يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"В. Д. Удодов"', وقت الاستعلام: 0.34s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Источник финансирования. Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-115-50333

    المصدر: Bulletin of Siberian Medicine; Том 21, № 3 (2022); 166-180 ; Бюллетень сибирской медицины; Том 21, № 3 (2022); 166-180 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-3

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4919/3266; Lauri C., Leone A., Cavallini M., Signore A., Giurato L., Uccioli L. Diabetic foot infections: the diagnostic challenges. J. Clin. Med. 2020;9(6):1779. DOI:10.3390/jcm9061779.; Llewellyn A., Kraft J., Holton C., Harden M., Simmonds M. Imaging for detection of osteomyelitis in people with diabetic foot ulcers: A systematic review and meta-analysis. Eur. J. Radiol. 2020;131:109215. DOI:10.1016/j.ejrad.2020.109215.; Chantelaua E.A., Antoniou S., Zweck B., Haage P. Follow up of MRI bone marrow edema in the treated diabetic Charcot foot – a review of patient charts. Diabet. Foot Ankle. 2018;9(1):1466611. DOI:10.1080/2000625X.2018.1466611.; Ruiz-Bedoya C.A., Gordon O., Mota F. et al. Molecular imaging of diabetic foot infections: new tools for old questions. Int. J. Mol. Sci. 2019;20(23):5984. DOI:10.3390/ijms20235984.; Massel D.H., Jenkins N.W., Rush A.J. 3rd et al. MRI and clinical risk indicators for osteomyelitis. Foot and Ankle Specialist. 2014;14(5):415–426. DOI: 0.1177/1938640020921572.; Duryea D., Bernard S., Flemming D., Walker E., French C. Outcomes in diabetic foot ulcer patients with isolated T2 marrow signal abnormality in the underlying bone: should the diagnosis of «osteitis» be changed to «early osteomyelitis»? Skeletal Radiol. 2017;46(10):1327–1333. DOI:10.1007/s00256-017-2666-x.; Jang Y.H., Park S., Park Y.U., Kwack K.S., Jeon S.W., Lee H.Y. Multivariate analyses of MRI findings for predicting osteomyelitis of the foot in diabetic patients. Acta Radiol. 2020;61(9):1205–1212. DOI:10.1177/0284185119897351.; Kotecha H.M., Lo H.S., Vedantham S., Shin H., Cerniglia C.A. Abbreviated MRI of the foot in patients with suspected osteomyelitis. Emerg. Radiol. 2020;27(1):9–16. DOI:10.1007/s10140-019-01722-y.; La Fontaine J., Bhavan K., Jupiter D., Lavery L.A., Chhabra A. Magnetic resonance imaging of diabetic foot osteomyelitis: imaging accuracy in biopsy-proven disease. J. Foot Ankle Surg. 2021;60(1):17–20. DOI:10.1053/j.jfas.2020.02.012; Jbara M., Gokli A., Beshai S. et al. Does obtaining an initial magnetic resonance imaging decrease the reamputation rates in the diabetic foot? Diabet. Foot Ankle. 2016;7:31240. DOI:10.3402/dfa.v7.31240.; Lauri C., Glaudemans A.W.J.M., Signore A. Leukocyte imaging of the diabetic foot. Curr. Pharm. Des. 2018;24(12):1270– 1276. DOI:10.2174/1381612824666180227094116.; Diez A.I.G., Fuster D., Morata L. et al. Comparison of the diagnostic accuracy of diffusion-weighted and dynamic contrast-enhanced MRI with 18F-FDG PET/CT to differentiate osteomyelitis from Charcot neuro-osteoarthropathy in diabetic foot. Eur. J. Radiol. 2020;132:109299. DOI:10.1016/j.ejrad.2020.109299.; Çildağ M.B., Ertuğrul M.B., Köseoğlu Ö.F., Armstrong D.G. A Factor increasing venous contamination on bolus chase three-dimensional magnetic resonance imaging: Charcot neuroarthropathy. J. Clin. Imaging Sci. 2018;8:13. DOI:10.4103/jcis.JCIS_77_17.; Uccioli L., Meloni M., Izzo V., Giurato L., Merolla S., Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc. Health Risk Manag. 