يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"В. Г. Мозес"', وقت الاستعلام: 0.40s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The work was financially supported by Alcea LLC, Работа выполнена при финансовой поддержке ООО «Алцея»

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 6 (2023); 769-782 ; Акушерство, Гинекология и Репродукция; Vol 17, No 6 (2023); 769-782 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1873/1171; Marshall N.E., Abrams B., Barbour L.A. et al. The importance of nutrition in pregnancy and lactation: lifelong consequences. Am J Obstet Gynecol. 2022;226(5):607–32. https://doi.org/10.1016/j.ajog.2021.12.035.; Lee Y.Q., Loh J., Ang R.S.E., Chong M.F. Tracking of maternal diet from pregnancy to postpregnancy: a systematic review of observational studies. Curr Dev Nutr. 2020;4(8):nzaa118. https://doi.org/10.1093/cdn/nzaa118.; Савченко Т.Н., Дергачева И.А., Агаева М.И. Микронутриенты и беременность. РМЖ. 2016;(15):1005–8.; Прегравидарная подготовка. Клинический протокол Междисциплинарной ассоциации специалистов репродуктивной медицины (МАРС). Версия 3.0. М.: Редакция журнала StatusPraesens, 2023. 104 с. Режим доступа: https://praesens.ru/broshyury/klinicheskii-protokol-mars/?ysclid=lq3xu3qvjc374136376. [Дата обращения: 10.10.2023].; Клинические рекомендации – Нормальная беременность – 20202021-2022 (11.06.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 57 с. Режим доступа: https://louhicrb.ru/wp-content/uploads/2023/02/klinicheskie-rekomendaczii-2022g.pdf. [Дата обращения: 10.10.2023].; Mousa A., Naqash A., Lim S. Macronutrient and micronutrient intake during pregnancy: an overview of recent evidence. Nutrients. 2019;11(2):443. https://doi.org/10.3390/nu11020443.; Savard C., Lebrun A., O'Connor S. et al. Energy expenditure during pregnancy: a systematic review. Nutr Rev. 2021;79(4):394–409. https://doi.org/10.1093/nutrit/nuaa093.; Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight gain during Pregnancy: reexamining the guidelines. Eds. K.M. Rasmussen, A.L. Yaktine. Washington (DC): National Academies Press (US), 2009. 324 p.; Most J., Amant M.S., Hsia D.S. et al. Evidence-based recommendations for energy intake in pregnant women with obesity. J Clin Invest. 2019;129(11):4682–90. https://doi.org/10.1172/JCI130341.; Filardi T., Panimolle F., Crescioli C. et al. Gestational diabetes mellitus: the impact of carbohydrate quality in diet. Nutrients. 2019;11(7):1549. https://doi.org/10.3390/nu11071549.; Giouleka S., Tsakiridis I, Koutsouki G. et al. Obesity in pregnancy: a comprehensive review of influential guidelines. Obstet Gynecol Surv. 2023;78(1):50–68. https://doi.org/10.1097/OGX.0000000000001091.; Ota E., Hori H., Mori R. et al. Antenatal dietary education and supplementation to increase energy and protein intake. Cochrane Database Syst Rev. 2015;(6):CD000032. https://doi.org/10.1002/14651858.CD000032.pub3.; Visser J., McLachlan M.H., Maayan N., Garner P. Community-based supplementary feeding for food insecure, vulnerable and malnourished populations – an overview of systematic reviews. Cochrane Database Syst Rev. 2018;11(11):CD010578. https://doi.org/10.1002/14651858.CD010578.pub2.; Davis A.M. Pandemic of pregnant obese women: Is it time to re-evaluate antenatal weight loss? Healthcare (Basel). 2015;3(3):733–49. https://doi.org/10.3390/healthcare3030733.; Furber C.M., McGowan L., Bower P. et al. Antenatal interventions for reducing weight in obese women for improving pregnancy outcome. Cochrane Database Syst Rev. 2013;(1):CD009334. https://doi.org/10.1002/14651858.CD009334.pub2.; EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for energy. EFSA J. 2013;11(1):3005– 16. https://doi.org/10.2903/j.efsa.2013.3005.; Lonnie M., Hooker E., Brunstrom J.M. et al. Protein for life: review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients. 2018;10(3):360. https://doi.org/10.3390/nu10030360.; Food and Agricultural Organization (FAO) World Health Organization (WHO) Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation. Food and Agricultural Organization (FAO); Rome, Italy, 1991. FAO Food and Nutrition Paper 51. Режим доступа: https://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf. [Дата обращения: 10.10.2023].; Gorissen S.H.M., Witard O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc Nutr Soc. 2018;77(1):20–31. https://doi.org/10.1017/S002966511700194X.; Mansilla W.D., Marinangeli C.P.F., Cargo-Froom C. et al. Comparison of methodologies used to define the protein quality of human foods and support regulatory claims. Appl Physiol Nutr Metab. 2020;45(9):917–26. https://doi.org/10.1139/apnm-2019-0757.; Winship A.L., Gazzard S.E., Cullen-McEwen L.A. et al. Maternal low-protein diet programmes low ovarian reserve in offspring. Reproduction. 2018;156(4):299–311. https://doi.org/10.1530/REP-180247.; Fabozzi G., Iussig B., Cimadomo D. et al. The impact of unbalanced maternal nutritional intakes on oocyte mitochondrial activity: implications for reproductive function. Antioxidants (Basel). 2021;10(1):91. https://doi.org/10.3390/antiox10010091.; Elango R., Ball R.O. Protein and amino acid requirements during pregnancy. Adv Nutr. 2016;7(4):839S–844S. https://doi.org/10.3945/an.115.011817.; Blumfield M.L., Hure A.J., Macdonald-Wicks L. et al. Systematic review and meta-analysis of energy and macronutrient intakes during pregnancy in developed countries. Nutr Rev. 2012;70(6):322–36. https://doi.org/10.1111/j.1753-4887.2012.00481.x.; Pimpin L., Kranz S., Liu E. et al. Effects of animal protein supplementation of mothers, preterm infants, and term infants on growth outcomes in childhood: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2019;110(2):410–29. https://doi.org/10.1093/ajcn/nqy348.; Raghavan R., Dreibelbis C., Kingshipp B.L. et al. Dietary patterns before and during pregnancy and maternal outcomes: A systematic review. Am J Clin Nutr. 2019;109(Suppl_7):705s–728s. https://doi.org/10.1093/ajcn/nqy216.; Yeh K.L., Kautz A., Lohse B., Groth S.W. Associations between dietary patterns and inflammatory markers during pregnancy: a systematic review. Nutrients. 2021;13(3):834. https://doi.org/10.3390/nu13030834.; Stahler C. How often do americans eat vegetarian meals? And how many adults in the U.S. are vegan? Vegetarian J. 2011;(4). Режим доступа: http://www.vrg.org/journal/vj2011issue4/vj2011issue4poll.php. [Дата обращения: 10.10.2023].; Sebastiani G., Herranz Barbero A., Borrás-Novell C. et al. The effects of vegetarian and vegan diet during pregnancy on the health of mothers and offspring. Nutrients. 2019;11(3):557. https://doi.org/10.3390/nu11030557.; Miles E.A., Childs C.E., Calder P.C. Long-chain polyunsaturated fatty acids (LCPUFAs) and the developing immune system: a narrative review. Nutrients. 2021;13(1):247. https://doi.org/10.3390/nu13010247.; Al M.D., van Houwelingen A.C., Kester A.D. et al. Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br J Nutr. 1995;74(1):55–68. https://doi.org/10.1079/BJN19950106.; Shulkin M., Pimpin L., Bellinger D. et al. n-3 fatty acid supplementation in mothers, preterm infants, and term infants and childhood psychomotor and visual development: a systematic review and meta-analysis. J Nutr. 2018;148(3):409–18. https://doi.org/10.1093/jn/nxx031.; Middleton P., Gomersall J.C., Gould J.F. et al. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev. 2018;11(11):CD003402. https://doi.org/10.1002/14651858.CD003402.pub3.; Christifano D.N., Crawford S.A., Lee G. et al. Docosahexaenoic acid (DHA) intake estimated from a 7-question survey identifies pregnancies most likely to benefit from high-dose DHA supplementation. Clin Nutr ESPEN. 2023;53:93–9. https://doi.org/10.1016/j.clnesp.2022.12.004.; Çobanoğullari H., Ergoren M.C., Dundar M. et al. Periconceptional Mediterranean diet during pregnancy on children's health. J Prev Med Hyg. 2022;63(2 Suppl 3):E65–E73. https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2748.; Wilson R.D., O'Connor D.L. Maternal folic acid and multivitamin supplementation: International clinical evidence with considerations for the prevention of folate-sensitive birth defects. Prev Med Rep. 2021;24:101617. https://doi.org/10.1016/j.pmedr.2021.101617.; Murphy M.E., Westmark C.J. Folic acid fortification and neural tube defect risk: analysis of the food fortification initiative dataset. Nutrients. 2020;12(1):247. https://doi.org/10.3390/nu12010247.; Crider K.S., Qi Y.P., Devine O. et al. Modeling the impact of folic acid fortification and supplementation on red blood cell folate concentrations and predicted neural tube defect risk in the United States: have we reached optimal prevention? Am J Clin Nutr. 2018;107(6):1027–34. https://doi.org/10.1093/ajcn/nqy065.; De Vito M., Alameddine S., Capannolo G. et al. Systematic review and critical evaluation of quality of clinical practice guidelines on nutrition in pregnancy. Healthcare (Basel). 2022;10(12):2490. https://doi.org/10.3390/healthcare10122490.; Rahat B., Hamid A., Bagga R., Kaur J. Folic acid levels during pregnancy regulate trophoblast invasive behavior and the possible development of preeclampsia. Front Nutr. 2022;9:847136. https://doi.org/10.3389/fnut.2022.847136.; Liu C., Liu C., Wang Q., Zhang Z. Supplementation of folic acid in pregnancy and the risk of preeclampsia and gestational hypertension: a meta-analysis. Arch Gynecol Obstet. 2018;298(4):697–704. https://doi.org/10.1007/s00404-018-4823-4.; Li B., Zhang X., Peng X. et al. Folic acid and risk of preterm birth: a metaanalysis. Front Neurosci. 2019;13:1284. https://doi.org/10.3389/fnins.2019.01284.; Ballestín S.S., Campos M.I.G., Ballestín J.B., Bartolomé M.J.L. Is supplementation with micronutrients still necessary during pregnancy? A review. Nutrients. 2021;13(9):3134. https://doi.org/10.3390/nu13093134.; Elmore C., Ellis J. Screening, treatment, and monitoring of iron deficiency anemia in pregnancy and postpartum. J Midwifery Womens Health. 2022;67(3):321–31. https://doi.org/10.1111/jmwh.13370.; Бахарева И.В. Профилактика и лечение анемии беременных: результаты использования витаминно-минеральных комплексов (по данным Российской многоцентровой неинтервенционной программы «ПРОГНОСТИК»). Российский вестник акушера-гинеколога. 2017;17(3):66–73.; Benson C.S., Shah A., Stanworth S.J. et al. The effect of iron deficiency and anaemia on women's health. Anaesthesia. 