-
1Academic Journal
المؤلفون: A. D. Smirnova, G. G. Karmazanovsky, E. V. Kondratyev, N. A. Karelskaya, V. N. Galkin, A. Yu. Popov, B. N. Gurmikov, D. V. Kalinin, А. Д. Смирнова, Г. Г Кармазановский, Е. В. Кондратьев, Н. А. Карельская, В. Н. Галкин, А. Ю. Попов, Б. Н. Гурмиков, Д. В. Калинин
المصدر: Research and Practical Medicine Journal; Том 11, № 1 (2024); 54-69 ; Research'n Practical Medicine Journal; Том 11, № 1 (2024); 54-69 ; 2410-1893 ; 10.17709/2410-1893-2024-11-1
مصطلحات موضوعية: компьютерная томография, texture analysis, radiomics, radiogenomics, MRI, CT, текстурный анализ, радиомика, радиогеномика, магнитно-резонансная томография
وصف الملف: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/978/612; Гурмиков Б. Н. Молекулярно-генетические аспекты внутрипеченочного холангиоцеллюлярного рака: обзор литературы. Успехи молекулярной онкологии. 2019;6(1):37–43. https://doi.org/10.17650/2313-805x-2019-6-1-37-43; Кармазановский Г. Г. Роль МСКТ и МРТ в диагностике очаговых заболеваний печени. Анналы хирургической гепатологии. 2019;24(4):91–110. https://doi.org/10.16931/1995-5464.2019491-110; Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma – evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018 Feb;15(2):95–111. https://doi.org/10.1038/nrclinonc.2017.157; Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014 Jun 21;383(9935):2168–79. https://doi.org/10.1016/s0140-6736(13)61903-0; Гурмиков Б. Н., Коваленко Ю. А., Вишневский В. А., Чжао А. В. Внутрипеченочный холангиоцеллюлярный рак: диагностика и лечение. Анналы хирургической гепатологии. 2018;23(4):108–117. https://doi.org/10.16931/1995-5464.20184108-117; Chang YT, Chang MC, Huang KW, Tung CC, Hsu C, Wong JM. Clinicopathological and prognostic significances of EGFR, KRAS and BRAF mutations in biliary tract carcinomas in Taiwan. J Gastroenterol Hepatol. 2014 May;29(5):1119–1125. https://doi.org/10.1111/jgh.12505; Abou-Alfa GK, Macarulla T, Javle MM, Kelley RK, Lubner SJ, Adeva J, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020 Jun;21(6):796–807. https://doi.org/10.1016/s1470-2045(20)30157-1 Epub 2020 May 13. Erratum in: Lancet Oncol. 2020 Oct;21(10):e462. Erratum in: Lancet Oncol. 2024 Feb;25(2):e61.; Wang Sh, Wu Y, Lui T, Weng Sh, You H, Wei Y, et al. Amplification and overexpression of the MET gene in intrahepatic cholangiocarcinoma correlate with adverse pathological features and worse clinical outcome. Int J Clin Exp Pathol. 2017;10(6):6809–6817.; Zhang J, Wu Z, Zhao J, Liu S, Zhang X, Yuan F, Shi Y, Song B. Intrahepatic cholangiocarcinoma: MRI texture signature as predictive biomarkers of immunophenotyping and survival. Eur Radiol. 2021 Jun;31(6):3661–3672. https://doi.org/10.1007/s00330-020-07524-y; Sadot E, Simpson AL, Do RK, Gonen M, Shia J, Allen PJ, et al. Cholangiocarcinoma: Correlation between Molecular Profiling and Imaging Phenotypes. PLoS One. 2015 Jul 24;10(7):e0132953. https://doi.org/10.1371/journal.pone.0132953; Попов Е. В., Кривоногов Н. Г., Округин С. А., Сазонова С. И. Радиомический анализ изображений в кардиологии: возможности перспективы применения: обзор литературы. Лучевая диагностика и терапия. 2022;13(2):7–15. https://doi.org/10.22328/2079-5343-2022-13-2-7-15; Ma X, Liu L, Fang J, Rao S, Lv L, Zeng M, et al. MRI features predict microvascular invasion in intrahepatic cholangiocarcinoma. Cancer Imaging. 2020 Jun 23;20(1):40. https://doi.org/10.1186/s40644-020-00318-x; Shao C, Chen J, Chen J, Shi J, Huang L, Qiu Y. Histological classification of microvascular invasion to predict prognosis in intrahepatic cholangiocarcinoma. Int J Clin Exp Pathol. 2017 Jul 1;10(7):7674–7681.; Гурмиков Б. Н., Чжао А. В. и др. Холангиоцеллюлярная карцинома. Монография. М.: «ГЭОТАР-Медиа»; 2021; с. 5–20.; Zhang H, Yang T, Wu M, Shen F. Intrahepatic cholangiocarcinoma: Epidemiology, risk factors, diagnosis and surgical management. Cancer Lett. 2016 Sep 1;379(2):198–205. dhttps://doi.org/10.1016/j.canlet.2015.09.008; Chung YE, Kim MJ, Park YN, Choi JY, Pyo JY, Kim YC, et al. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics. 2009 May-Jun;29(3):683–700. https://doi.org/10.1148/rg.293085729; Fujita N, Asayama Y, Nishie A, Ishigami K, Ushijima Y, Takayama Y, et al. Mass-forming intrahepatic cholangiocarcinoma: Enhancement patterns in the arterial phase of dynamic hepatic CT – Correlation with clinicopathological findings. Eur Radiol. 2017 Feb;27(2):498–506. https://doi.org/10.1007/s00330-016-4386-3; Chalasani N, Baluyut A, Ismail A, Zaman A, Sood G, Ghalib R, et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study. Hepatology. 2000 Jan;31(1):7–11. https://doi.org/10.1002/hep.510310103; Nanashima A, Sakamoto I, Hayashi T, Tobinaga S, Araki M, Kunizaki M, et alT. Preoperative diagnosis of lymph node metastasis in biliary and pancreatic carcinomas: evaluation of the combination of multi-detector CT and serum CA19-9 level. Dig Dis Sci. 2010 Dec;55(12):3617–3626. https://doi.org/10.1007/s10620-010-1180-y; Noji T, Kondo S, Hirano S, Tanaka E, Suzuki O, Shichinohe T. Computed tomography evaluation of regional lymph node metastases in patients with biliary cancer. Br J Surg. 2008 Jan;95(1):92–96. https://doi.org/10.1002/bjs.5920; Zhan PC, Yang T, Zhang Y, Liu KY, Li Z, Zhang YY, et al. Radiomics using CT images for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma: a multi-centric study. Eur Radiol. 2023 Aug 17. https://doi.org/10.1007/s00330-023-10108-1; Spolverato G, Kim Y, Alexandrescu S, Marques HP, Lamelas J, Aldrighetti L, et al. Management and Outcomes of Patients with Recurrent Intrahepatic Cholangiocarcinoma Following Previous Curative-Intent Surgical Resection. Ann Surg Oncol. 2016 Jan;23(1):235–243. https://doi.org/10.1245/s10434-015-4642-9; Ciresa M, De Gaetano AM, Pompili M, Saviano A, Infante A, Montagna M, et al. Enhancement patterns of intrahepatic mass-forming cholangiocarcinoma at multiphasic computed tomography and magnetic resonance imaging and correlation with clinicopathologic features. Eur Rev Med Pharmacol Sci. 2015 Aug;19(15):2786–2797.; Park HJ, Park B, Park SY, Choi SH, Rhee H, Park JH, et al. Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma based on clinical, radiologic, and radiomics features. Eur Radiol. 2021 Nov;31(11):8638–8648. https://doi.org/10.1007/s00330-021-07926-6; Hu LS, Weiss M, Popescu I, Marques HP, Aldrighetti L, Maithel SK, et al. Impact of microvascular invasion on clinical outcomes after curative-intent resection for intrahepatic cholangiocarcinoma. J Surg Oncol. 2019 Jan;119(1):21–29. https://doi.org/10.1002/jso.25305; Zhang L, Yu X, Wei W, Pan X, Lu L, Xia J, et al. Prediction of HCC microvascular invasion with gadobenate-enhanced MRI: correlation with pathology. Eur Radiol. 2020 Oct;30(10):5327–5336. https://doi.org/10.1007/s00330-020-06895-6; Silva M, Maddalo M, Leoni E, Giuliotti S, Milanese G, Ghetti C, et al. Integrated prognostication of intrahepatic cholangiocarcinoma by contrast-enhanced computed tomography: the adjunct yield of radiomics. Abdom Radiol (NY). 2021 Oct;46(10):4689–4700. https://doi.org/10.1007/s00261-021-03183-9; Park HJ, Park B, Lee SS. Radiomics and Deep Learning: Hepatic Applications. Korean J Radiol. 2020 Apr;21(4):387–401. https://doi.org/10.3348/kjr.2019.0752; Pavic M, Bogowicz M, Würms X, Glatz S, Finazzi T, Riesterer O, et al. Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol. 2018 Aug;57(8):1070–1074. https://doi.org/10.1080/0284186x.2018.1445283; Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys. 2017;44(3):1050–1062. https://doi.org/10.1002/mp.12123; Grobmyer SR, Wang L, Gonen M, Fong Y, Klimstra D, D'Angelica M, et al. Perihepatic lymph node assessment in patients undergoing partial hepatectomy for malignancy. Ann Surg. 2006 Aug;244(2):260–264. https://doi.org/10.1097/01.sla.0000217606.59625.9d; Zhang S, Huang S, He W, Wei J, Huo L, Jia N, et al. Radiomics-Based Preoperative Prediction of Lymph Node Metastasis in Intrahepatic Cholangiocarcinoma Using Contrast-Enhanced Computed Tomography. Ann Surg Oncol. 2022 Oct;29(11):6786–6799. https://doi.org/10.1245/s10434-022-12028-8; Liang W, Xu L, Yang P, Zhang L, Wan D, Huang Q, et al. Novel Nomogram for Preoperative Prediction of Early Recurrence in Intrahepatic Cholangiocarcinoma. Front Oncol. 2018 Sep 4;8:360. https://doi.org/10.3389/fonc.2018.00360; Chu H, Liu Z, Liang W, Zhou Q, Zhang Y, Lei K, et al. Radiomics using CT images for preoperative prediction of futile resection in intrahepatic cholangiocarcinoma. Eur Radiol. 2021 Apr;31(4):2368–2376. https://doi.org/10.1007/s00330-020-07250-5; Zhu Y, Mao Y, Chen J, Qiu Y, Guan Y, Wang Z, He J. Radiomics-based model for predicting early recurrence of intrahepatic mass-forming cholangiocarcinoma after curative tumor resection. Sci Rep. 2021 Sep 15;11(1):18347. https://doi.org/10.1038/s41598-021-97796-1; Zhou Y, Zhou G, Zhang J, Xu C, Wang X, Xu P. Radiomics signature on dynamic contrast-enhanced MR images: a potential imaging biomarker for prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma. Eur Radiol. 2021 Sep;31(9):6846–6855. https://doi.org/10.1007/s00330-021-07793-1; Qian X, Lu X, Ma X, Zhang Y, Zhou C, Wang F, et al. A Multi-Parametric Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion Status in Intrahepatic Cholangiocarcinoma. Front Oncol. 2022 Feb 24;12:838701. https://doi.org/10.3389/fonc.2022.838701; Yang Y, Zou X, Zhou W, Yuan G, Hu D, Kuang D, et al. Multiparametric MRI-Based Radiomic Signature for Preoperative Evaluation of Overall Survival in Intrahepatic Cholangiocarcinoma After Partial Hepatectomy. J Magn Reson Imaging. 2022 Sep;56(3):739–751. https://doi.org/10.1002/jmri.28071; Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019 Jun;70(6):1133–1144. https://doi.org/10.1016/j.jhep.2019.02.023; Hennedige TP, Neo WT, Venkatesh SK. Imaging of malignancies of the biliary tract- an update. Cancer Imaging. 