2018;14:63–74. DOI:10.2147/VHRM.S125065.; Zamyshevskaya M., Zavadovskaya V., Zorkaltsev M., Udodov V., Grigorev E. 3D DCE-MRA of pedal arteries in patients with diabetes mellitus. Journal of Physics Conference Series. 2016;677(1):012010. DOI:10.1088/17426596/677/1/012010; Liao D., Xie L., Han Y. et al. Dynamic contrast-enhanced magnetic resonance imaging for differentiating osteomyelitis from acute neuropathic arthropathy in the complicated diabetic foot. Skeletal Radiol. 2018;47(10):1337–1347. DOI:10.1007/s00256-018-2942-4.; Zhang N., Fan Z., Luo N. et al. Noncontrast MR angiography (MRA) of infragenual arteries using flow-sensitive dephasing (FSD)-prepared steady-state free precession (SSFP) at 3.0 Tesla: comparison with contrast-enhanced MRA. J. Magn. Reson. Imaging. 2016;43(2):364–372. DOI:10.1002/jmri.25003.; Lam A., Perchyonok Y., Ranatunga D. et al. Accuracy of non-contrast quiescent-interval single-shot and quiescent-interval single-shot arterial spin-labelled magnetic resonance angiography in assessment of peripheral arterial disease in a diabetic population. J. Med. Imaging Radiat. Oncol. 2020;64(1):35–43. DOI:10.1111/1754-9485.12987.; Abdel Razek A.A.K., Samir S. Diagnostic performance of diffusion-weighted MR imaging in differentiation of diabetic osteoarthropathy and osteomyelitis in diabetic foot. Eur. J. Radiol. 2017;89:221–225. DOI:10.1016/j.ejrad.2017.02.015.; Eren M.A., Karakaş E., Torun A.N., Sabuncu T. The Clinical value of diffusion-weighted magnetic resonance imaging in diabetic foot infection. J. Am. Podiatr. Med. Assoc. 2019;109(4):277–281. DOI:10.7547/17-066.; Lauri C., Tamminga M., Glaudemans A.W.J.M. et al. Detection of Osteomyelitis in the Diabetic Foot by Imaging Techniques: A Systematic Review and Meta-analysis Comparing MRI, White Blood Cell Scintigraphy, and FDG-PET. Diabetes Care. 2017;40(8):1111–1120. DOI:10.2337/dc17-0532.; Signore A., Jamar F., Israel O., Buscombe J., Martin-Comin J., Lazzeri E. Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: an EANM procedural guideline. Eur. J. Nucl. Med. Mol. Imaging. 2018;45(10):1816–1831. DOI:10.1007/s00259-018-4052-x.; Lauri C., Glaudemans A.W.J.M., Campagna G. et al. Comparison of White Blood Cell Scintigraphy, FDG PET/CT and MRI in Suspected Diabetic Foot Infection: Results of a Large Retrospective Multicenter Study. J. Clin. Med. 2020;9(6):1645. DOI:10.3390/jcm9061645.; Ahmed N., Fatima S., Saeed M.A., Zia M., Irfan Ullah J. 99m Tc-ceftizoxime: synthesis, characterization and its use in diagnosis of diabetic foot osteomyelitis. J. Med. Imaging Radiat. Oncol. 2019;63(1):61–68. DOI:10.1111/1754-9485.12841.; Ankrah A.O., Klein H.C., Elsinga P.H. New imaging tracers for the infected diabetic foot (nuclear and optical imaging). Curr. Pharm. Des. 2018;24(12):1287–1303. DOI:10.2174/1381612824666180227094454.; Vouillarmet J., Moret M., Morelec I., Michon P., Dubreuil J. Application of white blood cell SPECT/CT to predict remission after a 6 or 12 week course of antibiotic treatment for diabetic foot osteomyelitis. Diabetologia. 2017;60(12):2486– 2494. DOI:10.1007/s00125-017-4417-x.; Jeffcoate W.J. Osteomyelitis of the foot: non-surgical management, SPECT/CT scanning and minimizing the duration of antibiotic use. Diabetologia. 2017;60(12):2337–2340. DOI:10.1007/s00125-017-4429-6.; Ahluwalia R., Bilal A., Petrova N. et al. The role of bone scintigraphy with SPECT/CT in the characterization and early diagnosis of stage 0 Charcot neuroarthropathy. J. Clin. Med. 2020;9(12):4123. DOI:10.3390/jcm9124123.; Yang H., Zhuang H., Rubello D., Alavi A. Mild-to-moderate hyperglycemia will not decrease the sensitivity of 18F-FDG PET imaging in the detection of pedal osteomyelitis in diabetic patients. Nucl. Med. Commun. 