2021;76 Suppl 4:84–95. https://doi.org/10.1111/anae.15405.; Duarte A.F.M., Carneiro A.C.S.V., Peixoto A.T.B.M.M. et al. Oral iron supplementation in pregnancy: current recommendations and evidencebased medicine. Rev Bras Ginecol Obstet. 2021;43(10):782–8. https://doi.org/10.1055/s-0041-1736144.; Peña-Rosas J.P., De-Regil L.M., Garcia-Casal M.N., Dowswell T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015;2015(7):CD004736. https://doi.org/10.1002/14651858.CD004736.pub5.; Баев О.Р. Профилактика и лечение железодефицитных состояний во время беременности: применение комбинации железа и фолиевой кислоты. Фарматека. 2011;(13):47–52.; Бахарева И.В. Профилактика и лечение железодефицитных состояний у беременных. РМЖ. Мать и дитя. 2019;2(3):219–24. https://doi.org/10.32364/2618-8430-2019-2-3-219-224.; Zavala E., Rhodes M., Christian P. Pregnancy interventions to improve birth outcomes: what are the effects on maternal outcomes? A scoping review. Int J Public Health. 2022;67:1604620. https://doi.org/10.3389/ijph.2022.1604620.; Peña-Rosas J.P., De-Regil L.M., Gomez Malave H. et al. Intermittent oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015;2015(10):CD009997. https://doi.org/10.1002/14651858.CD009997.pub2.; WHO Guideline: Intermittent iron and folic acid supplementation in non-anaemic pregnant women. Geneva: World Health Organization, 2012. 31 p. Режим доступа: https://iris.who.int/bitstream/handle/10665/75335/9789241502016_eng.pdf?sequence=1. [Дата обращения: 10.10.2023].; Громова О.А., Торшин И.Ю., Тетруашвили Н.К., Павлович С.В. Систематический анализ молекулярного синергизма фолиевой кислоты и фумарата железа при железодефицитной анемии. Акушерство и гинекология. 2022;(12):178–86. https://doi.org/10.18565/aig.2022.301.; Chittimoju S.B., Pearce E.N. Iodine deficiency and supplementation in pregnancy. Clin Obstet Gynecol. 2019;62(2):330–8. https://doi.org/10.1097/GRF.0000000000000428.; Bath C. The effect of iodine deficiency during pregnancy on child development. Proc Nutr Soc. 2019;78(2):150–60. https://doi.org/10.1017/S0029665118002835.; Toloza F.J.K., Motahari H., Maraka S. Consequences of severe iodine deficiency in pregnancy: evidence in humans. Front Endocrinol (Lausanne). 2020;11:409. https://doi.org/10.3389/fendo.2020.00409.; Nazeri P., Shariat M., Azizi F. Effects of iodine supplementation during pregnancy on pregnant women and their offspring: a systematic review and meta-analysis of trials over the past 3 decades. Eur J Endocrinol. 2021;184(1):91–106. https://doi.org/10.1530/EJE-20-0927.; Harding K.B., Peña-Rosas J.P., Webster A.C. et al. Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst Rev. 2017;3(3):CD011761. https://doi.org/10.1002/14651858.CD011761.pub2.; Candido A.C., Vieira A.A., de Souza Ferreira E. et al. Prevalence of excessive iodine intake in pregnancy and its health consequences: systematic review and meta-analysis. Biol Trace Elem Res. 2022;201(6):2784–94. https://doi.org/10.1007/s12011-022-03401-5.; Cormick G., Belizán J.M. Calcium intake and health. Nutrients. 2019;11(7):1606. https://doi.org/10.3390/nu11071606.; Korhonen P., Tihtonen K., Isojärvi J. et al. Calcium supplementation during pregnancy and long-term offspring outcome: a systematic literature review and meta-analysis. Ann N Y Acad Sci. 2022;1510(1):36– 51. https://doi.org/10.1111/nyas.14729.; Hofmeyr G.J., Lawrie T.A., Atallah Á.N., Torloni M.R. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev. 2018;10(10):CD001059. https://doi.org/10.1002/14651858.CD0010595.; Hofmeyr G.J., Manyame S., Medley N., Williams M.J. Calcium supplementation commencing before or early in pregnancy, for preventing hypertensive disorders of pregnancy. Cochrane Database Syst Rev. 2019;9(9):CD011192. https://doi.org/10.1002/14651858.CD011192.pub3.; Curtis E.M., Moon R.J., Harvey N.C., Cooper C. Maternal vitamin D supplementation during pregnancy. Br Med Bull. 2018;126(1):57–77. https://doi.org/10.1093/bmb/ldy010.; Pérez-López F.R., Pilz S., Chedraui P. Vitamin D supplementation during pregnancy: an overview. Curr Opin Obstet Gynecol. 2020;32(5):316–21. https://doi.org/10.1097/GCO.0000000000000641.; Kiely M.E., Wagner C.L., Roth D.E. Vitamin D in pregnancy: Where we are and where we should go. J Steroid Biochem Mol Biol. 2020;201:105669. https://doi.org/10.1016/j.jsbmb.2020.105669.; Palacios C., Kostiuk L.K., Peña-Rosas J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2019;7(7):CD008873. https://doi.org/10.1002/14651858.CD008873.pub4.; Vivanti A.J., Monier I., Salakos E. et al. Vitamin D and pregnancy outcomes: overall results of the FEPED study. J Gynecol Obstet Hum Reprod. 2020;49(8):101883. https://doi.org/10.1016/j.jogoh.2020.101883.; Gallo S., McDermid J.M., Al-Nimr R.I. et al. Vitamin D supplementation during pregnancy: an evidence analysis center systematic review and meta-analysis. J Acad Nutr Diet. 2020;120(5):898–924.e4. https://doi.org/10.1016/j.jand.2019.07.002.; https://www.gynecology.su/jour/article/view/1873

  2. 2
    Academic Journal

    المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 20, № 3 (2023); 84-93 ; Вестник анестезиологии и реаниматологии; Том 20, № 3 (2023); 84-93 ; 2541-8653 ; 2078-5658

    وصف الملف: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/819/643; Беллетти А., Аццолини М. Л., Балдетти Л. и др. Применение инотропных препаратов и вазопрессоров в реаниматологии и периоперационной медицине: доказательный подход (обзор) // Общая реаниматология. – 2022. – Т.18, № 5. – С. 60–77. Doi:10.15360/1813-9779-2022-5-60-77.; Еременко А. А. Медикаментозное лечение острой сердечной недостаточности: что есть и что нас ждет // Вестник анестезиологии и реаниматологии. – 2020. – Т. 17, № 2. – С. 29–37. Doi:10.21292/2078-5658-2020-17-2-29-3.; Кочкин А. А., Яворовский А. Г., Берикашвили Л. Б. и др. Современная вазопрессорная терапия септического шока (обзор) // Общая реаниматология. – 2020. – Т.16, № 2. – С. 77–93. Doi:10.15360/1813-9779-2020-2-77-93.; Bravo M. C., López P., Cabañas F. et al. Acute effects of levosimendan on cerebral and systemic perfusion and oxygenation in newborns: an observational study // Neonatology – 2011. – Vol. 99, № 3. – P. 217–223. Doi:10.1159/000314955.; Cleland J. G., Freemantle N., Coletta A. P. et al. Clinical trials update from the American Heart Association // REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE, and PROAC TIVE // Eur. J. Heart Fail. – 2006. – № 8. – P. 105–110. Doi:10.1016/j.ejheart.2005.12.003.; Colucci W. S, Wright R. F., Braunwald E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments // N Engl J Med. – 1986. – Vol. 314. – P. 290–299. Doi:10.1056/NEJM198602063140605.; Das B. B., Moskowitz W. B., Butler J. Current and future drug and device therapies for pediatric heart failure patients // Potential Lessons from Adult Trials. – 2021. – Vol. 8, № 5. – Р. 322. Doi:10.3390/children8050322. PMID: 33922085; PMCID: PMC8143500.; Dellinger R. M., Rhodes A. D., Gerlach H. et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012 // Intensive Care Medicine. – 2013. – Vol. 39, № 2. – Р. 165–228. Doi:10.1097/CCM.0b013e31827e83af.; Elsherbini H., Soliman O., Zijderhand C. et al. Intermittent levosimendan infusion in ambulatory patients with end-stage heart failure: a systematic review and meta-analysis of 984 patients // Heart Fail Rev. – 2022. – Vol. 27, № 2. – Р. 493–505. Doi:10.1007/s10741-021-10101-0.; Esch J., Joynt C., Manouchehri N. et al. Differential hemodynamic effects of levosimendan in a porcine model of neonatal hypoxia-reoxygenation // Neonatology. – 2012. – Vol. 101, № 3. – Р. 192–200. Doi:10.1159/000329825.10.; Evans L., Rhodes A., Alhazzani W. at al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021// Intensive Care Med. – 2021. – Vol. 47, № 11. – Р. 1181–1247. Doi:10.1007/s00134-021-06506-y.; Fang M., Cao H., Wang Z. Levosimendan in patients with cardiogenic shock complicating myocardial infarction: A meta-analysis // Med Intensiva (Engl Ed). – 2018. – Vol. 42, № 7. – Р. 409–415. Doi:10.1016/j.medin.2017.08.009.; Feng F., Chen Y., Li M. et al. Levosimendan does not reduce the mortality of critically ill adult patients with sepsis and septic shock: a meta-analysis // Chin Med J (Engl). – 2019. – Vol. 132, № 10. – Р. 1212–1217. Doi:10.1097/CM9.0000000000000197.; Giordano R., Cantinotti M., Mannacio V. A. et al. First Experience WithLevosimendan Therapy After Correction of Congenital Heart Disease // J CardiothoracVascAnesth. – 2017. – Vol. 31, № 1. – Р. 19–21. Doi:10.1053/j.jvca.2016.08.017.; Guarracino F., Heringlake M., Cholley B. et al. Use of Levosimendan in Cardiac Surgery: An Update After the LEVO-CTS, CHEETAH, and LICORN Trials in the Light of Clinical Practice // J Cardiovasc Pharmacol. – 2018. – Vol. 71, № 1. – Р. 1–9. Doi:10.1097/FJC.0000000000000551.; Häberle H. A. Levosimendan – a 20-Year Experience // Anasthesiol Intensivmed Notfallmed Schmerzther. – 2021. – Vol. 56, № 6. – Р. 414–426. Doi:10.1055/a-1214-4485.; Hummel J., Rücker G., Stiller B. Prophylactic levosimendan for the prevention of low cardiac output syndrome and mortality in paediatric patients undergoing surgery for congenital heart disease // Cochrane Database Syst Rev. – 2017. – Vol. 8, № 8. – CD011312. Doi:10.1002/14651858.; Jaguszewski M. J., Gasecka A., Targonski R. et al. Efficacy and safety of levosimendan and dobutamine in heart failure: A systematic review and meta-analysis // Cardiol J. – 2021. – Vol. 28, № 3. – Р. 492–493. Doi:10.5603/CJ.a2021.0037.; Joynt C., Cheung P. Y. Cardiovascular Supportive Therapies for Neonates With Asphyxia – A Literature Review of Pre-clinical and Clinical Studies // Front Pediatr. – 2018. – № 6. – Р. 363. Doi:10.3389/fped.2018.00363.; Karami M., Hemradj V. V., Ouweneel D. M. et al. Vasopressors and inotropes in acute myocardial infarction related cardiogenic shock: a systematic review and meta-analysis // J ClinMed. – 2020. – Vol. 9, № 7. – Р. 2051. Doi:10.3390/jcm9072051.; Lapere M., Rega F., Rex S. Levosimendan in paediatric cardiac anaesthesiology: A systematic review and meta-analysis // Eur J Anaesthesiol. – 2022. – Vol. 39, № 8. – Р. 646–655. Doi:10.1097/EJA.0000000000001711.; Liu K., Wang H., Yu S. J. et al. Inhaled pulmonary vasodilators: a narrative review // AnnTranslMed. – 2021. – Vol. 9, № 7. – Р. 597. Doi:10.21037/atm-20-4895.; Liu D. H., Ning Y. L., Lei Y. Y. et al. Levosimendan versus dobutamine for sepsis-induced cardiac dysfunction: a systematic review and meta-analysis // Sci Rep. – 2021. – Vol. 11, № 1. – Р. 20333. Doi:10.1038/s41598-021-99716-9.; Loss K. L., Shaddy R. E., Kantor P. F. Recent and upcoming drug therapies for pediatric heart failure // Front Pediatr. – 2021. – Vol. 11, № 9. – Р. 681224. Doi:10.3389/fped.2021.681224.; Miller L. E., Laughon M. M., Clark R. H. et al. Vasoactive medications in extremely low gestational age neonates during the first postnatal week // J Perinatol. – 2021. – Vol. 41, № 9. – Р. 2330–2336. Doi:10.1038/s41372-021-01031-8.; Morelli A., De Castro S., Teboul J. L. et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression // Intensive Care Med. – 2005. – № 31. – Р. 638–644. Doi:10.1007/s00134-005-2619-z.; Nieminen M. S., Buerke M., Cohen-Solál A. et al. The role of levosimendan in acute heart failure complicating acute coronary syndrome: A review and expert consensus opinion // Int. J. Cardiol. – 2016. – № 218. – Р. 150–157. Doi:10.1016/j.ijcard.2016.05.009.; Nieminen M. S., Fruhwald S., Heunks L. M. A. et al. Levosimendan: current data, clinical use and future development // Heart Lung Vessel. – 2013. – Vol. 5, № 4. – P. 227–245. PMID: 24364017.; Papp Z., Agostoni P., Alvarez J. et al. Levosimendan efficacy and safety: 20 years of SIMDAX in clinical use // Card Fail Rev. – 2020. – № 6. – Р. e19. Doi:10.15420/cfr.2020.03.; Ponikowski P., Voors A. A., Anker S. D. et al. Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC // Eur Heart J. – 2016. – Vol. 37, № 27. – Р. 2129–2200. Doi:10.1093/eurheartj/ehw128.; Raasmaja A., Talo A., Haikala H. et al. Biochemical properties of OR-1259: a positive inotropic and vasodilatory compound with an antiarrhythmic effect // Adv Exp Med Biol. – 1992. – № 311. – Р. 423. Doi:10.1007/978-14615-3362-7_63.; Rhodes A., Evans L. E., Alhazzani W., et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016 // Crit. Care Med. – 2017. – Vol. 45, № 3. – Р. 486–552. Doi:10.1007/s00134-017-4683-6.; Ricci Z., Garisto C., Favia I. et al. Levosimendan infusion in newborns after corrective surgery for congenital heart disease: randomized controlled trial // Intensive Care Med. – 2012. – Vol. 38, № 7. – Р. 1198–1204. Doi:10.1007/s00134-012-2564-6.; Santillo E., Migale M., Massini C., et al. Levosimendan for Perioperative Cardioprotection: Myth or Reality? // Curr. Cardiol Rev. – 2018. – Vol. 14, № 3. – P. 142–152. Doi:10.2174/1573403X14666180322104015.; Schumann J., Henrich E. C., Strobl H. et al. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome // Cochrane Database Syst Rev. – 2018. – Vol. 1, № 1. – CD009669. Doi:10.1002/14651858.; Schwarza C. E., Dempseya E. M. Management of Neonatal Hypotension and Shock // Seminars in Fetal and Neonatal Medicine. – 2020. – № 25. – Р. 1–7. Doi:10.1016/j.siny.2020.101121.; Sharma D. Golden hour of neonatal life: need of the hour // Matern Health Neonatol Perinatol. – 2017. – Vol. 19, № 3. – Р. 16. Doi:10.1186/s40748-017-0057-x.; Silvetti S., Silvani P., Azzolini M. L. et al. A systematic review on Levosimendan in paediatric patients // Curr Vasc Pharmacol. – 2015. – Vol. 13, № 1. – Р. 128–33. Doi:10.2174/1570161112666141127163536.; Silvetti S., Belletti A., Bianzina S. et al. Effect of Levosimendan treatment in pediatric patients with cardiac dysfunction: an update of a systematic review and meta-analysis of randomized controlled trials // J. CardiothoracVasc Anesth. – 2022. – Vol. 36, № 3. – Р. 657–664. Doi:10.1053/j.jvca.2021.09.018.; Singh Y., Katheria A. C., Vora F. Advances in diagnosis and management of hemodynamic instability in neonatal shock // Front Pediatr. – 2018. – Vol. 6, № 2. Doi:10.3389/fped.2018.00002.; Tumminello G., Cereda A., Barbieri L. et al. Meta-analysis of placebo-controlled trials of levosimendan in acute myocardial infarction // J Cardiovasc Dev Dis. – 2021. – Vol. 8, № 10. – Р. 129. Doi:10.3390/jcdd8100129.; Uhlig K., Efremov L., Tongers J., et al. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome // Cochrane Database Syst Rev. – 2020. – Vol. 11, № 11. – CD009669. Doi:10.1002/14651858.; Unverzagt S., Wachsmuth L., Hirsch K. et al. Inotropic agents and vasodilator strategies for acute myocardial infarction complicated by cardiogenic shock or low cardiac output syndrome // Cochrane Database Syst Rev. – 2014. – № 1. – CD009669. Doi:10.1002/14651858.; Van Diepen S., Katz J. N., Albert N. M. et al. Contemporary management of cardiogenic shock: a scientific statement from the american heart association // Circulation. – 2017. – Vol. 136, № 16. – Р. e232–e268. Doi:10.1161/CIR.0000000000000525.; Weber C., Esser M., Eghbalzadeh K., et al. Levosimendan reduces mortality and low cardiac output syndrome in cardiac surgery // Thorac Cardiovasc Surg. – 2020. – Vol. 68, № 5. – Р. 401–409. Doi:10.1055/s-0039-3400496.; Weisert M., Su J. A., Menteer J. et al. Drug treatment of heart failure in children: gaps and opportunities // Paediatr Drugs. – 2022. – Vol. 24, № 2. – Р. 121–136. Doi:10.1007/s40272-021-00485-9.; Zhou S., Zhang L., Li J. Effect of levosimendan in patients with acute decompensated heart failure: A meta-analysis // Herz. – 2019. – Vol. 44, № 7. – Р. 630–636. Doi:10.1007/s00059-018-4693-3.; https://www.vair-journal.com/jour/article/view/819

  3. 3
    Academic Journal

    المصدر: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 19, № 2 (2022); 74-83 ; Вестник анестезиологии и реаниматологии; Том 19, № 2 (2022); 74-83 ; 2541-8653 ; 2078-5658

    وصف الملف: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/651/554; Григорьев Е. В., Шукевич Д. Л., Плотников Г. П. и др. Неудачи интенсивного лечения полиорганной недостаточности: патофизиология и потребность в персонификации (обзор литературы) // Вестник интенсивной терапии им. А. И. Салтанова. – 2019. – № 2. – C. 48–57. doi:10.21320/1818-474X-2019-2-48-57.; Сергеева В. А., Александрович Ю. С., Шабалов Н. П. и др. Влияние фетального воспалительного ответа на тяжесть течения раннего неонатального периода у новорожденных с внутриутробным инфицированием // Человек и его здоровье. – 2011. – № 1. – С. 80‒88.; Сергеева В. А., Шабалов Н. П., Александрович Ю. С. и др. Взгляд на проблему респираторных нарушений у новорожденных с позиции синдрома фетального воспалительного ответа // Человек и его здоровье. – 2010. – № 2. – С. 125–130.; Сергеева В. А., Шабалов Н. П., Александрович Ю. С. и др. Предопределяет ли фетальный воспалительный ответ осложненное течение раннего неонатального периода? // Сибирский медицинский журнал. (Иркутск). – 2010. – № 2. – С. 75–80.; Старостина Л. С., Яблокова Е. А. Особенности функционирования пищеварительной системы у детей раннего возраста: коррекция наиболее частых расстройств // РМЖ. – 2017. – № 19. – C. 1335–1340.; Aguiar F. P., Westphal G. A., Dadam M. M. et al. Characteristics and predictors of chronic critical illness in the intensive care unit // Rev. Bras. Ter. Intensiva. – 2019. – № 31 (4). – P. 511–520. doi:10.5935/0103-507X.20190088.; Assimakopoulos S. F., Triantos C., Thomopoulos K. et al. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment // Infection. – 2018. – Vol. 46, № 6. – Р. 751–760. doi:10.1007/s15010-018-1178-5.; Bagshaw S. M., Stelfox H. T., McDermid R. C. et al. Association between frailty and short- and long-term outcomes among critically ill patients: a multicentre prospective cohort study // CMAJ. – 2014. – Vol. 186, № 2. – Р. 95–102. doi:10.1503/cmaj.130639.; Barrington K. J., Finer N., Pennaforte T. et al. Nitric oxide for respiratory failure in infants born at or near term // Cochrane Database Syst Rev. – 2017. – Vol. 1, № 1. – CD000399. doi:10.1002/14651858.CD000399.pub3.; Bechard L. J., Staffa S. J., Zurakowski D. et al. Time to achieve delivery of nutrition targets is associated with clinical outcomes in critically ill children // Am. J. Clin. Nutr. – 2021. – № 28. – P. 244. doi:10.1093/ajcn/nqab244.; Belletti A., Benedetto U., Biondi-Zoccai G. et al. The effect of vasoactive drugs on mortality in patients with severe sepsis and septic shock. A network meta-analysis of randomized trials // J. Crit. Care. – 2017. – № 37. – P. 91–98. doi:10.1016/j.jcrc.2016.08.010.; Blauvelt D. G., Abada E. N., Oishi P. et al. Advances in extracorporeal membrane oxygenator design for artificial placenta technology // Artif. Organs. – 2021. – № 45 (3). – P. 205–221. doi:10.1111/aor.13827.; Broman M., Lindfors M., Norberg A. et al. Low serum selenium is associated with the severity of organ failure in critically ill children // Clin. Nutr. – 2018. – Vol. 37, № 4. – P. 1399–1405. doi:10.1016/j.clnu.2017.06.014.; Budniok T., ElSayed Y., Louis D. Effect of vasopressin on systemic and pulmonary hemodynamics in neonates // Am. J. Perinatol. – 2021. – Vol. 38, № 12. – P. 1330–1334. doi:10.1055/s-0040-1712999.; Burkhardt B. E., Rücker G., Stiller B. Prophylactic milrinone for the prevention of low cardiac output syndrome and mortality in children undergoing surgery for congenital heart disease // Cochrane Database Syst Rev. – 2015. – № 3. – CD009515. doi:10.1002/14651858.CD009515.pub2.; Cao X., Liao X. L., He X. L. et al. Predictors of long-term mortality and health related quality of life for elderly patients with sepsis // Sichuan Da XueXue Bao Yi Xue Ban. – 2018. – № 49. – Р. 140–144.; Carson S. S. Definitions and epidemiology of the chronically critically ill // Respir. Care. – 2012. – Vol. 57, № 6. – P. 848–856. doi:10.4187/respcare.01736.PMID: 22663962.; Chang W., Xie J. F., Xu J. Y. et al. Effect of levosimendan on mortality in severe sepsis and septic shock: a meta-analysis of randomised trials // BMJ Open. – 2018. – Vol. 8, № 3. – P. 019338. doi:10.1136/bmjopen-2017-019338.; Cheng L., Yan J., Han S. et al. Comparative efficacy of vasoactive medications in patients with septic shock: a network meta-analysis of randomized controlled trials // Crit. Care. – 2019. – Vol. 23, № 1. – P. 168. doi:10.1186/s13054-019-2427-4.; Demirkiran H., Kilic M., Tomak Y. et al. Evaluation of the incidence, characteristics, and outcomes of pediatric chronic critical illness // PLoS One. – 2021. – Vol. 16, № 5. – Р. e0248883. doi:10.1371/journal.pone.0248883.; Dempsey E., Rabe H. The use of cardiotonic drugs in neonates // Сlin. Perinatol. – 2019. – Vol. 46, № 2. – Р. 273–290. doi:10.1016/j.clp.2019.02.010.; Efron P. A., Mohr A. M., Bihorac A. et al. Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery // Surgery. – 2018. – Vol. 164, № 2. – P. 178–184. doi:10.1016/j.surg.2018.04.011.; Fenner B. P., Darden D. B., Kelly L. S. et al. Immunological endotyping of chronic critical illness after severe sepsis // Front Med. (Lausanne). – 2021. – № 7. – P. 616694. doi:10.3389/fmed.2020.616694.; Girard K., Raffin T. A. The chronically critically ill: to save or let die? // Respir. Care. – 1985. – № 30. – P. 339–347.; Gorga S. M., Carlton E. F., Kohne J. G. et al. Consensus acute kidney injury criteria integration identifies children at risk for long-term kidney dysfunction after multiple organ dysfunction syndrome // Pediatr. Nephrol. – 2021. – № 36 (6). – P. 1637–1646. doi:10.1007/s00467-020-04865-0.; Holloway A. J., Spaeder M. C., Basu S. Association of timing of tracheostomy on clinical outcomes in PICU patients // Pediatr. Crit. Care Med. – 2015. – № 16. – P. 52–58. doi:10.1097/PCC.0000000000000336.; Joynt C., Cheung P. Y. Cardiovascular supportive therapies for neonates with asphyxia – a literature review of pre-clinical and clinical studies // Front. Pediatr. – 2018. – № 6. – P. 363. doi:10.3389/fped.2018.00363.; Joynt C., Cheung P. Y. Treating hypotension in preterm neonates with vasoactive medications // Front. Pediatr. – 2018. – № 6. – P. 86. doi:10.3389/fped.2018.00086.; Kahn J. M., Le T., Angus D. C. et al. The epidemiology of chronic critical illness in the United States // Crit. Care Med. – 2015. – Vol. 43. – № 2. – P. 282–287. doi:10.1097/CCM.0000000000000710.; Kim F., Polin R. A., Hooven T. A. Neonatal sepsis // BMJ. – 2020. – № 371. – P. 3672. doi:10.1136/bmj.m3672.; Kirkland B. W., Wilkes J., Bailly D. K. et al. Extracorporeal membrane oxygenation for pediatric respiratory failure: risk factors associated with center volume and mortality // Pediatr. Crit. Care Med. – 2016. – № 17 (8). – P. 779–788. doi:10.1097/PCC.0000000000000775.; Lee G., Kaiser J. R., Moffett B. S. et al. Efficacy of low-dose epinephrine continuous infusion in neonatal intensive care unit patients // J. Pediatr. Pharmacol. Ther. – 2021. – Vol. 26, № 1. – P. 51–55. doi:10.5863/1551-6776-26.1.51.; Loftus T. J., Filiberto A. C., Ozrazgat-Baslanti T. et al. Cardiovascular and renal disease in chronic critical illness // J. Clin. Med. – 2021. – Vol. 10. № 8. – P. 1601. doi:10.3390/jcm10081601.; Loftus T. J., Mira J. C., Ozrazgat-Baslanti T. et al. Sepsis and Critical Illness Research Center investigators: Protocols and standard operating procedures for a prospective cohort study of sepsis in critically ill surgical patients // BMJ Open. – 2017. – № 7. – P. 015136. doi:10.1136/bmjopen-2016-015136.; Lone N. I., Walsh T. S. Prolonged mechanical ventilation in critically ill patients: epidemiology, outcomes and modelling the potential cost consequences of establishing a regional weaning unit // Crit. Care. – 2011. – Vol. 15, № 2. – P. 102. doi:10.1186/cc10117.; MacIntyre N. R., Epstein S. K., Carson S. et al. Management of patients requiring prolonged mechanical ventilation: report of a NAMDRC consensus conference // Chest. – 2005. – Vol. 128, № 6. – P. 3937–3954. doi:10.1378/chest.128.6.3937.; Marino L. V., Valla F. V., Beattie R. M. et al. Micronutrient status during paediatric critical illness: A scoping review // Clin. Nutr. – 2020. – Vol. 39, № 12. – P. 3571–3593. doi:10.1016/j.clnu.2020.04.015.; Masarwa R., Paret G., Perlman A. et al. Role of vasopressin and terlipressin in refractory shock compared to conventional therapy in the neonatal and pediatric population: a systematic review, meta-analysis, and trial sequential analysis // Crit. Care. – 2017. – Vol. 21. – P. 1. doi:10.1186/s13054-016-1589-6.; McNally J. D., Nama N., O'Hearn K. et al. Vitamin D deficiency in critically ill children: a systematic review and meta-analysis // Crit. Care. – 2017. – Vol. 21, № 1. – P. 287. doi:10.1186/s13054-017-1875-y.; Mizuno T., Gist K. M., Gao Z. et al. Developmental pharmacokinetics and age-appropriate dosing design of milrinone in neonates and infants with acute kidney injury following cardiac surgery // Clin. Pharmacokinet. – 2019. – Vol. 58, № 6. – P. 793–803. doi:10.1007/s40262-018-0729-3.; Muraskas J., Astrug L., Amin S. FIRS: Neonatal considerations // Semin. Fetal. Neonatal. Med. – 2020. – № 25 (4). – P. 101142. doi:10.1016/j.siny.2020.101142.; Oami T., Chihade D. B., Coopersmith C. M. The microbiome and nutrition in critical illness // Curr. Opin. Crit. Care. – 2019. – Vol. 25, № 2. – P. 145–149. doi:10.1097/MCC.0000000000000582.; Papazian L., Aubron C., Brochard L. et al. Formal guidelines: management of acute respiratory distress syndrome // Ann. Intens. Care. – 2019. – Vol. 9, № 1. – P. 69. doi:10.1186/s13613-019-0540-9.; Papp Z., Agostoni P., Alvarez J. et al. Levosimendan efficacy and safety: 20 years of SIMDAX in clinical use // J. Cardiovasc Pharmacol. – 2020. – Vol. 76, № 1. – P. 4–22. doi:10.1097/FJC.0000000000000859.; Peterson-Carmichael S. L., Cheifetz I. M. The chronically critically ill patient: pediatric considerations // Respir. Care. – 2012. – № 57 (6). – P. 993–1002. doi:10.4187/respcare.; Poisson K., Lin J. J., Chen A. et al. Case 2: respiratory failure and multiple organ system dysfunction in a 7-day-old infant // Pediatr. Rev. – 2019. – Vol. 40, № 11. – P. 593–595. doi:10.1542/pir.2017-0102.; Rahiman S., Kowalski R., Kwok S. Y. et al. Milrinone acts as a vasodilator but not an inotrope in children after cardiac surgery-insights from wave intensity analysis // Crit. Care Med. – 2020. – Vol. 48, № 11. – P. 1071–1078. doi:10.1097/CCM.0000000000004622.; Ramanathan K., Tan C. S., Rycus P. et al. Extracorporeal membrane oxygenation for severe adenoviral pneumonia in neonatal, pediatric, and adult patients // Pediatr. Crit. Care Med. – 2019. – № 20 (11). – P. 1078–1084. doi:10.1097/PCC.0000000000002047.; Rizk M. Y., Lapointe A., Lefebvre F. et al. Norepinephrine infusion improves haemodynamics in the preterm infants during septic shock // Acta Paediatr. – 2018. – Vol. 107, № 3. – P. 408–413. doi:10.1111/apa.14112.; Rosenthal M. D., Kamel A. Y., Rosenthal C. M. et al. Chronic critical illness: application of what we know // Nutr. Clin. Pract. – 2018. – Vol. 33, № 1. – P. 39–45. doi:10.1002/ncp.10024.; Shapiro M. C., Henderson C. M., Hutton N. et al. Defining pediatric chronic critical illness for clinical care, research, and policy // Hosp. Pediatr. – 2017. – Vol. 7, № 4. – P. 236–244. doi:10.1542/hpeds.2016-0107.; Shivanna B., Gowda S., Welty S. E. et al. Prostanoids and their analogues for the treatment of pulmonary hypertension in neonates // Cochrane Database Syst Rev. – 2019. – Vol. 10, № 10. – CD012963. doi:10.1002/14651858.CD012963.pub2.; Sison S. M., Sivakumar G. K., Caufield-Noll C. et al. Mortality outcomes of patients on chronic mechanical ventilation in different care settings: A systematic review // Heliyon. – 2021. – Vol. 7, № 2. – P. 06230. doi:10.1016/j.heliyon.2021.e06230.; Skurupii D. A., Sonnyk E. G., Sizonenko V. M. Multiorgan failure syndrome in newborns: role of social and anatomico-functional features (literature review) // Wiad Lek. – 2018. – Vol. 71, № 3. – P. 777–780.; Stortz J. A., Mira J. C., Raymond S. L. et al. Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients // J. Trauma Acute Care Surg. – 2018. – Vol. 84, № 2. – P. 342–349. doi:10.1097/TA.0000000000001758.; Temsah M. H., Abouammoh N., Al-Eyadhy A. et al. Predictors and direct cost estimation of long stays in pediatric intensive care units in Saudi Arabia: a mixed methods study // Risk ManagHealthc Policy. – 2021. – № 14. – P. 2625–2636. doi:10.2147/RMHP.S311100.; Troch R., Schwartz J., Boss R. Slow and steady: a systematic review of icu care models relevant to pediatric chronic critical illness // J. Pediatr. Intens. Care. – 2020. – Vol. 9, № 4. – P. 233–240. doi:10.1055/s-0040-1713160.; Valla F. V., Bost M., Roche S. et al. Multiple micronutrient plasma level changes are related to oxidative stress intensity in critically ill children // Pediatr. Crit. Care Med. – 2018. – Vol. 19, № 9. – P. 455–463. doi:10.1097/PCC.0000000000001626.; Wang X., Li B., Ma Y. et al. Effect of NO inhalation on ECMO use rate and mortality in infants born at or near term with respiratory failure // Medicine (Baltimore). – 2019. – Vol. 98, № 41. – P. 17139. doi:10.1097/MD.0000000000017139.; Wynn J. L., Kelly M. S., Benjamin D. K. et al. Timing of multiorgan dysfunction among hospitalized infants with fatal fulminant sepsis // Am. J. Perinatol. – 2017. – Vol. 34, № 7. – P. 633–639. doi:10.1055/s-0036-1597130.; Zhang W. F., Chen D. M., Wu L. Q. et al. Clinical effect of continuous blood purification in treatment of multiple organ dysfunction syndrome in neonates // Zhongguo Dang Dai Er Ke Za Zhi. – 2020. – Vol. 22, № 1. – P. 31–36. doi:10.7499/j.issn.1008-8830.2020.01.007.; Zimmerman J. J., Banks R., Berg R. A. et al. Critical illness factors associated with long-term mortality and health-related quality of life morbidity following community-acquired pediatric septic shock // Crit. Care Med. – 2020. – Vol. 48, № 3. – P. 319–328. doi:10.1097/CCM.0000000000004122.; https://www.vair-journal.com/jour/article/view/651

  4. 4
    Academic Journal

    المصدر: General Reanimatology; Том 18, № 6 (2022); 37-49 ; Общая реаниматология; Том 18, № 6 (2022); 37-49 ; 2411-7110 ; 1813-9779

