يعرض 1 - 9 نتائج من 9 نتيجة بحث عن '"В. Студитский М."', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 74, № 3 (2019); 200-206 ; Вестник Московского университета. Серия 16. Биология; Том 74, № 3 (2019); 200-206 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/769/479; Ludwig A., Behnke B., Holtlund J., Hilz H. Immunoquantitation and size determination of intrinsic poly(ADP-ribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes // J. Biol. Chem. 1988. Vol. 263. N 15. P. 6993–6999.; Ame J.C., Spenlehauer C., de Murcia G. The PARP superfamily // BioEssays. 2004. Vol. 26. N 8. P. 882–893; Langelier M.F., Planck J.L., Roy S., Pascal Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1 // Science. 2012. Vol. 336. N 6082. P. 728–732.; Langelier M.F., Eisemann T., Riccio A.A., Pascal J.M. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification // Curr. Opin. Struct. Biol. 2018. Vol. 53. P. 187–198.; Pion E., Ullmann G.M., Amé J.C., Gérard D., de Murcia G., Bombarda E. DNA-induced dimerization of poly(ADP-ribose) polymerase-1 triggers its activation // Biochemistry. 2005. Vol. 44. N 44. P. 14670–14681.; Pascal J.M. The comings and goings of PARP-1 in response to DNA damage // DNA Repair (Amst.). 2018. Vol. 71. P. 177–182.; Haince J.F., McDonald D., Rodrigue A., Dery U., Masson J.Y., Hendzel M.J., Poirier G.G. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites // J. Biol. Chem. 2008. Vol. 283. N 2. P. 1197–1208.; Liu C., Vyas A., Kassab M.A., Singh A.K., Yu X. The role of poly ADP-ribosylation in the first wave of DNA damage response // Nucleic Acids Res. 2017. Vol. 45. N 14. P. 8129–8141.; Sultanov D.C., Gerasimova N.S., Kudryashova K.S., Maluchenko N.V., Kotova E.Y., Langelier M.F., Pascal J.M., Kirpichnikov M.P., Feofanov A.V., Studitsky V.M. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy // AIMS Genet. 2017. Vol. 4. N 1. P. 21–31.; Liu Z., Kraus K.W. Catalytic-independent functions of PARP-1 determine Sox2 pioneer activity at intractable genomic loci // Mol Cell. 2017. Vol. 65. N 4. P. 589–603.; Valieva M.E., Armeev G.A., Kudryashova K.S., Gerasimova N.S., Shaytan A.K., Kulaeva O.I., McCullough L.L., Formosa T., Georgiev P.G., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Large-scale ATP-independent nucleosome unfolding by a histone chaperone // Nat. Struct. Mol. Biol. 2016. Vol. 23. N 12. P. 1111–1116.; Valieva M.E., Gerasimova N.S., Kudryashova K.S., Kozlova, A.L., Kirpichnikov M.P., Hu Q., Botuyan M.V., Mer G., Feofanov A.V., Studitsky V.M. Stabilization of nucleosomes by histone tails and by FACT revealed by spFRET microscopy // Cancers. 2017. Vol. 9. N 1: 3.; Gaykalova D.A., Kulaeva O.I., Bondarenko V.A., Studitsky V.M. Preparation and analysis of uniquely positioned mononucleosomes // Chromatin Protocols, vol. 523. Methods Mol. Biol. / Eds. S. Chellappan. N.Y.: Humana Press, 2009. P. 109–123.; Langelier M.F., Steffen J., Riccio A.A., McCauley M., Pascal J.M. Purification of DNA damage-dependent PARPs from E. coli for structural and biochemical analysis // Poly(ADP- ribose) polymerase, vol. 1608. Methods Mol. Biol. / Eds. A. Tulin. N.Y.: Humana Press, 2017. P. 431– 444.; Kudryashova K.S., Nikitin D.V., Chertkov O.V., Gerasimova N.S., Valeva M.E., Studitsky V.M., Feofanov A.V. Development of fluorescently labeled mononucleosomes for the investigation of transcription mechanisms by single complex microscopy // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 4. P. 189–193.; Kudryashova K.S., Chertkov O.V., Nikitin D.V., Pestov N.A., Kulaeva O.I., Efremenko A.V., Solonin A.S., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET // Chromatin Protocols, vol 1288. Methods Mol. Biol. / Eds. S. Chellappan. N.Y.: Humana Press, 2015. P. 395–412.; Polach K.J., Widom J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation // J. Mol. Biol. 1995. Vol. 254. N 2. P. 130–149.; Clark N.J., Kramer M., Muthurajan U.M., Luger K. Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes // J. Biol. Chem. 2012. Vol. 287. N 39. P. 32430–32439.; Potaman V.N., Shlyakhtenko L.S., Oussatcheva E.A., Lyubchenko Y.L., Soldatenkov V.A. Specific binding of poly(ADP-ribose) polymerase-1 to cruciform hairpins // J. Mol. Biol. 2005. Vol. 348. N 3. P. 609–661.; Muthurajan U.M., Hepler M.R., Hieb A.R., Clark N.J., Kramer M., Yao T., Luger K. Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone // Proc. Natl. Acad. Sci. U.S.A. 2014. Vol. 111. N 35. P. 12752–12757.; https://vestnik-bio-msu.elpub.ru/jour/article/view/769

