يعرض 1 - 20 نتائج من 77 نتيجة بحث عن '"ДИФФЕРЕНЦИРОВАННЫЙ РАК ЩИТОВИДНОЙ ЖЕЛЕЗЫ"', وقت الاستعلام: 0.65s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Head and Neck Tumors (HNT); Том 14, № 1 (2024); 83-95 ; Опухоли головы и шеи; Том 14, № 1 (2024); 83-95 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2024-14-1

    وصف الملف: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/973/624; Чойнзонов Е.Л., Решетов И.В., Иванов С.А. и др. Проект клинических рекомендаций по диагностике и лечению дифференцированного рака щитовидной железы у взрослых пациентов. Эндокринная хирургия 2022;16(2):5—29. DOI:10.14341/serg12792; Шишкина В.В., Чеботарева Э.Д., Семичев Д.С. Лечебное применение открытых радионуклидов. Киев, 1988. С. 4—10.; Filetti S., Bidart J., Arturi F. et al. Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism. Eur J Endocrinol 1999;141(5):443-57. DOI:10.1530/eje.0.1410443; Боголюбова А.В., Абросимов А.Ю., Селиванова Л.С., Белоусов П.В. Гистологическая и молекулярно-генетическая характеристика клинически агрессивных вариантов папиллярного рака щитовидной железы. Архив патологии 2019;81(1):46—51. DOI:10.17116/patol20198101146; Tuttle R., Ahuja S., Avram A. et al. Controversies, consensus, and collaboration in the use of 131I therapy in differentiated thyroid cancer: a joint statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid 2019;29(4):461-70. DOI:10.1089/thy.2018.0597; Shaha A. Implications of prognostic factors and risk groups in the management of differentiated thyroid cancer. Laryngoscope 2004;114(3):393-402. DOI:10.1097/00005537-200403000-00001; Haugen B., Alexander E., Bible Keith C. et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26(1):1-133. DOI:10.1089/thy.2015.0020; Каприн А.Д., Мардынский Ю.С. Терапевтическая радиология. М.: ГЭОТАР-Медиа, 2018.; Cooper D., Doherty G., Haugen B. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2006;16(2):109-42. DOI:10.1089/thy.2006.16.109; Sawka A., Ibrahim-Zada I., Galacgac P. et al. Dietary iodine restriction in preparation for radioactive iodine treatment or scanning in well-differentiated thyroid cancer: a systematic review. Thyroid 2010;20(10):1129-38. DOI:10.1089/thy.2010.0055; Maxon H., Thomas S., Boehringer A. et al. Low iodine diet in I-131 ablation of thyroid remnants. Clin Nucl Med 1983;8(3):123-6. DOI:10.1097/00003072-198303000-00006; Shankar L.K., Yamamoto A.J., Alavi A., Mandel S.J. Comparison of 123I scintigraphy at 5 and 24 hours in patients with differentiated thyroid cancer. J Nucl Med 2002;43(1):72-6.; Санитарные правила и нормативы (СанПиН) 2.6.1.2368-08. «Гигиенические требования по обеспечению радиационной безопасности при проведении лучевой терапии с помощью открытых радионуклидных источников» (утв. постановлением Главного государственного санитарного врача РФ от 16.06.2008 № 36).; NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Thyroid Carcinoma. Version 2.2022.; Filetti S., Durante C., Hartl D. et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019;30(12):1856-83. DOI:10.1093/annonc/mdz400; Dewaraja Y.K., Ljungberg M., Green A.J. et al. MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med 2013;54(12):2182-8. DOI:10.2967/jnumed.113.122390; Van Nostrand D. Sialoadenitis secondary to 131I therapy for well-differentiated thyroid cancer. Oral Dis 2011;17(2):154-61. DOI:10.1111/j.1601-0825.2010.01726.x; Burns J., Morgenstern K., Cahill K. et al. Nasolacrimal duct obstruction secondary to I131 therapy. Ophthal Plast Reconstr Surg 2004;20(2):126-9. DOI:10.1097/01.iop.0000117340.41849.81; Wu J.X., Young S., Ro K. et al. Reproductive outcomes and nononcologic complications after radioactive iodine ablation for well-differentiated thyroid cancer. Thyroid 2015;25(1):133-8. DOI:10.1089/thy.2014.0343; Pacini F., Gasperi M., Fugazzola L. et al. Testicular function in patients with differentiated thyroid carcinoma treated with radioiodine. J Nucl Med 1994;35(9):1418-22.; Wichers M., Benz E., Palmedo H. et al. Testicular function after radioiodine therapy for thyroid cancer. Eur J Nucl Med 2000;27(5):503-7. DOI:10.1007/s002590050535; Handelsman D.J., Conway A.J., Donnelly P.E., Turtle J.R. Azoospermia after iodine-131 treatment for thyroid carcinoma. Br Med J 1980;281(6254):1527. DOI:10.1136/bmj.281.6254.1527; Климанов В.А. Ядерная медицина. Радионуклидная диагностика: учебное пособие для вузов. 2-е изд., испр. и доп. М.: Юрай, 2022.; Шуринов А.Ю., Бородавина Е.В. Динамический контроль после радиойодабляции при дифференцированном раке щитовидной железы - взгляд радиолога. Опухоли головы и шеи 2023;13(1):91-101. DOI:10.17650/2222-1468-2023-13-1-91-101; Haugen B.R., Alexander E.K., Bible K.C. et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26(1):1-133. DOI:10.1089/thy.2015.0020; https://ogsh.abvpress.ru/jour/article/view/973

  2. 2
    Academic Journal
  3. 3
  4. 4
    Academic Journal

    المصدر: Head and Neck Tumors (HNT); Том 13, № 1 (2023); 91-101 ; Опухоли головы и шеи; Том 13, № 1 (2023); 91-101 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-1

