-
1Academic Journal
المؤلفون: V. S. Volcheck, V. R. Stempitsky, В. С. Волчёк, В. Р. Стемпицкий
المصدر: Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series; Том 68, № 2 (2023); 156-166 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 68, № 2 (2023); 156-166 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2023-68-2
مصطلحات موضوعية: управление тепловым режимом, device simulation, GaN, heat dissipation, heat-spreading element, heterostructure field-effect transistor, high electron mobility transistor, power electronics, self-heating, thermal management, нитрид бора, нитрид галлия, приборное моделирование, рассеяние тепла, саморазогрев, силовая электроника, теплоотводящий элемент, транзистор с высокой подвижностью электронов
وصف الملف: application/pdf
Relation: https://vestift.belnauka.by/jour/article/view/800/633; https://vestift.belnauka.by/jour/article/view/800
-
2Academic Journal
المؤلفون: Tran Van Trieu, I. Yu. Lovshenko, V. R. Stempitsky, K. V. Korsak, Tran Tuan Trung, Dao Dinh Ha, V. V. Kolos, Чан Ван Чиеу, И. Ю. Ловшенко, В. Р. Стемпицкий, К. В. Корсак, Чан Туан Чунг, Дао Динь Ха, В. В. Колос
المصدر: Digital Transformation; Том 29, № 1 (2023); 72-80 ; Цифровая трансформация; Том 29, № 1 (2023); 72-80 ; 2524-2822 ; 2522-9613
مصطلحات موضوعية: деформация, microbolometer, modeling, mechanical stresses, deformation, микроболометр, моделирование, механические напряжения
وصف الملف: application/pdf
Relation: https://dt.bsuir.by/jour/article/view/743/278; Wood R. A., Han C. J., Kruse P. W. (1992) Integrated Uncooled Infrared Detector Imaging Arrays. Solid-State Sensor and Actuator Workshop, 5th Technical Digest, IEEE. 132–135.; Takamuro D., Tomohiro M., Takaki S. (2011) Development of New SOI Diode Structure for Beyond 17-umPixel Pitch SOI Diode Uncooled IRFPAs. Proceedings of SPIE – the International Society for Optical Engineering. (8012), 80121E.; Li C., Han C. J., Skidmore G. D., Hess C. (2010) DRS Uncooled VOx Infrared Detector Development and Production Status. Proc SPIE. (7660), 76600V.; Kolovsky A. A., Levitsky A. A., Marinushkin P. S. (2008) Computer Modeling of MEMS Components. Problems of Development of Promising Micro- and Nanoelectronic Systems. (1), 398.; Flannery R. E., Miller J. E. (1989) Status of Uncooled Infrared Imagers. Journals of SPIE. (1), 379.; Downey P. M., Jeffries A. D., Meyer S. S., Weiss R., Bachner F. J., Donnelly J. P., Lindley W. T., MountainR.W., Silversmith D. J. S. (1984) Monolithic Silicon Bolometers. Appl. Opt. (23), 14.; Liddiard K. C. (1993) Thin Film Monolithic Arrays for Uncooled Thermal Imaging. Proc. SPIE. (16), 206.; Unewisse M. H., Passmore S. J., Liddiard K. C., Watson R. J. (1994) Performance of Uncooled Semiconductor Film Bolometer Infrared Detectors. Proc. SPIE. (43), 52.; Wood R. A. (1993) High-Performance Infrared Thermal Imaging with Monolithic Silicon Focal Planes Operating at Room Temperature. Technical Digest. (77), 175.; Cole B. E., Higashi R. E., Wood R. A. (2000) Micromachined Pixel Arrays Integrated with CMOS for Infrared Applications. Int. Conf. on Optical MEMS, IEEE. 63.; Syllaios A. J., Schimert T. R., Gooch R. W., McCardel W. L., Ritchey B. A., Tregilgas J. H. (2000) Amorphous Silicon Microbolometer Technology. Proc. Mater. Res. Soc., San Francisco, CA, USA. 609, A14.4.; Mottin E., Astrid B., Jean-Luk M. (2003) Uncooled Amorphous Silicon Technology Enhancement for 25-umPixel Pitch Achievement Proc. SPIE Infrared Technology and Applications XXVIII, Seattle USA. 4820, 200.; Jerominek H., Picard F., Vincent D. (1993) Vanadium Oxide Films for Optical Switching and Detection. Opt. Eng. (32), 99.; KuŹma E. (1993) Contribution to the Technology of Critical Temperat. Resistors. Electron Technol. 