122020100404-2) с использованием оборудования Центра коллективного пользования «Урал-М».

    المصدر: Izvestiya. Non-Ferrous Metallurgy; № 1 (2023); 16-25 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 1 (2023); 16-25 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1448/623; https://cvmet.misis.ru/jour/article/view/1448/631; Singh P., Borthakur A., Singh R., Bhadouria R., Singh V.K., Devi P. A critical review on the research trends and emerging technologies for arsenic decontamination from water. Groundwater for Sustainable Development. 2021; 14: 100607. https://doi.org/10.1016/j.gsd.2021.100607; Nazari A.M., Radzinski R., Ghahreman A. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy. 2017; 174: 258—281. https://doi.org/10.1016/j.hydromet.2016.10.011; Liu W., Huang C., Han J., Qin W. Removal and reuse of arsenic from arsenic-bearing purified residue by alkaline pressure oxidative leaching and reduction of As(V). Hydrometallurgy. 2021; 199: 105541. https://doi.org/10.1016/j. hydromet.2020.105541; Shahnazi A., Firoozi S., Haghshenas Fatmehsari D. Selective leaching of arsenic from copper converter flue dust by Na2S and its stabilization with Fe2(SO4)3. Transactions of Nonferrous Metals Society of China. 2020; 30 (6): 1674–1686. https://doi.org/10.1016/S1003-6326(20)65329-8; Duan L., Song J., Yin M., Yuan H., Li X., Zhang Y., Yin X. Dynamics of arsenic and its interaction with Fe and S at the sediment-water interface of the seasonal hypoxic Changjiang Estuary. Science of the Total Environment. 2021; 769: 145269. https://doi.org/10.1016/j.scitotenv.2021.145269; Raju N.J. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environmental Research. 2022; 203: 111782. https://doi.org/10.1016/j.envres.2021.111782; Zhang D., Wang S., Wang Y., Gomez M.A., Jia Y. The longterm stability of calcium arsenates: Implications for phase transformation and arsenic mobilization. Journal of Environmental Sciences. 2019; 84: 29–41. https://doi.org/10.1016/j.jes.2019.04.017; Mendes H.L., Caldeira C.L., Ciminelli V.S.T. Arsenic removal from industrial effluent: In-situ ferric sulfate production and arsenic partitioning in the residues. Minerals Engineering. 2021; 169: 106945. https://doi.org/10.1016/j.mineng. 2021.106945; Mirazimi M., Mohammadi M., Liu W. Kinetics and mechanisms of arsenic and sulfur release from crystalline orpiment. Minerals Engineering. 2021; 170: 107032. https://doi.org/10.1016/j.mineng.2021.107032.; Akhavan A., Golchin A. Estimation of arsenic leaching from Zn—Pb mine tailings under environmental conditions. Journal of Cleaner Production. 2021; 295: 126477. https://doi.org/10.1016/j.jclepro.2021.126477; Li W., Han J., Liu W., Jiao F., Wang H., Qin W. Separation of arsenic from lead smelter ash by acid leaching combined with pressure oxidation. Separation and Purification Technology. 2021; 273: 118988. https://doi.org/10.1016/j.seppur.2021.118988; Wang Y., Yu J., Wang Z., Liu Y., Zhao Y. A review on arsenic removal from coal combustion: Advances, challenges and opportunities. Chemical Engineering Journal. 2021; 414: 128785. https://doi.org/10.1016/j.cej.2021.128785; Huang Y., Li X., Zhang C., Dai M., Zhang Z., Xi Y., Quan B., Lu S., Liu Y. Degrading arsanilic acid and adsorbing the released inorganic arsenic simultaneously in aqueous media with CuFe2O4 activating peroxymonosulfate system: Factors, performance, and mechanism. Chemical Engineering Journal. 2021; 424: 128537. https://doi.org/10.1016/j.cej.2021.128537; Ribeiro I.C.A., Vasques I.C.F., Teodoro J.C., Guerra M.B.B., Carneiro J.S.S., Melo L.C.A., Guilherme L.R.G. Fast and effective arsenic removal from aqueous solutions by a novel low-cost eggshell byproduct. Science of the Total Environment. 2021; 783: 147022. https://doi.org/10.1016/j.scitotenv.2021.147022; Zhang W., Che J., Xia L., Wen P., Chen J., Ma B., Wang C. Efficient removal and recovery of arsenic from copper smelting flue dust by a roasting method: Process optimization, phase transformation and mechanism investigation. Journal of Hazardous Materials. 2021; 412: 125232. https://doi.org/10.1016/j.jhazmat. 2021.125232; O'Connor K.P., Montgomery M., Rosales R.A., Whiteman K.K., Kim C.S. Wetting/drying cycles increase arsenic bioaccessibility in mine-impacted sediments. Science of the Total Environment. 2021; 774: 145420. https://doi.org/10.1016/j.scitotenv.2021.145420; Bari A.S.M.F., Lamb D., Choppala G., Seshadri B., Islam M.R., Sanderson Р., Mohammad P., Rahman M. Arsenic bioaccessibility and fractionation in abandoned mine soils from selected sites in New South Wales, Australia and human health risk assessment. Ecotoxicology and Environmental Safety. 2021; 223: 112611. https://doi.org/10.1016/j.ecoenv.2021.112611; Hu L., Nie Z., Wang W., Zhang D., Long Y., Fang C. Arsenic transformation behavior mediated by arsenic functional genes in landfills. Journal of Hazardous Materials. 2021; 403: 123687. https://doi.org/10.1016/j.jhazmat.2020. 123687; Lihareva N. Arsenic solubility, mobility and speciation in the deposits from a copper production waste storage. Microchemical Journal. 2005; 81(2): 177–183. https://doi.org/10.1016/j.microc.2004.12.006; Álvarez-Ayuso E., Murciego A. Stabilization methods for the treatment of weathered arsenopyrite mine wastes: Arsenic immobilization under selective leaching conditions. Journal of Cleaner Production. 2021; 283: 125265. https://doi.org/10.1016/j.jclepro.2020.125265; Li E., Yang T., Wang Q., Yu Z., Tian S., Wang X. Longterm stability of arsenic calcium residue (ACR) treated with FeSO4 and H2SO4: Function of H+ and Fe(II). Journal of Hazardous Materials. 2021; 420: 126549. https://doi.org/10.1016/j.jhazmat.2021.126549; Cao P., Qiu K., Zou X., Lian M., Liu P., Niu L., Yu L., Li X., Zhang Z. Mercapto propyltrimethoxysilane- and ferrous sulfate-modified nano-silica for immobilization of lead and cadmium as well as arsenic in heavy metal-contaminated soil. Environmental Pollution. 2020; 266(3): 115152. https://doi.org/10.1016/j.envpol.2020.115152; Powder Diffraction File (PDF), produced by the International Centre for Diffraction Data, Newtown Square, PA. URL: http://www.icdd.com/index.php/pdfsearch (accessed: 05.07.2019).; Bluteau M.C., Demopoulos G.P. The incongruent dissolution of scorodite–solubility, kinetics and mechanism. Hydrometallurgy. 2007; 87 (3–4): 163–177.; Davis S. Regulated metals: the rule of 20. Pollution Prevention Institute, Kansas SBEAP, 2001.; Selivanov E.N., Novikov D.O., Galkova L.I. Structure of arsenic sulfide cake and solubility of its alloys with sulfur. Metallurgist. 2021; 65 (1): 228–236.; https://cvmet.misis.ru/jour/article/view/1448