يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"Д. А. Алексеев"', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Diagnostic radiology and radiotherapy; Том 14, № 4 (2023); 73-81 ; Лучевая диагностика и терапия; Том 14, № 4 (2023); 73-81 ; 2079-5343

    وصف الملف: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/941/624; Lee J.H., Koh J., Jeon Y.K. et al. An Integrated Radiologic-Pathologic Understanding of COVID-19 Pneumonia // Radiology. 2023. Vol. 306, No. 2. P. e222600. doi:10.1148/radiol.222600.; Kwee T.C., Kwee R.M. Chest CT in COVID-19: What the Radiologist Needs to Know // RadioGraphics. 2020. Vol. 40, No. 7. P. 1848–1865. doi:10.1148/rg.2020200159.; Rubin G.D., Ryerson C.J., Haramati L.B. et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society // Radiology. 2020. Vol. 296, No. 1. P. 172–180. doi:10.1148/radiol.2020201365.; Simpson S., Kay F.U., Abbara S. et al. Radiological Society of North America Expert Consensus Document on Reporting Chest CT Findings Related to COVID-19: Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA // Radiology: Cardiothoracic Imaging. 2020. Vol. 2, No. 2. P. e200152. doi:10.1148/ryct.2020200152.; Ai T., Yang Z., Hou H. et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases // Radiology. 2020. Vol. 296, No. 2. P. E32–E40. doi:10.1148/radiol.2020200642.; Suh Y.J., Hong H., Ohana M. et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis // Radiology. 2021. Vol. 298, No. 2. P. E70–E80. doi:10.1148/radiol.2020203557.; Yang R., Li X., Liu H. et al. Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19 // Radiology: Cardiothoracic Imaging. 2020. Vol. 2, No. 2. P. e200047. doi:10.1148/ryct.2020200047.; Revzin M.V., Raza S, Warshawsky R. et al. Multisystem Imaging Manifestations of COVID-19, Part 1: Viral Pathogenesis and Pulmonary and Vascular System Complications // RadioGraphics. 2020. Vol. 40, No. 6. P. 1574–1599. doi:10.1148/rg.2020200149.; Carfì A., Bernabei R, Landi F. et al. Persistent Symptoms in Patients After Acute COVID-19 // JAMA. 2020. Vol. 324, No. 6. P. 603. doi:10.1001/jama.2020.12603.; Liu J., Zheng X, Tong Q. et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS‐CoV, MERS‐CoV, and 2019‐nCoV // J. Med. Virol. 2020. Vol. 92, No. 5. P. 491–494. doi:10.1002/jmv.25709.; John A.E., Joseph C, Jenkins G. et al. COVID‐19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts // Immunological Reviews. 2021. Vol. 302, No. 1. P. 228–240. doi:10.1111/imr.12977.; Mohammadi A., Balan I, Yadav S. et al. Post-COVID-19 Pulmonary Fibrosis // Cureus. 2022. doi:10.7759/cureus.22770.; Sgalla G., Iovene B., Calvello M. et al. Idiopathic pulmonary fibrosis: pathogenesis and management // Respir. Res. 2018. Vol. 19, No. 1. P. 32. doi:10.1186/s12931-018-0730-2.; Tanni S.E., Fabro A.T., De Albuquerque A. et al. Pulmonary fibrosis secondary to COVID-19: a narrative review // Expert Review of Respiratory Medicine. 2021. Vol. 15, No. 6. P. 791–803. doi:10.1080/17476348.2021.1916472.; Groff D., Sun A., Ssentongo A.E. et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review // JAMA Netw Open. 2021. Vol. 4, No. 10. P. e2128568. doi:10.1001/jamanetworkopen.2021.28568.; Liu X., Zhou H, Zhou Y. et al. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients // Journal of Infection. 2020. Vol. 81, No. 1. P. e95–e97. doi:10.1016/j.jinf.2020.04.008.; Richeldi L., Collard H.R., Jones M.G. Idiopathic pulmonary fibrosis // The Lancet. 2017. Vol. 389, No. 10082. P. 1941–1952. doi:10.1016/S0140-6736(17)30866-8.; Liu F., Mih J.D., Shea B.S. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression // Journal of Cell Biology. 2010. Vol. 190, No. 4. P. 693–706. doi:10.1083/jcb.201004082.; Martinez F.J. Pulmonary Function Testing in Idiopathic Interstitial Pneumonias // Proceedings of the American Thoracic Society. 2006. Vol. 3, No. 4. P. 315–321. doi:10.1513/pats.200602–022TK.; Huang C., Huang L., Wang Y. et al. RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study // The Lancet. 