2016;37(3):259–262. DOI:10.1097/MNM.0000000000000434.; Glaudemans A.W.J.M., Jutte P.C., Cataldo M.A. et al. Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur. J. Nucl. Med. Mol. Imaging. 2019;46(4):957–970. DOI:10.1007/s00259-019-4262-x.; Удодов В.Д., Зоркальцев М.А., Завадовская М.А. и др. Гибридная ОФЭКТ/МРТ в диагностике синдрома диабетической стопы. Медицинская визуализация. 2016;2:36–42.; Meacock L., Petrova N.L., Donaldson A. et al. Novel semi quantitative bone marrow oedema score and fracture score for the magnetic resonance imaging assessment of the active Charcot foot in diabetes. J. Diabetes Res. 2017;2017:8504137. DOI:10.1155/2017/8504137.; Alvelo J.L., Papademetris X., Mena-Hurtado C. et al. Radiotracer imaging allows for noninvasive detection and quantification of abnormalities in angiosome foot perfusion in diabetic patients with critical limb ischemia and nonhealing wounds. Circ. Cardiovasc. Imaging. 2018;11(5):e006932. DOI:10.1161/CIRCIMAGING.117.006932; Mahendra M., Singh R. Diagnostic accuracy and surgi cal utility of MRI in complicated diabetic foot. J. Clin. Diagn. Res. 2017;11(7):RC01–RC04. DOI:10.7860/JCDR/2017/25902.10154.; Chou T.H., Atway S.A., Bobbey A.J., Sarac T.P., Go M.R., Stacy M.R. SPECT/CT imaging a noninvasive approach for evaluating serial changes in angiosome foot perfusion in critical limb ischemia. Adv. Wound Care (New Rochelle). 2020;9(3):103–110. DOI:10.1089/wound.2018.0924; Chen H.J., Roy T.L., Wright G.A. Perfusion measures for symptom severity and differential outcome of revascularization in limb ischemia: preliminary results with arterial spin labeling reactive hyperemia. J. Magn. Reson. Imaging. 2018;47(6):1578–1588. DOI:10.1002/jmri.25910.; Zheng J., Muccigrosso D., Zhang X. et al. Oximetric angiosome imaging in diabetic feet. J. Magn. Reson. Imaging. 2016;44(4):940–946. DOI:10.1002/jmri.25220.; Edalati M., Hastings M.K., Muccigrosso D. et al. Intravenous contrast-free standardized exercise perfusion imag ing in diabetic feet with ulcers. J. Magn. Reson. Imaging. 2019;50(2):474–480. DOI:10.1002/jmri.26570.; Stacy M.R., Qiu M., Papademetris X. et al. Application of BOLD Magnetic Resonance Imaging for Evaluating Regional Volumetric Foot Tissue Oxygenation: A Feasibility Study in Healthy Volunteers. Eur. J. Vasc. Endovasc. Surg. 2016;51(5):743–749. DOI:10.1016/j.ejvs.2016.02.008.; Forsythe R.O., Apelqvist J., Boyko E.J. et al. Performance of Prognostic Markers in the Prediction of Wound Hea ling or Amputation among Patients with Foot Ulcers in Diabetes: A Systematic Review. Diabetes/Metabolism Research and Reviews. 2020;36(Suppl.1):e3278. DOI:10.1002/dmrr.3278.; Lung C.W., Wu F.L., Liao F., Pu F., Fan Y. et al. Emerg ing technologies for the prevention and management of diabetic foot ulcers. J. Tissue Viability. 2020;29(2):61–68. DOI:10.1016/j.jtv.2020.03.003.; Golledge J., Fernando M., Lazzarini P. et al. The potential role of sensors, wearables and telehealth in the remote management of diabetes-related foot disease. Sensors. 2020;20(16):4527. DOI:10.3390/s20164527.; Bus S.A., Lavery L.A., Monteiro-Soares M. et al. Guidelines on the prevention of foot ulcers in persons with diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020;36 (Suppl.1):e3269. DOI:10.1002/dmrr.3269.; Lung C.W., Hsiao-Wecksler E.T., Burns S., Lin F., Jan Y.K. Quantifying dynamic changes in plantar pressure gradient in diabetics with peripheral neuropathy. Front Bioeng Biotechnol. 