    وصف الملف: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/871/575; Filetti S., Durante C., Hartl D., Leboulleux S. et al. Berruti on behalf of the ESMO Guidelines Committee. 2019. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019;30(12):1856–83. DOI:10.1093/annonc/mdz400; Клинические рекомендации. Дифференцированный рак щитовидной железы. 2020 г. Доступно по: https://cr.minzdrav.gov.ru/schema/329_1#doc_a1.; Gulec S., Ahuja S., Avram A. et al. A joint statement from the American Thyroid Association, the European Association of Nuclear Medicine, the European Thyroid Association, the Society of Nuclear Medicine and Molecular Imaging on Current Diagnostic and Theranostic Approaches in the Management of Thyroid Cancer. Thyroid 2021;31(7):1009–19. DOI:10.1089/ thy.2020.0826; Haddad R., Bischoff L., Ball D. et al. Thyroid Carcinoma. Version 2.2022. NCCN Clinical Practice Guidelines in Oncology. J Nat Compr Canc Netw 2022;20(8):925–51. DOI:10.6004/ jnccn.2022.0040; Шуринов А.Ю., Крылов В.В., Бородавина Е.В. Радиойодаблация при раке щитовидной железы. Исторические и современные аспекты. Обзор литературы. Онкологический журнал: лучевая диагностика, лучевая терапия 2021;4(4):9–19. DOI:10.37174/2587-7593-2021-4-4-9-19; Duren M., Siperstein A., Shen W. et al. Value of stimulated serum thyroglobulin levels for detecting persistent or recurrent differentiated thyroid cancer in high- and low-risk patients. Surgery 1999;26(1):13–9. DOI:10.1067/msy.1999.98849; Pacini F., Lippi F., Formica N. et al. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med 1987;28(12):1888–91.; Pineda J., Lee T., Ain K. et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab 1995;80(5):1488–92. DOI:10.1210/ jcem.80.5.7744991; Roelants V., De Nayer P., Bouckaert A., Beckers C. The predictive value of serum thyroglobulin in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997;24:722–7. DOI:10.1007/ BF00879658; Pacini F., Molinaro E., Castagna M. et al. Ablation of thyroid residues with 30 mCi 131I: a comparison in thyroid cancer patients prepared with recombinant human TSH or thyroid hormone withdrawal. J Clin Endocrinol Metab 2002;87(9):4063–8. DOI:10.1210/jc.2001-011918; Kukulska A., Krajewska J., Gawkowska-Suwiriska M. et al. Radioiodine thyroid remnant ablation in patients with differentiated thyroid carcinoma (DTC): prospective comparison of long-term outcomes of treatment with 30, 60, and 100 mCi. Thyroid Res 2010;3(1):9. DOI:10.1186/1756-6614-3-9; Toubeau M., Touzery C., Arveux P. et al. Predictive value for disease progression of serum thyroglobulin levels measured in the postoperative period and after 131I ablation therapy in patients with differentiated thyroid cancer. J Nucl Med 2004;45(6):988–94.; Haugen B., Alexander E., Bible K.C. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26(1):1–133. DOI:10.1089/thy.2015.0020; Lamartina L., Grani G., Durante C., Filetti S. Recent advances in managing differentiated thyroid cancer. F1000Res 2018;7:86. DOI:10.12688/f1000research.12811.1; Gray J., Singh G., Uttley L., Balasubramanian S. Routine thyroglobulin, neck ultrasound and physical examination in the routine follow up of patients with differentiated thyroid cancer: where is the evidence? Endocrine 2018;62(1):26–33. DOI:10.1007/s12020-018-1720-3; Prpić M., Franceschi M., Romić M. et al. Thyroglobulin as a tumor marker in differentiated thyroid cancer – clinical considerations. Acta Clin Croat 2018;57(3):518–27. DOI:10.20471/acc.2018.57.03.16; Giovanella L., Clark P., Chiovato L. et al. Thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol 2014;171(2):R33–46. DOI:10.1530/EJE-14-0148; Spencer C. Clinical review: clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab 2011;96(12):3615–27. DOI:10.1210/jc.2011-1740; Dekker B., Van der Horst-Schrivers A., Brouwers A. et al. Clinical irrelevance of lower titer thyroglobulin autoantibodies in patients with differentiated thyroid carcinoma. Eur Thyroid J 2022 20;11(6):e220137. DOI:10.1530/ETJ-22-0137; Brassard M., Borget I., Edet-Sanson A. et al. Long-term follow-up of patients with papillary and follicular thyroid cancer: a prospective study on 715 patients. J Clin Endocrinol Metab 2011;96(5):1352–9. DOI:10.1210/jc.2010-2708; Durante C., Montesano T., Attard M. et al. Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab 2012;97(8):2748–53. DOI:10.1210/jc.2012-1123; Angell T., Spencer C., Rubino B. et al. In search of an unstimulated thyroglobulin baseline value in low-risk papillary thyroid carcinoma patients not receiving radioactive iodine ablation. Thyroid 2014;24(7):1127–33. DOI:10.1089/thy.2013.0691; Grani G., Fumarola A. Thyroglobulin in lymph node fine-needle aspiration washout: a systematic review and meta-analysis of diagnostic accuracy. J Clin Endocrinol Metab 2014;99(6):1970–82. DOI:10.1210/jc.2014-1098; Torlontano M., Attard M., Crocetti U. et al. Follow-up of low risk patients with papillary thyroid cancer: role of neck ultrasonography in detecting lymph node metastases. J Clin Endocrinol Metab 2004;89(7):3402–7. DOI:10.1210/ jc.2003-031521; Grani G., Lamartina L., Cantisani V. et al. Enterobserver agreement of various thyroid imaging reporting and data systems. Endocr Connect 2018;7(1):1–7. DOI:10.1530/EC-17-0336; Lamartina L., Grani G., Biffoni M. et al. Risk stratification of neck lesions detected sonographically during the follow-up of differentiated thyroid cancer. J Clin Endocrinol Metab 2016;101(8):3036–44. DOI:10.1210/jc.2016-1440; Leboulleux S., Girard E., Rose M. et al. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab 2007;92(9):3590–4. DOI:10.1210/jc.2007-0444; Leenhardt L., Erdogan M., Hegedus L. et al. 2013 European Thyroid Association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J 2013;2(3):147–59. DOI:10.1159/000354537; Lamartina L., Deandreis D., Durante C., Filetti S. ENDOCRINE TUMOURS: imaging in the follow-up of differentiated thyroid cancer: current evidence and future perspectives for a risk-adapted approach. Eur J Endocrinol 2016;175(5):R185–202. DOI:10.1530/ EJE-16-0088; Grani G., Ramundo V., Falcone R. et al. Thyroid cancer patients with no evidence of disease: the need for repeat neck ultrasound. J Clin Endocrinol Metab 2019;104(11):4981–9. DOI:10.1210/jc.2019-00962; Castagna M., Maino F., Cipri C. et al. Delayed risk stratification, to include the response to initial treatment (surgery and radioiodine ablation), has better outcome predictivity in differentiated thyroid cancer patients. Eur J Endocrinol 2011;165(3):441–6. DOI:10.1530/EJE-11-0466; Tuttle R., Tala H., Shah J. et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 2010;20(12):1341–9. DOI:10.1089/thy.2010.0178; Durante C., Attard M., Torlontano M. et al. Identification and optimal postsurgical follow-up of patients with very low-risk papillary thyroid microcarcinomas. J Clin Endocrinol Metab 2010;95(11):4882–8. DOI:10.1210/jc.2010-0762; Tuttle R., Tala H., Shah J. et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 2010; 20(12):1341–9. DOI:10.1089/thy.2010.0178; Jeon M., Kim W., Park W. et al. Modified dynamic risk stratification for predicting recurrence using the response to initial therapy in patients with differentiated thyroid carcinoma. Eur J Endocrinol 2014;170:23–30. DOI:10.1530/EJE-13-0524; Han J., Kim W., Yim J. et al. Long-term clinical outcome of differentiated thyroid cancer patients with undetectable stimulated thyroglobulin level one year after initial treatment. Thyroid 2012;22(8):784–90. DOI:10.1089/thy.2011.0322; Scheffel R., Zanella A., Antunes D. et al. Low recurrence rates in a cohort of differentiated thyroid carcinoma patients: a referral center experience. Thyroid 2015;25(8):883–9. DOI:10.1089/thy.2015.0077; Llamas-Olier A., Cuéllar D., Buitrago G. Intermediate-risk papillary thyroid cancer: risk factors for early recurrence in patients with excellent response to initial therapy. Thyroid 2018;28(10):1311–7. DOI:10.1089/thy.2017.0578; Ganly I., Nixon I., Wang L. et al. Survival from differentiated thyroid cancer: what has age got to do with it? Thyroid 2015;25(10):1106–14. DOI:10.1089/thy.2015.0104; Comtois R., Theriault C., Del Vecchio P. Assessment of the efficacy of iodine-131 for thyroid ablation. J Nucl Med 1993;34(11):1927–30.; Schlumberger M., Berg G., Cohen O. et al. Follow-up of low-risk patients with differentiated thyroid carcinoma. Eur J Endocrinol 2004;150(2):105–12. DOI:10.1530/eje.0.1500105; Sacks W., Fung C., Chang J. et al. The effectiveness of radioactive iodine for treatment of low-risk thyroid cancer: a systematic analysis of the peer-reviewed literature from 1966 to April 2008. Thyroid 2010;20(11):1235–45. DOI:10.1089/thy.2009.0455; Dietlein M., Eschner W., Grünwald F. et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer. Nuklearmedizin 2016;55:77–89. DOI:10.1055/s-0037-1616478; Gastanga M., Cantara S., Pacini F. Reappraisal of the indication for radioiodine thyroid ablation in differentiated thyroid cancer patients. J Endocrinol Invest 2016;39(10):1087–94. DOI:10.1007/s40618-016-0503-z; Deandreis D., Rubino C., Tala H. et al. Comparison of empiric versus whole-body-blood clearance dosimetry-based approach to radioactive iodine treatment in patients with metastases from differentiated thyroid cancer. J Nucl Med 2017;58(5):717–22. DOI:10.2967/jnumed.116.179606; Verburg F., Schmidt M., Kreissl M. et al. Procedural guideline for Iodine-131 whole-body scintigraphy in differentiated thyroid carcinoma (version 5). Nuklearmedizin 2019;58(3):228–41. DOI:10.1055/a-0891-1839; Giovanella L., Treglia G., Sadeghi R. et al. Unstimulated highly sensitive thyroglobulin in follow-up of differentiated thyroid cancer patients: a meta-analysis. J Clin Endocrinol Metab 2014;99(2):440– 7. DOI:10.1210/jc.2013-3156; Francis G., Waguespack S., Bauer A. et al. American Thyroid Association Guidelines Task Force Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid 2015;25(7):716–59. DOI:10.1089/thy.2014.0460; Li J., He Z., Bansal V., Hennessey J. Low iodine diet in differentiated thyroid cancer: a review. Clin Endocrinol (Oxf) 2016;84(1):3–12. DOI:10.1111/cen.12846; Campennì А., Barbaro D., Guzzo M. et al. Personalized management of differentiated thyroid cancer in real life – practical guidance from a multidisciplinary panel of experts. Endocrine 2020;70(2):280–91. DOI:10.1007/s12020-020-02418-x; Feine U., Lietzenmayer R., Hanke J. et al. 18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18FDG and 131I. [In German]. Nuklearmedizin 1995;34(4):127–34.; Feine U., Lietzenmayer R., Hanke J. et al. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996;37(9):1468–72.; Asa S., Aksoy S., Vatankulu B. et al. The role of FDG-PET/CT in differentiated thyroid cancer patients with negative iodine-131 whole-body scan and elevated anti-Tg level. Ann Nucl Med 2014;28(10):970–9. DOI:10.1007/s12149-014-0897-7; Liu Y. The role of 18F-FDG PET/CT in the follow-up of well-differentiated thyroid cancer with negative thyroglobulin but positive and/or elevated antithyroglobulin antibody. Nucl Med Commun 2016;37(6):577–82. DOI:10.1097/MNM.0000000000000480; Ozkan E., Aras G., Kucuk N. Correlation of 18F-FDG PET/CT findings with histopathological results in differentiated thyroid cancer patients who have increased thyroglobulin or antithyroglobulin antibody levels and negative 131I whole-body scan results. Clin Nucl Med 2013;38(5):326–31. DOI:10.1097/RLU.0b013e318286827b; Liu M., Cheng L., Jin Y. et al. Predicting 131I-avidity of metastases from differentiated thyroid cancer using 18F-FDG PET/CT in postoperative patients with elevated thyroglobulin. Sci Rep 2018;8(1):4352. DOI:10.1038/s41598-018-22656-4; Silberstein E. The problem of the patient with thyroglobulin elevation but negative iodine scintigraphy: the TENIS syndrome. Semin Nucl Med 2011;41(2):113–20. DOI:10.1053/j.semnuclmed.2010.10.002; Bartel C., Magerefteh S., Avram A. et al. Snmmi procedure standard for scintigraphy for differentiated thyroid cancer. J Nucl Med Technol 2020;48(3):202–9. DOI:10.2967/jnmt.120.243626; Avram А., Giovanella L., Greenspan B. et al. SNMMI procedure standard/eanm practice guideline for nuclear medicine evaluation and therapy of differentiated thyroid cancer: abbreviated version. J Nucl Med 2022;63(6):15N–35N.; Petranović P., Kreissl M., Campenni A. et al. SNMMI/EANM practice guideline vs. ETA Consensus Statement: differences and similarities in approaching differentiated thyroid cancer management-the EANM perspective. Eur J Nucl Med Mol Imaging 2022;49(12):3959–63. DOI:10.1007/s00259-022-05935-1; Giovanella L., Treglia G., Ceriani L., Verburg F. Detectable thyroglobulin with negative imaging in differentiated thyroid cancer patients. What to do with negative anatomical imaging and radioiodine scan? Nuklearmedizin 2014;53(1):1–10. DOI:10.3413/Nukmed-0618-13-08; Van Nostrand D. Radioiodine imaging for differentiated thyroid cancer: not all radioiodine images are performed equally. Thyroid 2019;29(7):901–9.; Donohoe K., Aloff J., Avram А. et al. Appropriate use criteria for nuclear medicine in the evaluation and treatment of differentiated thyroid cancer. J Nucl Med 2020;61(3):375–96. DOI:10.2967/jnumed.119.240945; Binse I., Poeppel T., Ruhlmann M. et al. 68Ga-DOTATOC PET/CT in patients with iodine- and 18F-FDG-negative differentiated thyroid carcinoma and elevated serum thyroglobulin. J Nucl Med 2016;57(10):1512–7. DOI:10.2967/jnumed.115.171942; Vrachimis A., Stegger L., Wenning C. et al. 68Ga-DOTATATE PET/ MRI and 18F-FDG PET/CT are complementary and superior to diffusion-weighted MR imaging for radioactive-iodine-refractory differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2016;43(10):1765–72. DOI:10.1007/s00259-016-3378-5; Czepczynski R., Matysiak-Grzes M., Gryczynska M. et al. Peptide receptor radionuclide therapy of differentiated thyroid cancer: efficacy and toxicity. Arch Immunol Ther Exp (Warsz) 2015;63(2):147–54. DOI:10.1007/s00005-014-0318-6; Versari A., Sollini M., Frasoldati A. et al. Differentiated thyroid cancer: A new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid 2014;24(4):715–26. DOI:10.1089/thy.2013.0225; Roll W., Riemann B., Schafers M. et al. 177Lu-DOTATATE therapy in radioiodine-refractory differentiated thyroid cancer: a single center experience. Clin Nucl Med 2018;43(10):e346–51. DOI:10.1097/RLU.0000000000002219; Gubbi S., Koch C., Klubo-Gwiezdzinska J. Peptide receptor radionuclide therapy in thyroid cancer. Front endocrinol (Lausanne) 2022;13:896287. DOI:10.3389/fendo.2022.896287; Ryu Y.J., Lim S.Y., Na Y.M. et al. Prostate-specific membrane antigen expression predicts recurrence of papillary thyroid carcinoma after total thyroidectomy. BMC Cancer 2022;22(1):1278. DOI:10.1186/s12885-022-10375-z; Piek M., De Vries L., Donswijk M. et al. Ploeg IMC. Retrospective analysis of PSMA PET/CT thyroid incidental uptake in adults: incidence, diagnosis, and treatment/outcome in a tertiary cancer referral center and University Medical Center. Eur J Nucl Med Mol Imaging 2022;49(7):2392–400. DOI:10.1007/s00259-022-05679-y; https://ogsh.abvpress.ru/jour/article/view/871