2014 Apr 22;14(1):14. https://doi.org/10.1186/1470-7330-14-14; Xu X, Mao Y, Tang Y, Liu Y, Xue C, Yue Q, et al. Classification of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Based on Radiomic Analysis. Comput Math Methods Med. 2022 Feb 21;2022:5334095. https://doi.org/10.1155/2022/5334095; Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020 Sep;17(9):557–588. https://doi.org/10.1038/s41575-020-0310-z; Zhu H, Ji K, Wu W, Zhao S, Zhou J, Zhang C, et al. Describing Treatment Patterns for Elderly Patients with Intrahepatic Cholangiocarcinoma and Predicting Prognosis by a Validated Model: A Population-Based Study. J Cancer. 2021 Mar 30;12(11):3114–3125. https://doi.org/10.7150/jca.53978; Perrin T, Midya A, Yamashita R, Chakraborty J, Saidon T, Jarnagin WR, et al. Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdom Radiol (NY). 2018 Dec;43(12):3271–3278. https://doi.org/10.1007/s00261-018-1600-6; Banerjee S, Wang DS, Kim HJ, Sirlin CB, Chan MG, Korn RL, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology. 2015 Sep;62(3):792–800. https://doi.org/10.1002/hep.27877; Yang L, Dong D, Fang M, Zhu Y, Zang Y, Liu Z, et al. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer? Eur Radiol. 2018 May;28(5):2058–2067. https://doi.org/10.1007/s00330-017-5146-8; Hoivik EA, Hodneland E, Dybvik JA, Wagner-Larsen KS, Fasmer KE, Berg HF, et al. A radiogenomics application for prognostic profiling of endometrial cancer. Commun Biol. 2021 Dec 6;4(1):1363. https://doi.org/10.1038/s42003-021-02894-5; Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007 Jun;25(6):675–680. https://doi.org/10.1038/nbt1306; Idris T, Barghash M, Kotrotsou A, Huang HJ, Subbiah V, Kaseb AO, et al. CT-based radiogenomic signature to identify isocitrate dehydrogenase(IDH)1/2 mutations in advanced intrahepatic cholangiocarcinoma. Journal of Clinical Oncology. 2019;37(15). https://doi.org/10.1200/jco.2019.37.15_suppl.4081; https://www.rpmj.ru/rpmj/article/view/978
-
2Academic Journal
المؤلفون: N. V. Petrova, G. G. Karmazanovsky, E. V. Kondratyev, A. Yu. Popov, M. V. Rostovtsev, N. Yu. Germanovich, D. V. Kalinin, Н. В. Петрова, Г. Г. Кармазановский, Е. В. Кондратьев, А. Ю. Попов, М. В. Ростовцев, Н. Ю. Германович, Д. В. Калинин
المصدر: Research and Practical Medicine Journal; Том 10, № 3 (2023); 69-79 ; Research'n Practical Medicine Journal; Том 10, № 3 (2023); 69-79 ; 2410-1893 ; 10.17709/10.17709/2410-1893-2023-10-3
مصطلحات موضوعية: текстурный анализ, neoadjuvant therapy, MRI, pathological complete response, radiomics, texture analysis, неоадъювантная терапия, МРТ, патологический полный ответ, радиологический полный ответ, радиогеномика
وصف الملف: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/901/584; Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May;71(3):209–249. https://doi.org/10.3322/caac.21660; Tan W, Yang M, Yang H, Zhou F, Shen W. Predicting the response to neoadjuvant therapy for early-stage breast cancer: Tumor-, blood-, and imaging-related biomarkers. Cancer Manag Res. 2018 Oct 9;10:4333–4347. https://doi.org/10.2147/cmar.s174435; Puglisi F, Follador A, Minisini AM, Cardellino GG, Russo S, Andreetta C, Di Terlizzi S, Piga A. Baseline staging tests aſter a new diagnosis of breast cancer: further evidence of their limited indications. Ann Oncol. 2005 Feb;16(2):263–266. https://doi.org/10.1093/annonc/mdi063; Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi GN, Pusztai L. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008 Mar 10;26(8):1275–1281. https://doi.org/10.1200/jco.2007.14.4147. Epub 2008 Feb 4. Corrected and republished in: J Clin Oncol. 2023 Apr 1;41(10):1809-1815.; Funt SA, Chapman PB. The Role of Neoadjuvant Trials in Drug Development for Solid Tumors. Clin Cancer Res. 2016 May 15;22(10):2323–2328. https://doi.org/10.1158/1078-0432.ccr-15-1961; Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018 Jan;19(1):27–39. https://doi.org/10.1016/s1470-2045(17)30777-5; Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet. 2014 Jul 12;384(9938):164-172. https://doi.org/10.1016/s0140-6736(13)62422-8. Erratum in: Lancet. 2019 Mar 9;393(10175):986.; Gradishar WJ, Moran MS, Abraham J, Aſt R, Agnese D, Allison KH, et al. Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2023 Mar.;23 (Version 4.2023). Available at: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf; Korde LA, Somerfield MR, Carey LA, Crews JR, Denduluri N, Hwang ES, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO Guideline. J Clin Oncol. 2021 May 1;39(13):1485–1505. https://doi.org/10.1200/jco.20.03399; Schneeweiss A, Chia S, Hickish T, Harvey V, Eniu A, Hegg R, et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol. 2013 Sep;24(9):2278–2284. https://doi.org/10.1093/annonc/mdt182; Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015 Jan 1;33(1):13–21. https://doi.org/10.1200/jco.2014.57.0572; Garutti M, Griguolo G, Botticelli A, Buzzatti G, De Angelis C, Gerratana L, et al. Definition of High-Risk Early Hormone-Positive HER2-Negative Breast Cancer: A Consensus Review. Cancers (Basel). 2022 Apr 9;14(8):1898. https://doi.org/10.3390/cancers14081898; Kong X, Moran MS, Zhang N, Haffty B, Yang Q. Meta-Analysis Confirms Achieving Pathological Complete Response Aſter Neoadjuvant Chemotherapy Predicts Favourable Prognosis for Breast Cancer Patients. Eur J Cancer. 2011;47(14):2084–2090. https://doi.org/10.1016/j.ejca.2011.06.014; Scheel JR, Kim E, Partridge SC, Lehman CD, Rosen MA, Bernreuter WK, et al. MRI, Clinical Examination, and Mammography for Preoperative Assessment of Residual Disease and Pathologic Complete Response Aſter Neoadjuvant Chemotherapy for Breast Cancer: ACRIN 6657 Trial. AJR Am J Roentgenol. 2018;210(6):1376–1385. https://doi.org/10.2214/ajr.17.18323; Gampenrieder SP, Peer A, Weismann C, Meissnitzer M, Rinnerthaler G, Webhofer J, et al. Radiologic complete response (rCR) in contrast-enhanced magnetic resonance imaging (CE-MRI) aſter neoadjuvant chemotherapy for early breast cancer predicts recurrence-free survival but not pathologic complete response (pCR). Breast Cancer Res. 2019 Jan 31;21(1):19. https://doi.org/10.1186/s13058-018-1091-y; O’Donnell JPM, Gasior SA, Davey MG, O’Malley E, Lowery AJ, McGarry J, et al. The accuracy of breast MRI radiomic methodologies in predicting pathological complete response to neoadjuvant chemotherapy: A systematic review and network meta-analysis. Eur J Radiol. 2022 Dec;157:110561. https://doi.org/10.1016/j.ejrad.2022.110561; Hong J, Rui W, Fei X, Chen X, Shen K. Association of tumor-infiltrating lymphocytes before and aſter neoadjuvant chemotherapy with pathological complete response and prognosis in patients with breast cancer. Cancer Med. 2021 Nov;10(22):7921–7933. https://doi.org/10.1002/cam4.4302; Teng MW, Ngiow SF, Ribas A, Smyth MJ. Classifying Cancers Based on T-cell Infiltration and PD-L1. Cancer Res. 2015 Jun 1;75(11):2139–2145. https://doi.org/10.1158/0008-5472.can-15-0255; Yamaguchi R, Tanaka M, Yano A, Tse GM, Yamaguchi M, Koura K, et al. Tumor-infiltrating lymphocytes are important pathologic predictors for neoadjuvant chemotherapy in patients with breast cancer. Hum Pathol. 2012 Oct;43(10):1688–1694. https://doi.org/10.1016/j.humpath.2011.12.013; Verma C, Kaewkangsadan V, Eremin JM, Cowley GP, Ilyas M, El-Sheemy MA, Eremin O. Natural killer (NK) cell profiles in blood and tumour in women with large and locally advanced breast cancer (LLABC) and their contribution to a pathological complete response (PCR) in the tumour following neoadjuvant chemotherapy (NAC): differential restoration of blood profiles by NAC and surgery. J Transl Med. 2015 Jun 4;13:180. https://doi.org/10.1186/s12967-015-0535-8; Malyguine AM, Strobl SL, Shurin MR. Immunological monitoring of the tumor immunoenvironment for clinical trials. Cancer Immunol Immunother. 2012 Feb;61(2):239–247. https://doi.org/10.1007/s00262-011-1148-6; Li C, Lu N, He Z, Tan Y, Liu Y, Chen Y, et al. A Noninvasive Tool Based on Magnetic Resonance Imaging Radiomics for the Preoperative Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer. Ann Surg Oncol. 2022 Nov;29(12):7685–7693. https://doi.org/10.1245/s10434-022-12034-w; Gu YL, Pan SM, Ren J, Yang ZX, Jiang GQ. Role of Magnetic Resonance Imaging in Detection of Pathologic Complete Remission in Breast Cancer Patients Treated With Neoadjuvant Chemotherapy: A Meta-analysis. Clin Breast Cancer. 2017 Jul;17(4):245–255. https://doi.org/10.1016/j.clbc.2016.12.010; Cao K, Zhao B, Li XT, Li YL, Sun YS. Texture Analysis of Dynamic Contrast-Enhanced MRI in Evaluating Pathologic Complete Response (pCR) of Mass-Like Breast Cancer aſter Neoadjuvant Therapy. J Oncol. 2019 Dec 26;2019:4731532. https://doi.org/10.1155/2019/4731532; Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, Malyarenko D, et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging. 2019 Jun;49(7):e101–e121. https://doi.org/10.1002/jmri.26518; https://www.rpmj.ru/rpmj/article/view/901
-
3Academic Journal
المؤلفون: E. V. Markarova, L. M. Kogoniya, L. E. Gurevich, E. V. Bondarenko, D. V. Kalinin, Е. В. Маркарова, Л. М. Когония, Л. Е. Гуревич, Е. В. Бондаренко, Д. В. Калинин
المصدر: Meditsinskiy sovet = Medical Council; № 11 (2023); 166-171 ; Медицинский Совет; № 11 (2023); 166-171 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: качество жизни, multiple endocrine neoplasia MEN-1, immunohistochemistry, somatostatin receptors, carcinoid syndrome, biotherapy, somatostatin analogues, ECOG, quality of life, множественная эндокринная неоплазия МЭН-1, иммуногистохимия, рецепторы к соматостатину, карциноидный синдром, биотерапия, аналоги соматостатина