26 (2/3), 129.; Jerominek H., Pope T. D., Renaud M., Swart N. R., Picard F., Lehoux M., Savard S. (1997) 64×64, 128×128 and 240×320 Pixel Uncooled IR Bolometric Detector Arrays. Proc. SPIE. (30), 47.; Chen C., Yi X., Zhang J., Xiong B. (2001) Micromachined Uncooled IR Bolometer Linear Array Using VO2 Thin Films. Int. J. Infrared Millim. Waves. (22), 53.; Niklaus F., Vieider C., Jakobsen H. (2007) MEMS-based Uncooled Infrared Bolometer Arrays: a Review. Proc. SPIE. (68), 36.; Soltani M., Chaker M., Haddad E., Kruzelecky R. V., Margot J. (2004) Effects of Ti-W Codoping on the Optical and Electrical Switching of Vanadium Dioxide Thin Films Grown by a Reactive Pulsed Laser Deposition. Appl. Phys. Lett. (85), 60.; Han Y. H., Kim K. T., Shin H. J., Moon S. (2005) Enhanced Characteristics of an Uncooled Microbolometer Using Vanadium-Tungsten Oxide as a Thermoelectric Material. Appl. Phys. Lett. (86), 3.; Syllaios A. J., Schimert T. R., Gooch R. W., McCardel W. L., Ritchey B. A., Tregilgas J. H. (2000) Amorphous Silicon Microbolometer Technology. MRS Proc. (14), 6.; Liddiard K. C., Ringh U., Jansson C., Reinhold O. (1998) Progress of Swedish-Australian Research Collaboration on Uncooled Smart IR Sensors. Proc. SPIE. (34), 84.; Tisse C.-L., Tissot J.-L., Crastes A. (2012) An Information-Theoretic Perspective on the Challenges and Advances in the Race Toward 12 μm Pixel Pitch Megapixel Uncooled Infrared Imaging. Proc. SPIE. (8353), 83531M-1.; Wang J., Li W., Gou J., Wu Z., Jiang Y. (2014) Fabrication and Parameters Calculation of Room Temperature Terahertz Detector with Micro-bridge Structure. J. Infrared Milli Terahertz Waves. 35 (12), 987–1082.; Safy M., Zaky A. H., Mitkes A. (2008) Thermal Modeling of a High Fill-factor Micromachined Bolometer for Thermal Imaging Applications. ICEENG The International Conference on Electrical Engineering. 6.; Malm G. B. (2012) Micromechanical Process Integration and Material Optimization for High Performance Silicon-Germanium Bolometers. MRS Online Proceedings Library. 1437.; Varpula A. (2021) Nano-Thermoelectric Infrared Bolometers. APL Photonics. 036111.; Chiang S.-Y. (2020) 2D Material-Enabled Nanomechanical Bolometer. Nano Letters. 2326–2331.; https://dt.bsuir.by/jour/article/view/743
-
3Academic Journal
المؤلفون: V. S. Volcheck, M. S. Baranava, V. R. Stempitsky, В. С. Волчёк, М. С. Баранова, В. Р. Стемпицкий
المصدر: Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series; Том 67, № 3 (2022); 285-297 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 67, № 3 (2022); 285-297 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2022-67-3
مصطلحات موضوعية: температурная зависимость, phonon, thermal conductivity, GaN, temperature dependence, теплопроводность, фонон
وصف الملف: application/pdf