  5. 5
    Academic Journal

    المصدر: Siberian journal of oncology; Том 20, № 6 (2021); 134-140 ; Сибирский онкологический журнал; Том 20, № 6 (2021); 134-140 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-6

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1996/939; Бородавина Е.В., Исаев П.А., Шуринов А.Ю., Румянцев П.О., Крылов В.В., Петросян К.М., Каприн А.Д., Иванов С.А., Подвязников С.О., Романов И.С., Мудунов А.М., Слащук К.Ю., Жихорев Р.С., Волконский М.В., Чагова Р.М., Суслова И.Р., Хряпа А.И., Лепшокова А.Х., Фадеева Н.Л., Сафарова А.Р., Калейкина Л.П., Лымарь Е.В., Чернякова Е.М., Снежко О.А., Зиньковская А.Е., Муфазалов Ф.Ф., Кузьмина Е.С., Дружинина Ю.В., Мусин Ш.И., Мухитова М.Р., Хасанова А.И., Сафина С.З., Кириенко С.Л. Эффективность и переносимость ленватиниба при радиойодрезистентном дифференцированном раке щитовидной железы по результатам многоцентрового наблюдательного исследования в Российской Федерации. Опухоли головы и шеи. 2020; 10(1): 65–72.; Amaravadi R., Kimmelman A.C., White E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016; 30(17): 1913–30. doi:10.1101/gad.287524.116.; Yun C.W., Lee S.H. The roles of autophagy in cance. Int J Mol Sci. 2018; 19(11): 3466. doi: 10,3390 / ijms19113466; Gewirtz D.A. The four faces of autophagy: Implications for cancer therapy. Cancer Res. 2014; 74: 647–651. doi:10.1158/0008-5472.CAN-13-2966.; Rabinowitz J.D., White E. Autophagy and metabolism. Science. 2010; 330 (6009): 1344–1348. doi:10.1126/science.1193497.; Galluzzi L., Pietrocola F., Bravo-San Pedro J.M., Amaravadi R.K., Baehrecke E.H., Cecconi F., Codogno P., Debnath J., Gewirtz D.A, Karantza V., Kimmelman A., Kumar S., Levine B., Maiuri M.C., Martin S.J., Penninger J., Piacentini M., Rubinsztein D.C., Simon H.-U., Simonsen A., Thorburn A.M., Velasco G., Ryan K.M., Kroemer G. Autophagy in malignant transformation and cancer progression. EMBO J. 2015; 34(7): 856–880. doi:10.15252/embj.201490784.; Burada F., Nicoli E.R., Ciurea M.E., Uscatu D.C., Ioana M., Gheonea D.I. Autophagy in colorectal cancer: An important switch from physiology to pathology. World J Gastrointest Oncol. 2015; 7(11): 271–284. doi:10.4251/wjgo.v7.i11.271.; Su Z., Yang Z., Xu Y., Chen Y., Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015; 14: 48. doi:10.1186/s12943-015-0321-5.; Kocaturk N.M., Akkoc Y., Kig C., Bayraktar O., Gozuacik D., Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019; 15(134): 116–137. doi:10.1016/j.ejps.2019.04.011.; Tesselaar M.H., Crezee T., Schuurmans I., Gerrits D., Nagarajah J., Boerman O.C., Grunsven I.-van E.-van, Smit J.W.A, Netea-Maier R.T., Plantinga T.S. Digitalislike compounds restore hNIS expression and iodide uptake capacity in anaplastic thyroid cancer. J Nucl Med. 2018; 59(5): 780–786. doi:10.2967/jnumed.117.200675.; Yu Y., Yu X., Fan C., Wang H., Wang R., Feng C., Guan H. Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer. J Mol Med. 2018; 96(8): 777–790. doi:10.1007 / s00109-018-1659-0.; Wei W., Hardin H., Luo Q.Y. Targeting autophagy in thyroid cancers. Endocr Relat Cancer. 2019; 26(4): 181–194. doi:10.1530/ERC-18-0502.; KimM.J.,WooS.J.,YoonC.H.,LeeJ.S.,AnS.,ChoiY.H.,HwangS.G., Yoon G., Lee S.J. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. Involvement of autophagy in oncogenic KRas-induced malignant cell transformation. J Biol Chem. 2011; 286(15): 12924–32. doi:10.1074/jbc.M110.138958; Fagin J.A., Wells S.A. Biologic and clinical perspectives on thyroid cancer. New Engl J Med. 2016; 375(23): 1054–1067. doi:10.1056/NEJMc1613118.; Morani F., Titone R., Pagano L., Galetto A., Alabiso O., Aimaretti G., Isidoro C. Autophagy and thyroid carcinogenesis: genetic and epigenetic links. Endocr Relat Cancer. 2013; 21(1): 13–29. doi:10.1530/ERC-13-0271.; Vlahakis A., Graef M., Nunnari J., Powers T. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA. 2014; 111(29): 10586–10591.doi:10.1073/pnas.1406305111.; Спирина Л.В., Чижевская С.Ю., Кондакова И.В., Тарасенко Н.В. Роль аутофагии в развитии опухолей щитовидной железы, связь с активацией AKT/m-TOR сигнального пути. Клиническая и экспериментальная тиреоидология. 2019; 15(3): 110–117.; Wang H.W., Kang., Zhao Y., Min I., Wyrwas B., Moore M., Teng L., Zarnegar R., Jiang X., Fahey T.J. Targeting autophagy sensitizes BRAFmutant thyroid cancer to vemurafenib. J Clin Endocrinol Metab. 2017; 102(2): 634–643. doi:10.1210/jc.2016-1999.; Jiang Z.F., Shao L.J., Wang W.M., Yan X.B., Liu R.Y. Decreased expression of Beclin-1 and LC3 in human lung cancer. Mol Biol Rep. 2012; 39(1): 259–267. doi:10.1007/s11033-011-0734-1.; Yu J., Ren P., Zhong T., Wang Y., Yan M., Xue B., Li R., Dai C., Liu C., Chen G., Yu X.F. Pseudolaric acid B inhibits proliferation in SW579 human thyroid squamous cell carcinoma. Mol Med Rep. 2015; 12(5): 7195–7202. doi: 10,3892/mmr.2015.4418.; Kim H.M., Kim E.S., Koo J.S. Expression of autophagy-related proteins in different types of thyroid cancer. Int J Mol Sci. 2017; 18(3): 540. doi: 10,3390/ijms18030540.; White E. Autophagy and p53. Cold Spring Harb Perspect Med. 2016; 6(4): a026120. doi:10.1101/cshperspect.a026120.; Gao P., Hao F., Dong X., QiuY. The role of autophagy and Beclin-1 in radiotherapy-induced apoptosis in thyroid carcinoma cells. Int J Clin Exp Pathol. 2019; 12(3): 885–892.; Gundara J.S., Robinson B.G., Sidhu S.B. Evolution of the «autophagamiR». Autophagy. 2011; 7(12): 1553–1554. doi:10.4161/auto.7.12.17762.; Molinaro E., Romei C., Biagini A., Sabini E., Agate L., Mazzeo S., Materazzi G., Sellari-Franceschini S., Ribechini A., Torregrossa L., Basolo F., Vitti P., Elisei R. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017; 13(11): 644–660. doi:10.1038/nrendo.2017.76.; Catalano M.G., Fortunati N., Pugliese M., Marano F., Ortoleva L., Poli R., Asioli S., Bandino A., Palestini N., Grange C., Bussolati B., Boccuzzi G. Histone deacetylase inhibition modulates E-cadherin expression and suppresses migration and invasion of anaplastic thyroid cancer cells. J Clin Endocrinol Metab. 2012; 97(7): 1150–1159. doi:10.1210/jc.2011-2970.; Füllgrabe J., Klionsky D.J., Histone B.J. Post-translational modifications regulate autophagy flux and outcome. Autophagy. 2013; 9(10): 1621–1623. doi:10.4161/auto.25803.; Liu K., Ren T., Huang Y., Sun K., Bao X., Wang S., Zheng B., Guo W. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death Dis. 2017; 8(8): 3015. doi:10.1038/cddis.2017.422.; Lin C.I., Whang E.E., Abramson M.A., Jiang X., Price B.D., Donner D.B., Moore Jr. F.D., Ruan D.T. Autophagy: a new target for advanced papillary thyroid cancer therapy. Surgery. 2009; 146(6): 1208–1214. doi:10.1016/j.surg.2009.09.019.; Naoum G.E., Morkos M., Kim B., Arafat W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer. 2018; 17(1): 51. doi:10.1186 / s12943-018-0786-0.; Plantinga T.S., Tesselaar M.H., Morreau H., Corssmit E.P.M., Willemsen B.K., Kusters B., Grunsven A.C.E.-van, Smit J.W.A, NeteaMaierR.T. Autophagy activity is associated with membranous sodium iodide symporter expression and clinical response to radioiodine therapy in non-medullary thyroid cancer. Autophagy. 2016; 12(7): 1195–1205. doi:10.1080/15548627.2016.1174802.; Рябая О.О., Егорова А.В., Степанова Е.В. Роль аутофагии в механизме гибели опухолевых клеток. Успехи современной биологии. 2015; 135(2): 177–188.; Wang W., Kang H., Zhao Y., Min I., Wyrwas B., Moore M., Teng L., Zarnegar R., Jiang X., Fahey T.J. Targeting autophagy sensitizes BRAFmutant thyroid cancer to vemurafenib. J Clin Endocrinol Metab. 2017; 102(2): 634–643. doi:10.1210/jc.2016-1999.; Meng X., Wang H., Zhao J.,Hu L., Zhi J., Wei S., RuanX., Hou X., Li D., Zhang J., Yang W., Qian B., Wu Y., Zhang Y., Meng Z., Guan L., Zhang H., Zheng X., Gao M. Apatinib inhibits cell proliferation and induces autophagy in human papillary thyroid carcinoma via the PI3K/Akt/mTOR signaling pathway. Front Oncol. 2020; 10(3): 217. doi:10.3389/fonc.2020.00217.; https://www.siboncoj.ru/jour/article/view/1996