2016;4:54. DOI:10.3389/fbioe.2016.00054.; Bus S.A., Maas J.C., Otterman N.M. Lower-extremity dynamics of walking in neuropathic diabetic patients who wear a forefoot-offloading shoe. Clin. Biomech. (Bristol, Avon). 2017;50:21–26. DOI:10.1016/j.clinbiomech.2017.10.003; Abbott C.A., Chatwin K.E., Foden P. et al. Innovative intelligent insole system reduces diabetic foot ulcer recurrence at plantar sites: a prospective, randomised, proof-of-con cept study. Lancet Digit Health. 2019;1(6):e308–e318. DOI:10.1016/S2589-7500(19)30128-1.; Fernando M.E., Crowther R.G., Lazzarini P.A. et al. Gait in people with nonhealing diabetes-related plantar ulcers. Phys. Ther. 2019;99(12):1602–1615. DOI:10.1093/ptj/pzz119.; Brodie M.A., Okubo Y., Annegarn J., Wieching R., Lord S.R., Delbaere K. Disentangling the health benefits of walking from increased exposure to falls in older people using remote gait monitoring and multi-dimensional analysis. Physiol. Meas. 2017;38(1):45–62. DOI:10.1088/1361-6579/38/1/45; Lee S.H., Lee H.J., Chang W.H. et al. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults. J. Neuroeng. Rehabil. 2017;14(1):123. DOI:10.1186/s12984-017-0333-z.; Kang S., Cho H., Jeon D. et al. A Matrix metalloproteinase sensing biosensor for the evaluation of chronic wounds. Bio. Chip. J. 2019;13:323–332. DOI:10.1007/s1206-019-3403-4.; Luanraksa S., Jindatanmanusan P., Boonsiri T., Nimmanon T., Chaovanalikit T., Arnutti P. An MMP/TIMP ratio scoring system as a potential predictive marker of diabetic foot ulcer healing. J. Wound Care. 2018;27(12):849–855. DOI:10.12968/jowc.2018.27.12.849.; Krisp C., Jacobsen F., McKay M.J., Molloy M.P., Steinstraesser L., Wolters D.A. Proteome analysis reveals antiangiogenic environments in chronic wounds of diabetes mellitus type 2 patients. Proteomics. 2013;13(17):2670–2681. DOI:10.1002/pmic.201200502.; Jones J.I., Nguyen T.T., Peng Z., Chang M. Targeting MMP-9 in diabetic foot ulcers. Pharmaceuticals (Basel). 2019;12(2):79. DOI:10.3390/ph12020079.; Ramirez-Acuña J.M., Cardenas-Cadena S.A., Marquez Salas P.A. et al. Diabetic foot ulcers: current advances in antimicrobial therapies and emerging treatments. Antibiotics (Basel). 2019;8(4):193. DOI:10.3390/antibiotics8040193.; Shao M., Hussain Z., Thu H.E. et al. Emerging trends in therapeutic algorithm of chronic wound healers: recent advances in drug delivery systems, concepts-to-clinical application and future prospects. Critical Reviews in Therapeutic Drug Carrier Systems.2017;34(5):387–452. DOI:10.1615/critrevtherdrugcarriersyst.2017016957.; Jneid J., Cassir N., Schuldiner S. et al. Exploring the microbiota of diabetic foot infections with culturomics. Front Cell Infect. Microbiol. 2018;8:282. DOI:10.3389/fcimb.2018.00282.; Malone M., Johani K., Jensen S.O. et al. Next generation DNA sequencing of tissues from infected diabetic foot ulcers. eBioMedicine. 2017;21:142–149. DOI:10.1016/j.ebiom.2017.06.026.; Park J.U., Oh B., Lee J.P., Choi M.H., Lee M.J., Kim B.S. Influence of microbiota on diabetic foot wound in comparison with adjacent normal skin based on the clinical features. Biomed. Res. Int. 2019;2019:7459236. DOI:10.1155/2019/7459236.; https://bulletin.tomsk.ru/jour/article/view/4919

  2. 2
    Academic Journal

    المصدر: Bulletin of Siberian Medicine; Том 21, № 2 (2022); 145-151 ; Бюллетень сибирской медицины; Том 21, № 2 (2022); 145-151 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-2

    مصطلحات موضوعية: сахарный диабет, diabetes mellitus