2021. Vol. 397, No. 10270. P. 220–232. doi:10.1016/S0140-6736(20)32656-8.; Mylvaganam R.J., Bailey J.I., Sznajder J.I. et al. Recovering from a pandemic: pulmonary fibrosis after SARS-CoV-2 infection // Eur. Respir. Rev. 2021. Vol. 30, No. 162. P. 210194. doi:10.1183/16000617.0194-2021.; Nalbandian A., Sehgal K, Gupta A. et al. Post-acute COVID-19 syndrome // Nat Med. 2021. Vol. 27, No. 4. P. 601–615. doi:10.1038/s41591-021-01283-z.; Rai D.K., Sharma P., Kumar R. Post COVID-19 pulmonary fibrosis. Is it real threat? // Indian J Tuberc. 2021. Vol. 68, No. 3. P. 330–333. doi:10.1016/j.ijtb.2020.11.003.; Mongelli A., Barbi V., Gottardi Zamperla M. et al. Evidence for Biological Age Acceleration and Telomere Shortening in COVID-19 Survivors // Int. J. Mol. Sci. 2021. Vol. 22, No. 11. P. 6151. doi:10.3390/ijms22116151.; D’Ettorre G., Gentilini Cacciola E., Santinelli L. et al. COVID-19 sequelae in working age patients: A systematic review // J. Med. Virol. 2022. Vol. 94, No. 3. P. 858–868. doi:10.1002/jmv.27399.; Lee J.H., Yim J.-J., Park J. Pulmonary function and chest computed tomography abnormalities 6–12 months after recovery from COVID-19: a systematic review and meta-analysis // Respir Res. 2022. Vol. 23, No. 1. P. 233. doi:10.1186/s12931-022-02163-x.; Testa L.C., Jule Y, Lundh L. et al. Automated Digital Quantification of Pulmonary Fibrosis in Human Histopathology Specimens // Front. Med. 2021. Vol. 8. P. 607720. doi:10.3389/fmed.2021.607720.; Ashcroft T., Simpson J.M., Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale // Journal of Clinical Pathology. 1988. Vol. 41, No. 4. P. 467–470. doi:10.1136/jcp.41.4.467.; Cicko S., Grimm M., Ayata K. et al. Uridine supplementation exerts anti-inflammatory and anti-fibrotic effects in an animal model of pulmonary fibrosis // Respir Res. 2015. Vol. 16, No. 1. P. 105. doi:10.3390/biom10111585.; De Rudder M., Bouzin C., Nachit M. et al. Automated computerized image analysis for the user-independent evaluation of disease severity in preclinical models of NAFLD/NASH // Laboratory Investigation. 2020. Vol. 100, No. 1. P. 147–160. doi:10.1038/s41374-019-0315-9.; Barisoni L., Lafata K.J., Hewitt S.M. et al. Digital pathology and computational image analysis in nephropathology // Nat. Rev. Nephrol. 2020. Vol. 16, No. 11. P. 669–685. doi:10.1038/s41581-020-0321-6.; Courtoy G.E., Leclercq I, Froidure A. et al. Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization // Biomolecules. 2020. Vol. 10, No. 11. P. 1585. doi:10.3390/biom10111585.; Kinoshita Y., Watanabe K, Ishii H. et al. Proliferation of elastic fibres in idiopathic pulmonary fibrosis: a whole‐slide image analysis and comparison with pleuroparenchymal fibroelastosis // Histopathology. 2017. Vol. 71, No. 6. P. 934–942. doi:10.1111/his.13312.; Inui S., Fujikawa A, Jitsu M. et al. Chest CT Findings in Cases from the Cruise Ship Diamond Princess with Coronavirus Disease (COVID-19) // Radiol. Cardiothorac Imaging. 2020. Vol. 2, No. 2. P. e200110. doi:10.1148/ryct.2020200110.; Zakharova A.V. Correlation of MR pulmonary perfusion in patients with COVID-19 with quantitative assessment of acute phase CT images // Diagnostic radiology and radiotherapy. 2023. Vol. 14. No 3. P. 61-66. https://doi.org/10.22328/2079-5343-2023-14-3-61-66.; Cressoni M., Gallazzi E, Chiurazzi C. et al. Limits of normality of quantitative thoracic CT analysis // Crit Care. 2013. Vol. 17, No. 3. P. R93. doi:10.1186/cc12738.; Gattinoni L., Chiumello D., Cressoni M. et al. Pulmonary computed tomography and adult respiratory distress syndrome // Swiss Med Wkly. 2005. doi:10.4414/smw.2005.10936.; Weller H.I., Van Belleghem S.M., Hiller A.E. et al. Flexible color segmentation of biological images with the R package recolorize: preprint // Bioinformatics. 2022. doi:10.1101/2022.04.03.486906.; Wood S.N. Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models // Journal of the Royal Statistical Society Series B: Statistical Methodology. 2011. Vol. 73, No. 1. P. 3–36. doi:10.1111/j.1467-9868.2010.00749.x.; Toussie D., Voutsinas N., Finkelstein M. et al. Clinical and Chest Radiography Features Determine Patient Outcomes in Young and Middle-aged Adults with COVID-19 // Radiology. 