  2. 2
    Academic Journal

    المساهمون: РНФ

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 73, № 3 (2018); 191-196 ; Вестник Московского университета. Серия 16. Биология; Том 73, № 3 (2018); 191-196 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/630/441; Thastrom A., Lowary P.T., Widlund H.R., Cao H., Kubista M., Widom J. Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences // J. Mol. Biol. 1999. Vol. 288. N 2. P. 213–229.; Bondarenko V.A., Steele L.M., Ujvari A., Gaykalova D.A., Kulaeva O.I., Polikanov Y.S., Luse D.S., Studitsky V.M. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II // Mol. Cell. 2006. Vol. 24. N 3. P. 469–479.; Gaykalova D.A., Kulaeva O.I., Bondarenko V.A., Studitsky V.M. Preparation and analysis of uniquely positioned mononucleosomes // Chromatin Protocols. Methods Mol. Biol. Vol. 523 / Ed. S.P. Chellappan. Humana Press, 2009. P. 109–123.; Böhm V., Hieb A.R., Andrews A.J., Gansen A., Rocker A., Tóth K., Luger K., Langowski J. Nucleosome accessibility governed by the dimer/tetramer interface // Nucleic Acids Res. 2011. Vol. 39. N 1. P. 3093–3102.; Hazan N.P., Tomov T.E., Tsukanov R., Liber M., Berger Y., Masoud R., Toth K., Langowski J., Nir E. Nucleosome core particle disassembly and assembly kinetics studied using single-molecule fluorescence // Biophys. J. 2015. Vol. 109. N 8. P. 1676–1685.; Kudryashova K.S., Chertkov O.V., Nikitin D.V., Pestov N.A., Kulaeva O.I., Efremenko A.V., Solonin A.S., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET // Methods in Molecular Biology. Vol. 1288. Chromatin Protocols / Ed. S.P. Chellappan. Humana Press, 2015. P. 395–412.; Gansen A., Hieb A.R., Böhm V., Tóth K., Langowski J. Closing the gap between single molecule and bulk FRET analysis of nucleosomes // PLoS One. 2013. Vol. 8. N 4. e57018.; Valieva M.E., Armeev G.A., Kudryashova K.S., Gerasimova N.S., Shaytan A.K., Kulaeva O.I., McCullough L.L., Formosa T., Georgiev P.G., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Large-scale ATP-independent nucleosome unfolding by a histone chaperone // Nat. Struct. Mol. Biol. 2016. Vol. 23. N 12. P. 1111–1116.; Kudryashova K.S., Nikitin D.V., Chertkov O.V., Gerasimova N.S., Valieva M.E. Studitsky V.M., Feofanov A.V. Development of fluorescently labeled mononucleosomes for the investigation of transcription mechanisms by single complex microscopy // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 4. P. 189–193.; Chen Y., Tokuda J.M., Topping T., Meisburger S.P., Pabit S.A., Gloss L.M., Pollack L. Asymmetric unwrapping of nucleosomal DNA propagates asymmetric opening and dissociation of the histone core // Proc. Natl. Acad. Sci. U.S.A. 2017. Vol. 114. N 2. P. 334–339.; Ngo T.T.M., Ha T. Nucleosomes undergo slow spontaneous gaping // Nucleic Acids Res. 2015. Vol. 43. N 8. P. 3964–3971.; Chang H.W., Kulaeva O.I., Shaytan A.K., Kibanov M., Kuznedelov K., Severinov K.V., Kirpichnikov M.P., Clark D.J., Studitsky V.M. Analysis of the mechanism of nucleosome survival during transcription // Nucleic Acids Res. 2014. Vol. 42. N 3. P. 1619–1627.; Gaykalova D.A., Kulaeva O.I., Pestov N.A., Hsieh F.K., Studitsky V.M. Experimental analysis of the mechanism of chromatin remodeling by RNA polymerase II // Methods Enzymol. 2012. Vol. 512. P. 293–314.; Lyubitelev A.V., Studitsky V.M., Feofanov A.V., Kirpichnikov M.P. Effect of sodium and potassium ions on conformation of linker parts of nucleosomes // Moscow Univ. Biol. Sci. Bull. 2017. Vol. 72. N 3. P. 146–150.; Chertkov O.V., Valieva M.E., Malyuchenko N.V., Feofanov A.V. Analysis of nucleosome structure in polyacrylamide gel by the Förster resonance energy transfer method // Moscow Univ. Biol. Sci. Bull. 2017. Vol. 72. N 4. P. 196–200.; https://vestnik-bio-msu.elpub.ru/jour/article/view/630

