يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '"ГЕКСОКИНАЗА"', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal

    المؤلفون: Решетников, Е. А.

    Relation: Решетников, Е.А. Поиск ассоциаций генов-кандидатов, дифференциально экспрессирующихся в плаценте, с риском развития плацентарной недостаточности с синдромом задержки роста плода / Е.А. Решетников // Научные результаты биомедицинских исследований. - 2020. - Т.6, №3.-С. 338-349. - Doi:10.18413/2658-6533-2020-6-3-0-5. - Библиогр.: с. 348-349.; http://dspace.bsu.edu.ru/handle/123456789/43253

  3. 3
    Academic Journal

    المصدر: Advances in Molecular Oncology; Том 1, № 2 (2014); 44-49 ; Успехи молекулярной онкологии; Том 1, № 2 (2014); 44-49 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X.2014.1.2

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/27/29; Warburg O. On the origin of cancer cells. Science 1956;123(3191):309–14.; Lee K. A., Roth R. A., LaPres J. J. Hypoxia, drug therapy and toxicity. Pharmacol Ther 2007;13(2):229–463.; Kobliakov V. A. Mechanisms of tumor promotion by reactive oxygen species. Biochemistry (Mosc) 2010;75(6):675–85.; Zhao T., Zhang C. P., Liu Z. H. et al. Hypoxia-driven proliferation of embryonic neural stem / progenitor cells-role of hypoxiainducible transcription factor-1alpha. FEBS J 2008;275(8):1824–34.; Lee S. H., Lee M. Y., Han H. J. Short-period hypoxia increases mouse embryonic stem cell proliferation through cooperation of arachidonic acid and PI3K / Akt signalling pathways. Cell Prolif 2008;41(2):230–47.; Lin Q., Lee Y.J., Yun Z. Differentiation arrest by hypoxia. J Biol Chem 2006;281(41):30678–83.; Di Carlo A., De Mori R., Martelli F. et al. Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. J Biol Chem 2004;279(16):16332–8.; Robertson S. E., Weaver V. M., Simon M. C. Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression. Mol Biol Cell 2005;16(4): 1901–12.; Krishnamachary B., Berg-Dixon S., Kelly B. et al. Regulation of colon carcinoma cell invasion by hipoxia-inducible factor1. Cancer Res 2003;63(5):1138–43.; Piret J. P., Minet E., Cosse J. P. et al. Hypoxia- inducible factor-1‑dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl ydroperoxide- induced apoptosis. J Biol Chem 2005;280(10):9336–44.; Brahimi-Horn M. C., Pouysségur J. Oxygen, a source of life and stress. FEBS Lett 2007;581(19):3582–91.; Comerford K. M., Wallace T. J., Karhausen J. et al. Hypoxia-inducible factor-1‑dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 2002;62(12):3387–94.; Gwak G. Y., Yoon J. H., Kim K. M. et al. Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression. J Hepatol 2005;42(3):358–64.; Lu C. W., Lin S. C., Chen K. F. et al. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 2008;283(42): 28106–14.; Kim J. W., Tchernyshyov I., Semenza G. L. et al. HIF-1‑mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006;3(3):177–85.; Kim J. W., Dang C. V. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 2005;30(3):142–50.; Pradelli L. A., Bénéteau M., Chauvin C. et al. Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene 2010;29(11):1641–52.; Meyne O., Zunino B., Happo L. et al. Caloric restriction modulates mcl-1 expression and sensitizes lymphomas to BH3 mimetic in mice. Blood 2013;122(14):2402–11.; Farooque A., Afrin F., Adhikari J. S. et al. Protection of normal cells and tissues during radio- and chemosensitization of tumors by 2‑deoxy-D-glucose. J Cancer Res Ther 2009; Suppl 1:S32–5.; Cheng Y., Diao D., Zhang H. et al. High glucose-induced resistance to 5‑fluorouracil in pancreatic cancer cells alleviated by 2‑deoxy-D-glucose. Biomed Rep 2014;2(2):188–92.; Zhang Q., Gan H., Cheng Z. et al. 2‑Deoxy-D-glucose combined with Taxol inhibits VEGF expression and induces apoptosis in orthotopically transplanted breast cancer in C3H mice. Nan Fang Yi Ke Da Xue Xue Bao 2014;34(2):193–6.; Yamaguchi R., Perkins G. Finding a Panacea among combination cancer therapies. Cancer Res 2012;72(1):18–23.; Fanciulli M., Bruno T., Giovannelli A. et al. Energy metabolism of human LoVo colon carcinoma cells: correlation to drug resistance and influence of lonidamine. Clin Cancer Res 2000;6(4):1590–7.; Kalia V. K., Prabhakara S., Narayanan V. Modulation of cellular radiation responses by 2‑deoxy-D-glucose and other glycolytic inhibitors: implications for cancer therapy. J Cancer Res Ther 2009;5Suppl 1:S57–60.; Floridi A., Bruno T., Miccadei S. et al. Enhancement of doxorubicin content by the antitumor drug lonidamine in resistant hrlich ascites tumor cells through modulation of energy metabolism. Biochem Pharmacol 1998;56(7):841–9.; Duan Y., Zhao X., Ren W. et al. Antitumor activity of dichloroacetate on C6 glioma cell: in vitro and in vivo evaluation. Onco Targets Ther 2013;6:189–98.; Kumar A., Kant S., Singh S. M. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: а role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation. Toxicol Appl Pharmacol 2013;273(1):196–208.; Sun R. C., Fadia M., Dahlstrom J. E. et al. Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 2010;120(1):253–60.; Madhok B. M., Yeluri S., Perry S. L. et al. Dichloroacetate induces apoptosis and cellcycle arrest in colorectal cancer cells. Br J Cancer 2010;102(12):1746–52.; Ishiguro T., Ishiguro M., Ishiguro R. Cotreatment with dichloroacetate and omeprazole exhibits a synergistic antiproliferative effect on malignant tumors. Oncol Lett 2012;3(3):726–8.; Xie J., Wang B. S., Yu D. H. et al. Dichloroacetate shifts the metabolism from glycolysis to glucose oxidation and exhibits synergistic growth inhibition with cisplatin in HeLa cells. Int J Oncol 2011;38(2):409–17.; Hur H., Xuan Y., Kim Y. B. et al. Expression of pyruvate dehydrogenase kinase- 1 in gastric cancer as a potential therapeutic target. Int J Oncol 2013;42(1):44–54.; Ayyanathan K., Kesaraju S., Dawson-Scully K. et al. Combination of sulindac and dichloroacetate kills cancer cells via oxidative damage. PLoS One 2012;7(7):e39949.; Estrella V., Chen T., Lloyd M. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 2013;73(5):1524–35.; Robey I. F., Baggett B. K., Kirkpatrick N. D. et al. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 2009;69(6):2260–8.; Ribeiro M. D., Silva A. S., Bailey K. M. et al. Buffer Therapy for Cancer. J Nutr Food Sci 2012;2:6–21.; Chiche J., Brahimi-Horn M. C., Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 2010;14(4):771–94.; De Milito A., Canese R., Marino M. L. et al. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer 2010;127(1):207–19.; https://umo.abvpress.ru/jour/article/view/27