2020. Vol. 297, No. 1. P. E197–E206. doi:10.1148/radiol.2020201754.; Shen C., Yu N., Cai S. et al. Quantitative computed tomography analysis for stratifying the severity of Coronavirus Disease 2019 // Journal of Pharmaceutical Analysis. 2020. Vol. 10, No. 2. P. 123–129. doi:10.1016/j.jpha.2020.03.004.; Caruso D., Zerunian M., Polici M. et al. Diagnostic performance of CT lung severity score and quantitative chest CT for stratification of COVID-19 patients // Radiol. med. 2022. Vol. 127, No. 3. P. 309–317. doi:10.1007/s11547-022-01458-9.; Shalmon T., Zerunian M., Polici M. et al. Predefined and data driven CT densitometric features predict critical illness and hospital length of stay in COVID-19 patients // Sci Rep. 2022. Vol. 12, No. 1. P. 8143. doi:10.1038/s41598-022-12311-4.; Trias-Sabrià P., Dorca Duch E., Molina-Molina M. et al. Radio-Histological Correlation of Lung Features in Severe COVID-19 Through CT-Scan and Lung Ultrasound Evaluation // Front. Med. 2022. Vol. 9. P. 820661. doi:10.3389/fmed.2022.820661.; Henkel M. et al. Lethal COVID-19: Radiologic-Pathologic Correlation of the Lungs // Radiology: Cardiothoracic Imaging. 2020. Vol. 2, № 6. P. e200406. doi:10.1148/ryct.2020200406.; Kianzad A., Meijboom L.J., Nossent E.J. et al. COVID‐19: Histopathological correlates of imaging patterns on chest computed tomography // Respirology. 2021. Vol. 26, No. 9. P. 869–877. doi:10.1111/resp.14101.; Duong-Quy S. et al. Post-COVID-19 Pulmonary Fibrosis: Facts-Challenges and Futures: A Narrative Review // Pulm Ther. 2023. P. 1–13. doi:10.1007/s41030-023-00226-y.; https://radiag.bmoc-spb.ru/jour/article/view/941

  2. 2
    Academic Journal

    المساهمون: The study was conducted with the financial support of the Russian Science Foundation (project 20-17-00140)., Исследование выполнено при поддержке Российского научного фонда (проект № 20-17-00140).

    المصدر: Geodynamics & Tectonophysics; Том 13, № 5 (2022); 0675 ; Геодинамика и тектонофизика; Том 13, № 5 (2022); 0675 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1586/711; Altamimi Z., Rebischung P., Métivier L., Collilieux X., 2016. ITRF2014: A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions. Journal of Geophysical Research: Solid Earth 121 (8), 6109–6131. https://doi.org/10.1002/2016JB013098.; Apel E.V., Bürgmann R., Steblov G., Vasilenko N., King R., Prytkov A., 2006. Independent Active Microplate Tectonics of Northeast Asia from GPS Velocities and Block Modeling. Geophysical Research Letters 33 (11). https://doi.org/10.1029/2006GL026077.; Argus D.F., Gordon R.G., DeMets C., 2011. Geologically Current Motion of 56 Plates Relative to the No‐Net‐Rotation Reference Frame. Geochemistry, Geophysics, Geosystems 12 (11). https://doi.org/10.1029/2011GC003751.; Ashurkov S.V., Sankov V.A., Miroshnichenko A.I., Lukhnev A.V., Sorokin A.P., Serov M.A., Byzov L.M., 2011. GPS Geodetic Constraints on the Kinematics of the Amurian Plate. Russian Geology and Geophysics 52 (2), 239–249. https://doi.org/10.1016/j.rgg.2010.12.017.; Ashurkov S.V., Sankov V.A., Serov M.A., Lukyanov P.Y., Bordonskii G.S., Grib N.N., Dembelov M.G., 2016. Evaluation of Present-Day Deformations in the Amurian Plate and Its Surroundings, Based on GPS Data. Russian Geology and Geophysics 57 (11), 1626-1634. https://doi.org/10.1016/j.rgg.2016.10.008.; Bulletin of the International Seismological Centre Catalog Search, 2021. Available from: http://www.isc.ac.uk/iscbulletin/search (Last Accessed December 20, 2021).; Chuvashova I.S., Rasskazov S.V., Yi‐min Sun, 2017. The Latest Geodynamics in Central Asia: Primary and Secondary Mantle Melting Anomalies in the Context of Orogenesis, Rifting, and Lithospheric Plate Motions and Interactions. Geodynamics & Tectonophysics 8 (1), 45–80 (in Russian) [Чувашова И.С., Рассказов С.В., Йи‐минь Сунь. Новейшая геодинамика Центральной Азии: первичные и вторичные мантийные расплавные аномалии в контексте орогенеза, рифтогенеза и движения‐взаимодействия литосферных плит // Геодинамика и тектонофизика. 