  3. 3
    Academic Journal

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 72, № 3 (2017); 169-173 ; Вестник Московского университета. Серия 16. Биология; Том 72, № 3 (2017); 169-173 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/474/398; Ngo T.T., Zhang Q., Zhou R., Yodh J.G., Ha T. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility // Cell. 2015. Vol. 160 N 6. P. 1135–1144.; Li G., Levitus M., Bustamante C., Widom J. Rapid spontaneous accessibility of nucleosomal DNA // Nat. Struct. Mol. Biol. 2005. Vol. 12. N 1. P. 46–53.; Gansen A., Toth K., Schwarz N.,Langowski J. Structural variability of nucleosomes detected by single-pair Forster resonance energy transfer: histone acetylation, sequence variation, and salt effects // J. Phys. Chem. B. 2009. Vol. 113. N 9. P. 2604–2613.; Gansen A., Valeri A., Hauger F., Felekyan S., Kalinin S., Toth K., Langowski J., Seidel C.A. Nucleosome disassembly intermediates characterized by single-molecule FRET // Proc. Natl. Acad. Sci. U.S.A. 2009. Vol. 106. N 36. P. 15308–15313.; Zinchenko A.A., Yoshikawa K. Na+ shows a markedly higher potential than K+ in DNA compaction in a crowded environment // Biophys. J. 2005. Vol. 88. N 6. P. 4118–4123.; Savelyev A., Papoian G.A. Electrostatic, steric, and hydration interactions favor Na(+) condensation around DNA compared with K(+) // J. Am. Chem. Soc. 2006. Vol. 128. N 45. P. 14506–14518.; Materese C.K., Savelyev A., Papoian G.A. Counterion atmosphere and hydration patterns near a nucleosome core particle // J. Am. Chem. Soc. 2009. Vol. 131. N 41. P. 15005– 15013.; Gaykalova D.A., Kulaeva O.I., Bondarenko V.A., Studitsky V.M. Preparation and analysis of uniquely positioned mononucleosomes // Chromatin Protocols. Methods Mol. Biol. Vol. 523 / Ed. S.P. Chellappan. Humana Press, 2009. P. 109–123.; Kudryashova K.S., Chertkov O.V., Nikitin D.V., Pestov N.A., Kulaeva O.I., Efremenko A.V., Solonin A.S., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET // Chromatin Protocols. Methods Mol. Biol. Vol. 1288 / Ed. S.P. Chellappan. N.Y.: Springer, 2015. P. 395–412.; Lyubitelev A.V., Kudryashova K.S., Mikhaylova M.S., Malyuchenko N.V., Chertkov O.V., Studitsky V.M., Feofanov A.V., Kirpichnikov M.P. Change in conformation of linker DNA upon binding of histone H1.5 to nucleosome: fluorescent microscopy of single complexes // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 2. P. 108–113.; Manning G.S. The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force // Biophys. J. 2006. Vol. 91. N 10. P. 3607–3616.; Valieva M.E., Armeev G.A., Kudryashova K.S., Gerasimova N.S., Shaytan A.K., Kulaeva O.I., McCullough L.L., Formosa T., Georgiev P.G., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Large-scale ATP-independent nucleosome unfolding by a histone chaperone // Nat. Struct. Mol. Biol. 2016. Vol. 23. N 12. P. 1111–1116.; Sultanov D., Gerasimova N., Kudryashova K., Maluchenko N., Kotova E., Langelier M.F., Pascal J., Kirpichnikov M., Feofanov A., Studitsky V. Unfolding of core nucleosomes by PARP- 1 revealed by spFRET microscopy // AIMS Genetics. 2017. Vol. 4. N 1. P. 21–31.; Choy J.S., Lee T.H. Structural dynamics of nucleosomes at single-molecule resolution // Trends Biochem. Sci. 2012. Vol. 37. N 10. P. 425–435.; Wei S., Falk S.J., Black B.E., Lee T.H. A novel hybrid single molecule approach reveals spontaneous DNA motion in the nucleosome // Nucleic Acids Res. 2015. Vol. 43. N 17. e111.; Koopmans W.J., Brehm A., Logie C., Schmidt T., van Noort J. Single-pair FRET microscopy reveals mononucleosome dynamics // J. Fluoresc. 2007. Vol. 17. N 6. P. 785–795.; Kenzaki H., Takada S. Partial unwrapping and histone tail dynamics in nucleosome revealed by coarse-grained molecular simulations // PLoS Comput. Biol. 2015. Vol. 11. N 8. e1004443.; Li Z., Kono H. Distinct roles of histone H3 and H2A tails in nucleosome stability // Sci. Rep. 2016. Vol. 6. 31437.; Forties R.A., North J.A., Javaid S., Tabbaa O.P., Fishel R., Poirier M.G., Bundschuh R. A quantitative model of nucleosome dynamics // Nucleic Acids Res. 2011. Vol. 39. N 19. P. 8306–8313.; https://vestnik-bio-msu.elpub.ru/jour/article/view/474