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7701/6833; Dasari A., Shen C., Halperin D., Zhao B., Zhou S., Xu Y. et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017;3(10):1335–1342. https://doi.org/10.1001/jamaoncol.2017.0589.; Pieterman C.R.C., Valk G.D. Update on the clinical management of multiple endocrine neoplasia type 1. Clin Endocrinol (Oxf). 2022;97(4):409–423. https://doi.org/10.1111/cen.14727.; Thakker R.V., Newey P.J., Walls G.V., Bilezikian J., Dralle H., Ebeling P.R. et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab. 2012;97(9):2990–3011. https://doi.org/10.1210/jc.2012-1230.; Sadowski S.M., Triponez F. Management of pancreatic neuroendocrine tumors in patients with MEN 1. Gland Surg. 2015;4(1):63–68. https://doi.org/10.3978/j.issn.2227-684X.2014.12.01.; Дедов И.И., Мельниченко Г.А., Мокрышева Н.Г., Андреева Е.Н., Анциферов М.Б., Бельцевич Д.Г. и др. Проект клинических рекомендаций по диагностике и лечению первичного гиперпаратиреоза у взрослых пациентов. Эндокринная хирургия. 2022;16(4):5–54. https://doi.org/10.14341/serg12790.; Игнатюк В.Г., Бритвин Т.А., Подрез Д.В., Гуревич Л.Е. Синдром множественной эндокринной неоплазии 1-го типа с гиперпаратиреозом, инсулиномой поджелудочной железы и гастриномой ворот печени. Анналы хирургической гепатологии. 2018;23(3):57–63. https://doi.org/10.16931/1995-5464.2018357-63.; Pieterman C.R., Conemans E.B., Dreijerink K.M., de Laat J.M., Timmers H.T., Vriens M.R., Valk G.D. Thoracic and duodenopancreatic neuroendocrine tumors in multiple endocrine neoplasia type 1: natural history and function of menin in tumorigenesis. Endocr Relat Cancer. 2014;21(3):R121–R142. https://doi.org/10.1530/ERC-13-0482.; Липатенкова А.К., Дзеранова Л.К., Пигарова Е.А., Рожинская Л.Я., Кочатков А.В. Клинический случай: синдром множественной эндокринной неоплазии типа 1 (МЭН 1). Ожирение и метаболизм. 2012;9(4):44–47. https://doi.org/10.14341/2071-8713-5129.; Boharoon H., Grossman A. A New Medical Therapy for Multiple Endocrine Neoplasia Type 1? touchREV Endocrinol. 2022;18(2):86–88. https://doi.org/10.17925/EE.2022.18.2.86.; Sesti F., La Salvia A., Grinzato C. Mazzilli R., Faggiano A. L’approccio con analoghi della somatostatina nelle neoplasie neuroendocrine associate a sindromi neoplastiche multi-endocrine ereditarie. L’Endocrinologo. 2021;22:423–428. https://doi.org/10.1007/s40619-021-00952-y.; La Salvia A., Sesti F., Grinzato C., Mazzilli R., Tarsitano M.G., Giannetta E., Faggiano A. Somatostatin Analogue Therapy in MEN1-Related Pancreatic Neuroendocrine Tumors from Evidence to Clinical Practice: A Systematic Review. Pharmaceuticals (Basel). 2021;14(10):1039. https://doi.org/10.3390/ph14101039.; Pavel M., Cwikła J.B., Lombard-Bohas C., Borbath I., Shah T., Pape U-F. et al. 1162MO Efficacy and safety of lanreotide autogel (LAN) 120 mg every 14 days in progressive pancreatic or midgut neuroendocrine tumours (NETs): CLARINET FORTE study results. Ann Oncol. 2020;(Suppl. 4):S773. https://doi.org/10.1016/j.annonc.2020.08.1375.; Faggiano A., Modica R., Lo Calzo F., Camera L., Napolitano V., Altieri B. et al. Lanreotide Therapy vs Active Surveillance in MEN1-Related Pancreatic Neuroendocrine Tumors < 2 Centimeters. J Clin Endocrinol Metab. 2020;105(1):dgz007. https://doi.org/10.1210/clinem/dgz007.; Егоров А.В., Кондрашин С.А., Фоминых Е.В., Мусаев Г.Х., Гитель Е.П., Гуревич Л.Е. и др. Аналоги соматостатина в диагностике и лечении нейроэндокринных опухолей. Анналы хирургической гепатологии. 2009;14(4):71–78. Режим доступа: https://www.elibrary.ru/item.asp?edn=ofrnsh&ysclid=ljobdkp7zd593917498. Egorov A.V., Kondrashin S.A., Fominikh E.V., Musaev G.Kh., Gitel E.P., Gurevich L.E. et al. Analogs of somatostatin in diagnostics and managements of neuroendocrine tumors of neuroendocrine tumors. Annals of HPB Surgery. 2009;14(4):71–78. (In Russ.) Available at: https://www.elibrary.ru/item.asp?edn=ofrnsh&ysclid=ljobdkp7zd593917498.; Егоров А.В., Васильев И.А., Кондрашин С.А., Гуревич Л.Е., Фоминых Е.В., Миронова А.В. Трудности выбора метода лечения при множественных нейроэндокринных опухолях поджелудочной железы. Таврический медико-биологический вестник. 2020;23(2):69–74. Режим доступа: https://www.elibrary.ru/item.asp?id=44783331&ysclid=ljoboxmhc2466867176.; Гуревич Л.Е., Корсакова Н.А., Воронкова И.А., Ашевская В.Е., Титов А.Г., Когония Л.М. и др. Иммуногистохимическое определение экспрессии рецепторов к соматостатину 1, 2А, 3 и 5-го типов в нейроэндокринных опухолях различной локализации и степени злокачественности. Альманах клинической медицины. 2016;44(4):378–390. https://doi.org/10.18786/2072-0505-2016-44-4-378-390.; Anlauf M., Garbrecht N., Bauersfeld J., Schmitt A., Henopp T., Komminoth P. et al. Hereditary neuroendocrine tumors of the gastroenteropancreatic system. Virchows Arch. 2007;451(Suppl. 1):S29–S38. https://doi.org/10.1007/s00428-007-0450-3.; Caplin M.E., Pavel M., Phan A.T., Ćwikła J.B., Sedláčková E., Thanh X.T. et al. Lanreotide autogel/depot in advanced enteropancreatic neuroendocrine tumours: final results of the CLARINET open-label extension study. Endocrine. 2021;71(2):502–513. https://doi.org/10.1007/s12020-020-02475-2.; Frost M., Lines K.E., Thakker R.V. Current and emerging therapies for PNETs in patients with or without MEN1. Nat Rev Endocrinol. 2018;14(4):216–227. https://doi.org/10.1038/nrendo.2018.3.; Falconi M., Eriksson B., Kaltsas G., Bartsch D.K., Capdevila J., Caplin M. et al. ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology. 2016;103(2):153–171. https://doi.org/10.1159/000443171.; https://www.med-sovet.pro/jour/article/view/7701
-
4Academic Journal
المؤلفون: M. V. Samsonova, A. L. Chernyaev, Zh. R. Omarova, E. A. Pershina, O. D. Mishnev, O. V. Zayratyants, L. M. Mikhaleva, D. V. Kalinin, V. V. Varyasin, O. A. Tishkevich, S. A. Vinogradov, K. Yu. Mikhaylichenko, A. V. Chernyak, М. В. Самсонова, А. Л. Черняев, Ж. Р. Омарова, Е. А. Першина, О. Д. Мишнев, О. В. Зайратьянц, Л. М. Михалева, Д. В. Калинин, В. В. Варясин, О. А. Тишкевич, С. А. Виноградов, К. Ю. Михайличенко, А. В. Черняк
المصدر: PULMONOLOGIYA; Том 30, № 5 (2020); 519-532 ; Пульмонология; Том 30, № 5 (2020); 519-532 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2020-30-5
مصطلحات موضوعية: коагулопатия, viral interstitial pneumonia, pathology, coagulopathy, вирусная интерстициальная пневмония, патологическая анатомия
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/1368/1771; https://journal.pulmonology.ru/pulm/article/view/1368/1776; Lu R., Zhao X., Li J. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395 (10224): 565–574. DOI:10.1016/s0140-6736(20)30251-8.; World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/?gclid=CjwKCAjwi_b3BRAGEiwAemPNU7B2JwU49WIXL-2GzfGG0bPVQqtXIIwdpVJKQ90n84M2W_m2a4dDyRoCMMsQAvD_BwE [Accessed: July 2, 2020].; Magro C., Mulvey J.J., Berlin D. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res. 2020; 220: 1–13. DOI:10.1016/j.trsl.2020.04.007.; Liu J., Li S., Liu J. et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020; 55: 102763. DOI:10.1016/j.ebiom.2020.102763.; Li H., Liu L., Zhang D. et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020; 395 (10235): 1517–1520. DOI:10.1016/s0140-6736(20)30920-x.; Mauad T., Hajjar L.A., Callegari G.D. et al. Lung pathology in fatal novel human influenza A (H1n1) infection. Am. J. Respir. Crit. Care Med. 2010; 181 (1): 72–79. DOI:10.1164/rccm.200909-1420oc.; Duarte-Neto A.N., Monteiro R.A.A., Silva L.F.F et al. Pulmonary and systemic involvement of COVID-19 assessed by ultrasound-guided minimally invasive autopsy. Histopathology. 2020; 77 (2): 186–197. DOI:10.1111/his.14160.; Gralinski L.E., Bankhead A. 3rd , Jeng S. et al. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. mBio. 2013; 4 (4): e00271-13. DOI:10.1128/mbio.00271-13.; Li K., Wohlford-Lenane C., Perlman S. et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J. Infect. Dis. 2016; 213 (5): 712–722. DOI:10.1093/infdis/jiv499.; Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229): 1054–1062. DOI:10.1016/S01406736(20)30566-3.; Carsana L., Sonzogni A., Nasr A. et al. Pulmonary postmortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect. Dis. [Preprint. Posted: 2020, Jun. 08]. DOI:10.1016/s14733099(20)30434-5.; Черняев А.Л., Зайратьянц О.В., Келли Е.И. и др. Патологическая анатомия гриппа A/H1N1. Архив патологии. 2010; 72 (3): 3–6.; Zhang H., Zhou P., Wei Y. et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann. Intern. Med. 2020; 72 (9): 629–632. DOI:10.7326/M20-0533.; Luo W., Yu H., Gou J. et al. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Preprints [Preprint. Posted: 2020, Mar. 9]. Available at: https://www.researchgate.net/profile/Weiren_Luo/publication/339939319_Clinical_Pathology_of_Critical_Patient_with_Novel_Coronavirus_Pneumonia_COVID-19_Pulmonary_Fibrosis_and_Vascular_Changes_including_Microthrombosis_Formation/links/5e888de14585150839befe5d/Clinical-Pathology-of-Critical-Patient-with-Novel-Coronavirus-Pneumonia-COVID-19-Pulmonary-Fibrosis-and-Vascular-Changes-including-Microthrombosis-Formation.pdf; Schaller T., Hirschbühl K., Burkhardt K. et al. Postmortem examination of patients with COVID-19. Research letter. JAMA. 2020; 323 (24): 2518. DOI:10.1001/jama.2020.8907.; Lin L., Lu L., Cao W. et al. Hypothesis for potential pathogenesis of SARS-CoV-2 infection – a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect. 2020; 9 (1): 727–732. DOI:10.1080/22221751.2020.1746199.; McGonagle D., O’Donnell J., Sharif K. et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020; 2 (7): e437–445. DOI:10.1016/S2665-9913(20)30121-1.; Bryce C., Grimes Z., Pujadas E. et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. medRxiv [Preprint. Posted: 2020, May 22]. DOI:10.1101/2020.05.18.20099960.; Wichmann D., Sperhake J.-P., Lütgehetmann M. et al. Autopsy findings and venous thromboembolism in patients with COVID-19. A prospective cohort study. Ann. Intern. Med. 2020; 173 (4): 268–277. DOI:10.7326/M20-2003.; Edler C., Schröder A.S., Aepfelbacher M. et al. Dying with SARS-CoV-2 infection – an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int. J. Legal Med. 2020; 134 (4): 1275–1284. DOI:10.1007/s00414-02002317-w.; Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020; 383 (2): 120–128. DOI:10.1056/NEJMoa2015432.; Li G., Fox S.E., Summa B. et al. Multiscale 3-dimensional pathology findings of COVID-19 diseased lung using high-resolution cleared tissue microscopy. bioRxiv [Preprint. Posted: 2020, Apr. 20]. DOI:10.1101/2020.04.11.037473.; Tang N., Bai H., Chen X. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020; 18 (5): 1094–1099. DOI:10.1111/jth.14817.; Oudkerk M., Büller H.R., Kuijpers D. et al. Diagnosis, prevention, and treatment of thromboembolic complications in Covid-19: report of the national institute for public health of the Netherlands. Radiology. 2020; 297 (1): e216–222. DOI:10.1148/radiol.2020201629.; Giannis D., Ziogas I.A., Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J. Clin. Virol. 2020; 127: 104362. DOI:10.1016/j.jcv.2020.104362.; Kluge S., Janssens U., Welte T. et al. German recommendations for critically ill patients with COVID-19. Medi. Klin. Intensiv. Notfmed. [Preprint. Posted: 2020, Apr. 14]. DOI:10.1007/s00063-020-00689-w.; Colantuoni A., Martini R., Caprari P. et al. COVID-19 sepsisand microcirculation dysfunction. Front. Physiol. 2020; 11: 747. DOI:10.3389/fphys.2020.00747.; Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395 (10234): 1417–1418. DOI:10.1016/S0140-6736(20)30937-5.; Menter T., Haslbauer J.D., Nienhold R. et al. Post-mortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology. 2020; 77 (2): 198–209. DOI:10.1111/HIS.14134.; Suess C., Hausmann R. Gross and histopathological pulmonary findings in a COVID-19 associated death during self-isolation. Int. J. Legal Med. 2020; 134 (4): 1285–1290. DOI:10.1007/s00414-020-02319-8.; Кунгурова В.В., Хасанянова С.В. К вопросу о мегакариоцитозе в сосудах микроциркуляции при различных видах наступления смерти (по данным судебно-гистологических исследований). Проблемы экспертизы в медицине. 2015; 15 (1–2): 15–17.; Белянин В.Л., Рыбакова М.Г. Сепсис. Патологическая анатомия. СПб: ГУЗ ГПАБ; 2004.; Boilard E., Flamand L. The role of the megakaryocyte in immunity has gone viral. Blood. 2019; 133 (19): 2001–2002. DOI:10.1182/blood-2019-02-900787.; Забозлаев Ф.Г., Кравченко Э.В., Галлямова А.Р. и др. Патологическая анатомия легких при новой коронавирусной инфекции (COVID-19). Предварительный анализ аутопсийных исследований. Клиническая практика. 2020; 11 (2): 60–76. DOI:10.17816/clinpract34849.; Teoh K.T., Siu Y.L., Chan W.L. et al. The SARS coronavirus E protein interacts with Pals1 and alters tight junction formation and epithelial morphogenesis. Mol. Biol. Cell., 2010; 21 (22): 3838–3852. DOI:10.1091/mbc.e10-04-0338.; Chan E.D., Morales D.V., Welsh C.H. et al. Calcium deposition with or without bone formation in the lung. Am. J. Respir. Crit. Care Med. 2002; 165 (12): 1654–1669. DOI:10.1164/rccm.2108054.; Зайратьянц О. В., Cамсонова М. В., Михалева Л. М. и др. Патологическая анатомия COVID-19: Атлас. М.: ГБУ «НИИОЗММ ДЗМ»; 2020.; https://journal.pulmonology.ru/pulm/article/view/1368
-
5Academic Journal
المؤلفون: G. G. Kаrmаzаnovsky, K. A. Zamyatina, V. I. Stashkiv, M. Yu. Shantarevich, E. V. Kondratyev, F. M. Semenov, S. Yu. Kuznetsova, A. V. Kozlova, G. P. Plotnikov, V. A. Popov, A. V. Chupin, A. A. Gritskevich, A. M. Chililov, A. A. Pechetov, A. I. Kurochkina, V. A. Khokhlov, D. V. Kalinin, Г. Г. Кармазановский, К. А. Замятина, В. И. Сташкив, М. Ю. Шантаревич, Е. В. Кондратьев, Ф. М. Семенов, С. Ю. Кузнецова, А. В. Козлова, Г. П. Плотников, В. А. Попов, А. В. Чупин, А. А. Грицкевич, А. М. Чилилов, А. А. Печетов, А. И. Курочкина, В. А. Хохлов, Д. В. Калинин
المصدر: Medical Visualization; Том 24, № 2 (2020); 11-36 ; Медицинская визуализация; Том 24, № 2 (2020); 11-36 ; 2408-9516 ; 1607-0763
مصطلحات موضوعية: консолидация, CT, viral pneumonia, ground-glass opacity, consolidation, КТ, вирусная пневмония, “матовое стекло”
وصف الملف: application/pdf
Relation: https://medvis.vidar.ru/jour/article/view/911/622; https://medvis.vidar.ru/jour/article/view/911/623; Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., Du B., Li L.J., Zeng G., Yuen K.Y., Chen R.C., Tang C.L., Wang T., Chen P.Y., Xiang J., Li S.Y., Wang J.L., Liang Z.J., Peng Y.X., Wei L., Liu Y., Hu Y.H., Peng P., Wang J.M., Liu J.Y., Chen Z., Li G., Zheng Z.J., Qiu S.Q., Luo J., Ye C.J., Zhu S.Y., Zhong N.S.; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708–1720. http://doi.org/10.1056/NEJMoa2002032. Epub 2020 Feb 28. PMID: 32109013; PMCID: PMC7092819.; WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-openingremarks-at-the-media-briefing-on-covid-19---11-march-2020; World Health Organization.Pneumonia of unknown cause – China. Accessed January 5, 2020. https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-causechina/en/; Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., Penzar D., Perlman S., Poon L.L.M., Samborskiy D.V., Sidorov I.A., Sola I., Ziebuhr J. The species severe acute respiratory syndromerelated coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020; 5 (4): 536–544. https://doi.org/10.1038/s41564-020-0695-z; Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 2020; 87 (4): 281–286. https://doi.org/10.1007/s12098-020-03263-6. Epub 2020 Mar 13. PMID: 32166607; PMCID: PMC7090728.; Coronavirus disease (COVID-19) Situation dashboard. World Health Organization, 24 May 2020. https://covid19.who.int; Infantino M., Damiani A., Gobbi F.L., Grossi V., Lari B., Macchia D., Casprini P., Veneziani F., Villalta D., Bizzaro N., Cappelletti P., Fabris M., Quartuccio L., Benucci M., Manfredi M. Serological Assays for SARS-CoV-2 Infectious Disease: Benefits, Limitations and Perspectives. Isr. Med. Assoc. J. 2020; 22 (4): 203–210. PMID: 32286019.; Zhai P., Ding Y., Wu X., Long J., Zhong Y., Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int. J. Antimicrob. Agents. 2020; 55 (5): 105955. https://doi.org/10.1016/j.ijantimicag.2020.105955. Epub 2020 Mar 28. PMID: 32234468. PMCID: PMC7138178.; Guo Y.R., Cao Q.D., Hong Z.S., Tan Y.Y., Chen S.D., Jin H.J., Tan K.S., Wang D.Y., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res. 2020; 7 (1): 11. https://doi.org/10.1186/s40779-020-00240-0. PMID: 32169119; PMCID: PMC7068984.; Xie X., Zhong Z., Zhao W., Zheng C., Wang F., Liu J. Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing. Radiology. 2020 Feb 12:200343. https://doi.org/10.1148/radiol.2020200343. Epub ahead of print. PMID: 32049601.; Fang Y., Zhang H., Xie J., Lin M., Ying L., Pang P., Ji W. Sensitivity of Chest CT for COVID-19: Comparison to RTPCR. Radiology. 2020 Feb 19:200432. https://doi.org/10.1148/radiol.2020200432. Epub ahead of print. PMID: 32073353.; Ye Z., Zhang Y., Wang Y., Wang Y., Huang Z., Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur. Radiol. 2020. https://doi.org/10.1007/s00330-020-06801-0. Published: 19 March 2020; Морозов С.П., Проценко Д.Н., Сметанина С.В., Андрейченко А.Е., Амброси О.Е., Баланюк Э.А., Владзимирский А.В., Ветшева Н.Н., Гомболевский В.А., Епифанова С.В., Ледихова Н.В., Лобанов М.Н., Павлов Н.А., Панина Е.В., Полищук Н.С., Ридэн Т.В., Соколина И.А., Туравилова Е.В., Федоров С.С., Чернина В.Ю., Шулькин И.М. Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов. М.: ДЗ г. Москвы, 2020. 81 с. http://medradiology.moscow/f/luchevaya_diagnostika_koronavirusnoj_infekcii_covid-19_v2.pdf; Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 6 (28.04.2020). 165 c. https://www.rosminzdrav.ru/ministry/med_covid19; Wadman M., Couzin-Frankel J., Kaiser J., Matacic C. How does coronavirus kill? Clinicians trace a ferocious rampage through the body, from brain to toes. 2020; 6: 45 P.; Ackermann M., Verleden S.E., Kuehnel M., Haverich A., Welte T., Laenger F., Vanstapel A., Werlein C., Stark H., Tzankov A., Li W.W., Li V.W., Mentzer S.J., Jonigk D. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020 May 21. https://doi.org/10.1056/NEJMoa2015432. Epub ahead of print. PMID: 32437596.; Lan J., Ge J., Yu J., Shan S., Zhou H., Fan S., Zhang Q., Shi X., Wang Q., Zhang L., Wang X. Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor. https://doi.org/10.1101/2020.02.19.956235. https://www.biorxiv.org/content/10.1101/2020.02.19.956235v1.article-info; Lax S.F., Skok K., Zechner P., Kessler H.H., Kaufmann N., Koelblinger C., Vander K., Bargfrieder U., Trauner M. Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome: Results From a Prospective, Single-Center, Clinicopathologic Case Series. Ann. Intern. Med. 2020 May 14. https://doi.org/10.7326/M20-2566. Epub ahead of print. PMID: 32422076.; Kuba K., Imai Y., Rao Sh., Jiang Ch., Penninger J.M. Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. J. Mol. Med. (Berl). 2006; 84 (10): 814–820. https://doi.org/10.1007/s00109-006-0094-9. PMID: 16988814 PMCID: PMC7079827; Yu M., Liu Y., Xu D., Zhang R., Lan L., Xu H. Prediction of the Development of Pulmonary Fibrosis Using Serial Thin-Section CT and Clinical Features in Patients Discharged after Treatment for COVID-19 Pneumonia. Korean J. Radiol. 2020; 21 (6): 746–755. https://doi.org/10.3348/kjr.2020.0215. PMID: 32410413. PMCID: PMC7231610.; Xu Y.H., Dong J.H., An W.M., Lv X.Y., Yin X.P., Zhang J.Z., Dong L., Ma X., Zhang H.J., Gao B.L. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J. Infect. 2020 Apr; 80 (4): 394–400. https://orcid.org/10.1016/j.jinf.2020.02.017. Epub 2020 Feb 25. PMID: 32109443. PMCID: PMC7102535.; Tian S., Xiong Y., Liu H., Niu .L, Guo J., Liao M., Xiao S.Y. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol. 2020: 1–8. https://orcid.org/10.1038/s41379-020-0536-x. Epub ahead of print. PMID: 32291399. PMCID: PMC7156231.; Albarello F., Pianura E., Di Stefano F., Cristofaro M., Petrone A., Marchioni L., Palazzolo C., Schininà V., Nicastri E., Petrosillo N., Campioni P., Eskild P., Zumla A., Ippolito G. COVID 19 INMI Study Group. 2019-novel Coronavirus severe adult respiratory distress syndrome in two cases in Italy: An uncommon radiological presentation. Int. J. Infect. Dis. 2020; 93: 192–197. https://orcid.org/10.1016/j.ijid.2020.02.043. Epub 2020 Feb 26. PMID: 32112966. PMCID: PMC7110436.; https://medvis.vidar.ru/jour/article/view/911
-
6Academic Journal
المؤلفون: E. N. Lukyanova, A. V. Snezhkina, D. V. Kalinin, A. V. Pokrovsky, A. L. Golovyuk, O. A. Stepanov, E. A. Pudova, G. S. Razmakhaev, M. V. Orlova, A. P. Polyakov, M. V. Kiseleva, A. D. Kaprin, A. V. Kudryavtseva, Е. Н. Лукьянова, А. В. Снежкина, Д. В. Калинин, А. В. Покровский, А. Л. Головюк, О. А. Степанов, Е. А. Пудова, Г. С. Размахаев, М. В. Орлова, А. П. Поляков, М. В. Киселева, А. Д. Каприн, А. В. Кудрявцева