  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المصدر: Head and Neck Tumors (HNT); Том 10, № 4 (2020); 16-24 ; Опухоли головы и шеи; Том 10, № 4 (2020); 16-24 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2020-0-4

    وصف الملف: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/577/448; Kitahara C.M., Devesa S.S., Sosa J.A. Increases in thyroid cancer incidence and mortality-reply. JAMA 2017;318(4):390–1. DOI:10.1001/jama.2017.7910.; Haugen B.R., Alexander E.K., Bible K.C. et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26(1):1–133. DOI:10.1089/thy.2015.0020.; Santhanam P., Solnes L.B., Rowe S.P. Molecular imaging of advanced thyroid cancer: iodinated radiotracers and beyond. Med Oncol 2017;34(12):189. DOI:10.1007/s12032-017-1051-x.; Fatourechi V., Hay I.D., Mullan B.P. et al. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid 2000;10(7):573–7. DOI:10.1089/thy.2000.10.573.; Sheikh A., Polack B., Rodriguez Y., Kuker R. Nuclear molecular and theranostic imaging for differentiated thyroid cancer. Mol Imaging Radionucl Ther 2017;26(Suppl 1):50–65. DOI:10.4274/2017.26.suppl.06.; Choudhury P.S., Guptа M. Differentiated thyroid cancer theranostics: radioiodine and beyond. Br J Radiol 2018;91(1091):20180136. DOI:10.1259/bjr.20180136.; Rosenbaum-Krumme S.J., Gorges R., Bockisch A., Binse I. 18F-FDG PET/CT changes therapy management in high-risk DTC after first radioiodine therapy. Eur J Nucl Med Mol Imag 2012;39(9):1373–80. DOI:10.1007/s00259-012-2065-4.; Lee J.W., Lee S.M., Lee D.H., Kim Y.J. Clinical utility of 18F-FDG PET/CT concurrent with 131I therapy in intermediate-to-high-risk patients with differentiated thyroid cancer: dual-center experience with 286 patients. J Nucl Med 2013;54(8):1230–6. DOI:10.2967/jnumed.112.117119.; Gaertner F.C., Okamoto S., Shiga T. et al. FDG PET performed at thyroid remnant ablation has a higher predictive value for long-term survival of high-risk patients with well-differentiated thyroid cancer than radioiodine uptake. Clin Nucl Med 2015;40(5):378–83. DOI:10.1097/RLU.0000000000000699.; Nascimento C., Borget I., Al Ghuzlan A. et al. Postoperative fluorine-18-fluoro- deoxyglucose positron emission tomography/computed tomography: an important imaging modality in patients with aggressive histology of differentiated thyroid cancer. Thyroid 2015;25:437–44. DOI:10.1089/thy.2014.0320.; Triviño Ibáñez E.M., Muros M.A., Torres Vela E., Llamas Elvira J.M. The role of early 18F-FDG PET/CT in therapeutic management and ongoing risk stratification of high/intermediate-risk thyroid carcinoma. Endocrine 2015;51(3):490–8. DOI:10.1007/s12020-015-0708-5.; Qiu Z.-L., Wei W.-J., Shen C.-T. et al. Diagnostic performance of 18F-FDG PET/ CT in papillary thyroid carcinoma with negative 131I-WBS at first postablation, negative Tg and progressively increased TgAb level. Sci Rep 2017;7(1):2849. DOI:10.1038/s41598-017-03001-7.; Ruhlmann M., Binse I., Bockisch A., Rosenbaum-Krumme S.J. Initial [18F] FDG PET/CT in high-risk DTC patients. A three-year follow-up. Nuklearmedizin 2016;55:99–103. DOI:10.3413/Nukmed-0766-15-09.; Chang Y.W., Kim H.S., Jung S.P. et al. Pre-ablation stimulated thyroglobulin is a better predictor of recurrence in pathological N1a papillary thyroid carcinoma than the lymph node ratio. Int J Clin Oncol 2016;21:862–8. DOI:10.1007/s10147-016-0956-2.; Cho S.G., Kwon S.Y., Kim J. et al. Risk factors of malignant fluorodeoxyglucoseavid lymph node on preablation positron emission tomography in patients with papillary thyroid cancer undergoing radioiodine ablation therapy. Medicine (Baltimore) 2019;98(16):e14858. DOI:10.1097/MD.0000000000014858.; Shangguan L., Fang S., Zhang P. et al. Impact factors for the outcome of the first 131I radiotherapy in patients with papillary thyroid carcinoma after total thyroidectomy. Ann Nucl Med 2019;33:177–83. DOI:10.1007/s12149-018-01321-w.; Liu M., Cheng L., Jin Y. et al. Predicting 131I-avidity of metastases from differentiated thyroid cancer using 18F-FDG PET/CT in postoperative patients with elevated thyroglobulin. Sci Rep 2018;8(1):4352. DOI:10.1038/s41598-018-22656-4; Kwon S.Y., Kim J., Jung S.H. et al. Preablative stimulated thyroglobulin levels can predict malignant potential and therapeutic responsiveness of subcentimeter-sized, 18F-fluorodeoxyglucose-avid cervical lymph nodes in patients with papillary thyroid cancer. Clin Nucl Med 2016;41(1):e32–8. DOI:10.1097/RLU.0000000000000889.; https://ogsh.abvpress.ru/jour/article/view/577