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4825/3213; Cillóniz C., Dominedò C., Garcia-Vidal C., Torres A. Community-acquired pneumonia as an emergency condition. Current Opinion in Critical Car. 2018;24(6):531–539. DOI:10.1097/mcc.0000000000000550.; Arias-Fernández L., Gil-Prieto R., Gil-de-Miguel Á. Incidence, mortality, and lethality of hospitalizations for community-acquired pneumonia with comorbid cardiovascular disease in Spain (1997–2015). BMC Infectious Diseases. 2020;20(1):477. DOI:10.1186/s12879-020-05208-y.; Фатенков О.В., Кузьмина Т.М., Рубаненко О.А., Светлова Г.Н., Дзюбайло А.В. Течение внебольничной бактериальной пневмонии при коморбидной патологии у пожилых пациентов. Успехи геронтологии. 2017;30(3):394–397.; Титова О.Н., Кузубова Н.А., Александров А.Л., Перлей В.Е., Волочкова Е.В., Барышникова К.А. Особенности центральной гемодинамики у больных внебольничной пневмонией в зависимости от течения заболевания и сердечнососудистой коморбидности. Терапевтический архив. 2019;91(12):29–34. DOI:10.26442/00403660.2019.12.000441.; Man M.Y., Shum H.P., Yu J.S.Y., Wu A., Yan W.W. Burden of pneumococcal disease: 8-year retrospective analysis from a single centre in Hong Kong. Hong Kong Medical Journal. 2020;26(5):372–381. DOI:10.12809/hkmj208373.; Imai K., Petigara T., Kohn M.A., Nakashima K., Aoshima M., Shito A. et al. Risk of pneumococcal diseases in adults with underlying medical conditions: a retrospective, cohort studyusing two Japanese healthcare databases. BMJ Open. 2018;8(3):e018553. DOI:10.1136/bmjopen-2017-018553.; Falguera M., Martín M., Ruiz-González A., Pifarré R., García M. Community-acquired pneumonia as the initial manifestation of serious underlying diseases. The American Journal of Medicine. 2005;118(4):378–383. DOI:10.1016/j.amjmed.2005.01.011.; Feldman C., Anderson R., Prevalence, pathogenesis, therapy, and prevention of cardiovascular events in patients with community-acquired pneumonia. Pneumonia. 2016;8:11. DOI:10.1186/s41479-016-0011-0.; Falcone M., Tiseo G., Russo A., Giordo L., Manzini E., Bertazzoni G. et al. Hospitalization for pneumonia is associated with decreased 1-year survival in patients with type 2 diabetes. Medicine. 2016;95(5):e2531. DOI:10.1097/md.0000000000002531; World Health Organization 2016. Global report on diabetes. 2016.; Дедов И.И., Шестакова М.В., Галстян Г.Р. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). Эпидемиология. 2016;19(2):104–112. DOI:10.14341/DM2004116-17.; Di Yacovo S., Garcia-Vidal C., Viasus D., Adamuz J., Oriol I., Gili F. et al. Clinical features, etiology, and outcomes of community-acquired pneumonia in patients with diabetes mellitus. Medicine. 2013;92(1):42–50. DOI:10.1097/md.0b013e31827f602a.; Litwak L., Goh S.-Y., Hussein Z., Malek R., Prusty V., Khamseh M. E. Prevalence of diabetes complications in people with type 2 diabetes mellitus and its association with baseline characteristics in the multinational A1chieve study. Diabetology & Metabolic Syndrome. 2013;5(1):1–10. DOI:10.1186/1758-5996-5-57.; Popov D., Simionescu M. Structural and transport property alterations of the lung capillary endothelium in diabetes. Italian Archive of Anatomy and Embryology. 2001;106(2Suppl.1):405–412.; Anandhalakshmi S., Manikandan S., Ganeshkumar P., Ramachandran С. Alveolar gas exchange and pulmonary functions in patients with type ii diabetes mellitus. Journal of Clinical and Diagnostic Research. 2013;7(9):1874–1877. DOI:10.7860/jcdr/2013/6550.3339.; Lecube A., Sim´o R., Pallayova M., Punjabi N., L´opezCano C., Turino C. et al. H Pulmonary function and sleep breathing: two new targets for type 2 diabetes care. Endocrine Reviews. 