  4. 4
    Academic Journal

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 3 (2016); 60-64 ; Вестник Московского университета. Серия 16. Биология; № 3 (2016); 60-64 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/345/324; Luger K, Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution // Nature. 1997. Vol. 389. N 6648. P. 251–260.; Laskey R.A., Honda B.M., Mills A.D., Finch J.T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA // Nature. 1978. Vol. 275. N 5679. P. 416–420.; Venkatesh S., Workman J.L. Histone exchange, chromatin structure and the regulation of transcription // Nat. Rev. Mol. Cell. Biol. 2015. Vol. 16. N 3. P. 178–189.; Gerasimova N.S., Pestov N.A., Kulaeva O.I., Nikitin D.V., Kirpichnikov M.P., Studitsky V.M. Repair of chromatinized DNA // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 3. P. 122–126.; Formosa T. The role of FACT in making and breaking nucleosomes // Biochim. Biophys. Acta. 2012. Vol. 1819. N 3–4. P. 247–255.; Tyler J.K. Chromatin assembly. Cooperation between histone chaperones and ATP-dependent nucleosome remodeling machines // Eur. J. Biochem. 2002. Vol. 269. N 9. P. 2268–2274.; Fazly A., Li Q., Hu Q., Mer G., Horazdovsky B., Zhang Z. Histone chaperone Rtt106 promotes nucleosome formation using (H3-H4)2 tetramers // J. Biol. Chem. 2012. Vol. 287. N 14. P. 10753–10760.; Mattiroli F., D’Arcy S., Luger K. The right place at the right time: chaperoning core histone variants // EMBO Rep. 2015. Vol. 16. N 11. P. 1454–1466.; Smith S., Stillman B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro // Cell. 1989. Vol. 58. N 1. P. 15–25.; Smith D.J., Whitehouse I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly // Nature. 2012. Vol. 483. N 7390. P. 434–438.; Tyler J.K., Adams C.R., Chen S.R., Kobayashi R., Kamakaka R.T., Kadonaga J.T. The RCAF complex mediates chromatin assembly during DNA replication and repair //Nature. 1999. Vol. 402. N 6761. P. 555–560.; Huang S., Zhou H., Katzmann D., Hochstrasser M., Atanasova E., Zhang Z. Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102. N 38. P. 13410–13415.; Groth A., Corpet A., Cook A.J.L., Roche D., Bartek J., Lukas J., Almouzni G. Regulation of replication fork progression through histone supply and demand // Science. 2007. Vol. 318. N 5858. P. 1928–1931.; Han J., Zhou H., Li Z., Xu R-M., Zhang Z. Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity // J. Biol. Chem. 2007. Vol. 282 N 39. P. 28587–28596.; Masumoto H., Hawke D., Kobayashi R., Verreault A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response // Nature. 2005. Vol. 436. N 7048. P. 294–298.; Han J., Zhang H., Zhang H., Wang Z., Zhou H., Zhang Z. A Cul4 E3 ubiquitin ligase regulates histone handoff during nucleosome assembly // Cell. 2013. Vol. 155. N 4. P. 817–829.; Tan B.C.-M., Chien C.-T., Hirose S., Lee S.-C. Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication // EMBO J. 2006. Vol. 25. N 17. P. 3975–3985.; Yang J., Zhang X., Feng J., Leng H., Li S., Xiao J., Liu S., Xu Z., Xu J., Li D., Wang Z., Wang J., Li Q. The histone chaperone FACT hontributes to DNA replication-coupled nucleosome assembly // Cell Rep. 2016. Vol. 14. N 5. P. 1128–1141.; Wittmeyer J., Joss L., Formosa T. Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha // Biochemistry. 1999. Vol. 38. N 28. P. 8961–8971.; Nakano S., Stillman B., Horvitz H.R. Replicationcoupled chromatin assembly generates a neuronal bilateral asymmetry in C. elegans // Cell. 2011 Vol. 147. N 7. P. 1525–1536.; Ishimi Y., Hirosumi J., Sato W., Sugasawa K., Yokota S., Hanaoka F., Yamada M. Nurification and initial characterization of a protein which facilitates assembly of nucleosomelike structure from mammalian cells // Eur. J. Biochem. 1984. Vol. 142. N 3. P. 431–439.; Ito T., Bulger M., Kobayashi R., Kadonaga J.T. Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays // Mol. Cell. Biol. 1996. Vol. 16. N 6. P. 3112–3124.; Mosammaparast N., Ewart C.S., Pemberton L.F. A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B // EMBO J. 2002. Vol. 21. N 23. P. 6527–6538.; Torigoe S.E., Urwin D.L., Ishii H., Smith D.E., Kadonaga J.T. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF // Mol. Cell. 2011. Vol. 43. N 4. P. 638–648.; Andrews A.J., Chen X., Zevin A., Stargell L.A., Luger K. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions //Mol. Cell. 2010. Vol. 37. N 6. P. 834–842.; Gaillard P.H., Martini E.M., Kaufman P.D., Stillman B., Moustacchi E., Almouzni G. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I // Cell. 1996. Vol. 86. N 6. P. 887–896.; Emili A., Schieltz D.M., Yates J.R., Hartwell L.H. Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1 // Mol. Cell. 2001. Vol. 7. N1. P. 13–20.; Hu F., Alcasabas A.A., Elledge S.J. Asf1 links Rad53 to control of chromatin assembly // Genes Dev. 2001. Vol. 5. N 9. P. 1061–1066.; Dinant C., Ampatziadis-Michailidis G., Lans H., Tresini M., Lagarou A., Grosbart M., Theil A.F., van Cappellen W.A., Kimura H., Bartek J., Fousteri M., Houtsmuller A.B., Vermeulen W., Marteijn J.A. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage // Mol. Cell. 2013. Vol. 51. N 4. P. 469–479.; Gaykalova D.A., Kulaeva O.I., Volokh O., Shaytan A.K., Hsieh F.-K., Kirpichnikov M.P., Sokolova O.S., Studitsky V.M. Structural analysis of nucleosomal barrier to transcription //; Proc. Natl. Acad. Sci. USA. 2015. Vol. 112. N 43. P. E5787– E5795.; Orphanides G., LeRoy G., Chang C.H., Luse D.S., Reinberg D. FACT, a factor that facilitates transcript elongation through nucleosomes // Cell. 1998. Vol. 92. N 1. P. 105–116.; Hsieh F.-K., Kulaeva O.I., Patel S.S., Dyer P.N., Luger K., Reinberg D., Studitsky V.M. Histone chaperone FACT action during transcription through chromatin by RNA polymerase II // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110. N 19. P. 7654–7659.; Jamai A., Puglisi A., Strubin M. Histone chaperone spt16 promotes redeposition of the original H3-H4 histones evicted by elongating RNA polymerase // Mol. Cell. 2009. Vol. 35. N 3. P. 377–383.; Saunders A., Werner J., Andrulis E.D., Nakayama T., Hirose S., Reinberg D., Lis J. T. Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo //; Science. 2003. Vol. 301. N 5636. P. 1094–1096.; Mason P.B., Struhl K. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo // Mol. Cell. 2005. Vol. 17. N 6. P. 831–840.; Cheung V., Chua G., Batada N.N., Landry C.R., Michnick S.W., Hughes T.R., Winston F. Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome // PLoS Biol. 2008. Vol. 6. N 11. e277.; Youdell M.L., Kizer K.O., Kisseleva-Romanova E., Fuchs S.M., Duro E., Strahl B.D., Mellor J. Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36 // Mol. Cell. Biol. 2008. Vol. 28. N 16. P. 4915–4926.; Luk E., Vu N.-D., Patteson K., Mizuguchi G., Wu W.-H., Ranjan A., Backus J., Sen S., Lewis M., Bai Y., Wu C. Chz1, a nuclear chaperone for histone H2AZ // Mol. Cell. 2007. Vol. 25. N 3. P. 357–368.; Kuryan B.G., Kim J., Tran N.N.H., Lombardo S.R., Venkatesh S., Workman J.L., Carey M. Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109. N 6. P. 1931–1936.; Conerly M.L., Teves S.S., Diolaiti D., Ulrich M., Eisenman R.N., Henikoff S. Changes in H2A.Z occupancy and DNA methylation during B-cell lymphomagenesis // Genome Res. 2010. Vol. 20. N 10. P. 1383–1390.; Zilberman D., Coleman-Derr D., Ballinger T., Henikoff S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks // Nature. 2008. Vol. 456. N 7218. P. 125–129.; Chen P., Zhao J., Wang Y., et al. H3.3 actively marks enhancers and primes gene transcription via opening higherordered chromatin // Genes Dev. 2013. Vol. 27. N 19. P. 2109–2124.; Burgess R.J., Zhang Z. Histone chaperones in nucleosome assembly and human disease // Nat. Struct. Mol. Biol. 2013. Vol. 20. N 1. P. 14–22.; https://vestnik-bio-msu.elpub.ru/jour/article/view/345