    وصف الملف: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2180/1682; https://www.reanimatology.com/rmt/article/view/2180/1689; https://www.reanimatology.com/rmt/article/downloadSuppFile/2180/626; https://www.reanimatology.com/rmt/article/downloadSuppFile/2180/627; Kausch S.L., Lobo J.M., Spaeder M.C., Sullivan B., Keim-Malpass J. Dynamic transitions of pediatric sepsis: a Markov Chain analysis. Front Pediatr. 2021; 9: 743544. DOI:10.3389/fped.2021.743544. PMID: 34660494.; Delaplain P.T., Ehwerhemuepha L., Nguyen D.V., Di Nardo M., Jancelewicz T, Awa,n S., Yu P.T., Guner Y.S. ELSO CDH Interest Group. The development of multiorgan dysfunction in CDH-ECMO neonates is associated with the level of pre-ECMO support. J Pediatr Surg. 2020; 55 (5): 830-834. DOI:10.1016/j.jpedsurg.2020.01.026. PMID: 32067809.; Salem S.M., Graham R.J. Chronic illness in pediatric critical care. Front Pedia.tr. 2021; 9: 686206. DOI:10.3389/fped.2021.686206. PMID: 34055702.; Skillman J.J., Bushnell L.S., Goldman H., Silen W. Respiratory failure, hypotension, sepsis, and jaundice. A clinical syndrome associated with lethal hemorrhage from acute stress ulceration of the stomach. Am J Surg. 1969; 117 (4): 523-530. DOI:10.1016/0002-9610(69)90011-7. PMID: 5771525.; Tilney N.L., Bailey G.L., Morgan A.P. Sequential system failure after rupture of abdominal aortic aneurysms: an unsolved problem in postoperative care. Ann Surg. 1973; 178 (2): 117-122. DOI:10.1097/00000658-197308000-00001. PMID: 4723419.; Baue A.E. Multiple, progressive, or sequential systems failure. A syndrome of the 1970s. Arch Surg. 1975; 110 (7): 779-781. DOI:10.1001/archsurg.1975.01360130011001. PMID: 1079720.; Eiseman B., Beart R., Norton L. Multiple organ failure. Surg Gynecol Obstet. 1977; 144: 323-326. DOI:10.1016/s0140-6736(77)90070-8.; Петрова Е.О., Григорьев Е.В. Полиорганная недостаточность в практике педиатрической реаниматологии: обновленные патофизиология и прогноз. Фундаментальная и клиническая медицина. 2017; 2 (3): 82-87. DOI:10.23946/2500-0764-2017-2-3-82-87.; Радивилко А.С., Григорьев Е.В., Шукевич Д.Л., Плотников Г.П. Прогнозирование и ранняя диагностика полиорганной недостаточности. Анестезиология и реаниматология.2018; 6: 15-21. DOI:10.17116/anaesthesiology 201806115.; Rr P, Tan E.E.K, Sulta.na R., Thoon K.C., Chan M.-Y., Lee J.H., Wong J.J-M. Critical illness epidemiology and mortality risk in pediatric oncology. Pediatr Blood Cancer. 2020; 67 (6): e28242. DOI:10.1002/pbc.28242. PMID: 32187445.; Watson R.S., Crow S.S., Hartman M.E., Lacroix J., Odetola F.O. Epidemiology and outcomes of pediatric multiple organ dysfunction syndrome. Pediatr Crit Care Med. 2017; 18 (3_suppl Suppl 1): S4-S16. DOI:10.1097/PCC.0000000000001047. PMID: 28248829.; Tamburro R.F., Jenkins T.L. Multiple organ dysfunction syndrome: a challenge for the pediatric critical care community. Pediatr Crit Care Med. 2017; 18 (3_suppl Suppl 1): S1-S3. DOI:10.1097/PCC.0000000000001044. PMID: 28248828.; Wilkinson J.D., Pollack M.M., Glass N.L., Kanter R.K., Katz R.W., Steinhart C.M. Mortality associated with multiple organ system failure and sepsis in pediatric intensive care unit. J Pediatr. 1987; 111 (3): 324-328. DOI:10.1016/s0022-3476(87)80448-1. PMID: 3625400.; Proulx F, Fayon M, Farrell CA., Lacroix J., Gauthier M. Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest. 1996; 109 (4): 1033-1037. DOI:10.1378/chest.109.4.1033. PMID: 8635327.; Goldstein B., Giroir B., Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med.2005; 6 (1): 2-8. DOI:10.1097/01.pcc.0000149131.72248.e6. PMID: 15636651.; Menon K., Schlapbach L.J., Akech S., Argent A., Chiotos K., Chisti M.J., Hamid J., Ishimine P., Kissoon N., Lodha R., Oliveira C.F., Peters M., Tissieres P., Watson R.S., Wiens M.O., Wynn J.L., Sorce L.R. Pediatric sepsis definition - a systematic review protocol by the Pediatric Sepsis Definition Taskforce. Crit Care Explor. 2020; 2 (6): e0123. DOI:10.1097/CCE.0000000000000123. PMID: 32695992.; Ames S.G., Davis B.S., Angus D.C., Carcillo J.A., Kahn J.M. Hospital variation in risk-adjusted pediatric sepsis mortality. Pediatr Crit Care Med. 2018; 19 (5): 390-396. DOI:10.1097/PCC.0000000000001502. PMID: 29461429.; Evans I.V.R., Phillips G.S., Alpern E.R., Angus D.C., Friedrich M.E., Kissoon N., Lemeshow S., Levy M.M., Parker M.M., Terry K.M., Watson R.S., Weiss S.L., Zimmerman J., Seymour, C. W. Association between the New York sepsis care mandate and in-hospital mortality for pediatric sepsis. JAMA.2018; 320 (4): 358-367. DOI:10.1001/jama.2018.9071. PMID: 30043064.; Prout A.J, Talisa V.B., Carcillo J.A., Mayr F.B., Angus D.C., Seymour C.W., Chang C.-C. H., Yende S. Children with chronic disease bear the highest burden of pediatric sepsis. J Pediatr. 2018; 199; 194-199.e1. DOI:10.1016/j.jpeds.2018.03.056. PMID: 29753542.; Weiss S.L., Asaro LA., Flori H.R., Allen G.L., Wypij D., Curley MA.Q. Randomized Evaluation of Sedation Titration for Respiratory Failure (RESTORE) Study Investigators. Multiple organ dysfunction in children mechanically ventilated for acute respiratory failure. Pediatr Crit Care Med. 2017; 18 (4): 319-329. DOI:10.1097/PCC.0000000000001091. PMID: 28212163.; Yang Y-.H., Pei L., Wang L.-J., Xu W., Liu C.-F. Features of new-onset organ dysfunction in children with sepsis. Zhongguo Dang Dai Er Ke ZaZhi. 2019; 21 (6): 517-521. (in Chinese). DOI:10.7499/j.issn.1008-8830.2019.06.004. PMID: 31208502.; Workman J.K., Larsen G.Y. Searching for a pediatric severe sepsis phenotype: are we there yet? Pediatr Crit Care Med. 2017; 18 (1): 82-83. DOI:10.1097/PCC.0000000000001003. PMID: 28060154.; Cano-Vazquez E.N., Canto-Pacheco G.G., Valdez-Cabrera C., Castro-Betancourt S., Monroy-Azuara M.G., Arciga-Vazquez G.S., Mendez-Martinez S. Itoponina I, creatina-fosfocinasa y creatina-fosfocinasa-MB enreciennacidos con sospecha de asfixia neonatal [Troponin I, creatine-phosphokinase and creatine-phosphokinase-MB in newborns with suspected neonatal asphyxia]. Rev Med Inst Mex Seguro Soc. 2020; 58 (6): 673-678. (in Spanish). DOI:10.24875/RMIMSS.M20000100. PMID: 34705399.; Boldingh A.M., Solevag A.L., Nakstad B. Outcomes following neonatal cardiopulmonary resuscitation. Tidsskr Nor Laegeforen. 2018; 138 (9). DOI:10.4045/tidsskr.17.0358. PMID: 29808658.; Алимова Х.П., Мустакимов А.А., Алибекова М.Б. Полиорганная недостаточность у детей: критерии диагностики, патофизиология и прогноз. Вестник экстренной медицины. 2019; 6: 92-97.; Meert K.L., Banks R., Holubkov R., Pollack M.M. Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Morbidity and mortality in critically ill children. II. A Qualitative patient-level analysis of pathophysiologies and potential therapeutic solutions. Crit Care Med. 2020; 48 (6): 799-807. DOI:10.1097/CCM.0000000000004332. PMID: 32301845.; Weiss S.L., Peters M.J., Alhazzani W., Agus M.SD., Flori H.R., Inwald D.P., Nadel S., Schlapbach L.J., Tasker R.C., Argent A.C., Brierley J., Carcillo J., Carrol E.D., Carroll C.L., Cheifetz I.M., Choong K., Cies J.J., Cruz A.T., De Luca D., Deep A., Faust S.N., De Oliveira C.F., Hall M.W., Ishimine P., Javouhey E., Joosten K.F.M., Joshi P., Karam O., Kneyber M.C.J, Lemson J., MacLaren G., Mehta N.M., Moller M.H., Newth C.J.L., Nguyen T.C., Nishisaki A., Nunnally M.E., Parker M.M., Paul R.M., Randolph A.G., Ranjit S., Romer L.H., Scott H.F., Tume L.N., Verger J.T., Williams E.A., Wolf J., Wong H.R., Zimmerman J.J., Kissoon N. , Tissieres P. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020; 46 (Suppl 1): 10-67. DOI:10.1007/s00134-019-05878-6. PMID: 32030529.; Fleiss N., Coggins S.A., Lewis A.N., Zeigler A., Cooksey K.E., Walker L.A., Husain AN., de Jong B.S., Wallman-Stokes A., Alrifai M.W., Visser D.H., Good M., Sullivan B., Polin R.A., Martin C.R., Wynn J.L. Evaluation of the neonatal sequential organ failure assessment and mortality risk in preterm infants with late-onset infection. JAMA Netw Open. 2021; 4 (2): e2036518. DOI:10.1001/jamanetworkopen.2020.36518. PMID: 33538825.; Перепелица С.А. Этиологические и патогенетические перинатальные факторы развития внутриутробных инфекций у новорожденных (обзор). Общая реаниматология. 2018; 14 (3): 54-67. DOI:10.15360/1813-9779-2018-3-54-67.; Перепелица С.А. Острый респираторный дистресс-синдром у недоношенных новорожденных (морфологическое исследование). Общая реаниматология. 2020; 16 (1): 35-44. DOI:10.15360/1813-9779-2020-1-35-44.; Миночкин П.И., Чернышков А.В., Назаров Р.Г. Длительная вентиляция легких у детей, перенесших полиорганную недостаточность в раннем неонатальном периоде. Анестезиология и реаниматология. 2021; 1: 32-38. DOI:10.17116/anaesthesiology202101132.; Matics T.J., Pinto N.P., Sanchez-Pinto L.N. Association of organ dysfunction scores and functional outcomes following pediatric critical illness. Pediatr Crit Care Med. 2019; 20 (8): 722-727. DOI:10.1097/PCC.0000000000001999. PMID: 31398181.; Choong K., Fraser D., Al-Harbi S., Borham A., Cameron J., Cameron S., Cheng J., Clark H., Doherty T., Fayed N., Gorter J. W., Herridge M., Khetani M., Menon K., Seabrook J., Simpson R., ThabaneL. Functional recovery in critically ill children, the «WeeCover» multicenter study. Pediatr Crit Care Med. 2018; 19 (2): 145-154. DOI:10.1097/PCC.0000000000001421.PMID:29394221.; Upperman J.S., Lacroix J., Curley M.A.Q., Checchia P.A., Lee D.W., Cooke K.R., Tamburro R.F. Specific etiologies associated with the multiple organ dysfunction syndrome in children: part 1. Pediatr Crit Care Med. 2017; 18 (3_suppl Suppl 1): S50-S57. DOI:10.1097/PCC.0000000000001048. PMID: 28248834.; Upperman J.S., Bucuvalas J.C., Williams F.N., Cairns B.A., Cox C.S.Jr., Doctor A., Tamburro R.F. Specific etiologies associated with the multiple organ dysfunction syndrome in children: part 2. Pediatr Crit Care Med. 2017; 18 (3_suppl Suppl 1): S58-S66. DOI:10.1097/PCC.0000000000001051. PMID: 28248835.; Skurupii D.A., Sonnyk E.G., Sizonenko V.M. Multiorgan failure syndrome in newborns: role of social and anatomico-functional features (literature review). Wiad Lek.2018; 71 (3 pt 2): 777-780. PMID: 29783266.; Liszewski M.C., Stanescu A.L., Phillips G.S., Lee E.Y. Respiratory distress in neonates: underlying causes and current imaging assessment. Radiol Clin North Am. 2017; 55 (4): 629-644. DOI:10.1016/j.rcl.2017.02.006. PMID: 28601172.; Procianoy R.S., Silveira R.C. The challenges of neonatal sepsis management. J Pediatr (Rio J). 2020; 96 (1): 80-86. DOI:10.1016/j.jped.2019.10.004.; Ostrander B., Bale J.F. Congenital and perinatal infections. Handb Clin Neurol.2019; 162: 133-153. DOI:10.1016/B978-0-444-64029-I.00006-0. PMID: 31324308.; Jung E., Romero R., Yeo L., Diaz-Primera R., Marin-Concha J., Para R., Lopez A.M., Pacora P., Gomez-Lopez N., Yoon B.H., Kim C.J., Berry S.M., Hsu C.D. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin Fetal Neonatal Med. 2020; 25 (4): 101146. DOI:10.1016/j.siny.2020.101146. PMID: 33164775.; Abate B.B., Bimerew M., Gebremichael B., Kassie A.M., Kassaw M., Gebremeskel T., Bayih W.A. Effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy: a systematic review and meta-analysis of randomized control trials. PLoS One. 2021; 16 (2): e0247229. DOI:10.1371/journal.pone.0247229. PMID: 33630892.; Gulczynska E.M., Gadzinowski J., Kesiak M., Sobolewska B., Caputa J., Maczko A., Walas W., Cedrowska-Adamus W., Talar T. Therapeutic hypothermia in asphyxiated newborns: selective head cooling vs. whole body cooling — comparison of short term outcomes. Ginekol Pol 2019; 90 (7): 403-410. DOI:10.5603/GP.2019.0069. PMID: 31392710.; Bhagat I., Sarkar S. Multiple organ dysfunction during therapeutic cooling of asphyxiated infants. Neoreviews. 