Relation: https://vestift.belnauka.by/jour/article/view/753/605; Quay R. Gallium Nitride Electronics. Berlin; Heidelberg, Springer, 2008. 470 p.; Roccaforte F., Leszczynski M. (eds.). Nitride Semiconductor Technology: Power Electronics and Optoelectronic Devices. Weinheim, Wiley-VCH, 2020. 464 p. https://doi.org/10.1002/9783527825264; Bernardini F., Fiorentini V., Vanderbilt D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Physical Review B, 1997, vol. 56, no. 16, pp. 24–27. https://doi.org/10.1103/PhysRevB.56.R10024; Yan Z., Liu G., Khan J. M., Balandin A.A. Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, 2012, vol. 3, 827. https://doi.org/10.1038/ncomms1828; Volcheck V. S., Lovshenko I. Yu., Shandarovich V. T., Dao D. H. Gallium nitride high electron mobility transistor with an effective graphene-based heat removal system. Doklady BGUIR, 2020, vol. 18, no. 3, pp. 72–80 (in Russian). https://doi. org/10.35596/1729-7648-2020-18-3-72-80; Wachutka G.K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Transactions on Computer-Aided Design, 1990, vol. 9, no. 11, pp. 1141–1149. https://doi.org/10.1109/43.62751; Asif Khan M., Yang J.W., Knap W., Frayssinet E., Hu X., Simin G., Prystawko P., Leszczynski M., Grzegory I., Porowski S., Gaska R., Shur M.S., Beaumont B., Teisseire M., Neu G. GaN-AlGaN heterostructure field-effect transistors over bulk GaN substrates. Applied Physics Letters, 2000, vol. 76, no. 25, pp. 3807–3809. https://doi.org/10.1063/1.126788; Irekti M.-R., Lesecq M., Defrance N., Okada E., Frayssinet E., Cordier Y., Tartarin J.-G., De-Jaeger J.-C. 2 W/mm power density of an AlGaN/GaN HEMT grown on free-standing GaN substrate at 40 GHz. Semiconductor Science and Technology, 2019, vol. 34, no. 12, 12LT01. https://doi.org/10.1088/1361-6641/ab4e74; Dong Y., Xie Z., Chen D., Lu H., Zhang R., Zheng Y. Effects of dissipative substrate on the performance of enhancement mode AlInN/GaN HEMTs. International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 2019, vol. 32, no. 1, e2482. https://doi.org/10.1002/jnm.2482; Zou J., Kotchetkov D., Balandin A. A., Florescu D. I., Pollak F.H. Thermal conductivity of GaN films: Effects of impurities and dislocations. Journal of Applied Physics, 2002, vol. 92, no. 5, pp. 2534–2539. https://doi.org/10.1063/1.1497704; Bi W., Kuo H.-C., Ku P.-C., Chen B. (eds.). Handbook of GaN Semiconductor Materials and Devices. New York, CRC Press, 2018. 708 p. https://doi.org/10.1201/9781315152011; Vandersande J. W., Wood C. The thermal conductivity of insulators and semiconductors. Contemporary Physics, 1986, vol. 27, no. 2, pp. 117–144. https://doi.org/10.1080/00107518608211003; Slack G.A. Nonmetallic crystals with high thermal conductivity. Journal of Physics and Chemistry of Solids, 1973, vol. 34, no. 2, pp. 321–335. https://doi.org/10.1016/0022-3697(73)90092-9; Morelli D. T., Heremans J. P., Slack G.A. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Physical Review B, 2002, vol. 66, no. 19, 195304. https://doi.org/10.1103/ PhysRevB.66.195304; Florescu D. I., Asnin V. M., Pollak F. H., Molnar R. J., Wood C.E. C. High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire (0001): Doping dependence. Journal of Applied Physics, 2000, vol. 88, no. 6, pp. 3295–3300. https://doi.org/10.1063/1.1289072; Witek A. Some aspects of thermal conductivity of isotopically pure diamond – A comparison with nitrides. Diamond and Related Materials, 1998, vol. 7, no. 7, pp. 