  5. 5
    Academic Journal

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 4 (2016); 61-65 ; Вестник Московского университета. Серия 16. Биология; № 4 (2016); 61-65 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/392/367; Ame J.C., Spenlehauer C., de Murcia G. The PARP superfamily // BioEssays. 2004. Vol. 26. N 8. P. 882–893; Ludwig A., Behnke B., Holtlund J., Hilz H. Immunoquantitation and size determination of intrinsic poly(ADPribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes // J. Biol. Chem. 1988. Vol. 263. N 15. P.6993–6999.; Yamanaka H., Penning C.A., Willis E.H., Wasson D.B., Carson D.A. Characterization of human poly(ADP-ribose) polymerase with autoantibodies // J. Biol. Chem. 1988. Vol. 263. N 8. P. 3879–3883.; Haince JF., McDonald D., Rodrigue A., Dery U., Masson J.Y., Hendzel M.J., Poirier G.G. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites // J. Biol. Chem. 2008. Vol. 283. N 2. P. 1197–1208.; Thomas C., Tulin A.V. Poly-ADP-ribose polymerase: machinery for nuclear processes // Mol. Aspects Med. 2013. Vol. 34. N 6. P. 1124–1137.; Nishikimi M., Ogasawara K., Kameshita I., Taniguchi T., Shizuta Y. Poly(ADP-ribose) synthetase. The DNA binding domain and the automodification domain // J. Biol. Chem. 1982. Vol. 257. N 11. P. 6102–6105.; Kameshita I., Matsuda Z., Taniguchi T., Shizuta Y. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain // J. Biol. Chem. 1984. Vol. 259. N 8. P. 4770–4776.; Gibson B.A., Kraus W.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs // Nat. Rev. Mol. Cell Biol. 2012. Vol. 13 N 7. P. 411–424.; Langelier M.F., Servent K.M., Rogers E.E., Pascal J.M. A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation // J. Biol. Chem. 2008. Vol. 283. N 7. P. 4105–4114.; Tao Z., Gao P., Hoffman D.W., Liu H.W. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif // Biochemistry. 2008. Vol. 47. N 21. P. 5804–5813.; Langelier M., Ruhl D. D., Planck J.L., Kraus W.L., Pascal J.M. The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction // J. Biol. Chem. 2010. Vol. 285. N 24. P. 18877–18887.; Langelier M.F., Planck J.L., Roy S., Pascal J.M. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1 // Science 2012. Vol. 336. N 6082. P. 728–732.; Bork P., Hofman K., Buche P., Neuwal A.F., Altschu S.F., Koonin E.V. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins // Faseb J. 1997. Vol. 11. N 1. P. 68–76.; Masson M., Niedergang C., Schreiber V., Muller S., Menissier-de Murcia J., de Murcia G. XRCC1 is specifically associated with poly(ADPribose) polymerase and negatively regulates its activity following DNA damage // Mol. Cell. Biol. 1998. Vol. 18. N 6. P. 3563–3571.; Masson M., Menissier-de Murcia J., Mattei, M.G., de Murcia G., Niedergang C.P. Poly(ADP-ribose) polymerase interacts with a novel human ubiquitin conjugating enzyme: hUbc9 // Gene. 1997. Vol. 190. N 2. P. 287–296.; Buki K.G., Bauer P.I., Hakam A., Kun E. Identification of domains of poly(ADP-ribose) polymerase for protein binding and selfassociation // J. Biol. Chem. 1995. Vol. 270. N 7. P. 3370–3377.; Nie J., Sakamoto S., Song D., Qu Z., Ota K., Taniguchi T. Interaction of Oct-1 and automodification domain of poly(ADP-ribose) synthetase // FEBS Lett. 1998. Vol. 424. N 1–2. P. 27–32.; Griesenbeck J., Ziegler M., Tomilin N., Schweiger M., Oei S.L. Stimulation of the catalytic activity of poly(ADP-ribosyl) transferase by transcription factor Yin Yang 1 // FEBS Lett. 1999. Vol. 443. N 1. P. 20–24.; Na Z., Peng B., Ng S., Pan S., Lee J.S., Shen H.M., Yao S.Q. A small-molecule protein-protein interaction inhibitor of PARP1 that targets its BRCT domain // Angew. Chem. Int. Ed. Engl. 2015. Vol. 54. N 8. P. 2515–2519.; Malyuchenko N.V., Kotova E.Yu., Kulaeva O.I., Kirpichnikov M.P., Studitskiy V.M. PARP1 inhibitors: Antitumor drug design // Acta Naturae. 2015. Vol. 7. N 3. P. 27–37.; Gilbert N.E. O’Reilly J.E., Chang C.J., Lin Y.C., Brueggemeier R.W. Antiproliferative activity of gossypol and gossypolone on human breast cancer cells // Life Sci. 1995. Vol. 57. N. 1. Р. 61–67.; Langelier M.F., Planck J.L., Servent K.M., Pascal J.M. Purification of human PARPI and PARPI domains from E.coli for structural and biochemical analysis // Methods Mol. Biol. 2011. Vol. 780. Р. 209–226.; Kotova E., Pinnola A.D., Tulin A.V. Small-molecule collection and high-throughput colorimetric assay to identify PARP-1 inhibitors // Methods Mol. Biol. 2011. Vol. 780. P. 491–516.; Dawicki-McKenna J.M., Langelier M.F., DeNizio J.E., Riccio A.A., Cao C.D., Karch K.R., McCauley M., Steffen J.D., Black B.E., Pascal J.M. PARP-1 activation requires local unfolding of an autoinhibitory domain // Mol. Cell. 2015. Vol. 60. N 5. P. 755–768.; https://vestnik-bio-msu.elpub.ru/jour/article/view/392