2019; 20 (11): e653-e660. DOI:10.1542/neo.20-11-e653. PMID: 31676739.; Steinberg S., Flynn W., Kelley K., Bitzer L., Sharma P., Gutierrez C., Baxter J., Lalka D., Sands A., van Liew J. Development of a bacteria-independent model of the multiple organ failure syndrome. Arch Surg. 1989; 124 (12): 1390-1395. DOI:10.1001/archsurg.1989.01410120036008. PMID: 2589963.; Carcillo J.A., Korzekwa K.R, Jones G.S., Parise R.A., Gillespie D.G., Whalen M.J., Kochanek P.M., Branch R.A., Kost Jr C.K. The cytochrome P450 suicide inhibitor, 1-aminobenzotriazole, sensitizes rats to zymosan-induced toxicity. Res Commun Mol Pathol Pharmacol. 1998; 102 (1): 57-68. PMID: 9920346.; Whitmore L.C., Goss K.L., Newell E.A., Hilkin B.M., Hook J.S., Moreland J.G. NOX2 protects against progressive lung injury and multiple organ dysfunction syndrome. Am J Physiol Lung Cell Mol Physiol.2014; 307 (1): L71-82. DOI:10.1152/ajplung.00054.2014. PMID: 24793165.; Carcillo J.A., Podd B., Aneja R., Weiss S.L., Hall M.W., Cornell T.T., Shanley T.P., Doughty L.A., Nguyen T.C. Pathophysiology of pediatric multiple organ dysfunction syndrome. Pediatr Crit Care Med. 2017; 18 (3_suppl Suppl 1): S32-s45. DOI:10.1097/PCC.0000000000001052. PMID: 28248832.; Carcillo J.A., Doughty L., Kofos D., Frye R.F., Kaplan S.S., Sasser H., Burckart G.J. Cytochrome P450 mediated-drug metabolism is reduced in children with sepsis-induced multiple organ failure. Intensive Care Med. 2003; 29 (6): 980-984. DOI:10.1007/s00134-003-1758-3. PMID: 12698250.; Morgan E.T., Skubic C., Lee C.-M., Cokan K.B., Rozman D. Regulation of cytochrome P450 enzyme activity and expression by nitric oxide in the context of inflammatory disease. Drug Metab Rev. 2020; 52 (4): 455-471. DOI:10.1080/03602532.2020.1817061. PMID: 32898444.; Odabasi I.O., Bulbul A. Neonatal sepsis. Sisli Etfal Hastan Tip Bul. 2020; 54 (2): 142-158. DOI:10.14744/SEMB.2020.00236. PMID: 32617051.; Дмитриева И.Б., Белобородова Н.В., Черневская Е.А. Биомаркеры прокальцитонин и белок S100p в клинико-лабораторном мониторинге при критических состояниях новорожденных. Общая реаниматология. 2013; 9 (3): 58. DOI:10.15360/1813-9779-2013-3-58.; Голуб И.Е., Зарубин А.А., Михеева Н.И., Ваняркина А.С., Иванова О.Г. Влияние тяжелой асфиксии в родах на систему гемостаза у новорожденных в течении первого часа жизни. Общая реаниматология. 2017; 13 (1): 17-23. DOI:10.15360/1813-9779-2017-1-17-23.; Nandy A., Mondal T., Sarkar M., Nag S.S., Chel S., Ivan D.M., Hazra A., Mondal R. Multiorgan dysfunction syndrome in sepsis: Is macrophage activation syndrome secondary to infection? Eur J Rheumatol. 2020; 8 (2): 89-92. DOI:10.5152/eurjrheum.2020.20081. PMID: 33226328.; Ho J., Zhang L., Liu X., Wong S.H., Wang M.H.T., Lau B.W.M., Ngai S.P.C., Chan H., Choi G., Leung C.H., Wong W.T., Tsang S., Gin T., Yu J., Chan M.T.V., Wu W.K.K. Pathological role and diagnostic value of endogenous host defense peptides in adult and neonatal sepsis: a systematic review. Shock. 2017; 47 (6): 673-679. DOI:10.1097/SHK.0000000000000815. PMID: 27941592.; Ahmed A.M., Mohammed A.T., Bastawy S., Attalla H.A., Yousef A.A., Abdelrazek M.S., Alkomos M.F., Ghareeb A. Serum biomarkers for the early detection of the early-onset neonatal sepsis: a single-center prospective study. Adv Neonatal Care. 2019; 19 (5): 26-32. DOI:10.1097/ANC.0000000000000631. PMID: 31651475.; Pietrasanta C., Pugni L., Ronchi A., Bottino I., Ghirardi B., Sanchez-Schmitz G., Borriello F., Mosca F., Levy O. Vascular endothelium in neonatal sepsis: basic mechanisms and translational opportunities. Front Pediatr. 2019; 7: 340. DOI:10.3389/fped.2019.00340. PMID: 31456998.; Song Y., Chen Y., Dong X., Jiang X. Diagnostic value of neutrophil CD64 combined with CRP for neonatal sepsis: a meta-analysis. Am J Emerg Med. 2019; 37 (8): 1571-1576. DOI:10.1016/j.ajem.2019.05.001. PMID: 31085013.; Sharma A., Thakur A., Bhardwaj C., Neelam K., Garg P., Singh M., Choudhury S. Potential biomarkers for diagnosing neonatal sepsis. Curr. Med. Res. Pract. 2020; 10: 12-17. DOI:10.1016/j.cmrp.2019.12.004.; Gandhi P., Kondekar S. A Review of the different haematological parameters and biomarkers used for diagnosis of neonatal sepsis. EMJ Hematol. 2019; 7: 85-92.; Eggimann P., Que Y.A., Rebeaud F. Measurement of pancreatic stone protein in the identification and management of sepsis. Biomark. Med. 2019; 13 (2): 135-145. DOI:10.2217/bmm-2018-0194. PMID: 30672312.; ELMeneza S., Fouad R., El Bagoury I. Pancreatic stone protein as a novel marker for early onset neonatal sepsis. Edelweiss Pediatrics J. 2019; 1: 1-4.; Zhang X., Sun C., Li J. Serum sICAM-1 and PCT levels and their prognostic value in neonates with sepsis. Int. J. Clin. Exp. Med. 2019; 12 (5): 5874-5880.; Achten N.B., Van Meurs M., Jongman R.M., Juliana A., Molema G., Plotz F.B., Zonneveld R. Markers of endothelial cell activation in suspected late onset neonatal sepsis in Surinamese newborns: a pilot study. Transl. Pediatr. 2019; 8 (5): 412-418. DOI:10.21037/tp.2019.11.03. PMID: 31993355.; Zonneveld R., Jongman R.M., Juliana A., Molema G., Van Meurs M., Plotz F.B. Serum concentrations of endothelial cell adhesion molecules and their shedding enzymes and early onset sepsis in newborns in Suriname. BMJPaediatr Open. 2018; 2 (1): e000312. DOI:10.1136/bmjpo-2018-000312. PMID: 30397669.; Rao L., Song Z., Yu X., Tu Q., He Y., Luo Y., Yin Y., Chen D. Progranulin as a novel biomarker in diagnosis of early-onset neonatal sepsis. Cytokine. 2020; 128: 155000. DOI:10.1016/j.cyto.2020.155000. PMID: 31982701.; Hincu M.A., Zonda G.-I., Stanciu G.D., Nemescu D., Paduraru L. Relevance of biomarkers currently in use or research for practical diagnosis approach of neonatal early-onset sepsis. Children (Basel). 2020; 7 (12): 309. DOI:10.3390/children7120309. PMID: 33419284.; Ozdemir A.A., Elgormus Y. Value of resistin in early onset neonatal sepsis. J. Child Sci. 2017; 7: e146-e150. DOI:10.1055/s-0037-1608713.; Saboktakin L., Bilan N., Behbahan A.G., Poorebrahim S. Relationship between resistin levels and sepsis among children under 12 years of age: a case control study. Front Pediatr. 2019; 7: 355. DOI:10.3389/fped.2019.00355. PMID: 31555623.; Iskandar A, Arthamin M.Z., Indriana K., Anshory M., Hur M., Di Somma S., GREAT Network. Comparison between presepsin and procalcitonin in early diagnosis of neonatal sepsis. J Matern Fetal Neonatal Med. 2019; 32 (23): 3903-3908. DOI:10.1080/14767058.2018.1475643. PMID: 29742943.; Sharma H., Moroni L. Recent advancements in regenerative approaches for thymus rejuvenation. Adv Sci (Weinh). 2021; 8 (14): 2100543. DOI:10.1002/advs.202100543. PMID: 34306981.; Geenen V. The thymus and the science of self. Semin Immunopathol. 2021; 43 (1): 5-14. DOI:10.1007/s00281-020-00831-y. PMID: 33415360.; Workman J.K., Bailly D.K., Reeder R.W., Dalton H.J., Berg R.A., Shanley T.P., Newth C.J.L., Pollack M.M., Wessel D., Carcillo J., Harrison R., Dean J.M., Meert K.L. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Collaborative Pediatric Critical Care Research Network (CPCCRN). Risk factors for mortality in refractory pediatric septic shock supported with extracorporeal life support. ASAIO J. 2020; 66 (10): 1152-1160. DOI:10.1097/MAT.0000000000001147. PMID: 33136603.; Liu R., Greenstein J.L., Fackler J.C., Bergmann J., Bembea M.M., Winslow R.L. Prediction of impending septic shock in children with sepsis. Crit Care Explor. 2021; 3 (6): 0442. DOI:10.1097/CCE.0000000000000442. PMID: 34151278.; Ye J, Sanchez-Pinto L.N. Three data-driven phenotypes of multiple organ dysfunction syndrome preserved from early childhood to middle adulthood. AMIA Annu Symp Proc. 2021; 2020: 1345-1353. PMID: 33936511.; Lin J.C., Spinella P.C., Fitzgerald J.C., Tucci M., Bush J.L., Nadkarni V.M., Thomas N.J., Weiss S.L. Sepsis prevalence, outcomes, and therapy study investigators. New or progressive multiple organ dysfunction syndrome in pediatric severe sepsis: a sepsis phenotype with higher morbidity and mortality. Pediatr Crit Care Med. 2017; 18 (1): 8-16. DOI:10.1097/PCC.0000000000000978. PMID: 28060151.; Pollack M.M., Banks R., Holubkov R., Meert K.L. Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Morbidity and mortality in critically Ill children. I. Pathophysiologies and potential therapeutic solutions. Crit Care Med. 2020; 48 (6): 790-798. DOI:10.1097/CCM.0000000000004331. PMID: 32301842.; Stroup E.K., Luo Y, Sanchez-Pinto L.N. Phenotyping multiple organ dysfunction syndrome using temporal trends in critically ill children. Proceedings (IEEE Int Conf Bioinformatics Biomed). 2019; 2019: 968-972. DOI:10.1109/bibm47256.2019.8983126. PMID: 33842023.; Sanchez-Pinto L.N., Stroup E.K., Pendergrast T., Pinto N., Luo Y. Derivation and validation of novel phenotypes of multiple organ dysfunction syndrome in critically ill children. JAMA Netw Open. 2020; 3 (8): e209271. DOI:10.1001/jamanetworkopen.2020.9271. PmID: 32780121.; Enjeti A.K., de Malmanche T., Chapman K., Ziolkowski A. Genomic investigation of inherited thrombotic microangiopathy-aHUS and TTP. Int J lab Hema.toL 2020; 42 (Suppl 1): 33-40. DOI:10.1111/ijlh.13201. PMID: 32543063.; Nguyen T.C. Thrombocytopenia-associated multiple organ failure. Crit Care Clin. 2020; 36 (2): 379-390. DOI:10.1016/j.ccc.2019.12.010. PMID: 32172819.; Podd B.S., Simon D.W., Lopez S., Nowalk A., Aneja R., Carcillo J.A. Rationale for adjunctive therapies for pediatric sepsis induced multiple organ failure. Pediatr Clin North Am. 2017; 64 (5): 1071-1088. DOI:10.1016/j.pcl.2017.06.007. PMID: 28941536.; Raina R., Krishnappa V., Blaha T., Kann T., Hein W., Burke L., Bagga A. Atypical hemolytic-uremic syndrome: an update on pathophysiology, diagnosis, and treatment. Ther Apher Dial. 2019; 23 (1): 4-21. DOI:10.1111/1744-9987.12763. PMID: 30294946.; Wijnsma K.L., Duineveld C., Wetzels J.F.M., van de Kar N.C.A.J. Eculizumab in atypical hemolytic uremic syndrome: strategies toward restrictive use. Pediatr Nephrol. 2019; 34 (11): 2261-2277. DOI:10.1007/s00467-018-4091-3. PMID: 30402748.; Menne J., Delmas Y., Fakhouri F., Licht C., Lommele A., Minetti E.E., Provot F., Rondeau E., Sheerin N.S., Wang J., Weekers L.E., Greenbaum L.A. Outcomes in patients with atypical hemolytic uremic syndrome treated with eculizumab in a long-term observational study. BMC Nephrol. 