962–964. https://doi.org/10.1016/S0925-9635(97)00336-1; Dugdale J. S., MacDonald D.K. C. Lattice thermal conductivity. Physical Review, 1955, vol. 98, no. 6, pp. 1751–1752. https://doi.org/10.1103/PhysRev.98.1751; Callaway J. Model for lattice thermal conductivity at low temperatures. Physical Review, 1959, vol. 113, no. 4, pp. 1046–1051. https://doi.org/10.1103/PhysRev.113.1046; Ma J., Li W., Luo X. Examining the Callaway model for lattice thermal conductivity. Physical Review B, 2014, vol. 90, no. 3, 035203. https://doi.org/10.1103/PhysRevB.90.035203; Kotchetkov D., Zou J., Balandin A. A., Florescu D. I., Pollak F.H. Effect of dislocations on thermal conductivity of GaN layers. Applied Physics Letters, 2001, vol. 79, no. 26, pp. 4316–4318. https://doi.org/10.1063/1.1427153; Liu W., Balandin A.A. Thermal conduction in AlxG1-xN alloys and thin films. Journal of Applied Physics, 2005, vol. 97, no. 7, 073710. https://doi.org/10.1063/1.1868876; Lindsay L., Broido D.A., Reinecke T.L. Thermal conductivity and large isotope effect in GaN from first principles. Physical Review Letters, 2012, vol. 109, no. 9, 095901. https://doi.org/10.1103/PhysRevLett.109.095901; Broido D. A., Malorny M., Birner G., Mingo N., Stewart D.A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Applied Physics Letters, 2007, vol. 91, no. 23, 231922. https://doi.org/10.1063/1.2822891; Slack G. A., Schowalter L. J., Morelli D., Freitas Jr. J.A. Some effects of oxygen impurities on AlN and GaN. Journal of Crystal Growth, 2002, vol. 246, no. 3–4, pp. 287–298. https://doi.org/10.1016/S0022-0248 %2802 %2901753-0; Jezowski A., Danilchenko B. A., Bockowski M., Grzegory I., Krukowski S., Suski T., Paszkiewicz T. Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Communications, 2003, vol. 128, no. 2–3, pp. 69–73. https://doi. org/10.1016/S0038-1098(03)00629-X; Ju W, Zhou Z., Wei Z. Anisotropic thermal transport property of defect-free GaN. AIP Advances, 2016, vol. 6, no. 6, 065328. https://doi.org/10.1063/1.4955185; Wu R., Hu R., Luo X. First-principles-based full-dispersion Monte Carlo simulation of the anisotropic phonon transport in the wurtzite GaN thin film. Journal of Applied Physics, 2016, vol. 119, no. 14, 145706. https://doi.org/10.1063/1.4945776; Qin Z., Qin G., Zuo X., Xiong Z., Hu M. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: A comparative study. Nanoscale, 2017, vol. 9, pp. 4295–4309. https://doi.org/10.1039/ C7NR01271C; Jiang Y., Cai S., Tao Y., Wei Z., Bi K., Chen Y. Phonon transport properties of bulk and monolayer GaN from first-principles calculations. Computational Materials Science, 2017, vol. 138, pp. 419–425. https://doi.org/10.1016/j.commatsci.2017.07.012; Li W., Carrete J., Katcho N.A., Mingo N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, vol. 185, no. 6, pp. 1747–1758. https://doi.org/10.1016/j.cpc.2014.02.015; Garg J., Luo T., Chen G. Spectral concentration of thermal conductivity in GaN – A first-principles study. Applied Physics Letters, 2018, vol. 112, no. 25, 252101. https://doi.org/10.1063/1.5026903; Behler J., Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical Review Letters, 2007, vol. 98, no. 14, 146401. https://doi.org/10.1103/PhysRevLett.98.146401; Minamitani E., Ogura M., Watanabe S. Simulating lattice thermal conductivity in semiconducting