المصدر: Vavilov Journal of Genetics and Breeding; Том 22, № 6 (2018); 726-733 ; Вавиловский журнал генетики и селекции; Том 22, № 6 (2018); 726-733 ; 2500-3259 ; 2500-0462
مصطلحات موضوعية: высокопроизводительное секвенирование, exome, mutation load, mutations, high-throughput sequencing, экзом, мутационная нагрузка, мутации
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1659/1123; Alao J.P. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol. Cancer. 2007;6:24. DOI 10.1186/14764598624.; Alexandrov L.B., NikZainal S., Wedge D.C., Aparicio S.A., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., BørresenDale A.L., Boyault S., Burkhardt B., Butler A.P., Caldas C., Davies H.R., Desmedt C., Eils R., Eyfjörd J.E., Foekens J.A., Greaves M., Hosoda F., Hutter B., Ilicic T., Imbeaud S., Imielinski M., Jäger N., Jones D.T., Jones D., Knappskog S., Kool M., Lakhani S.R., LópezOtín C., Martin S., Munshi N.C., Nakamura H., Northcott P.A., Pajic M., Papaemmanuil E., Paradiso A., Pearson J.V., Puente X.S., Raine K., Ramakrishna M., Richardson A.L., Richter J., Rosenstiel P., Schlesner M., Schumacher T.N., Span P.N., Teague J.W., Totoki Y., Tutt A.N., ValdésMas R., van Buuren M.M., van ‘t Veer L., VincentSalomon A., Waddell N., Yates L.R., Australian Pancreatic Cancer Genome Initiative, ICGC Breast Cancer Consortium, ICGC MMMLSeq Consortium, ICGC PedBrain, ZucmanRossi J., Futreal P.A., McDermott U., Lichter P., Meyerson M., Grimmond S.M., Siebert R., Campo E., Shibata T., Pfister S.M., Campbell P.J., Stratton M.R. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415421. DOI 10.1038/nature12477.; Barroilhet L., Yang J., Hasselblatt K., Paranal R.M., Ng S.K., RauhHain J.A., Welch W.R., Bradner J.E., Berkowitz R.S., Ng S.W. C terminal binding protein2 regulates response of epithelial ovarian cancer cells to histone deacetylase inhibitors. Oncogene. 2013; 32(33):38963903. DOI 10.1038/onc.2012.380.; Beck D.B., Oda H., Shen S.S., Reinberg D. PRSet7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev. 2012;26(4):325337. DOI 10.1101/gad.177444.111.; Bracarda S., Altavilla A., Hamzaj A., Sisani M., Marrocolo F., Del Buono S., Danielli R. Immunologic checkpoints blockade in renal cell, prostate, and urothelial malignancies. Semin. Oncol. 2015;42(3): 495505. DOI 10.1053/j.seminoncol.2015.02.004.; Chabanon R.M., Pedrero M., Lefebvre C., Marabelle A., Soria J.C., PostelVinay S. Mutational landscape and sensitivity to immune checkpoint blockers. Clin. Cancer Res. 2016;22(17):43094321. DOI 10.1158/10780432.CCR160903.; Dai F., Xuan Y., Jin J.J., Yu S., Long Z.W., Cai H., Liu X.W., Zhou Y., Wang Y.N., Chen Z., Huang H. CtBP2 overexpression promotes tumor cell proliferation and invasion in gastric cancer and is associated with poor prognosis. Oncotarget. 2017;8(17):2873628749. DOI 10.18632/oncotarget.15661.; Davy B.E., Robinson M.L. Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum. Mol. Genet. 2003;12(10):11631170. DOI 10.1093/hmg/ddg122.; Di L.J., Byun J.S., Wong M.M., Wakano C., Taylor T., Bilke S., Baek S., Hunter K., Yang H., Lee M., Zvosec C., Khramtsova G., Cheng F., Perou C.M., Miller C.R., Raab R., Olopade O.I., Gardner K. Genomewide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer. Nat. Commun. 2013;4:1449. DOI 10.1038/ncomms2438.; Di L.J., Fernandez A.G., De Siervi A., Longo D.L., Gardner K. Transcriptional regulation of BRCA1 expression by a metabolic switch. Nat. Struct. Mol. Biol. 2010;17(12):14061413. DOI 10.1038/nsmb. 1941.; Ding C., Li R., Peng J., Li S., Guo Z. A polymorphism at the miR502 binding site in the 3′ untranslated region of the SET8 gene is associated with the outcome of smallcell lung cancer. Exp. Ther. Med. 2012;3(4):689692. DOI 10.3892/etm.2012.469.; Doggett N.A., Xie G., Meincke L.J., Sutherland R.D., Mundt M.O., Berbari N.S., Davy B.E., Robinson M.L., Rudd M.K., Weber J.L., Stallings R.L., Han C. A 360kb interchromosomal duplication of the human HYDIN locus. Genomics. 2006;88(6):762771. DOI 10.1016/j.ygeno.2006.07.012.; Favier J., Amar L., GimenezRoqueplo A.P. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat. Rev. Endocrinol. 2015;11(2):101111. DOI 10.1038/nrendo.2014.188.; Favier J., GimenezRoqueplo A.P. Genetics of paragangliomas and pheochromocytomas. Med. Sci. (Paris). 2012;28(67):625632. DOI 10.1051/medsci/2012286016.; Guo Z., Wu C., Wang X., Wang C., Zhang R., Shan B. A polymorphism at the miR502 binding site in the 3′untranslated region of the histone methyltransferase SET8 is associated with hepatocellular carcinoma outcome. Int. J. Cancer. 2012;131(6):13181322. DOI 10.1002/ijc.27352.; Juhlin C.C., Goh G., Healy J.M., Fonseca A.L., Scholl U.I., Stenman A., Kunstman J.W., Brown T.C., Overton J.D., Mane S.M., NelsonWilliams C., Bäckdahl M., Suttorp A.C., Haase M., Choi M., Schlessinger J., Rimm D.L., Höög A., Prasad M.L., Korah R., Kim J.K., Diehl J.A. Nuclear cyclin D1: an oncogenic driver in human cancer. J. Cell Physiol. 2009;220(2):292296. DOI 10.1002/jcp.21791.; Liao T., Wang Y.J., Hu J.Q., Wang Y., Han L.T., Ma B., Shi R.L., Qu N., Wei W.J., Guan Q., Xiang J., Chen J.Y., Sun G.H., Li D.S., Mu X.M., Ji Q.H. Histone methyltransferase KMT5A gene modulates oncogenesis and lipid metabolism of papillary thyroid cancer in vitro. Oncol. Rep. 2018;39(5):21852192. DOI 10.3892/or.2018.6295.; Lindberg J., Mills I.G., Klevebring D., Liu W., Neiman M., Xu J., Wikström P., Wiklund P., Wiklund F., Egevad L., Grönberg H. The mitochondrial and autosomal mutation landscapes of prostate cancer. Eur. Urol. 2013;63(4):702708. DOI 10.1016/j.eururo.2012.11.053.; Litchfield K., Summersgill B., Yost S., Sultana R., Labreche K., Dudakia D., Renwick A., Seal S., AlSaadi R., Broderick P., Turner N.C., Houlston R.S., Huddart R., Shipley J., Turnbull C. Wholeexome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat. Commun. 2015;6:5973. DOI 10.1038/ncomms6973.; Ma Z. Downregulation of SETD8 by miR382 is involved in glioma progression. Pathol. Res. Pract. 2018;214(3):356360. DOI 10.1016/ j.prp.2018.01.004.; Milite C., Feoli A., Viviano M., Rescigno D., Cianciulli A., Balzano A.L., Mai A., Castellano S., Sbardella G. The emerging role of lysine methyltransferase SETD8 in human diseases. Clin. Epigenetics. 2016;8:102. DOI 10.1186/s1314801602684.; Nishioka K., Rice J.C., Sarma K., ErdjumentBromage H., Werner J., Wang Y., Chuikov S., Valenzuela P., Tempst P., Steward R., Lis J.T., Allis C.D., Reinberg D. PRSet7 is a nucleosomespecific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol. Cell. 2002;9(6):12011213. DOI 10.1016/S10972765(02)005488.; Nölting S., Grossman A.B. Signaling pathways in pheochromocytomas and paragangliomas: prospects for future therapies. Endocr. Pathol. 2012;23(1):2133. DOI 10.1007/s1202201291996.; Page A.M., Hieter P. The anaphasepromoting complex: new subunits and regulators. Annu. Rev. Biochem. 1999;68:583609. DOI 10.1146/annurev.biochem.68.1.583.; Pawar S.A., Sarkar T.R., Balamurugan K., Sharan S., Wang J., Zhang Y., Dowdy S.F., Huang A.M., Sterneck E. C/EBPδ targets cyclin D1 for proteasomemediated degradation via induction of CDC27/APC3 expression. Proc. Natl. Acad. Sci. USA. 2010;107(20):92109215. DOI 10.1073/pnas.0913813107.; Peters J.M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 2006;7(9):644656. DOI 10.1038/nrm1988.; Plouin P.F., Amar L., Dekkers O.M., Fassnacht M., GimenezRoqueplo A.P., Lenders J.W., LusseyLepoutre C., Steichen O. European Society of Endocrinology Clinical Practice Guideline for longterm followup of patients operated on for a phaeochromocytoma or a paraganglioma. Eur. J. Endocrinol. 2016;174(5):G1G10. DOI 10.1530/EJE160033.; Qiu L., Wu J., Pan C., Tan X., Lin J., Liu R., Chen S., Geng R., Huang W. Downregulation of CDC27 inhibits the proliferation of colorectal cancer cells via the accumulation of p21Cip1/Waf1. Cell Death Dis. 2016;7:e2074. DOI 10.1038/cddis.2015.402.; Reimann E., Kõks S., Ho X.D., Maasalu K., Märtson A. Whole exome sequencing of a single osteosarcoma case–integrative analysis with whole transcriptome RNAseq data. Hum. Genomics. 2014;8:20. DOI 10.1186/s4024601400200.; Shi X., Kachirskaia I., Yamaguchi H., West L.E., Wen H., Wang E.W., Dutta S., Appella E., Gozani O. Modulation of p53 function by SET8mediated methylation at lysine 382. Mol. Cell. 2007;27(4):636646. DOI 10.1016/j.molcel.2007.07.012.; Snezhkina A.V., Lukyanova E.N., Kalinin D.V., Pokrovsky A.V., Dmitriev A.A., Koroban N.V., Pudova E.A., Fedorova M.S., Volchenko N.N., Stepanov O.A., Zhevelyuk E.A., Kharitonov S.L., Lipatova A.V., Abramov I.S., Golovyuk A.V., Yegorov Y.E., Vishnyakova K.S., Moskalev A.A., Krasnov G.S., Melnikova N.V., Shcherbo D.S., Kiseleva M.V., Kaprin A.D., Alekseev B.Y., Zaretsky A.R., Kudryavtseva A.V. Exome analysis of carotid body tumor. BMC Med. Genomics. 2018;11(Suppl.1):17. DOI 10.1186/s1292001803270.; Song F., Zheng H., Liu B., Wei S., Dai H., Zhang L., Calin G.A., Hao X., Wei Q., Zhang W., Chen K. An miR502binding site singlenucleotide polymorphism in the 3′untranslated region of the SET8 gene is associated with early age of breast cancer onset. Clin. Cancer Res. 2009;15(19):62926300. DOI 10.1158/10780432.CCR090826.; Stevens K.N., Wang X., Fredericksen Z., Pankratz V.S., Cerhan J., Vachon C.M., Olson J.E., Couch F.J. Evaluation of associations between common variation in mitotic regulatory pathways and risk of overall and high grade breast cancer. Breast Cancer Res. Treat. 2011; 129(2):617622. DOI 10.1007/s105490111587y.; Takawa M., Cho H.S., Hayami S., Toyokawa G., Kogure M., Yamane Y., Iwai Y., Maejima K., Ueda K., Masuda A., Dohmae N., Field H.I., Tsunoda T., Kobayashi T., Akasu T., Sugiyama M., Ohnuma S., Atomi Y., Ponder B.A., Nakamura Y., Hamamoto R. Histone lysine methyltransferase SETD8 promotes carcinogenesis by deregulating PCNA expression. Cancer Res. 2012;72(13):32173227. DOI 10.1158/00085472.CAN113701.; Talvinen K., Karra H., Pitkänen R., Ahonen I., Nykänen M., Lintunen M., Söderström M., Kuopio T., Kronqvist P. Low cdc27 and high securin expression predict short survival for breast cancer patients. APMIS. 