2017;38(6):550–573. DOI:10.1210/er.2017-00173.; Davis W.A., Knuiman M., Kendall P., Grange V., Davis T. Glycemic Exposure Is Associated With Reduced Pulmonary Function in Type 2 Diabetes: The Fremantle Diabetes Study. Diabetes Care. 2004;27(3):752–757. DOI:10.2337/diacare.27.3.752.; Gutiérrez-Carrasquilla L., Sánchez E., Barbé F., Dalmases M., López-Cano C., Hernández M. et al. Effect of Glucose Improvement on Spirometric Maneuvers in Patients With Type 2 Diabetes: The Sweet Breath Study. Diabetes Care. 2019;42(4):617–624. DOI:10.2337/dc18-1948.; Litonjua A.A., Lazarus R., Sparrow D., DeMolles D., Weiss S.T. Lung function in type 2 diabetes: the Normative Aging Study. Respiratory Medicine. 2005;99(12):1583–1590. DOI:10.1016/j.rmed.2005.03.023.; Guvener N., Tutuncu N.B., Akcay S., Eyuboglu F., Gokcel A. Alveolar gas exchange in patients with type 2 diabetes mellitus. Endocrine Journal. 2003;50(6):663–667. DOI:10.1507/endocrj.50.663.; Özşahin K., Tuğrul A., Mert S., Yüksel M., Tuğrul G. Evaluation of pulmonary alveolo-capillary permeability in type 2 diabetes mellitus. Journal of Diabetes and Its Complication. 2006;20(4):205–209. DOI:10.1016/j.jdiacomp.2005.07.003.; Klekotka R.B., Mizgała E., Król W. The etiology of lower respiratory tract infections in people with diabetes. Pneumonol. Alergol. Poland. 2015;83(5): 401–408. DOI:10.5603/PiAP.2015.0065.; Yende S., Van der Poll T., Lee M., Huang D.T., Newman A.B., Kellum J.A. et al. The influence of pre-existing diabetes mellitus on the host immune response and outcome of pneumonia: analysis of two multicentre cohort studies. Thorax. 2010;65(10): 870–877. DOI:10.1136/thx.2010.136317.; Iroezindu M.O., Isiguzo G.C., Chima E.I., Mbata G.C., Onyedibe K.I., Onyedum C.C. et al. Predictors of in-hospital mortality and length of stay in community-acquired pneumonia: a 5-year multi-centre case control study of adults in a developing country. Transactions of The Royal Society of Tropical Medicine and Hygiene. 2016;110(8):445–455. DOI:10.1093/trstmh/trw057.; Falguera M., Pifarre R., Martin A., Sheikh A., Moreno A. Etiology and outcome of community-acquired pneumonia in patients with diabetes mellitus. Chest. 2005;128(5):3233–3239. DOI:10.1378/chest.128.5.3233.; Kornum J.B., Thomsen R.W., Riis A., Lervang H.-H., Schonheyder H.C., Sorensen H.T. Type 2 Diabetes and Pneumonia Outcomes: A population-based cohort study. Diabetes Care. 2007;30(9): 2251–2257. DOI:10.2337/dc06-2417.; Kornum J.B., Thomsen R.W., Riis A., Lervang H.-H., Schonheyder H.C., Sorensen H.T. Diabetes, glycemic control, and risk of hospitalization with pneumonia: a population-based case-control study. Diabetes Care. 2008;31(8):1541–1545. DOI:10.2337/dc08-0138.; Jensen A.V., Faurholt-Jepsen D., Egelund G.B., Andersen S.B., Petersen P.T., Benfield T., Witzenrath M. et al. Undiagnosed Diabetes Mellitus in Community-Acquired Pneumonia: A Prospective Cohort Study. Clinical Infectious Diseases. 2017;65(12):2091–2098. DOI:10.1093/cid/cix703.; Hirata Y., Tomioka H., Sekiya R., Yamashita S., Kaneda T., Kida Y. et al. Association of hyperglycemia on admission and during hospitalization with mortality in diabetic patients admitted for pneumonia. Internal Medicine. 2013;52(21):2431– 2438. DOI:10.2169/internalmedicine.52.9594.; Luna C.M., Palma I., Niederman M.S., Membriani E., Giovini V., Wiemken T.L. et al. The impact of age and comorbidities on the mortality of patients of different age groups admitted with community-acquired pneumonia. Annals of the American Thoracic Society. 