materials using high-dimensional neural network potential. Applied Physics Express, 2019, vol. 12, no. 9, 095001. https://doi.org/10.7567/1882- 0786/ab36bc; Simon R. B., Anaya J., Kuball M. Thermal conductivity of bulk GaN – Effects of oxygen, magnesium doping, and strain field compensation. Applied Physics Letters, 2014, vol. 105, no. 20, 202105. https://doi.org/10.1063/1.4901967; Sichel E. K., Pankove J.I. Thermal conductivity of GaN, 25–360 K. Journal of Physics and Chemistry of Solids, 1977, vol. 38, no. 3, p. 330. https://doi.org/10.1016/0022-3697(77)90112-3; Maruska H. P., Tietjen J.J. The preparation and properties of vapor-deposited single-crystal-line GaN. Applied Physics Letters, 1969, vol. 15, no. 10, pp. 327–329. https://doi.org/10.1063/1.1652845; Asnin V. M., Pollak F. H., Ramer J., Schurman M., Ferguson I. High spatial resolution thermal conductivity of lateral epitaxial overgrown GaN/sapphire (0001) using a scanning thermal microscope. Applied Physics Letters, 1999, vol. 75, no. 9, pp. 1240–1242. https://doi.org/10.1063/1.124654; Luo C.-Y., Marchand H., Clarke D.R., DenBaars S.P. Thermal conductivity of lateral epitaxial overgrown GaN films. Applied Physics Letters, 1999, vol. 75, no. 26, pp. 4151–4153. https://doi.org/10.1063/1.125566; Florescu D. I., Asnin V. M., Pollak F. H., Jones A. M., Ramer J. C., Schurman M. J., Ferguson I. Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy. Applied Physics Letters, 2000, vol. 77, no. 10, pp. 1461–1466. https://doi.org/10.1063/1.1308057; Shibata H., Waseda Y., Ohta H., Kiyomi K., Shimoyama K., Fujito K., Nagaoka H., Kagamitani Y., Simura R., Fukuda T. High thermal conductivity of gallium nitride (GaN) crystals grown by HVPE process. Materials Transactions, 2007, vol. 48, no. 10, pp. 2782–2786. https://doi.org/10.2320/matertrans.MRP2007109; Jagannadham K., Berkman E.A., Elmasry N. Thermal conductivity of semi-insulating, p-type, and n-type GaN films on sapphire. Journal of Vacuum Science & Technology A, 2008, vol. 26, no. 3, pp. 375–379. https://doi.org/10.1116/1.2899379; Richter E., Grunder M., Schineller B., Brunner F., Zeimer U., Netzel C., Weyers M., Trankle G. GaN boules grown by high rate HVPE. Physica Status Solidi C, 2011, vol. 8, no. 5, pp. 1450–1454. https://doi.org/10.1002/pssc.201000901; https://vestift.belnauka.by/jour/article/view/753
-
4Academic Journal
المؤلفون: M. S. Baranava, V. A. Skachkova, V. R. Stempitsky, D. C. Hvazdousky, М. С. Баранова, В. А. Скачкова, В. Р. Стемпицкий, Д. Ч. Гвоздовский
المصدر: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; № 3 (2017); 99-107 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; № 3 (2017); 99-107 ; 2524-2415 ; 1561-2430 ; undefined
مصطلحات موضوعية: сульфид цинка, Van der Waals force, heterostructure, grapheme, zinc oxide, zinc sulfide, силы Вандер-Ваальса, гетероструктура, графен, оксид цинка