  4. 4
    Academic Journal

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 1 (2015); 14-18 ; Вестник Московского университета. Серия 16. Биология; № 1 (2015); 14-18 ; 0137-0952 ; 10.1234/XXXX-XXXX-2015-1

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/110/111; Massa M.L., Gagliardino J.J., Francini F. Liver glucokinase: An overview on the regulatory mechanisms of its activity // IUBMB Life. 2011. Vol. 63. N 1. P. 1—6.; Postic C., Shiota M., Magnuson M.A. Cell-specific roles of glucokinase in glucose homeostasis // Recent Prog. Horm. Res. 2001. Vol. 56. P. 195—217.; Nordlie R.C., Foster J.D., Lange A.J. Regulation of glucose production by the liver // Annu. Rev. Nutr. 1999. Vol. 19. P. 379—406.; Аврамова Л.В. Влияние участников гексокиназной реакции на взаимодействие гексокиназы с митохондриями: Дис. . канд. биол. наук. М., 1994. 149 с.; Seoane J., Gomez-Foix A.M., O’Doherty R.M., GomezAra K., Newgard C.B., Guinovart L.L. Glucose 6-phosphate produced by glucokinase, but not hexokinase I, promotes the activation of hepatic glycogen synthase // J. Biol. Chem. 1996. Vol. 271. N 39. P. 23756—23760.; Cardenas M.L. Glucokinase: its regulation and role in liver metabolism. Austin: Landes Company, 1995. 210 р.; Cardenas M.L. Comparative biochemistry of glucokinase // Basics to novel therapeutics / Eds. F.M. Matschinsky, M.A. Magnuson. Basle: Karger, 2004. P. 31—41.; Hёrndahl L., Schmoll D., Herling A.W., Agius L. The role of glucose 6-phosphate in mediating the effects of glucokinase overexpression on hepatic glucose metabolism // FEBS J. 2006. Vol. 273. N 2. P. 336—346.; Storer A.C., Cornish-Bowden A. Kinetics of rat liver glucokinase. Co-operative interactions with glucose at physiologically significant concentrations // Biochem. J. 1976. Vol. 159. N 1. P. 7—14.; Moore M.C., Coate K.C., Winnick J.J., An Z., Cherrington A.D. Regulation of hepatic glucose uptake and storage in vivo // Adv. Nutr. 2012. Vol. 3. N 3. P. 286—294.; Larion M., Miller B.G. Homotropic allosteric regulation in monomeric mammalian glucokinase // Arch. Biochem. Biophys. 2012. Vol. 519. N 2. P. 103—111.; Heredia V.V., Thomson J., Nettleton D., San S. Glucose-induced conformational changes in glucokinase mediate allosteric regulation: transient kinetic analysis // Biochemistry. 2006. Vol. 45. N 24. P. 7553—7568.; Гончарова Н.Ю. Особенности кинетического поведения глюкокиназы в регуляции активности фермента в печени крысы // Мат-лы съезда Биохимического общества Российской академии наук. Москва 19—23 мая 1997. Тезисы стендовых сообщений. Часть I. Пущино, 1997. C. 183.; Schimke R.T., Grossbard L. Studies on isozymes of hexokinase in animal tissues // Ann. N.Y.: Acad. Sci. 1968. Vol. 151. N 1. P. 332—350.; Cardenas M.L., Rabajille E., Niemeyer H. Maintenance of the monomeric structure of glucokinase under reacting conditions // Arch. Biochem. Biophys. 1978. Vol. 190. N 1. P. 142—148.; Lin S.X., Neet K.E. Demonstration of a slow conformational change in liver glucokinase by fluorescence spectroscopy // J. Biol. Chem. 1990. Vol. 265. N 17. P. 9670—9675.; Salas J., Salas M., Vinuela E., Sols A. Glucokinase of rabbit liver // J. Biol. Chem. 1965. Vol. 240. P. 1014—1018.; Holroyde M.L., Allen M.B., Storer A.C., Warsy A.S., Chesher J.M., Traver I.P., Cornish-Bowden A., Walker D.G. The purification in high yield and characterization of rat hepatic glucokinase // Biochem. J. 1976. Vol. 153. N 2. P. 363—373.; Davidson A.L., Arion W.J. Factors underlying significant underestimations of glucokinase activity in crude liver extracts: physiological implications of higher cellular activity // Arch. Biochem. Biophys. 1987. Vol. 253. N 1. P. 156—167.; Reyes A., Cardenas M.L. All hexokinase isoenzymes coexist in rat hepatocytes // Biochem. J. 1984. Vol. 221. N 2. P. 303—309.; Andreone T.L., Printz R.L., Pilkis S.L., Magnuson M.A., Granner D.K. The amino acid sequence of rat liver glucokinase deduced from cloned cDNA // J. Biol. Chem. 1989. Vol. 264. N 1. P. 363—369.; Курганов Б.И. Аллостерические ферменты. М.: Наука, 1978. 248 с.; https://vestnik-bio-msu.elpub.ru/jour/article/view/110

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal
  10. 10
    Book

    وصف الملف: application/pdf

    Relation: Методы биохимических исследований, основанные на применении специализированного оборудования : метод. рекомендации для выполнения лабораторных работ / Е. О. Данченко [и др.]; М-во образования Республики Беларусь, Учреждение образования "Витебский государственный университет имени П. М. Машерова", Каф. химии. – Витебск : ВГУ имени П. М. Машерова, 2018. – 50, [1] с.; https://rep.vsu.by/handle/123456789/16769

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16