2017. Т. 8. № 1. С. 45–80]. https://doi.org/10.5800/GT-2017-8-1-0232.; DeMets C., Gordon R.G., Argus D.F., Stein S., 1994. Effect of Recent Revisions to the Geomagnetic Reversal Time Scale on Estimates of Current Plate Motions. Geophysical Research Letters 21 (20), 2191–2194. https://doi.org/10.1029/94GL02118.; Earthquakes of Russia, 2021. Database (in Russian) [Землетрясения России: База данных]. Available from: http://eqru.gsras.ru (Last Accessed December 20, 2021).; England P., Molnar P., 2005. Late Quaternary to Decadal Velocity Fields in Asia. Journal of Geophysical Research: Solid Earth 110 (B12). https://doi.org/10.1029/2004JB003541.; Fedotov S.A., 1968. On the Seismic Cycle, the Possibility of Quantitative Seismic Zoning and Long-Term Seismicity Forecasting. In: S.V. Medvedev (Ed.), Seismic Zoning of the USSR. Nauka, Moscow, p. 121–150 (in Russian) [Федотов С.А. О сейсмическом цикле, возможности количественного сейсмического районирования и долгосрочном сейсмическом прогнозе // Сейсмическое районирование СССР / Ред. С.В. Медведев. М.: Наука, 1968. С. 121–150].; Imaeva L.P., Gusev G.S., Imaev V.S., Ashurkov S.V., Melnikova V.I., Seredkina A.I., 2017. Geodynamic Activity of Modern Structures and Tectonic Stress Fields in Northeast Asia. Geodynamics & Tectonophysics 8 (4), 737–768 (in Russian) [Имаева Л.П., Гусев Г.С., Имаев В.С., Ашурков С.В., Мельникова В.И., Середкина А.И. Геодинамическая активность новейших структур и поля тектонических напряжений северо‐востока Азии // Геодинамика и тектонофизика. 2017. Т. 8. № 4. С. 737–768]. https://doi.org/10.5800/GT-2017-8-4-0315.; Kogan M.G., Bügmann R., Vasilenko N.F., Scholz C.H., King R.W., Ivashchenko A.I., Frolov D.I., Steblov G.M., Kim Ch.U., Egorov S.G., 2003. The 2000 Mw 6.8 Uglegorsk Earthquake and Regional Plate Boundary Deformation of Sakhalin from Geodetic Data. Geophysical Research Letters 30 (3). http://doi.org/10.1029/2002GL016399.; Kuzmin Yu.O., 2013. Recent Geodynamics of the Faults and Paradoxes of the Rates of Deformation. Izvestiya, Physics of the Solid Earth 49, 626–642. https://doi.org/10.1134/S1069351313050029.; Laverov N.P., Lobkovsky L.I., Kononov M.V., Dobretsov N.L., Vernikovsky V.A., Sokolov S.D., Shipilov E.V., 2013. A Geodynamic Model of the Evolution of the Arctic Basin and Adjacent Territories in the Mesozoic and Cenozoic and the Outer Limit of the Russian Continental Shelf. Geotectonics 47, 1–30. http://doi.org/10.1134/S0016852113010044.; Levi K.G., Sherman S.I., Sankov V.A., 2009. Recent Geodynamics of Asia: Map, Principles of Its Compilation, and Geodynamic Analysis. Geotectonics 43 (2), 152–165. https://doi.org/10.1134/S001685210902006X.; Levin B.V., Fitzhugh B., Burgeois D., Rybin A.V., Razzhigaeva N.G., Belousov A.B., Vasilenko N.F., Frolov D.I., Nyushko T.I., Kharlamov A.A., Koroteev I.G., 2007. Complex Expedition to the Kuril Islands in 2006 (I Stage). Vestnik of Far Eastern Branch of Russian Academy of Sciences 1, 144–148 (in Russian) [Левин Б.В., Фитцхью Б., Бурджуа Д., Рыбин А.В., Разжигаева Н.Г., Белоусов А.Б., Василенко Н.Ф., Фролов Д.И., Нюшко Т.И., Харламов А.А., Коротеев И.Г. Комплексная экспедиция на Курильские острова в 2006 г. (I этап) // Вестник ДВО РАН. 2007. № 1. С. 144–148].; Lobkovskii L.I., Ramazanov M.M., 2021. Investigation of Convection in the Upper Mantle Connected Thermomechanically with the Subduction Zone and Its Geodynamic Application to the Arctic Region and North East Asia. Fluid Dynamics 56, 433–444. https://doi.org/10.1134/S001546282103006X.; Lobkovsky L.I., 2016. Deformable Plate Tectonics and Regional Geodynamic Model of the Arctic Region and Northeastern Asia. Russian Geology and Geophysics 57 (3), 371–386. https://doi.org/10.1016/j.rgg.2016.03.002.; Lobkovsky L.I., Kerchman V.I., Baranov B.V., Pristavakina E.I., 1991. Analysis of Seismotectonic Processes in Subduction Zones from the Standpoint of a Keyboard Model of Great Earthquakes. Tectonophysics 199 (2–4), 211–236. https://www.doi.org/10.1016/0040-1951(91)90173-P.; Lobkovsky L.I., Ramazanov M.M., Kotelkin V.D., 2021а. Upper Mantle Convection Related to Subduction Zone and Application of the Model to Investigate the Cretaceous-Cenozoic Geodynamics of Central East Asia and the Arctic. Geodynamics & Tectonophysics 12 (3), 455–470 (in Russian) [Лобковский Л.