وصف الملف: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/268/258; Young-Woo Son. Energy gaps in graphene nanoribbons / Young-Woo Son, M. L. Cohen, S. G. Louie // Phis. Rev. Lett. – 2006. – Vol. 97, №. 21. – P. 216803(1–4).; Tunable MoS2 bandgap in MoS2-graphene heterostructures / A. Ebnonnasir [et al.] // Appl. Phys. Lett. – 2014. – Vol. 105, № 3. – P. 031603(1–5).; Under pressure: Control of strain, phonons and bandgap opening in rippled graphene / U. Monteverde [et al.] // Carbon. – 2015. – Vol. 91. – P. 266–274.; Kaoru Kanayama. Gap state analysis in electric-field-induced band gap for bilayer graphene / Kaoru Kanayama, Kosuke Nagashio // Scientific Reports. – 2015. – Vol. 5, № 1. – P. 15789 (1–8).; Ивановский, А. Л. Графеновые и графеноподобные материалы / а. л. Ивановский // Успехи химии. – 2012. – т. 81, № 7. – С. 571–605.; Baojun Li. ZnO@graphene composite with enhanced performance for the removal of dye from water / Baojun Li, Huaqiang Cao // J. Mater. Chem. – 2011 – Vol. 21, № 10. – P. 3346–3349.; Microwave-assisted synthesis of ZnO-graphene composite for photocatalytic reduction of Cr(VI) / Xinjuan Liu [et al.] // Catal. Sci. Technol. – 2011 – Vol. 1, № 7. – P. 1189–1193.; Pan, S. ZnS–Graphene nanocomposite: Synthesis, characterization and optical properties / S. Pan, X. Liu // J. Solid State Chem. – 2012 – Vol. 191. – P. 51–56.; The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries / M. Mao [et al.] // J. Mater. Chem. A. – 2015. – Vol. 3. – P. 13384–13389.; Integration of graphene/ZnS nanowire film hybrid based photodetector arrays for high-performance image sensors / Congjun Wu [et al.] // 2D Materials. – 2017. – Vol. 4, № 2. – P. 025113.; Tu, Z. C. First-principles study on physical properties of a single ZnO monolayer with graphene-like structure / Z. C. Tu // J. Comput. Theor. Nanosci. – 2010 – Vol. 7, № 6. – P. 1182–1186.; Антонова, И. В. Вертикальные гетероструктуры на основе графена и других монослойных материалов / И. В. Антонова // Физика полупроводников. – 2016. – т. 50, № 1. – С. 67–82.; Kohn, W. Self-consistent equations including exchange and correlation effects / W. Kohn, L. J. Sham // Phys. Rev. – 1965. – Vol. 140, №. 4A. – P. A1133–A1138.; Арбузников, А. В. Гибридные обменно-корреляционные функционалы и потенциалы: развитие концепции / А. В. Арбузников // Журн. структур. химии. – 2007. – т. 48. – С. S5–S38.; Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction / S. Grimme // J. Comp. Chem. – 2006. – Vol. 27, № 15. – P. 1787–1799.; Van der Waals density functional for general geometries / M. Dion [et al.] // Phys. Rev. Lett. – 2004. – Vol. 92, № 92. – P. 246401-1-4.; Morita, A. Semiconducting black phosphorus / A. Morita // Appl. Phys. A. Solids and Surfaces. – 1986. – Vol. 39, № 4. – P. 227–242.; Blöchl, P. E. Projector augmented-wave method / P. E. Blöchl // Phys. Rev. – 1994. – Vol. 50, № 24. – P. 17953.; Kresse, G. From ultrasoft pseudopotentials to the projector augmented wave method / G. Kresse, J. Joubert // Phys. Rev. B. – 1999. – Vol. 59, № 3. – P. 1758–1775.; Brown, A. Refinement of the crystal structure of black phosphorus / A. Brown, S. Rundqvist // Acta Crystallogr. – 1965. – Vol. 19, № 4. – P. 684–685.; Hubbard, J. Electron correlations in narrow energy bands / J. Hubbard // Proc. R. Soc. London: Mathematical, Physical and Engineering Sciences. – 1963. – Vol. 276, № 1365. – P. 238–257.; Two-dimensional gas of massless Dirac fermions in graphene / K. S. Novoselov [et. al.] // Nature. – 2005. – Vol. 438, № 7065. – P. 197–200.; Perdew, J. P. Density functional theory and the band gap problem / J. P. Perdew // Int. J. of Quantum Chem. – 1985. – Vol. 28, № S19. – P. 497–523.; https://vestifm.belnauka.by/jour/article/view/268; undefined
-