2013;121(10):945953. DOI 10.1111/apm.12110.; Tan H., Bao J., Zhou X. Genomewide mutational spectra analysis reveals significant cancerspecific heterogeneity. Sci. Rep. 2015;5: 12566. DOI 10.1038/srep12566.; Topalian S.L., Taube J.M., Anders R.A., Pardoll D.M. Mechanismdriven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer. 2016;16(5):275287. DOI 10.1038/nrc.2016.36.; Turner J., Crossley M. The CtBP family: enigmatic and enzymatic transcriptional corepressors. Bioessays. 2001;23(8):683690. DOI 10.1002/bies.1097.; Unlü Y., Becit N., Ceviz M., Koçak H. Management of carotid body tu mors and familial paragangliomas: review of 30 years’ experience. Ann. Vasc. Surg. 2009;23(5):616620. DOI 10.1016/j.avsg.2009.06.014.; Van Allen E.M., Miao D., Schilling B., Shukla S.A., Blank C., Zimmer L., Sucker A., Hillen U., Foppen M.H.G., Goldinger S.M., Utikal J., Hassel J.C., Weide B., Kaehler K.C., Loquai C., Mohr P., Gutzmer R., Dummer R., Gabriel S., Wu C.J., Schadendorf D., Garraway L.A. Genomic correlates of response to CTLA4 blockade in metastatic melanoma. Science. 2015;350(6257):207211. DOI 10.1126/science.aad0095.; Wang C., Guo Z., Wu C., Li Y., Kang S. A polymorphism at the miR502 binding site in the 3′ untranslated region of the SET8 gene is associated with the risk of epithelial ovarian cancer. Cancer Genet. 2012;205(78):373376. DOI 10.1016/j.cancergen.2012.04.010.; Wang Y., Che S., Cai G., He Y., Chen J., Xu W. Expression and prognostic significance of CTBP2 in human gliomas. Oncol. Lett. 2016; 12(4):24292434. DOI 10.3892/ol.2016.4998.; Wu S., Rice J.C. A new regulator of the cell cycle: the PRSet7 histone methyltransferase. Cell Cycle. 2011;10(1):6872. DOI 10.4161/ cc.10.1.14363.; Xu J., Yin Z., Gao W., Liu L., Yin Y., Liu P., Shu Y. Genetic variation in a microRNA502 minding site in SET8 gene confers clinical outcome of nonsmall cell lung cancer in a Chinese population. PLoS One. 2013;8(10):e77024. DOI 10.1371/journal.pone.0077024.; Yang F., Sun L., Li Q., Han X., Lei L., Zhang H., Shang Y. SET8 promotes epithelialmesenchymal transition and confers TWIST dual transcriptional activities. EMBO J. 2012;31(1):110123. DOI 10.1038/emboj.2011.364.; Yu C., Yu J., Yao X., Wu W.K., Lu Y., Tang S., Li X., Bao L., Li X., Hou Y., Wu R., Jian M., Chen R., Zhang F., Xu L., Fan F., He J., Liang Q., Wang H., Hu X., He M., Zhang X., Zheng H., Li Q., Wu H., Chen Y., Yang X., Zhu S., Xu X., Yang H., Wang J., Zhang X., Sung J.J., Li Y., Wang J. Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by singlecell sequencing. Cell Res. 2014;24(6):701712. DOI 10.1038/cr.2014.43.; Yu N., Huangyang P., Yang X., Han X., Yan R., Jia H., Shang Y., Sun L. microRNA7 suppresses the invasive potential of breast cancer cells and sensitizes cells to DNA damages by targeting histone methyltransferase SET8. J. Biol. Chem. 2013;288(27):1963319642. DOI 10.1074/jbc.M113.475657.; Yu Z., Li Z., Jolicoeur N., Zhang L., Fortin Y., Wang E., Wu M., Shen S.H. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res. 2007;35(13):45354541. DOI 10.1093/nar/gkm480.; Zhang C., Gao C., Xu Y., Zhang Z. CtBP2 could promote prostate cancer cell proliferation through cMyc signaling. Gene. 2014;546(1):7379. DOI 10.1016/j.gene.2014.05.032.; Zhang J., Zhu J., Yang L., Guan C., Ni R., Wang Y., Ji L., Tian Y. Interaction with CCNH/CDK7 facilitates CtBP2 promoting esophageal squamous cell carcinoma (ESCC) metastasis via upregulating epithelialmesenchymal transition (EMT) progression. Tumour Biol. 2015;36(9):67016714. DOI 10.1007/s132770153354x.; Zhang Y., Cai Q., Shu X.O., Gao Y.T., Li C., Zheng W., Long J. Wholeexome sequencing identifies novel somatic mutations in Chinese breast cancer patients. J. Mol. Genet. Med. 2015;9(4):183. DOI 10.4172/17470862.1000183.; Zhikrivetskaya S.O., Snezhkina A.V., Zaretsky A.R., Alekseev B.Y., Pokrovsky A.V., Golovyuk A.L., Melnikova N.V., Stepanov O.A., Kalinin D.V., Moskalev A.A., Krasnov G.S., Dmitriev A.A., Kudryavtseva A.V. Molecular markers of paragangliomas/pheochromocytomas. Oncotarget. 2017;8(15):2575625782. DOI 10.18632/ oncotarget.15201.; https://vavilov.elpub.ru/jour/article/view/1659
-
7Academic Journal
المؤلفون: K. Kh. Lomovtseva, Yu. S. Gal’china, A. V. Glotov, D. V. Kalinin, A. V. Chzhao, Yu. A. Kovalenko, G. G. Karmazanovsky, К. Х. Ломовцева, Ю. С. Гальчина, А. В. Глотов, Д. В. Калинин, А. В. Чжао, А. Ю. Коваленко, Г. Г. Кармазановский
المصدر: Medical Visualization; № 2 (2018); 84-93 ; Медицинская визуализация; № 2 (2018); 84-93 ; 2408-9516 ; 1607-0763
مصطلحات موضوعية: гепатобилиарный контрастный препарат, malignant transformation, magnetic resonance imaging, hepatobiliary contrast agent, малигнизация, магнитно-резонансная томография
وصف الملف: application/pdf
Relation: https://medvis.vidar.ru/jour/article/view/550/470; Сурков А.Н., Намазова-Баранова Л.С., Потапов А.С., Савостьянов К.В., Пушков А.А., Никитин А.Г., Полякова С.И., Рязанов М.В., Кустова О.В., Барский В.И., Степанян М.Ю. Случай множественных аденом печени у подростка с тяжелым течением гликогеновой болезни типа Ib. Вестник РАМН. 2014; 11–12: 54–59.; Vijay A., Elaffandi A., Khalaf H. Hepatocellular adenoma: An update. Wld J. Hepatol. 2015; 7 (25): 2603.; Mamada Y., Onda M., Tajiri T., Akimaru K., Yoshida H., Taniai N., Mineta S., Hirakata A., Hirose Y. Liver cell adenoma in a 26-year-old man. J. Nippon Med. School. 2001; 68 (6): 516–519.; Herman P., Pugliese V., Machado M. A., Montagnini A. L., Salem M. Z., Bacchella T., D’Albuquerque L. A., Saad W.A., Machado M. C., Pinotti H. W. Hepatic adenoma and focal nodular hyperplasia: differential diagnosis and treatment. Wld J. Surg. 2000; 24 (3): 372–376.; Toso C., Majno P., Andres A., Rubbia-Brandt L., Berney T., Buhler L., Morel P., Mentha G. Management of hepatocellular adenoma: solitary-uncomplicated, multiple and ruptured tumors. Wld J. Gastroenterol. 2005; 11 (36): 56–91.; Dokmak S., Paradis V., Vilgrain V., Sauvanet A., Farges O., Valla D., Bedossa P., Belghiti J. A single-center surgical experience of 122 patients with single and multiple hepatocellular adenomas. Gastroenterology. 2009; 137 (5): 1698–1705. DOI:10.1053/j.gastro.2009.07.061.; Stoot J.H., Coelen R.J., De Jong M.C., Dejong C.H. Malignant transformation of hepatocellular adenomas into hepatocellular carcinomas: a systematic review including more than 1600 adenoma cases. HPB. 2010; 12 (8): 509–522. DOI:10.1111/j.1477-2574.2010.00222.x.; Farges O., Ferreira N., Dokmak S., Belghiti J., Bedossa P., Paradis V. Changing trends in malignant transformation of hepatocellular adenoma. Gut. 2011; 60 (1): 85–89. DOI:10.1136/gut.2010.222109.; Zucman Rossi J., Jeannot E., Van Nhieu J. T., Scoazec J. Y., Guettier C., Rebouissou S., Bacq Y., Leteurtre E., Paradis V., Michalak S., Wendum D., Chiche L., Fabre M., Mellottee L., Laurent C., Partensky C., Castaing D., Zafrani E.S., Laurent-Puig P., Balabaud C., Bioulac-Sage P. Genotype–phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology. 2006; 43 (3): 515–524. DOI:10.1002/hep.21068.; Lade A.G., Monga S.P. Beta-catenin signaling in hepatic development and progenitors: Which way does the WNT blow? Developmental Dynamics. 2011; 240 (3): 486–500. DOI:10.1002/dvdy.22522.; Bioulac-Sage P., Balabaud C., Zucman-Rossi J. Subtype classification of hepatocellular adenoma. Digest. Surg. 2010; 27 (1): 39–45. DOI:10.1159/000268406.; Toiyama Y., Inoue Y., Yasuda H., Yoshiyama S., Araki T., Miki C., Kusunoki M. Hepatocellular adenoma containing hepatocellular carcinoma in a male patient with familial adenomatous polyposis coli: Report of a case. Surg. Today. 2011; 41 (10): 1442. DOI:10.1007/s00595-010-4451-5.; Nault J.C., Bioulac-Sage P., Zucman-Rossi J. Hepatocellular benign tumors – from molecular classification to personalized clinical care. Gastroenterology. 2013; 144 (5): 888–902. DOI:10.1053/j.gastro.2013.02.032.; Bioulac Sage P., Laumonier H., Couchy G., Le Bail B., Sa Cunha A., Rullier A., Laurent C., Blanc J.F., Cubel G., Trillaud H., Zucman Rossi J., Balabaud C., Saric J. Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience. Hepatology. 2009; 50 (2): 481–489. DOI:10.1002/hep.22995.; Bioulac-Sage P., Sempoux C., Balabaud C. Hepatocellular adenoma: classification, variants and clinical relevance. Seminars in Diagn. Pathol. 2017; 34 (20): 112–125. DOI:10.1053/j.semdp.2016.12.007.; Ronald M., Woodfield J., McCall J., Koea J. Hepatic adenomas in male patients. HPB. 2004; 6 (1): 25–27. DOI:10.1080/13651820310020846.; Vázquez J.J., Marigil M.A. Liver-cell adenoma in an epileptic man on barbiturates. Histol. Histopathol. 1989; 4 (3): 301–303.; Tazawa K., Yasuda M., Ohtani Y., Makuuchi H., Osamura R.Y. Multiple hepatocellular adenomas associated with long-term carbamazepine. Histopathology. 1999; 35 (1): 92–94. DOI:10.1046/j.1365-2559.1999.0728g.x.; Ferko A., Bedrna J., Nozicka J. Pigmented hepatoc ellular adenoma of the liver caused by long-term use of phenobarbital. Rozhl chir. 2003; 82 (4): 192–195.; Seki A., Inoue T., Maegaki Y., Sugiura C., Toyoshima M., Akaboshi S., Ohno K. Polycystic ovary syndrome and hepatocellular adenoma related to long-term use of sodium valproate in a young woman. No to hattatsu. 2006; 38 (3): 205–208.; Lautz T.B., Finegold M.J., Chin A.C., Superina R.A. Giant hepatic adenoma with atypical features in a patient on oxcarbazepine therapy. J. Pediatr. Surg. 2008; 43 (4): 751–754. DOI:10.1016/j.jpedsurg.2007.11.036.; Lee P.U., Roberts L.R., Kaiya J.K., Lee C.U. Hepatic adenomas associated with anti-epileptic drugs: a case series and imaging review. Abdom. Imaging. 2010; 35 (2): 208–211.; Bioulac-Sage P., Sempoux C., Possenti L., Frulio N., Laumonier H., Laurent C., Chiche L., Blanc J. F., Saric J., Trillaud H., Le Bail B., Balabaud C. Pathological diagnosis of hepatocellular cellular adenoma according to the clinical context. Int. J. Hepatol. 