2019; 20 (1): 125. DOI:10.1186/s12882-019-1314-1. PMID: 30971227.; Patriquin C.J., Kuo K.H.M. Eculizumab and beyond: the past, present, and future of complement therapeutics. Transfus Med Rev. 2019; 33 (4): 256-265. DOI:10.1016/j.tmrv.2019.09.004. PMID: 31703946.; Zimmerman J.J., Banks R., Berg R.A., Zuppa A., Newth C.J., Wessel D., Pollack M.M., Meert K.L., Hall M.W., Quasney M., Sapru A., Carcillo J.A., McQuillen P.S., Mournni P.M., Wong H., Chima R.S., Holubkov R., Coleman W., Sorenson S., Varni J.W., McGalliard J., Haaland W., Whitlock K., Dean J.M., Reeder R.W. Life After Pediatric Sepsis Evaluation (LAPSE) Investigators. Critical illness factors associated with long-term mortality and health-related quality of life morbidity following community-acquired pediatric septic shock. Crit Care Med. 2020; 48 (3): 319-328. DOI:10.1097/CCM.0000000000004122. PMID: 32058369.; Alcamo A.M., Pang D., Bashir D.A., Carcillo J.A., Nguyen T.C., Aneja R.K. Role of damage-associated molecular patterns and uncontrolled inflammation in pediatric sepsis-induced multiple organ dysfunction syndrome. J Pediatr Intensive Care. 2019; 8 (1): 25-31. DOI:10.1055/s-0038-1675639. PMID: 31073505.; Potter C.S., Silva K.A., Kennedy V.E., Stearns T.M., Esch H.H., Sundberg J.P. Loss of FAS/FASL signalling does not reduce apoptosis in Sharpin null mice. Exp Derma,tol. 2017; 26 (9): 820-822. DOI:10.1111/exd.13289. PMID: 28094869.; Demir A., Kahrnman R., Candan G., Ergen A. The role of FAS gene variants in inflammatory bowel disease. Turk J Gastroenterol. 2020; 31 (5): 356-361. DOI:10.5152/tjg.2020.19436. PMID: 32519954.; Bride K., Teachey D. Autoimmune lymphoproliferative syndrome: more than a FAScinating disease. F1000Res. 2017; 6: 1928. DOI:10.12688/f1000research.11545.1. PMID: 29123652.; Gamez-Diaz L., Grimbacher B. Immune checkpoint deficiencies and autoimmune lymphoproliferative syndromes. Biomed J. 2021; 44 (4): 400-411. DOI:10.1016/j.bj.2021.04.005. PMID: 34384744.; Teachey D.T. New advances in the diagnosis and treatment of autoimmune lymphoproliferative syndrome. Curr Opin Pediatr. 2012; 24 (1): 1-8. DOI:10.1097/MOP.0b013e32834ea739. PMID: 22157362.; Kogl T., Muller J., Jessen B., Schmitt-Graeff A., Janka G., Ehl S., zur Stadt U., Aichele P. Hemophagocytic lymphohistiocytosis in syntaxin-11-deficient mice: T-cell exhaustion limits fatal disease. Blood. 2013; 121 (4): 604-613. DOI:10.1182/blood-2012-07-441139. PMID: 23190531.; Muszynski J.A., Thakkar R., Hall M.W. Inflammation and innate immune function in critical illness. Curr Opin Pediatr. 2016; 28 (3): 267-273. DOI:10.1097/mop.0000000000000352. PMID: 27043087.; Doughty L. Adaptive immune function in critical illness. Adaptive immune function in critical illness. Curr Opin Pediatr. 2016; 28 (3): 274-280. DOI:10.1097/mop.0000000000000357. PMID: 27054955.; Sendler M., van den Brandt C., Glaubitz J., Wilden A., Golchert J., Weiss F.U., Homuth G., De Freitas Chama L.L., Mishra N., Mahajan U.M., Bossaller L., Volker U., Broker B.M., Mayerle J., Lerch M.M. NlRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis. Gastroenterology. 2020; 158 (1): 253-269.e14. DOI:10.1053/j.gastro.2019.09.040. PMID: 31593700.; Jia R., Zhou M., Tuttle C.S.L., Maier A.B. Immune capacity determines outcome following surgery or trauma: a systematic review and metaanalysis. Eur J Trauma Emerg Surg. 2020; 46 (5): 979-991. DOI:10.1007/s00068-019-01271-6. PMID: 31781831.; Vergadi E., Vaporidi K., Tsatsanis C. Regulation of endotoxin tolerance and compensatory anti-inflammatory response syndrome by noncoding RNAs. Front Immunol. 2018; 9: 2705. DOI:10.3389/fimmu.2018.02705. PMID: 30515175.; Zhang Y., Chen Y., MengZ. Immunomodulation for severe COVID-19 pneumonia: the state of the art. Front Immunol. 2020; 11: 577442. DOI:10.3389/fimmu.2020.577442. PMID: 33240265.; Carreto-Binaghi L.E., Juarez E., Guzman-Beltran S., Herrera M.T., Torres M., Alejandre A., Martinez-Orozco J.A., Becerril-Vargas E., Gonzalez Y. Immunological evaluation for personalized interventions in children with tuberculosis: should it be routinely performed? J Immunol Res. 2020; 2020: 8235149. DOI:10.1155/2020/8235149. PMID: 33005692.; Stortz J.A., Murphy T.J., Raymond S.L., Mira J.C., Ungaro R., Dirain M.L., Nacionales D.C., Loftus T.J., Wang Z., Ozrazgat-Baslanti T., Ghita G.L., Brumback B.A., Mohr A.M., Bihorac A., Efron P.A., Moldawer L. L., Moore F.A., Brakenridge S.C. Evidence for persistent immune suppression in patients who develop chronic critical illness after sepsis. Shock. 2018; 49 (3): 249-258. DOI:10.1097/SHK.0000000000000981. PMID: 28885387.; Leijte G.P., Rimmele T., Kox M., Bruse N., Monard C., Gossez M., Monneret G., Pickkers P., Venet F. Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. Crit Care. 2020; 24 (1): 110. DOI:10.1186/s13054-020-2830-x. PMID: 32192532.; Перепелица С.А. Комплексная оценка кислородного статуса и показателей липидного обмена у новорожденных с перинатальной гипоксией и гиповолемическим шоком. Общая реаниматология. 2017; 13 (3): 25-34. DOI:10.15360/1813-9779-2017-3-25-34.; Picard M., Sandi C. The social nature of mitochondria: implications for human health. Neurosci Biobehav Rev. 2021; 120: 595-610. DOI:10.1016/j.neubiorev.2020.04.017. PMID: 32651001.; Zhang Z., Chen L., Xu P., Xing L., Hong Y., Chen P. Gene correlation network analysis to identify regulatory factors in sepsis. J Transl Med. 2020; 18 (1): 381. DOI:10.1186/s12967-020-02561-z. PMID: 33032623.; Preau S., Vodovar D., Jung B., Lancel S., Zafrani L., Flatres A., Oualha M. , Voiriot G., Jouan Y., Joffre J., Uhel F., De Prost N., Silva S., Azabou E., Radermacher P. Energetic dysfunction in sepsis: a narrative review. Ann Intensive Care. 2021; 11 (1): 104. DOI:10.1186/s13613-021-00893-7. PMID: 34216304.; Zheng G., Lyu J., Huang J., Xiang D., Xie M., Zeng Q. Experimental treatments for mitochondrial dysfunction in sepsis: a narrative review. J Res Med Sci. 2015; 20 (2): 185-195. PMID: 25983774. PMID: 25983774.; Veres B., Eros K., Antus C., Kalman N., Fonai F., Jakus P.B., Boros E., Hegedus Z., Nagy I., Tretter L., Gallyas F. Jr., Sumegi B. Cyclophilin D-dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia. FEBS Open Bio. 2021; 11 (3): 684-704. DOI:10.1002/2211-5463.13091. PMID: 33471430.; Cherry A.D., Piantadosi C.A. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses. Antioxid Redox Signal. 2015; 22 (12): 965-976. DOI:10.1089/ars.2014.6200. PMID: 25556935.; El-Mashad G.M., El-Mekkawy M.S., Zayan M.H. Paediatric sequential organ failure assessment (pSOFA) score: a new mortality prediction score in the paediatric intensive care unit. An Pediatr (Engl Ed). 2020; 92 (5): 277-285. (in Spanish). DOI:10.1016/j.anpedi.2019.05.018. PMID: 31784324.; Wynn J.L., Polin R.A. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatr Res. 2020; 88 (1): 85-90. DOI:10.1038/s41390-019-0517-2. PMID: 31394566.; Миронов П.И., Лекманов А.У. Оценка валидности шкалы nSOFA у новорожденных с сепсисом. Вестник анестезиологии и реаниматологии. 2021; 18 (2): 56-61. DOI:10.21292/2078-5658-2021-18-2-56-61.; Kurul S, Simons S. H. P., Ramakers C. R. B., De Rijke Y.B., Kornelisse R.F., Reiss I.K.M., Taal H.R. Association of inflammatory biomarkers with subsequent clinical course in suspected late onset sepsis in preterm neonates. Crit. Care. 2021; 25 (1): 12. DOI:10.1186/s13054-020-03423-2. PMID: 33407770.; Assimakopoulos S.F., Triantos C., Thomopoulos K., Fligou F., Maroulis I., Mamngos M., Gogos CA. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection. 2018; 46 (6): 751-760. DOI:10.1007/s15010-018-1178-5. PMID: 30003491.; Miller L.E., Laughon M.M., Clark R.H., Zimmerman K.O., Hornik C.P., Aleem S., Smith P.B., Greenberg R.G. Vasoactive medications in extremely low gestational age neonates during the first postnatal week. J Perinatal 2021; 41 (9): 2330-2336. DOI:10.1038/s41372-021-01031-8. PMID: 33758384.; Dempsey E., Rabe H. The use of cardiotonic drugs in neonates. Clin Perinatol. 2019; 46 (2): 273-290. DOI:10.1016/j.clp.2019.02.010. PMID: 31010560.; Mizuno T, Gist K.M., Gao Z., Wempe M.F., Alten J., Cooper D.S., Goldstein S.L., VinksAA. Developmental pharmacokinetics and age-appropriate dosing design of milrinone in neonates and infants with acute kidney injury following cardiac surgery. Clin Pharmacokinet. 2019; 58 (6): 793-803. DOI:10.1007/s40262-018-0729-3. PMID: 30607889.; Rahima,n S., Kowalski R., Kwok S.Y., Matha S. Jones B., Smolich J.J., Mynard J.P., Butt W., Millar J. Milrinone acts as a vasodilator but not an inotrope in children after cardiac surgery-insights from wave intensity analysis. Crit Care Med. 2020; 48 (11): e1071-1078. DOI:10.1097/CCM.0000000000004622. PMID: 32932352.; Burkhardt B.E.U., Rucker G., Stiller B. Prophylactic milrinone for the prevention of low cardiac output syndrome and mortality in children undergoing surgery for congenital heart disease. Cochrane Database Syst Rev. 2015; (3): CD009515. DOI:10.1002/14651858.CD009515.pub2. PMID: 25806562.; Joynt C., Cheung P.-Y. Treating hypotension in preterm neonates with vasoactive medications. Front Pediatr. 2018; 6: 86. DOI:10.3389/fped.2018.00086. PMID: 29707527.; Rizk M.Y., Lapointe A., Lefebvre F., Barrington K.J. Norepinephrine infusion improves haemodynamics in the preterm infants during septic shock. Acta Paediatr. 2018; 107 (3): 408-413. DOI:10.1111/apa.14112. PMID: 28992392.; Joynt C., Cheung P.Y. Cardiovascular supportive therapies for neonates with asphyxia — a literature review of pre-clinical and clinical studies. Front Pediatr. 2018; 6: 363. DOI:10.3389/fped.2018.00363. PMID: 30619782.; Budniok T., El Sayed Y., Louis D. Effect of vasopressin on systemic and pulmonary hemodynamics in neonates. Am J Perinatol. 