5Academic Journal
المؤلفون: A. V. Gulay, V. M. Koleshko, V. R. Stempitskiy, N. V. Levchenko, V. A. Gulay, O. A. Kozlova, А. В. Гулай, В. М. Колешко, В. Р. Стемпицкий, Н. В. Левченко, В. А. Гулай, О. А. Козлова
المصدر: Science & Technique; № 3 (2014); 11-17 ; НАУКА и ТЕХНИКА; № 3 (2014); 11-17 ; 2414-0392 ; 2227-1031 ; undefined
مصطلحات موضوعية: сенсорная наносистема, simulation, hyperfine films, rare earth oxide, sensory nanosystem, моделирование, сверхтонкие пленки, оксид редкоземельного элемента
وصف الملف: application/pdf
Relation: https://sat.bntu.by/jour/article/view/56/51; Koleshko, V. M., Gulay, A. V., Gulay, V. A. (2009) Nanosensors Based on Hyperfine Films of Rare Earth Compounds. Nanotehnologii [Nanotechnology], 1, 45-48.; Gulay, V. A. (2007) Electrophysical Properties of Tunnel Sensoring MDM-Nanostructures Based on Rare Earth Elements. Jelektronika-info [Electronics-info], 9, 52-56.; Koleshko, V. M., Gulay, A. V., Gulay, V. A. (2007) Tunnel MDM-Nanosensors: Simulation Strategies and Technologies. Nano- i Mikrosistemnye Tehnologii [Nano- and Microsystem Technology], 9, 46-52.; Koleshko, V. M., Gulay, A. V., Gulay, V. A. (2009) Simulation of Tunneling Sensor MIM-Nanostructures. Proceedings of Society of Photo-Optical Instrumentation Engineers, Vol. 7377, 39.; Serebrennikov, V. (1959) Chemistry of Rare Earth Elements (Scandium, Yttrium, Lanthanides): in 2 vol. Tomsk: Tomsk State University, vol. 1, 89-97.; Ryabchikov, D. I., Ryabunin, V. A. (1966) Analytical Chemistry of Rare Earth Elements and Yttrium. Moscow: Science, 7-31.; Korovin, S. S. (1966) Rare and Trace Elements. Chemistry and Technology: in 2 vol. Moscow: MISIS, vol. 1, 185-201.; Baldinozzi, G., Berar, J.-F., Calvarin, G. P. (1998) Rietveld Refinement of Two-Phase Zr-doped Y2O3. Materials Science Forum, vol. 278-281, (Part 2), 680-685.; Kresse, G., Joubert, J. (1999) From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review, vol. B 59, 1758-1765.; Kresse, G., Furhtmiller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Dasis Set. Computational Materials Science, 6, 15-19.; Nelayev, V, Mironchik, A. (2010) Magnetism of Graphene with Vacancy Clusters. Materials, Physics and Mechanic, 9, 26-34.; Nelayev, V., Lyskovski, V., Mamedov, N. (2010) Ternary TlMeX2 Compounds for MEMS Application. Promising Technologies and Methods of Designing MEMS: Materials VI Conference MEMSTECH-2010. Lviv, Polyana, 50-55.; Koleshko, V. M., Gulay, A. V., Lyskovski, V. V., Gulay, V. A., Krupskaja, E. V., Levchenko, N. V. (2011) Simulation of Electronic Properties of Sensoring Materials Dased on Rare Earth Oxides. Stohasticheskoe i Kompjuternoe Modelirovanie Sistem i Processov: Sbornik Nauchnyh Rabot [Stochastic and Computer Simulation of Systems and Processes: Scientific Papers Publication]. Grodno: Grodno State University, 99-103.; Gulay, A., Kozlova, O., Levchenko, N., Nelayev, V. (2011) Y2O3 and MoS2 Electronic Properties Simulation. Promising Technologies and Methods of Designing MEMS: Materials VII Conference MEMSTECH-2011. Lviv, Polyana, 111-113.; Kozlova, O., Levchenko, N. (2012) Electronic Properties of Nanostructured MoS2 and Y2O3 Compounds. Promising Technologies and Methods of Designing MEMS: Materials VIII Conference MEMSTECH-2012. Lviv, Polyana, 119-122.; https://sat.bntu.by/jour/article/view/56; undefined