2013; 2013: 253261. DOI:10.1155/2013/253261.; Davis M., Portmann B., Searle M., Wright R., Williams R. Histological evidence of carcinoma in a hepatic tumour associated with oral contraceptives. Br. Med J. 1975; 4 (5995): 496–498.; Deneve J. L., Pawlik T. M., Cunningham S., Clary B., Reddy S., Scoggins C. R., Martin C.G. Angelica M., Staley C.A., Choti M.A., Jarnagin, W. R., Schulick R.D. Liver cell adenoma: a multicenter analysis of risk factors for rupture and malignancy. Ann. Surg. Oncol. 2009; 16 (3): 640–648. DOI:10.1245/s10434-008-0275-6.; Farges O., Dokmak S. Malignant transformation of liver adenoma: an analysis of the literature. Digest. Surg. 2010; 27 (1): 32–38. DOI:10.1159/000268405.; An S. L., Wang L. M., Rong W. Q., Wu F., Sun W., Yu, W. B., Feng L., Liu F.Q., Tian F., Wu J. X. Hepatocellular adenoma with malignant transformation in male patients with non-cirrhotic livers. Chinese J. Cancer. 2015; 34 (3): 17. DOI:10.1186/s40880-015-0014-x.; Micchelli S.T., Vivekanandan P., Boitnott J.K., Pawlik T.M., Choti M.A., Torbenson M. Malignant transformation of hepatic adenomas. Modern Pathol. 2008; 21 (4): 491. DOI:10.1038/modpathol.2008.8.; Laumonier H., Bioulac-Sage P., Laurent C., ZucmanRossi J., Balabaud C., Trillaud H. Hepatocellular aden omas: magnetic resonance imaging features as a function of molecular pathological classification. Hepatology. 2008; 48 (3): 808–818. DOI:10.1002/hep.22417.; van Aalten S.M., Thomeer M.G., Terkivatan T., Dwarkasing R.S., Verheij J., de Man R., Ijzermans J.N. Hepatocellular adenomas: correlation of MR imaging findings with pathologic subtype classification. Radiology. 2011; 261 (1): 172–181. DOI:10.1148/radiol.11110023.; Ronot M., Bahrami S., Calderaro J., Valla D.C., Bedossa P., Belghti J., Vilgrain V., Paradis, V. Hepatocellular adenomas: accuracy of magnetic resonance imaging and liver biopsy in subtype classification. Hepatology. 2011; 53 (4): 1182–1191. DOI:10.1002/hep.24147.; Лукьянченко А.Б., Медведева Б.М. Современные возможности лучевой диагностики гепатоцеллюлярных аденом (обзор литературы и собственные наблюдения). Медицинская визуализация. 2013; (1): 33–43.; Yoneda N., Matsui O., Kitao A., Kozaka K., Kobayashi S., Sasaki M. Yoshida K., Inoue D., Minami T., Gabata, T. Benign Hepatocellular Nodules: Hepatobiliary Phase of Gadoxetic Acid-enhanced MR Imaging Based on Molecular Background. Radiographics. 2016; 36 (7): 2010–2027. DOI:10.1148/rg.2016160037.; Agarwal S., Fuentes-Orrego J. M., Arnason T., Misdraji J., Jhaveri K.S., Harisinghani M., Hahn P. F. Inflammatory hepatocellular adenomas can mimic focal nodular hyperplasia on gadoxetic acid–enhanced MRI. Am. J. Roentgenol. 2014; 203 (4): 408–414. DOI:10.2214/AJR.13.12251.; Fukusato T., Soejima Y., Kondo F., Inoue M., Watanabe M., Takahashi Y., Aso T., Uozaki H., Sano K., Sanada Y., Niki T. Preserved or enhanced OATP1B3 expression in hepatocellular adenoma subtypes with nuclear accumulation of β-catenin. Hepatol. Res. 2015; 45 (10). DOI:10.1111/hepr.12453.; Kwok W.Y., Hagiwara S., Nishida N., Watanabe T., Sakurai T., Ida H., Minami Y.,Takita M., Minami T., Iwanishi M., Chishina H., Kono M., Ueshima K., Komeda Y., Arizumi T., Enoki E., Nakai T., Kumabe T., Nakashima O., Kondo F., Kudo M. Malignant transformation of hepatocellular adenoma. Oncology. 2017; 92(1): 16–28. DOI:10.1159/000451012.; Agnello F., Ronot M., Valla D.C., Sinkus R., Van Beers B.E., Vilgrain V. High-b-value diffusion-weighted MR imaging of benign hepatocellular lesions: quantitative and qualitative analysis. Radiology. 2012; 262 (2): 511–519. DOI:10.1148/radiol.11110922.; Lee S.A., Lee .H., Jung W.Y., Lee ., Choi J.W., Kim K.A, Park C.M. Paradoxical high signal intensity of hepatocellular carcinoma in the hepatobiliary phase of Gd-EOBDTPA enhanced MRI: initial experience. Magn. Reson. Imaging. 2011; 29(1): 83–90. DOI:10.1016/j.mri.2010.07.019.; Descottes B., Glineur D., Lachachi F., Valleix D., Paineau J., Hamy A., Morino M., Bismuth H., Castaing D., Savier E., Honore P., Detry O., Legrand M., Azagra J.S., Goergen M., Ceuterick M., Marescaux J., Mutter D., Hemptinne B., Troisi R., Weerts J., Dallemagne B., Jehaes C., Gelin M., Donckier V., Aerts R., Topal B., Bertrand C., Mansvelt B., Van Krunckelsven L., Herman D., Kint M., Totte E., Schockmel R., GigoT J.F. Laparoscopic liver resection of benign liver tumors. Surg. Endosc. Intervent. Techn. 2003; 17 (1): 23–30. DOI:10.1007/s00464-002-9047-8.; Khanna M., Ramanathan S., Fasih N., Schieda N., Virmani V., McInnes M.D. Current updates on the molecular genetics and magnetic resonance imaging of focal nodular hyperplasia and hepatocellular adenoma. Insights into imaging. 2015; 6 (3): 347–362. DOI:10.1007/s13244-015-0399-8.; https://medvis.vidar.ru/jour/article/view/550
-
8Academic Journal
المؤلفون: B. E. Vasilyev, D. V. Kalinin, M. S. Svinareva, N. A. Gudkov, Б. Е. Васильев, Д. В. Калинин, М. С. Свинарева, Н А. Гудков
المصدر: Machines and Plants: Design and Exploiting; № 3 (2017); 35-45 ; Машины и установки: проектирование, разработка и эксплуатация; № 3 (2017); 35-45 ; 2412-592X
مصطلحات موضوعية: зубчатая передача, gears, шестерня
وصف الملف: application/pdf
Relation: https://www.maplants-journal.ru/jour/article/view/72/69; Seppälä J., Hupfer A. Topology optimization in structural design of a LP turbine guide vane: potential of additive manufacturing for weight reduction //ASME Turbo Expo 2014: Turbine technical conf. and exposition (Dusseldorf, Germany, June 16-20, 2014): Proc. N.Y.: ASME, 2014. 10 p. DOI:10.1115/GT2014-25637; Rozvany G.I.N. A critical review of established methods of structural topology optimization // Structural and Multidisciplinary Optimization. 2009. Vol. 37. No. 3. Pp. 217-237. DOI:10.1007/s00158-007-0217-0; Васильев Б.Е., Магеррамова Л.А. Анализ возможности применения топологической оптимизации при проектировании неохлаждаемых рабочих лопаток турбин // Вестник Самарского ун-та. Аэрокосмическая техника, технологии и машиностроение. 2015. Т. 14. № 3. Ч. 1. Спец. вып. С. 139-147. DOI:10.18287/2412-7329-2015-14-3-139-147; Browne P.A. Topology optimization of linear elastic structures: doct. diss. … 2013. 180 p.; Сысоева В.В., Чедрик В.В. Алгоритмы оптимизации топологии силовых конструкций // Учёные записки ЦАГИ. 2011. Т. 42. №. 2. С. 91-102.; Stolpe M. On some fundamental properties of structural topology optimization problems // Structural and Multidisciplinary Optimization. 2010. Vol. 41. No. 5. Pp. 661-670. DOI:10.1007/s00158-009-0476-z; Rozvany G.I.N. On symmetry and non-uniqueness in exact topology optimization // Structural and Multidisciplinary Optimization. 2011. Vol. 43. No. 3. Pp. 297-317. DOI:10.1007/s00158-010-0564-0; Ryo Watada, Makoto Ohsaki, Yoshihiro Kanno. Non-uniqueness and symmetry of optimal topology of a shell for minimum compliance // Structural and Multidisciplinary Optimization. 2011. Vol. 43. No. 4. Pp. 459-471. DOI:10.1007/s00158-010-0587-6; Salnikov A.V. Strength reliability of turbine rotor ensuring based on multidisciplinary optimization // 29th Congress of the Intern. Council of the Aeronautical Sciences: ICAS 2014 (St. Petersburg, Russia, Sept. 7-12, 2014): Proc. Vol. 3. Red Hook: ICAS, 2014. Pp. 2669-2675.; Магеррамова Л.А., Ножницкий Ю.А., Васильев Б. Е., Кинзбурский В.С. Применение аддитивных технологий для изготовления деталей перспективных газотурбинных двигателей // Технология легких сплавов. 2015. № 4. С. 7-13.; https://www.maplants-journal.ru/jour/article/view/72
-
9Academic Journal
المؤلفون: A. G. Kriger, A. V. Smirnov, S. V. Berelavichus, D. S. Gorin, N. N. Vetsheva, Ja. I. Nerestjuk, D. V. Kalinin, A. V. Glotov, А. Г. Кригер, А. В. Смирнов, С. В. Берелавичус, Д. С. Горин, Н. Н. Ветшева, Я. И. Нерестюк, Д. В. Калинин, А. В. Глотов
المصدر: Research and Practical Medicine Journal; Том 3, № 3 (2016); 49-58 ; Research'n Practical Medicine Journal; Том 3, № 3 (2016); 49-58 ; 2410-1893 ; 10.17709/2409-2231-2016-3-3
مصطلحات موضوعية: бороздчатый панкреатит, groove pancreatitis, paraduodenal pancreatitis, chronic pancreatitis, дуоденальная дистрофия, хронический панкреатит
وصف الملف: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/150/149; Adsay N. V., Zamboni G. Paraduodenal pancreatitis: a clinico-pathologically distinct entity unifying ‘’cystic dystrophy of heterotopic pancreas’’, ‘’para-duodenal wall cyst’’, and ‘’groove pancreatitis’’. Semin Diagn Pathol. 2004;21 (4):247–54.; Паклина О. В., Кармазановский Г. Г., Сетдикова Г. Р. Патоморфологическая и лучевая диагностика хирургических заболеваний поджелудочной железы. М.: Видар-М, 2014.; Дубова Е. А., Щеголев А. И. Дуоденальная дистрофия. Архив патологии. 2009;71 (4):47–50.; Егоров В. И., Кубышкин В. А., Кармазановский Г. Г., Щеголев А. И., Козлов И. А., Яшина Н. И., и др. Гетеротопия ткани поджелудочной железы как причина хронического панкреатита. Типичный и редкий варианты. Хирургия. Журнал им. Н. И. Пирогова. 2006;11:58–62.; Arvanitakis M., Rigaux J., Toussaint E., Eisendrath P., Bali MA., Matos C., et. al. Endotherapy for paraduodenal pancreatitis: a large retrospective case series. Endoscopy. 2014;46 (7):580–7. doi:10.1055/s‑0034–1365719.; Casetti L., Bassi C., Salvia R., Butturini G., Graziani R., Falconi M., et. al. “Paraduodenal” pancreatitis: results of surgery on 58 consecutives patients from a single institution. World J Surg. 2009;33 (12):2664–69. doi:10.1007/s00268–009–0238–5.; Egorov V. I., Vankovich A. N., Petrov R. V., Starostina NS., Butkevich ATs., Sazhin AV., et. al. Pancreas-preserving approach to “paraduodenal pancreatitis” treatment: why, when, and how? Experience of treatment of 62 patients with duodenal dystrophy. Biomed Res Int. 2014;2014:185265. doi:10.1155/2014/185265.; Taylor S. M., Adams D. B., Anderson M. C. Duodenal stricture: a complication of chronic fibrocalcific pancreatitis. South Med J. 1991 Mar;84 (3):338–41.; Balakrishnan V., Unnikrishnan A. G., Thomas V., Choudhuri G., Veeraraju P., Singh S. P., et. al. Chronic pancreatitis. A prospective nationwide study of 1,086 subjects from India. JOP. 2008 Sep 2;9 (5):593–600. Available at: http://www.joplink.net/prev/200809/05.html; Lévy P., Barthet M., Mollard B. R., Amouretti M., Marion-Audibert A. M., Dyard F. Estimation of the prevalence and incidence of chronic pancreatitis and its complications. Gastroenterol Clin Biol. 2006 Jun-Jul;30 (6–7):838–44. Available at: http://www.em-consulte.com/article/129932/alertePM; Ryu J. K., Lee J. K., Kim Y. T., Lee D. K., Seo D. W., Lee K. T., et. al. Multicenter Study Group on Chronic Pancreatitis. Clinical features of chronic pancreatitis in Korea: a multicenter nationwide study. Digestion. 