И., Рамазанов М.М., Котелкин В.Д. Развитие модели верхнемантийной конвекции, сопряженной с зоной субдукции, с приложениями к мел-кайнозойской геодинамике Центрально-Восточной Азии и Арктики // Геодинамика и тектонофизика. 2021. Т. 12. № 3. С. 455–470]. https://doi.org/10.5800/GT-2021-12-3-0533.; Lobkovsky L.I., Shipilov E.V., Kononov M.V., 2013. Geodynamic Model of Upper Mantle Convection and Transformations of the Arctic Lithosphere in the Mesozoic and Cenozoic. Izvestiya, Physics of the Solid Earth 49, 767–785, https://doi.org/10.1134/S1069351313060104.; Lobkovsky L.I., Vladimirova I.S., Gabsatarov Y.V., Alekseev D.A., 2021b. Keyboard Model of Seismic Cycle of Great Earthquakes in Subduction Zones: Simulation Results and Further Generalization. Applied Sciences 11 (9), 9350. https://doi.org/10.3390/app11199350.; Lobkovsky L.I., Vladimirova I.S., Gabsatarov Y.V., Steblov G.M., 2018. Seismotectonic Deformations Related to the 2011 Tohoku Earthquake at Different Stages of the Seismic Cycle on the Basis of Satellite Geodetic Observations. Doklady Earth Sciences 481, 1060–1065. http://doi.org/10.1134/S1028334X18080159.; Loveless J.P., Meade B.J., 2010. Geodetic Imaging of Plate Motions, Slip Rates, and Partitioning of Deformation in Japan. Journal of Geophysical Research: Solid Earth 115 (B2). https://doi.org/10.1029/2008JB006248.; Molnar P., Tapponnier P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth 83 (B11), 5361–5375. https://doi.org/10.1029/JB083iB11p05361.; Sagiya T., Miyazaki S., Tada T., 2000. Continuous GPS Array and Present-Day Crustal Deformation of Japan. Pure and Applied Geophysics 157, 2303–2322. https://doi.org/10.1007/PL00022507.; Sankov V.А., 2014. Recent Geodynamics of Intracontinental Areas: Instrumental and Geomorphological Assessment of Crustal Movements and Deformation in Central Asia. Geodynamics & Tectonophysics 5 (1), 159–182 (in Russian) [Саньков В.А. Современная геодинамика внутриконтинентальных областей: инструментальные и геологогеоморфологические оценки движений и деформаций земной коры Центральной Азии // Геодинамика и тектонофизика. 2014. Т. 5. № 1. С. 159–182]. https://doi.org/10.5800/GT-2014-5-1-0122.; Savostin L.A., Verzhbitskaya A.I., Baranov B.V., 1982. Recent Plate Tectonics of the Sea of Okhotsk Region. Doklady of the USSR Academy of Sciences 266 (4), 961–965 (in Russian) [Савостин Л.А., Вержбицкая А.И., Баранов Б.В. Современная тектоника плит Охотоморского региона // Доклады АН СССР. 1982. Т. 266. № 4. С. 961–965].; Schellart W.P., Chen Z., Strak V., Duarte J.C., Rosas F.M., 2019. Pacific Subduction Control on Asian Continental Deformation Including Tibetan Extension and Eastward Extrusion Tectonics. Nature Communications 10, 4480. https://doi.org/10.1038/s41467-019-12337-9.; Sella G.F., Dixon T.H., Mao A., 2002. REVEL: A Model for Recent Plate Velocities from Space Geodesy. Journal of Geophysical Research: Solid Earth 107 (B4), ETG 11-1–ETG 11-30. https://doi.org/10.1029/2000JB000033.; Seminsky K.Zh., Kozhevnikov N.O., Cheremnykh A.V., Pospeeva E.V., Bobrov A.A., Olenchenko V.V., Tugarina M.A., Potapov V.V., Zaripov R.M., Cheremnykh A.S., 2013. Interblock Zones in the Crust of the Southern Regions of East Siberia: Tectonophysical Interpretation of Geological and Geophysical Data. Geodynamics & Tectonophysic 4 (3), 203–278 (in Russian) [Семинский К.Ж., Кожевников Н.О., Черемных А.С., Поспеева Е.В., Бобров А.А., Оленченко В.В., Тугарина М.А., Потапов В.В., Зарипов Р.М., Черемных А.С. Межблоковые зоны в земной коре юга Восточной Сибири: тектонофизическая интерпретация геолого-геофизических данных // Геодинамика и тектонофизика. 