  9. 9
    Academic Journal

    المصدر: Hospital Surgery. Journal named by L.Ya. Kovalchuk; No. 2 (2019); 22-27 ; Госпитальная хирургия. Журнал имени Л.А. Ковальчука; № 2 (2019); 22-27 ; Шпитальна хірургія. Журнал імені Л. Я. Ковальчука; № 2 (2019); 22-27 ; 2414-4533 ; 1681-2778 ; 10.11603/2414-4533.2019.2

    وصف الملف: application/pdf

  10. 10
    Academic Journal
  11. 11
    Academic Journal

    المصدر: Clinical Endocrinology and Endocrine Surgery; No. 4 (2019); 14-21 ; Clinical Endocrinology and Endocrine Surgery; № 4 (2019); 14-21 ; 2519-2582 ; 1818-1384 ; 10.30978/CEES-2019-4

    وصف الملف: application/pdf

  12. 12

    المصدر: Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 16, № 4 (2020); 355-360
    Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 16, № 4 (2020); 355-360
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; Том 16, № 4 (2020); 355-360

    وصف الملف: application/pdf

  13. 13
    Academic Journal

    المساهمون: Oxford PharmaGenesis Inc., Ньютаун, Пенсильвания, США, Inc., Woodcliff Lake, Нью-Джерси, США.

    المصدر: Head and Neck Tumors (HNT); Том 8, № 3 (2018); 53-60 ; Опухоли головы и шеи; Том 8, № 3 (2018); 53-60 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2018-8-3

    وصف الملف: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/361/343; Brose M. S., Nutting C. M., Jarzab B. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014;384(9940):319–28. DOI:10.1016/S0140-6736(14)60421-9. PMID: 24768112.; Busaidy N. L., Cabanillas M. E. Differentiated thyroid cancer: management of patients with radioiodine nonresponsive disease. J Thyroid Res 2012;2012:618985.DOI:10.1155/2012/618985. PMID: 22530159.; Cooper D. S., Doherty G. M., Haugen B. R. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19(11):1167–214. DOI:10.1089/thy.2009.0110. PMID: 19860577.; Dieci M. V., Arnedos M., Andre F., Soria J. C. Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov 2013;3(3):264–79. DOI:10.1158/2159-8290.CD-12-0362. PMID: 23418312.; Durante C., Haddy N., Baudin E. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91(8):2892–9. DOI:10.1210/jc.2005-2838. PMID: 16684830.; Haddad R. I., Schlumberger M., Wirth L. J. et al. Incidence and timing of common adverse events in Lenvatinib treated patients from the SELECT trial and their association with survival outcomes. Endocrine 2017;56(1):121–8. DOI:10.1007/s12020‑017‑1233‑5. PMID: 28155175.; Laursen R., Wehland M., Kopp S. et al. Effects and role of multikinase inhibitors in thyroid cancer. Curr Pharm Des 2016;22(39):5915–26. DOI:10.2174/1381612822666160614084943. PMID: 27306093.; Matsui J., Funahashi Y., Uenaka T. et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 2008;14(17):5459–65. DOI:10.1158/1078-0432.CCR-07-5270. PMID: 18765537.; Matsui J., Yamamoto Y., Funahashi Y. et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 2008;122(3):664–71. DOI:10.1002/ijc.23131. PMID: 17943726.; Okamoto K., Kodama K., Takase K. et al. Antitumor activities of the targeted multityrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett 2013;340(1):97–103. DOI:10.1016/j.canlet. 2013.07.007. PMID: 23856031.; Pacini F., Ito Y., Luster M. et al. Radioactive iodine-refractory differentiated thyroid cancer: unmet needs and future directions. Exp Rev Endocrinol Metab 2012;7:541–54. DOI:10.1586/eem.12.36.; Pitoia F., Jerkovich F. Selective use of sorafenib in the treatment of thyroid cancer. Drug Des Devel Ther 2016;10: 1119–31. DOI:10.2147/DDDT.S82972. PMID: 27042004.; Schlumberger M., Tahara M., Wirth L. J. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015;372(7):621–30. DOI:10.1056/NEJMoa1406470. PMID: 25671254.; St Bernard R., Zheng L., Liu W. et al. Fibroblast growth factor receptors as molecular targets in thyroid carcinoma. Endocrinology 2005;146(3):1145–53. DOI:10.1210/en.2004-1134. PMID: 15564323.; Tohyama O., Matsui J., Kodama K. et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res 2014;2014:638747. DOI:10.1155/2014/638747. PMID: 25295214.; Worden F. Treatment strategies for radioactive iodine-refractory differentiated thyroid cancer. Ther Adv Med Oncol 2014;6(6):267–79. DOI:10.1177/1758834014548188. PMID: 25364392.; Xing M., Haugen B. R., Schlumberger M. Progress in molecularbased management of differentiated thyroid cancer. Lancet 2013;381(9871):1058–69. DOI:10.1016/S0140-6736(13)60109-9. PMID: 23668556.; Yamamoto Y., Matsui J., Matsushima T. et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell 2014;6:18. DOI:10.1186/2045-824X-6-18. PMID: 25197551.; https://ogsh.abvpress.ru/jour/article/view/361