2005;72 (4):207–11. Available at: http://www.karger.com/Article/Abstract/89414; Wang L. W., Li Z. S., Li S. D., Jin Z. D., Zou D. W., Chen F. Prevalence and clinical features of chronic pancreatitis in China: a retrospective multicenter analysis over 10 years. Pancreas. 2009 Apr;38 (3):248–54. doi:10.1097/MPA.0b013e31818f6ac1.; Beger H. G., Büchler M., Ditschuneit H., Malfertheiner P. Chronic pancreatitis: research and clinical management. Berlin: Springer-Verlag, 1990. 574 p.; Данилов М. В., Федоров В. Д. Руководство по хирургии поджелудочной железы. М.: Медицина, 1995. 510 с.; Potet F., Duclert N. Cystic dystrophy on aberrant pancreas of the duodenal wall. Arch Fr Mal App Dig. 1970;59 (4):223–38.; Rebours V., Lévy P., Vullierme M. P., Couvelard A., O’Toole D., Aubert A., et. al. Clinical and morphological features of duodenal cystic dystrophy in heterotopic pancreas. Am J Gastroenterol. 2007 Apr;102 (4):871–9. doi:10.1111/j.1572–0241.2007.01091.x; Becker V., Mischke U. Groove pancreatitis. Int J Pancreatol. 1991;10:173–82.; Becker V. Bauchepeicheldrüse. In: Doerr W, Seifert G, Ühlinger E, Eds. Spezielle Pathologische Anatomie, Chap 6. Berlin, Germany: Springer, 1973. Р. 252–445.; Stolte M., Weiss W., Volkholz H., Rosch W. A special form of segmental pancreatitis: ‘’groove pancreatitis’’. Hepatogastroenterology. 1982;29:198–08.; Goldaracena N., McCormack L. A typical feature of groove pancreatitis. HPB (Oxford). 2012 Jul;14 (7):487–8. doi:10.1111/j.1477–2574.2012.00469.x; Nagai H. Configurational anatomy of the pancreas: its surgical relevance from ontogenetic and comparative-anatomical viewpoints. J Hepatobiliary Pancreat Surg. 2003;10 (1):48–56.; Tezuka K., Makino T., Hirai I., Kimura W. Groove pancreatitis. Dig Surg. 2010;27(2):149–52. doi:10.1159/000289099.; Wagner M., Vullierme M. P., Rebours V., Ronot M., Ruszniewski P., Vilgrain V. Cystic form of paraduodenal pancreatitis (cystic dystrophy in heterotopic pancreas (CDHP)): a potential link with minor papilla abnormalities? A study in a large series. Eur Radiol. 2016 Jan;26 (1):199–205. doi:10.1007/s00330–015–3799–8.; Arora A., Rajesh S., Mukund A., Patidar Y., Thapar S., Arora A., et. al. Clinicoradiological appraisal of ‘paraduodenal pancreatitis’: Pancreatitis outside the pancreas! Indian J Radiol Imaging. 2015 Jul-Sep;25 (3):303–14. doi:10.4103/0971–3026.161467.; https://www.rpmj.ru/rpmj/article/view/150
-
10Academic Journal
المؤلفون: Yu. A. Stepanova, I. E. Timina, A. A. Teplov, O. A. Chekhoyeva, M. V. Morozova, A. A. Gritskevich, S. S. Pyanikin, D. V. Kalinin, Ю. А. Степанова, И. Е. Тимина, А. А. Теплов, О. А. Чехоева, М. В. Морозова, А. А. Грицкевич, С. С. Пьяникин, Д. В. Калинин
المصدر: Medical Visualization; № 5 (2016); 97-106 ; Медицинская визуализация; № 5 (2016); 97-106 ; 2408-9516 ; 1607-0763
مصطلحات موضوعية: дифференциальная диагностика, contrast-enhanced ultrasound, differential diagnostics, ультразвуковое исследование с контрастным препаратом
وصف الملف: application/pdf
Relation: https://medvis.vidar.ru/jour/article/view/336/336; Фомина С.В., Завадовская В.Д., Юсубов М.С. и др. Контрастные препараты для ультразвукового исследования. Бюллетень сибирской медицины. 2011; 6: 137–142.; Fomina S.V., Zavadovskaya V.D., Yusubov M.S. et al. Contrast agents for ultrasonography. Bulluten Siberskoy meditsini. 2011; 6: 137–142. (In Russian); Gramiak R., Shah P. Echocardiography of the aortic root. Invest. Radiol. 1968; 3: 356–366.; Greis C. Contrast-Enhanced Ultrasound in General Imaging. Springer-Verlag, 2005. 213 p.; Lencioni R. Enhancing the role of ultrasound with contrast Agents. Springer-Verlag Italia, 2009. 248 p.; Quaia E. Microbubble ultrasound contrast agents: an update. Eur. Radiol. 2007; 17 (8): 1995–2008.; SonoVue International non-proprietary name: sulfur hexafluoride. Assessment report. Ed. Committee for Medicinal Products for Human Use (CHMP). UK: EMA, 2014: 1–33.; Соновью. Научная монография. Динамическое контрастное усиление в режиме реального времени. М.: Bracco Imaging, 2013. 48 с. SonoVue. Scientific monograph. Dynamic contrast strengthening in real time. M.: Bracco Imaging, 2013; 48 p. (In Russian); Wei K., Le E., Bin J. et al. Quantification of renal blood flow with contrast-enhanced ultrasound. J. Am. Coll. Cardiol. 2001; 37 (4): 1135–1140.; Tranquart F., Correas J., Martegani A. et al. Feasability of real time contrast enhanced ultrasound in renal disease. J. Radiol. 2004; 85 (1): 31–36.; Tranquart F., Le Gouge A., Correas J. et al. Role of contrast-enhanced ultrasound in the blinded assessment of focal liver lesions in comparison with MDCT and CEMRI: Results from a multicentre clinical trial. EJC. 2008; 6: 9–15.; Seitz K., Bernatik T., Strobel D. et al. Contrast-enhanced ultrasound (CEUS) for the characterization of focal liver lesions in clinical practice (DEGUM Multicenter Trial): CEUS vs. MRI-a prospective comparison in 269 patients. Ultraschall Med. 2010; 31 (5): 492–429.; Dong X.Q., Shen Y., Xu L.W. et al. Contrast-enhanced ultrasound for detection and diagnosis of renal clear cell carcinoma. Chin. Med. J. (Engl.). 2009; 122 (10): 1179–1183.; Zhou X., Yan F., Luo Y. et al. Characterization and diagnostic confidence of contrast-enhanced ultrasound for solid renal tumors. Ultrasound Med. Biol. 2011; 37 (6): 845–853.; Li X., Liang P., Guo M. et al. Real-time contrast-enhanced ultrasound in diagnosis of solid renal lesions. Discov. Med. 2013; 16 (86): 15–25.; Zhang S., Wang X.Q., Xin X.J., Xu Y. Value of contrastenhanced ultrasound (CEUS) in the differential diagnosis between benign and malignant renal neoplasms. Zhonghua Zhong Liu Za Zhi. 2013; 35 (5): 382–385.; Cai Y., Du L., Li F. et al. Quantification of enhancement of renal parenchymal masses with contrast-enhanced ultra sound. Ultrasound Med. Biol. 2014; 40 (7): 1387–1393.; Li X., Liang P., Yu X. et al. Value of real-time contrastenhanced ultrasound in diagnosis of solid renal lesions. Nan Fang Yi Ke Da Xue Xue Bao. 2014; 34 (6): 890–895.; Oh T.H., Lee Y.H., Seo I.Y. Diagnostic efficacy of contrastenhanced ultrasound for small renal masses. Korean J. Urol. 2014; 55 (9): 587–592.; Harvey C.J., Alsafi A., Kuzmich S. et al. Role of US Contrast Agents in the Assessment of Indeterminate Solid and Cystic Lesions in Native and Transplant Kidneys. Radiographics. 2015; 35 (5): 1419–1430.; Ховари Л.Ф., Шаназаров Н.А. Диагностика рака почки: современные тенденции. Фундаментальные исследования. 2011; 7: 256–261. Khovari L.F., Shanazarov N.A. Diagnosis of cancer of kidney: current trends. Fundamentalnie issledovaniya. 2011; 7: 256–261. (In Russian); Novick A.C., Campbell S.С. Renal tumors. Campbell's Urology. Eds. Walsh P.C., Retik А.В., Vaughan E.D. Philadelphia: Saunders, 2002: 2672–2731.; Tamai H., Takiguchi Y., Oka M. et al. Contrast-enhanced ultrasonography in the diagnosis of solid renal tumors. J. Ultrasound. Med. 2005; 24:1635–1640.; Митина Л.А., Казакевич В.И., Степанов С.О. Ультразвуковая онкоурология; Под ред. В.И. Чисова, И.Г. Руса кова. М.: Медиа Сфера, 2005. 182 с. Mitina L.A., Kazakevich V.I., Stepanov S.O. Ultrasonic onkourologiya. Ed. V.I. Chissov, I.G. Rusakov. M.: Media Sphera, 2005. 182 p. (In Russian); Ignee A., Straub B., Schuessler G. et al. Contrast enhanced ultrasound of renal masses. Wld J. Radiol. 2010; 2 (1): 15–31.; Quaia E., Bertolotto M., Cioffi V. et al. Comparison of contrast-enhanced sonography with unenhanced sonography and contrast-enhanced CT in the diagnosis of malignancy in complex cystic renal masses. Am. J. Roentgenol. 2008; 191: 1239–1249.; Sun D., Wei C., Li Y. et al. Contrast-Enhanced Ultrasonography with Quantitative Analysis allows Differentiation of Renal Tumor Histotypes. Sci. Rep. 2016; 6: 35081. Published online 2016 Oct 11.; Kim T.J., Kim S.H. Radiologic Findings of Renal Inflammatory Pseudotumor: A Case Report. Korean J. Radiol. 2000; 1 (4): 219–222.; Granata A., Floccari F., Logias F. et al. Contrast enhanced ultrasound in renal diseases. G. Ital. Nefrol. 2012; 29, Suppl. 57: S25–35.; Di Vece F., Tombesi P., Ermili F., Sartori S. Management of incidental renal masses: Time to consider contrastenhanced ultrasonography. Ultrasound. 2016; 24 (1): 34–40.; Bosniak M.A. The Bosniak renal cyst classification: 25 years later. Radiology. 2012; 262 (3): 781–785.; Park B.K., Kim B., Kim S.H. et al. Assessment of cystic renal masses based on Bosniak classification: comparison of CT and contrast-enhanced US. Eur. J. Radiol. 2007; 61: 310–314.; Clevert D.A., Minaifar N., Weckbach S. et al. Multislice computed tomography versus contrast-enhanced ultrasound in evaluation of complex cystic renal masses using the Bosniak classification system. Clin. Hemorheol. Microcirc. 2008; 39: 171–178.; Fuhrman S.A., Lasky L.C., Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am. J. Surg. Pathol. 1982; 6 (7): 655–656.; https://medvis.vidar.ru/jour/article/view/336
-
11Academic Journal
المؤلفون: S. A. Buryakina, G. G. Karmazanovsky, D. V. Ruchkin, Yang Qin, D. V. Kalinin, С. А. Бурякина, Г. Г. Кармазановский, Д. В. Ручкин, Ян Цинь, Д. В. Калинин
المصدر: Medical Visualization; № 2 (2014); 129-132 ; Медицинская визуализация; № 2 (2014); 129-132 ; 2408-9516 ; 1607-0763
وصف الملف: application/pdf
-
12Academic Journal
المؤلفون: I. P. Kolganova, K. Kh. Lomovtseva, D. V. Ruchkin, O. A. Rymar, D. V. Kalinin, И. П. Колганова, К. Х. Ломовцева, Д. В. Ручкин, О. А. Рымарь, Д. В. Калинин
المصدر: Medical Visualization; № 6 (2014); 123-126 ; Медицинская визуализация; № 6 (2014); 123-126 ; 2408-9516 ; 1607-0763
وصف الملف: application/pdf