2013. Т. 4. № 3. С. 203–278]. https://doi.org/10.5800/GT-2013-4-3-0099.; Seno T., Sakurai T., Stein S., 1996. Can the Okhotsk Plate Be Discriminated from the North American Plate? Journal of Geophysical Research: Solid Earth 101 (B5), 11305–11315. https://doi.org/10.1029/96JB00532.; Shen Z.K., Zhao C., Yin A., Li Y., Jackson D.D., Fang P., Dong D., 2000. Contemporary Crustal Deformation in East Asia Constrained by Global Positioning System Measurements. Journal of Geophysical Research: Solid Earth 105 (B3), 5721–5734. https://doi.org/10.1029/1999JB900391.; Shestakov N.V., Gerasimenko M.D., Kolomiets A.G., Gerasimov G.N., Takahashi H., Kasahara M., Bormotov V.A., Bykov V.G., Vasilenko N.F., Prytkov A.S., Timofeev V.Y., Ardyukov D.G., Kato T., 2011. Present Tectonics of the Southeast of Russia as Seen from GPS Observations. Geophysical Journal International 184 (2), 529–540. https://doi.org/10.1111/j.1365-246X.2010.04871.x.; Steblov G.M., Kogan M.G., King R.W., Scholz C.H., Burgmann R., Frolov D.I., 2003. Imprint of the North American Plate in Siberia Revealed by GPS. Geophysical Research Letters 30 (18). https://doi.org/10.1029/2003GL017805.; Tang Y., Obayashi M., Niu F., Grand S.P., Chen Y.J., Kawakatsu H., Tanaka S., Ning J., Ni J.F., 2014. Changbaishan Volcanism in Northeast China Linked to Subduction-Induced Mantle Upwelling. Nature Geoscience 7, 470–475. https://doi.org/10.1038/ngeo2166.; Timofeev V.Yu., Ardyukov D.G., Timofeev A.V., Boiko E.V., 2019. Modern Movements of the Crust Surface in Gorny Altai from GPS Data. Geodynamics & Tectonophysics 10 (1), 123–146 (in Russian) [Тимофеев В.Ю., Ардюков Д.Г., Тимофеев А.В., Бойко Е.В. Современные движения земной поверхности Горного Алтая по GPS-наблюдениям // Геодинамика и тектонофизика. 2019. Т. 10. № 1. С. 123–146]. https://doi.org/10.5800/GT-2019-10-1-0407.; Timofeev V.Yu., Gornov P.Yu., Ardyukov D.G., Malyshev Yu.F., Boiko E.V., 2008. GPS Measurements (2003–2006) in the Sikhote Alin Network, the Far East. Russian Journal of Pacific Geology 2, 314–324. https://doi.org/10.1134/S1819714008040040.; Vasilenko N.F., Prytkov A.S., 2012. GPS-Based Modeling of the Interaction between the Lithospheric Plates in Sakhalin. Russian Journal of Pacific Geology 6, 35–41. https://doi.org/10.1134/S1819714012010137.; Vladimirova I.S., Lobkovsky L.I., Gabsatarov Y.V., Steblov G.M., Vasilenko N.F., Prytkov A.S., Frolov D.I., 2020. Patterns of the Seismic Cycle in the Kuril Island Arc from GPS Observations. Pure and Applied Geophysics 177, 3599–3617. https://doi.org/10.1007/s00024-020-02495-z.; Wang M., Shen Z.‐K., 2020. Present‐Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth 125 (2), e2019JB018774. https://doi.org/10.1029/2019JB018774.; Yarmolyuk V.V., Kovalenko I.I., Ivanov V.G., 1995. Intraplate Late Mesozoic-Cenozoic Volcanic Province of Central-East Asia – Projection of the Hot Mantle Field. Geotectonics 5, 41–67 (in Russian) [Ярмолюк В.В., Коваленко И.И., Иванов В.Г. Внутриплитная позднемезозойская – кайнозойская вулканическая провинция Центрально-Восточной Азии – проекция горячего поля мантии // Геотектоника. 1995. № 5. С. 41–67].; Yarmolyuk V.V., Kuzmin M.I., Vorontsov A.A., 2013. West Pacific-Type Convergent Boundaries and Their Role in the Formation of the Central Asian Fold Belt. Russian Geology and Geophysics 54 (12), 1427–1441. https://doi.org/10.1016/j.rgg.2013.10.012.; Zhao D., Pirajno F., Dobretsov N.L., Liu L., 2010. Mantle Structure and Dynamics under East Russia and Adjacent Regions. Russian Geology and Geophysics 51 (9), 925–938. https://doi.org/10.1016/J.RGG.2010.08.003.; Zorin Yu.A., Sklyarov E.V., Belichenko V.G., Mazukabzov A.M., 2009. Island Arc-Back-Arc Basin Evolution: Implications for Late Riphean – Early Paleozoic Geodynamic History of the Sayan-Baikal Folded Area. Russian Geology and Geophysics 50 (3), 149–161. https://doi.org/10.1016/j.rgg.2008.06.022.; https://www.gt-crust.ru/jour/article/view/1586

  3. 3
    Academic Journal

    المساهمون: The study was carried out in accordance with the state assignment of the RF Ministry of Science and Higher Education (№ 0149-2019-0006) with partial financial support from the RFBR (№ 18-05-00316)., Работа выполнена в соответствии с Государственным заданием Министерства науки и высшего образования РФ № 0149-2019-0006 при частичной поддержке РФФИ (проект №18-05-00316).