  14. 14
  15. 15
  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المصدر: Siberian journal of oncology; № 6 (2015); 57-60 ; Сибирский онкологический журнал; № 6 (2015); 57-60 ; 2312-3168 ; 1814-4861 ; undefined

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/203/205; Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2012 г. (заболеваемость и смертность). М., 2014. 250 с.; Casara D., Rubello D., Saladini G., Masarotto G., Favero A., Girelli M.E., Busnardo B. Different features of pulmonary metastases in differentiated thyroid cancer: natural history and multivariate analysis of prognostic variables // J. Nucl. Med. 1993. Vol. 34 (11). P. 1626–1631.; Davies L., Welch H.G. Increasing Incidence of Thyroid Cancer in the United States, 1973-2002 // JAMA. 2006. Vol. 295 (18). P. 2164–2167.; Dinneen S.F., Valimaki M.J., Bergstralh E.J., Goellner J.R., Gorman C.A., Hay I.D. Distant metastases in papillary thyroid carcinoma: 100 cases observed at one institution during 5 decades // J. Clin. Endocrinol. Metabol. 1995. Vol. 80 (7). P. 2041–2045.; Durante C., Haddy N., Baudin E., Leboulleux S., Hartl D., Travagli J.P., Caillou B., Ricard M., Lumbroso J.D., De Vathaire F., Schlumberger M. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: Benefits and limits of radioiodine therapy // J. Clin. Endocrinol. Metabol. 2006. Vol. 91 (8). P. 2892–2289.; Eustatia-Rutten C.F., Corssmit E.P., Biermasz N.R., Pereira A.M., Romijn J.A., Smit J.W. Survival and death causes in differentiated thyroid carcinoma // J. Clin. Endocrinol. Metabol. 2006. Vol. 91 (1). P. 313–319.; Hooft L., Hoekstra O.S., Devillé W., Lips P., Teule G.J., Boers M., van Tulder M.W. Diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography in the follow-up of papillary or follicular thyroid cancer // J. Clin. Endocrinol. Metabol. 2001. Vol. 86 (8). P. 3779–3786.; Khan N., Oriuchi N., Higuchi T., Zhang H., Endo K. PET in the follow-up of differentiated thyroid cancer // Br. J. Radiol. 2003. Vol. 76 (10). P. 690–695.; O’Neill C.J., Oucharek J., Learoyd D., Sidhu S.B. Standard and emerging therapies for metastatic differentiated thyroid cancer // Oncologist. 2010. Vol. 15 (2). P. 146–156. doi:10.1634/theoncologist.2009- 0190.; Schlumberger M.J. Diagnostic follow-up of well-differentiated thyroid carcinoma: Historical perspective and current status // J. Endocrinol. Investig. 1999. Vol. 22 (11). Suppl. P. 3–7.; Schlumberger M.J., Arcangioli O., Piekarski J.D., Tubiana M., Parmentier C. Detection and treatment of lung metastases of differentiated thyroid carcinoma in patients with normal chest X-rays // J. Nucl. Med. 1988. Vol. 29 (11). P. 1790–1794.; Sherman S.I. Thyroid carcinoma // Lancet. 2003. Vol. 361 (9356). P. 501–511.; Sipos J.A., Mazzaferri E.L. Thyroid Cancer Epidemiology and Prognostic Variables // Clin. Oncol. (R. Coll. Radiol.). 2010. Vol. 22 (6). P. 395–404. doi:10.1016/j.clon.2010.05.004.; Sisson J.C., Ackerman R.J., Meyer M.A., Wahl R.L. Uptake of 18- fluoro-2-deoxy-D-glucose by thyroid cancer: implications for diagnosis and therapy // J. Clin. Endocrinol. Metabol. 1993. Vol. 77 (4). P. 1090–1094.; Wang H., Fu H.L., Li J.N., Zhou R.J., Hui G.Z, Wu J.C., Huang G. Comparison of whole-body 18F-FDG SPECT and posttherapeutic 131I scintigraphy in the detection of metastatic thyroid cancer // Clin. Imaging. 2008. Vol. 32 (1). P. 32–37. doi:10.1016/j.clinimag.2007.07.010; https://www.siboncoj.ru/jour/article/view/203; undefined

  18. 18
  19. 19
    Academic Journal
  20. 20