  6. 6
    Academic Journal

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 2 (2016); 49-54 ; Вестник Московского университета. Серия 16. Биология; № 2 (2016); 49-54 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/327/312; Shrestha D., Jenei A., Nagy P., Vereb G., Szöllősi J. Understanding FRET as a research tool for cellular studies // Int. J. Mol. Sci. 2015. Vol.16. N 4. P. 6718–6756.; Sustarsic M.K. Taking the ruler to the jungle: singlemolecule FRET for understanding biomolecular structure and dynamics in live cells // Curr. Opin. Struct. Biol. 2015 Vol. 18. P. 52–59.; Arai Y.N. Extensive use of FRET in biological imaging // Microscopy (Oxf). 2013. Vol. 62. P. 419–428.; Sugawa M.A., Iwane A.H., Ishii Y., Yanagida T. Single molecule FRET for the study on structural dynamics of biomolecules // Biosystems. 2007. Vol. 88. N 3. P. 243–250.; Lee W., Obubuafo A., Lee Y.I., Davis L.M., Soper S.A. Single-pair fluorescence resonance energy transfer (spFRET) for the high sensitivity analysis of low-abundance proteins using aptamers as molecular recognition elements // J. Fluoresc. 2010. Vol. 20. N 1. P. 203–213.; Gansen A., Tóth K., Schwarz N., Langowski J. Structural variability of nucleosomes detected by single-pair Förster resonance energy transfer: histone acetylation, sequence variation, and salt effects // J. Phys. Chem. B. 2009. Vol. 113. N 9. P. 2604–2613.; Kudryashova K.S., Chertkov O.V., Nikitin D.V., Pestov N.A., Kulaeva O.I., Efremenko A.V., Solonin A.S., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET // Methods Mol. Biol. 2015. Vol. 1288. P. 395–412.; Ngo T.T., Ha T. Nucleosomes undergo slow spontaneous gaping // Nucleic Acids Res. 2015. Vol. 43. N 8. P. 3964– 3971.; Feofanov A.V., Kudryashova K.S., Chertkov O.V., Nikitin D.V., Pestov N.A., Kulaeva O.I., Studitsky V.M., Kirpichnikov M.P. Analysis of nucleosome transcription using singleparticle FRET // Springer Proc. Phys. 2015. Vol. 164. P. 255–260.; Ngo T.T., Zhang Q., Zhou R., Yodh J.G., Ha T. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility // Cell. 2015. Vol.160. N 6. P. 1135–1144.; Kudryashova K.S., Nikitin D.V., Chertkov O.V., Gerasimova N.S., Valieva M.E., Studitsky V.M., Feofanov A.V. Development of fluorescently labeled mononucleosomes for the investigation of transcription mechanisms by single complex microscopy // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 4. P. 189–193.; Luo Y., North J.A., Poirier M.G. Single molecule fluorescence methodologies for investigating transcription factor binding kinetics to nucleosomes and DNA // Methods. 2014. Vol. 70. N 2–3. P. 108–118.; Simon M.N., Shimko J.C., Forties R.A., Ferdinand M.B., Manohar M., Zhang M., Fishel, R., Ottesen J.J., Poirier M.G. Histone fold modifications control nucleosome unwrapping and disassembly // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108. N 31. P. 12711–12716.; Syed S.H., Goutte-Gattat D., Becker N., Meyer S., Shukla M.S., Hayes J.J., Everaers R., Angelov D., Bednar J., Dimitrov S. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107. N 21. P. 9620–9625.; Meyer S. B., Syed S.H., Goutte-Gattat D., Shukla M.S., Hayes J.J., Angelov D., Bednar J., Dimitrov S., Everaers R. From crystal and NMR structures, footprints and cryo-electron- micrographs to large and soft structures: nanoscale modeling of the nucleosomal stem // Nucleic Acids Res. 2011. Vol. 39. P. 9139–9154.; Zhou B.R., Feng H., Kato H., Dai L., Yang Y., Zhou Y., Bai Y. Structural insights into the histone H1-nucleosome complex // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110. N 48. P. 19390–19395.; Gaykalova D.A., Kulaeva O.I., Bondarenko V.A., Studitsky V.M. Preparation and analysis of uniquely positioned mononucleosomes // Methods Mol. Biol. 2009. Vol. 523. P. 109–123.; Meyer S., Becker N.B., Syed S.H., Goutte-Gattat D., Shukla M.S., Hayes J.J., Angelov D, Bednar J., Dimitrov S., Everaers R. From crystal and NMR structures, footprints and cryo-electron-micrographs to large and soft structures: nanoscale modeling of the nucleosomal stem // Nucleic Acids Res. 2011. Vol. 39. N 21. P. 9139–9154.; Song F., Chen P., Sun D., Wang M., Dong L., Liang D., Xu R.M., Zhu P., Li G. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units // Science. 2014. Vol. 344. N 6182. P. 376–380.; Fan L., Roberts V.A. Complex of linker histone H5 with the nucleosome and its implications for chromatin packing // Proc. Natl. Acad. Sci. USA. 2006. Vol. 103. N 22. P. 8384–8289.; Cui F., Zhurkin V.B. Distinctive sequence patterns in metazoan and yeast nucleosomes: implications for linker histone binding to AT-rich and methylated DNA // Nucleic Acids Res. 2009. Vol. 37. N 9. P. 2818–2829.; Zhou B.R., Jiang J., Feng H., Ghirlando R., Xiao T.S., Bai Y. Structural mechanisms of nucleosome recognition by linker histones // Mol. Cell. 2015. Vol. 59. N 4. P. 628–638.; Bernier M., Luo Y., Nwokelo K.C., Goodwin M., Dreher S.J., Zhang P., Parthun M.R., Fondufe-Mittendorf Y., Ottesen J.J., Poirier M.G. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics // Nat. Commun. 2015. Vol. 6. P. 10152.; https://vestnik-bio-msu.elpub.ru/jour/article/view/327

  7. 7
    Academic Journal

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 4 (2012); 10-16 ; Вестник Московского университета. Серия 16. Биология; № 4 (2012); 10-16 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/68/70; Bednar J., Studitsky V.M., Grigoryev S.A., Felsenfeld G., Woodcock C.L. The nature of the nucleosomal barrier to transcription: direct observation of paused intermediates by electron cryomicroscopy // Mol. Cell. 1999. Vol. 4. N 3. P. 377—386.; Studitsky V.M., Kassavetis G.A., Geiduschek E.P., Felsenfeld G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase // Science. 1997. Vol. 278. N 5345. P. 1960—1963.; Gangaraju V.K., Bartholomew B. Mechanisms of ATP dependent chromatin remodeling // Mutat. Res. 2007. Vol. 618. N 1—2. P. 3—17.; Cairns B.R. Chromatin remodeling: insights and intrigue from single-molecule studies // Nat. Struct. Mol. Biol. 2007. Vol. 14. N 11. P. 989—996.; Studitsky V.M., Clark D.J., Felsenfeld G. A histone octamer can step around a transcribing polymerase without leaving the template // Cell. 1994. Vol. 76. N 2. P. 371—382.; Oler A.J., Alla R.K., Roberts D.N., Wong A., Hollenhorst P.C., Chandler K.J., Cassiday P.A., Nelson C.A., Hagedorn C.H., Graves B.J., Cairns B.R. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors // Nat. Struct. Mol. Biol. 2010. Vol. 17. N 5. P. 620—628.; Kireeva M.L., Walter W., Tchernajenko V., Bondarenko V., Kashlev M., Studitsky V.M. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription // Mol. Cell. 2002. Vol. 9. N 3. P. 541—552.; Kulaeva O.I., Gaykalova D.A., Pestov N.A., Golovastov V.V., Vassylyev D.G., Artsimovitch I., Studitsky V.M. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II // Nat. Struct. Mol. Biol. 2009. Vol. 16. N 12. P. 1272—1278.; https://vestnik-bio-msu.elpub.ru/jour/article/view/68