    المصدر: Geodynamics & Tectonophysics; Том 11, № 3 (2020); 583-594 ; Геодинамика и тектонофизика; Том 11, № 3 (2020); 583-594 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1087/516; Abers G.A., Van Keken P.E., Hacker B.R., 2017. The Cold and Relatively Dry Nature of Mantle Forearcs in Subduction Zones. Nature Geoscience 10, 333–337. http://doi.org//10.1038/NGEO2922.; Araya Vargas J.A., 2016. Large-Scale Distribution of Fluids in the Subduction Zone of Northern Chile – Constraints from Magnetotelluric Monitoring. PhD Thesis (Dr. Rer. Nat.). Berlin, 189 p. http://dx.doi.org/10.17169/refubium-6133.; Baranov B.V., Ivashchenko A.I., Dozorova K.A., 2015. The Great 2006 and 2007 Kuril Earthquakes, Forearc Segmentation and Seismic Activity of the Central Kuril Island Region. Pure and Applied Geophysics 172, 3509–3535. http://doi.org//10.1007/s00024-015-1120-z.; Баранов Б.В., Лобковский Л.И., Дозорова К.А. Растяжение во фронтальной части Центральных Курил и миграция желоба // Доклады Академии наук. 2016. Т. 469. № 3. С. 347–350. https://doi.org/10.7868/S0869565216210180.; Blakely R., Brocher T., Wells R., 2005. Subduction-Zone Magnetic Anomalies and Implications for Hydrated Forearc Mantle. Geology 33 (6), 445–448. https://doi.org/10.1130/G21447.1.; Blanco-Quintero I.F., Proenza J.A., García-Casco A., Tauler Е., Galí S., 2011. Serpentinites and Serpentinites within a Fossil Subduction Channel: La Corea Mélange, Eastern Cuba. Geologica Acta 9 (3–4), 389–405. http://doi.org//10.1344/105.000001662.; Bulletin of the International Seismological Centre Catalog Search, 2017. Available from: http://www.isc.ac.uk.; Carlson R.L., Miller D.J., 2003. Mantle Wedge Water Contents Estimated from Seismic Velocities in Partially Serpentinized Peridotites. Geophysical Research Letters 30 (5), 1250. http://doi.org//10.1029/2002GL016600.; Долгаль А.С., Иваненко А.Н., Новикова П.Н., Рашидов В.А. Применение современных интерпретационных геомагнитных технологий для изучения гайота Сет (горы Маркус-Неккер, Тихий океан) // Геоинформатика. 2017. № 4. С. 38–47.; Федотов С.А. О закономерностях распределения сильных землетрясений Камчатки, Курильских островов и Северо-Восточной Японии // Труды Инcтитута физики Земли АН СССР. 1965. № 36. М.: Наука, 1965. С. 66–93.; Федотов С.А. О сейсмическом цикле, возможности количественного сейсмического районирования и долгосрочном сейсмическом прогнозе // Сейсмическое районирование СССР. М.: Наука, 1968. С. 121–150.; Gasc J., Hilairetb N., Ferrand Yu.T., Schubnel A., Wang, Y., 2017. Faulting of Natural Serpentinite: Implications for Intermediate-Depth Seismicity. Earth Planetary Science Letters 474, 138–147. https://doi.org/10.1016/j.epsl.2017.06.016.; Gorodnitskiy A.M., Brusilovskiy Yu.V., Ivanenko A.N., Filin A.M., Shishkina N.A., 2013. New Methods for Processing and Interpreting Marine Magnetic Anomalies: Application to Structure, Oil and Gas Exploration, Kuril Forearc, Barents and Caspian Seas. Geoscience Frontiers 4 (1), 73–85. https://doi.org/10.1016/j.gsf.2012.06.002.; Городницкий А.М., Брусиловский Ю.В., Иваненко Ю.В., Попов К.В., Шишкина Н.А. Природа магнитных аномалий в зонах субдукции // Физика Земли. 2017. № 5. C. 185–192. https://doi.org/10.7868/S0002333717050052.; Hayes G., 2018. Slab2 – A Comprehensive Subduction Zone Geometry Model: U.S. Geological Survey Data Release. https://doi.org/10.5066/F7PV6JNV.; Hyndman R.D., Peacock S.M., 2003. Serpentinization of the Forearc Mantle. Earth and Planetary Science Letters 212 (3–4), 417–432. http://doi.org/10.1016/S0012-821X(03)00263-2.; Kapinos G., Montahaei M., Meqbel N., Brasse H., 2016. Three-Dimensional Electrical Resistivity Image of the South-Central Chilean Subduction Zone. Tectonophysics 666, 76–89. http://doi.org/10.1016/j.tecto.2015.10.016.; Kerrick D., 2002. Serpentinite Seduction. Science 298 (5597), 1344–1345. http://doi.org/10.1126/science.298.5597.1344.; Key K., Constable S., Matsuno T., Evans R.L., Myer D., 2012. Electromagnetic Detection of Plate Hydration Due to Bending Faults at the Middle America Trench. Earth and Planetary Science Letters 351–352, 45–53. http://doi.org/10.1016/j.epsl.2012.07.020.; Kogiso T., Omori S., Maruyama S., 2009. Magma Genesis beneath Northeast Japan Arc: A New Perspective on Subduction Zone Magmatism. Gondwana Research 16 (3–4), 446–457. http://doi.org/10.1016/j.gr.2009.05.006.; Кулинич Р.