2016;13(9):1519–1526. DOI:10.1513/annalsats.201512-848oc.; Cheng S., Hou G., Liu Z., Lu Y., Liang S., Cang L. et al. Risk prediction of in-hospital mortality among patients with type 2 diabetes mellitus and concomitant community-acquired pneumonia. Annals of Palliative Medicine. 2020;9(5):3313–3325. DOI:10.21037/apm-20-1489.; Liu J. Impact of diabetes mellitus on pneumonia mortality in a senior population: results from the NHANES III follow-up study. Journal of Geriatric Cardiology. 2013;10(3):267−271. DOI:10.3969/j.issn.1671-5411.2013.03.005.; Koskela H.O., Salonen P.H., Romppanen J., Niskanen L. Long-term mortality after community-acquired pneumonia – impacts of diabetes and newly discovered hyperglycemia: a prospective, observational cohort study. BMJ Open. 2014;4(8): e005715–e005715. DOI:10.1136/bmjopen-2014-005715.; Jensen A.V., Egelund G.B., Andersen S.B., Petersen T.P., Benfield T., Faurholt-Jepsen D. et al. The impact of blood glucose on community-acquired pneumonia: a retrospective cohort study. ERJ Open Research. 2017;3(2):00114–2016. DOI:10.1183/23120541.00114-2016.; Akbar D.H. Bacterial pneumonia: comparison between diabetics and non-diabetics. Acta Diabetol. 2001;38(2):77–82. DOI:10.1007/s005920170017.; Kofteridis D.P., Giourgouli G., Plataki M.N., Andrianaki A.M., Maraki S., Papadakis J.A. et al. Community-acquired pneumonia in elderly adults with type 2 diabetes mellitus. Journal of the American Geriatrics Society. 2016;64(3):649–651. DOI:10.1111/jgs.14011.; Saibal M., Rahman S., Nishat L., Sikder N., Begum S., Islam M. et al. Community acquired pneumonia in diabetic and non-diabetic hospitalized patients: presentation, causative pathogens and outcome. Bangladesh Medical Research Council Bulletin. 2013;38(3):98–103. DOI:10.3329/bmrcb.v38i3.14336.; Poetter-Lang S., Herold C.J. Ambulant erworbene pneumonien. Der Radiologe. 2017;57(1):6–12. DOI:10.1007/s00117-016-0199-2.; Sligl W.I., Marrie T.J. Severe community-acquired pneumonia. Critical Care Clinics. 2013;29(3):563–601. DOI:10.1016/j.ccc.2013.03.009.; Mandell L.A. Community-acquired pneumonia: An overview. Postgraduate Medicine. 2015;127(6):607–615. DOI:10.1080/00325481.2015.1074030.; Upchurch C.P., Grijalva C.G., Wunderink R.G., Williams D.J., Waterer G.W., Anderson E.J. et al. Community-acquired pneumonia visualized on ct scans but not chest radiographs. Chest. 2018;153(3):601–610. DOI:10.1016/j.chest.2017.07.035.; Franquet T. Imaging of community-acquired pneumonia. Journal of Thoracic Imaging. 2018;33(5):282–294. DOI:10.1097/rti.0000000000000347.; Caner B., Ugur O., Bayraktar M., Ulutuncel N., Mentes T., Telatar F. et al. Impaired lung epithelial permeability in diabetics detected by technetium-99m-DTPA aerosol scintigraphy. Nucl. Med. 1994;35(2):204–206.; Mondrinos M.J., Zhang T., Sun S., Kennedy P.A., King D.J., Wolfson M.R. et al. Pulmonary endothelial protein kinase c-delta (PKCδ) regulates neutrophil migration in acute lung inflammation. The American Journal of Pathology. 2014;184(1):200–213. DOI:10.1016/j.ajpath.2013.09.010.; Weynand B., Jonckheere A., Frans A., Rahier J. Diabetes mellitus induces a thickening of the pulmonary basal lamina. Respiration. 1999;66(1):14–19. DOI:10.1159/000029331.; Kuziemski K., Pieńkowska J., Słomiński W., Specjalski K., Dziadziuszko K., Jassem E. et al. Role of quantitative chest perfusion computed tomography in detecting diabetic pulmonary microangiopathy. Diabetes Research and Clinical Practice. 2011;91(1):80–86. DOI:10.1016/j.diabres.2010.11.004.; https://bulletin.tomsk.ru/jour/article/view/4825