  8. 8
    Academic Journal

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 3 (2012); 6-11 ; Вестник Московского университета. Серия 16. Биология; № 3 (2012); 6-11 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/57/59; Borukhov S., Nudler E. RNA polymerase: the vehicle of transcription // Trends Microbiol. 2008. Vol. 16. N 3. P. 126—134.; Davey C.A., Sargent D.F., Luger K., Maeder A.W., Richmond T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1,9 a resolution // J. Mol. Biol. 2002. Vol. 319. N 5. P. 1097—1113.; Luger K., Mader A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2,8 A resolution // Nature. 1997. Vol. 389. N 6648. P. 251—260.; Syed S.H., Goutte-Gattat D., Becker N., Meyer S., Shukla M.S., Hayes J.J., Everaers R., Angelov D., Bednar J., Dimitrov S. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107. N 21. P. 9620—9625.; Schalch T., Duda S., Sargent D.F., Richmond T.J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre // Nature. 2005. Vol. 436. N 7047. P. 138—141.; Routh A., Sandin S., Rhodes D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure // Proc. Natl. Acad. Sci. USA. 2008. Vol. 105. N 26. P. 8872—8877.; Fraser P., Bickmore W. Nuclear organization of the genome and the potential for gene regulation // Nature. 2007. Vol. 447. N 7143. P. 413—417.; Martens J.A., Wu P.Y., Winston F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae // Genes Dev. 2005. Vol. 19. N 22. P. 2695—2704.; Feser J., Truong D., Das C., Carson J.J., Kieft J., Harkness T., Tyler J.K. Elevated histone expression promotes life span extension // Mol. Cell. 2010. Vol. 39. N 5. P. 724—735.; Chi P., Allis C.D., Wang G.G. Covalent histone modifications-miswritten, misinterpreted and mis-erased in human cancers // Nat. Rev. Cancer. 2010. Vol. 10. N 7. P. 457—469.; Studitsky V.M., Clark D.J., Felsenfeld G. A histone octamer can step around a transcribing polymerase without leaving the template // Cell. 1994. Vol. 76. N 2. P. 371—382.; Mavrich T.N., Jiang C., Ioshikhes I.P., Li X., Venters B.J., Zanton S.J., Tomsho L.P., Qi J., Glaser R.L., Schuster S.C., Gilmour D.S., Albert I., Pugh B.F. Nucleosome organization in the Drosophila genome // Nature. 2008. Vol. 453. N 7193. P. 358—362.; Bednar J., Studitsky V.M., Grigoryev S.A., Felsenfeld G., Woodcock C.L. The nature of the nucleosomal barrier to transcription: direct observation of paused intermediates by electron cryomicroscopy // Mol. Cell. 1999. Vol. 4. N 3. P. 377—386.; Studitsky V.M., Clark D.J., Felsenfeld G. Overcoming a nucleosomal barrier to transcription // Cell. 1995. Vol. 83. N 1. P. 19—27.; https://vestnik-bio-msu.elpub.ru/jour/article/view/57

  9. 9
    Academic Journal

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 4 (2015); 41-45 ; Вестник Московского университета. Серия 16. Биология; № 4 (2015); 41-45 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/282/280; Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 Ǻ resolution // Nature. 1997. Vol. 389. N 6648. P. 251–260.; Chang H.W., Kulaeva O.I., Shaytan A.K., Kibanov M., Kuznedelov K., Severinov K.V., Kirpichnikov M.P., Clark D.J., Studitsky V.M. Analysis of the mechanism of nucleosome survival during transcription // Nucleic Acids Res. 2014. Vol. 42. N 3. P. 1619–1627.; Chang H.W., Shaytan A.K., Hsieh F.-K., Kulaeva O.I., Kirpichnikov M.P, Studitsky V.M. Structural analysis of the key intermediate formed during transcription through a nucleosome // Trends Cell. Mol. Biol. 2013. Vol. 8. P. 13–23.; Walter W., Studitsky V.M. Construction, analysis, and transcription of model nucleosomal templates // Methods. 2004. Vol. 33. N 1. P. 18–24.; Gaykalova D.A., Kulaeva O.I., Bondarenko V.A., Studitsky V.M. Preparation and analysis of uniquely positioned mononucleosomes // Methods Mol. Biol. 2009. Vol. 523. P. 109–123.; Gaykalova D.A., Kulaeva O.I., Pestov N.A., Hsieh F.K., Studitsky V.M. Experimental analysis of the mechanism of chromatin remodeling by RNA polymerase II // Methods Enzymol. 2012. Vol. 512. P. 293–314.; Buning R., van Noort J. Single-pair FRET experiments on nucleosome conformational dynamics // Biochimie. 2010. Vol. 92. N 12. P. 1729–1740.; Choy J.S., Lee T.H. Structural dynami cs of nucleosomes at single-molecule resolution // Trends Biochem. Sci. 2012. Vol. 37. N 10. P. 425–435.; Walter W., Kireeva M.L., Tchernajenko V., Kashlev M., Studitsky V.M. Assay of the fate of the nucleosome during transcription by RNA polymerase II // Methods Enzymol. 2003. Vol. 371. P. 564–577.; Kulaeva O.I., Gaykalova D.A., Pestov N.A., Golovastov V.V., Vassylyev D.G., Artsimovitch I., Studitsky V.M. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II // Nat. Struct. Mol. Biol. 2009. Vol. 16. N 12. P. 1272–1278.; Kireeva M.L., Walter W., Tchernajenko V., Bondarenko V., Kashlev M., Studitsky V.M. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription // Mol. Cell. 2002. Vol. 9. N 3. P. 541–552.; https://vestnik-bio-msu.elpub.ru/jour/article/view/282