Г., Карп Б.Я., Баранов Б.В., Леликов Е.П., Карнаух В.Н., Валитов М.Г., Николаев С.М., Колпащикова Т.Н., Цой И.Б. О структурногеологической характеристике «сейсмической бреши» в центральной части Курильской островной гряды // Тихоокеанская геология. 2007. Т. 26. № 1. С. 5–19.; Кулинич Р.Г., Валитов М.Г., Прошкина З.Н. Геофизические поля, блоковая структура и сейсмическая активность Центральных Курил // Тихоокеанская геология. 2012. Т. 31. № 6. С. 35–43.; Кулинич Р.Г., Валитов М.Г., Прошкина З.Н. Сравнительный анализ сейсмических и плотностных моделей земной коры Центральных Курил // Тихоокеанская геология. 2015. Т. 34. № 6. С. 45–56.; Last B.J., Kubik K., 1983. Compact Gravity Inversion. Geophysics 48, 713–72, https://doi.org/10.1190/1.1441501.; Li C.-F, Lu Y., Wang J., 2017. A Global Reference Model of Curie-Point Depths Based on EMAG2. Scientific Reports 7, 45129. http://doi.org/10.1038/srep45129.; Лобковский Л.И., Баранов Б.В. Клавишная модель сильных землетрясений в островных дугах и активных континентальных окраинах // Доклады АН СССР. 1984. Т. 275. № 4. С. 843–847.; Лобковский Л.И., Владимирова И.С., Габсатаров Ю.В., Гарагаш И.А., Баранов Б.В., Стеблов Г.М. Постсейсмические движения после симуширских землетрясений 2006–2007 гг. на различных стадиях сейсмического цикла // Доклады Академии наук, 2017. Т. 473. № 3. С. 359–364. http://doi.org/10.7868/S0869565217090225.; Maekawa H., Yamanoto K., Teruaki I., Ueno T., Osada Y., 2001. Serpentinite Sea Mounts and Hydrated Mantle Wedge in the Izu-Bonin and Mariana Forearc Regions. Bulletin of Earthquake Research Institute 76, 355–366.; Meyer B., Saltus R., Chulliat A., 2017. EMAG2: Earth Magnetic Anomaly Grid (2-Arc-Minute Resolution). Version 3. National Centers for Environmental Information, NOAA. http://doi.org/10.7289/V5H70CVX.; Пальшин Н.А., Алексеев Д.А. Особенности глубинной электропроводности в зоне перехода от Тихого океана к Евразии // Физика Земли. 2017. № 3. С. 107–123. https://doi.org/10.7868/S0002333717020107.; Popov K.V., Bazylev B.A., Shcherbakov V.P., Tsel’movich V.A., Kononkova N.N., 2015. Thermomagnetic Analysis of Ultramafic Rocks: A Case Study of Dunite from the Pekul’ney Complex, Chukotka, NE Russia. Russian Journal of Earth Sciences 15, ES1003. http://doi.org/10.2205/2015ES000547.; Portniaguine O., Zhdanov M.S., 2002. 3-D Magnetic Inversion with Data Compression and Image Focusing. Geophysics 67 (5), 1532–1541. http://doi.org/10.1190/1.1512749.; Purucker M.E., Clark D.A., 2011. Mapping and Interpretation of the Lithospheric Magnetic Field. In: M. Mandea, M. Korte (Eds), Geomagnetic Observations and Models. P. 311–337. https://doi.org/10.1007/978-90-481-9858-0_13.; Rajaram M., 2007. Depth to Curie Temperature. In: D. Gubbins, E. Herrero-Bervera (Eds), Encyclopedia of Geomagnetism and Paleomagnetism. P. 157–159. http://doi.org/10.1007/978-1-4020-4423-6.; Raleigh C.B., Paterson M.S., 1965. Experimental Deformation of Serpentinite and Its Tectonic Implications. Journal of Geophysical Research 70 (16), 3965–3985. http://doi.org/10.1029/JZ070i016p03965.; Rupke L.H., Morgan J.P., Hort M., Connolly J.A.D., 2004. Serpentine and the Subduction Zone Water Cycle. Earth and Planetary Science Letters 223 (1–2), 17–34. http://doi.org/10.1016/j.epsl.2004.04.018.; Sykes L., 1971. Aftershock Zones of Great Earthquakes, Seismicity Gaps and Earthquake Prediction for Alaska and the Aleutians. Journal of Geophysical Research 76 (32), 8021–8041. http://doi.org/10.1029/JB076i032p08021.; Taira A., 2001. Tectonic Evolution of the Japanese Island Acr System. Annual Review of Earth Planetary Science 29, 109–134. https://doi.org/10.1146/annurev.earth.29.1.109.; Zhdanov M.S., 2002. Geophysical Inverse Theory and Regularization Problems. Methods on Geochemistry and Geophysics. Vol. 36. Elsevier Science, Amsterdam, 633 p.; https://www.gt-crust.ru/jour/article/view/1087