2021; 38 (12): 1330-1334. DOI:10.1055/s-0040-1712999. PMID: 32485754.; Masarwa R., Paret G., Perlman A., Reif S., Raccah B.H., Matok I. Role of vasopressin and terlipressin in refractory shock compared to conventional therapy in the neonatal and pediatric population: a systematic review, meta-analysis, and trial sequential analysis. Crit Care. 2017; 21 (1): 1. DOI:10.1186/s13054-016-1589-6. PMID: 28057037.; Ikega.mi H., Funato M., Tamai H., Wada H., Nabetani M., Nishihara M. Low-dose vasopressin infusion therapy for refractory hypotension in ELBW infants. Pedia.tr Int. 2010; 52 (3): 368-373. DOI:10.1111/j.1442-200X.2009.02967.x. PMID: 19793209.; Mohamed A., Nasef N., Shah V., McNamara P.J. Vasopressin as a rescue therapy for refractory pulmonary hypertension in neonates: case series. Pediatr Crit Care Med. 2014; 15 (2): 148-154. DOI:10.1097/PCC.0b013e31829f5fce. PMID: 24141655.; Papp Z., Agostoni P., Alvarez J., Bettex D., Bouchez S., Brito D., Cerny V., Comin-Colet J, Crespo-Leiro M.G., Delgado J.F., Edes I., Eremenko A.A., Farmakis D., Fedele F., Fonseca C., Fruhwald S., Girardis M., Guarracino F., Harjola V-P., Heringlake M., Herpain A., Heunks L.M.A., Husebye T., Ivancan V., Karason K., Kaul S., Kivikko M., Kubica J., Masip J., Matskeplishvili S., Mebazaa A., Nieminen M.S., Oliva F., Papp G.P., Parissis J., Parkhomenko A., Poder P., Polzl G., Reinecke A., Ricksten S.-E., Riha H., Rudiger A., Sarapohja T., Schwinger R.H.G., Toller W., Tritapepe L., Tschope C., Wikstrom G., von Lewinski D., Vrtovec B., Pollesello P. Levosimendan efficacy and safety: 20 years of SIMDAX in clinical use. J Cardiovasc Pharmacol. 2020; 76 (1): 4-22. DOI:10.1097/FJC.0000000000000859. PMID: 32639325.; De Carolis M.P., Piastra M., Bersani I., Pardeo M., Stival E., Tempera A., Romagnoli C., Conti G., De Rosa G. Levosimendan in two neonates with ischemic heart failure and pulmonary hypertension. Neonatology. 2012; 101 (3): 201-205. DOI:10.1159/000329848. PMID: 22067520.; Shivanna B., Gowda S., Welty S.E., Barrington K.J., Pammi M. Prostanoids and their analogues for the treatment of pulmonary hypertension in neonates. Cochrane Database Syst Rev. 2019; 10 (10): CD012963. DOI:10.1002/14651858.CD012963.pub2. PMID: 31573068.; Wang X., Li B., Ma Y., Zhang H. Effect of NO inhalation on ECMO use rate and mortality in infants born at or near term with respiratory failure. Medicine (Baltimore). 2019; 98 (41): e17139. DOI:10.1097/MD.0000000000017139. PMID: 31593077.; Papazian L., Aubron C., Brochard L., Chiche J-D., Combes A., Dreyfuss D., Forel J-M., Guerin C., Jaber S., Mekontso-Dessap A., Mercat A., Richard J.-C., Roux D., Vieillard-Baron A., Faure H. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019; 9 (1): 69. DOI:10.1186/s13613-019-0540-9. PMID: 31197492.; Zhang W.-F., Chen D.-M., Wu L.-Q., Wang R.-Q. Clinical effect of continuous blood purification in treatment of multiple organ dysfunction syndrome in neonates. Zhongguo Dang Dai Er Ke Za Zhi. 2020; 22 (1): 31-36. (in Chinese). DOI:10.7499/j.issn.1008-8830.2020.01.007. PMID: 31948521.; Ramanathan K., Tan C.S., Rycus P., MacLaren G. Extracorporeal membrane oxygenation for severe adenoviral pneumonia in neonatal, pediatric, and adult patients. Pediatr Crit Care Med. 2019; 20 (11): 1078-1084. DOI:10.1097/PCC.0000000000002047. PMID: 31274774.; Kirkland B.W., Wilkes J., Bally D.K., Bratton S.L. Extracorporeal membrane oxygenation for pediatric respiratory failure: risk factors associated with center volume and mortality. Pediatr Crit Care Med. 2016; 17 (8): 779-788. DOI:10.1097/PCC.0000000000000775. PMID: 27187531.; Blauvelt D.G., Abada E.N., Oishi P., Roy S. Advances in extracorporeal membrane oxygenator design for artificial placenta technology. Artif Organs. 2021; 45 (3): 205-221. DOI:10.1111/aor.13827. PMID: 32979857.; Killien E.Y., Loftis L.L., Clark J.D., Muszynski J.A., Rissmiller B.J., Singleton M.N., White B.R., Zimmerman J.J., Maddux A.B., Pinto N.P., Fink E.L., Watson R.S., Smith M., Ringwood M., Graham R.J. POST-PICU and PICU-COS Investigators of the Pediatric Acute Lung Injury and Sepsis Investigators and the Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Networks. Health-related quality of life outcome measures for children surviving critical care: a scoping review. Qual Life Res. 2021; 30 (12): 3383-3394. DOI:10.1007/s11136-021-02928-9. PMID: 34185224.; Maddux A.B., Pinto N., Fink E.L., Hartman M.E., Nett S., Biagas K., Killien E.Y., Dervan L.A., Christie L.M., Luckett P.M., Loftis L., Lackey M., Ringwood M., Smith M., Olson L., Sorenson S., Meert K.L., Notterman D.A., Pollack M.M., Mourani P.M., Watson R.S. Pediatric Outcomes Studies after PICU (POST-PICU) and PICU-COS Investigators of the Pediatric Acute Lung Injury and Sepsis Investigators and the Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Networks. Postdischarge outcome domains in pediatric critical care and the instruments used to evaluate them: a scoping review. Crit Care Med. 2020; 48 (12): e1313-1321. DOI:10.1097/CCM.0000000000004595. PMID: 33009099.; Woodruff A.G., Choong K. Long-term outcomes and the post-intensive care syndrome in critically ill children: a North American perspective. Children (Basel). 2021; 8 (4): 254. DOI:10.3390/children8040254. PMID: 33805106.; Bossen D., de Boer R.M., Knoester H., Maaskant J.M., van der Schaaf M., Alsem M.W., Gemke R.J.B.J., van Woensel J.B.M., Oosterlaan J., Engelbert R.H.H. Physical functioning after admission to the PICU: a scoping review. Crit Care Explor. 2021; 3 (6): e0462. DOI:10.1097/CCE.0000000000000462. PMID: 34151283.; Pinto N.P., Rhinesmith E.W., Kim T.Y., Ladner P.H., Pollack M.M. Long-term function after pediatric critical illness: results from the survivor outcomes study. Pediatr Crit Care Med. 2017; 18 (3): e122-e130. DOI:10.1097/PCC.0000000000001070. PMID: 28107265.; Hamdy R.F., DeBiasi R.L. Every minute counts: the urgency of identifying infants with sepsis. J Pediatr. 2020; 217: 10-12. DOI:10.1016/j.jpeds.2019.09.068. PMID: 31668480.; Mukhopadhyay S., Puopolo K.M., Hansen N.I., Lorch S.A., DeMauro S.B., Greenberg R.G., Cotten C.M., Sanchez P.J., Bell E.F., Eichenwald E.C., Stoll B.J. NICHD Neonatal Research Network. Neurodevelopmental outcomes following neonatal late-onset sepsis and blood culturenegative conditions. Arch Dis Child Fetal Neonatal Ed. 2021; 106 (5): 467-473. DOI:10.1136/archdischild-2020-320664. PMID: 33478957.; Schmatz M., Srinivasan L., Grundmeier R.W., Elci O.U., Weiss S.L., Masino A.J., Tremoglie M., Ostapenko S., Harris M.C. Surviving sepsis in a referral neonatal intensive care unit: association between time to antibiotic administration and in-hospital outcomes. J Pediatr.2020; 217: 59-65 e1. DOI:10.1016/j.jpeds.2019.08.023. PMID: 31604632.; Серебрякова Е., Волосников Д., Беляева И. Особенности течения и исходов синдрома полиорганной недостаточности у новорожденных в зависимости от срока гестации и массы тела при рождении. Врач. 2017; (8): 54-56.; https://www.reanimatology.com/rmt/article/view/2180

  5. 5
    Academic Journal

    المساهمون: Авторы заявляют об отсутствии финансирования исследования.

    المصدر: Complex Issues of Cardiovascular Diseases; Том 10, № 1 (2021); 73-82 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 10, № 1 (2021); 73-82 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/818/553; Pfeffer T.J., Hilfiker-Kleiner D. Pregnancy and heart disease: pregnancy-associated hypertension and peripartum cardiomyopathy. Curr Probl Cardiol. 2018; 43 (9): 364-388. doi:10.1016/j.cpcardiol.2017.10.005; Vatutin N.T., Taradin G.G., Popelnukhina L.G., Gritzenko Y.P., Sidorenko I.A. Treatment of peripartum cardiomyopathy (review). Archive of internal medicine. 2017; 7 (5): 340-349. doi:10.20514/2226-6704-2017-7-5-340-349; Kamiya C.A., Yoshimatsu J., Ikeda T. Peripartum cardiomyopathy from a genetic perspective. Circ J. 2016; 80 (8): 1684-8. doi:10.1253/circj.CJ-16-0342; Lewey J., Levine L., Elovitz M., Irizarry O.C., Arany Z. Importance of early diagnosis in peripartum cardiomyopathy. Hypertension. 2020; 75 (1): 91-97. doi:10.1161/hypertensionaha.119.13291; Isogai T., Chizuko A., Kamiya C.A. Worldwide incidence of peripartum cardiomyopathy and overall maternal mortality. Review Int Heart J. 2019; 60 (3): 503-511. doi:10.1536/ihj.18-729; Masoomi R., Shah Z., Arany Z., Gupta K. Peripartum cardiomyopathy: an epidemiologic study of early and late presentations. Pregnancy Hypertens. 2018; 13: 273-278. doi:10.1016/j.preghy.2018.06.018; Hakata S., Umegaki T., Soeda T., Nishimoto K., Ando A., Anada N., Uba T., Sumi C., Kamibayashi T. Bromocriptine use for sudden peripartum cardiomyopathy in a patient with preeclampsia: a case report. JA Clin Rep. 2019; 5 (1): 38. doi:10.1186/s40981-019-0256-8; Elkayam U. Clinical characteristics of peripartum cardiomyopathy in the United States: diagnosis, prognosis, and management. J Am Coll Cardiol 2011; 58: 659-670.; Kamiya C.A., Kitakaze M., Ishibashi-Ueda H., Nakatani S., Murohara T., Tomoike H., Ikeda T. Different characteristics of peripartum cardiomyopathy between patients complicated with and without hypertensive disorders. Results from the Japanese Nationwide survey of peripartum cardiomyopathy. Circ J 2011; 75: 1975-1981.; Karaye K.M., Ishaq N.A., Sa'idu H. Balarabe S.A., Talle M.A., Isa M.S., Adamu U.G., Umar H., Okolie H.I., Shehu M.N., Mohammed I.Y., Sanni B., Ogah O.S., Oboirien I., Umuerri E.M., Mankwe A.C., Shidali V.Y., Njoku P., Dodiyi-Manuel S., Shogade T.T., Olunuga T., Ojji D., Josephs V., Mbakwem A.C., Tukur J., Isezuo S.A.; PEACE Registry Investigators. Incidence, clinical characteristics, and risk factors of peripartum cardiomyopathy in nigeria: Results from the PEACE registry. ESC Heart Fail. 2020; 7 (1): 235-243. doi:10.1002/ehf2.12562; Kolte D., Khera S., Aronow W.S., Palaniswamy C., Mujib M., Ahn C., Jain D., Gass A., Ahmed A., Panza J.A., Fonarow G.C. Temporal trends in incidence and outcomes of peripartum cardiomyopathy in the United States: a nationwide population-based study. J Am Heart Assoc. 2014; 3: e001056. doi:10.1161/JAHA.114.001056.; Thompson J.L., Kuklina E.V., Bateman B.T., Callaghan W.M., James A.H., Grotegut C.A. Medical and obstetric outcomes among pregnant women with congenital heart disease. Obstet Gynecol. 2015; 126 (2): 346-54. doi:10.1097/aog.0000000000000973; Grotegut C.A., Kuklina E.V., Anstrom K.J. Factors associated with the change in prevalence of cardiomyopathy at delivery in the period 2000-2009: A population-based prevalence study. BJOG. 2014; 121 (11): 1386-94. doi:10.1111/1471-0528.12726; Azibani F., Sliwa K. Peripartum cardiomyopathy: an update. Curr heart fail rep. 2018; 15 (5): 297-306. doi:10.1007/s11897-018-0404-x; Regitz-Zagrosek V., Blomstrom Lundqvist C., Borghi C., Cifkova R., Ferreira R., Foidart J-M. и др. Рекомендации Европейского общества кардиологов по лечению сердечно-сосудистых заболеваний у беременных. Рациональная Фармакотерапия в Кардиологии. 2012; 8 (3): 3-60. doi.org/10.20996/1819-6446-2012-8-3-3-60 (In Russian); Мозес В.Г. Роль системного поражения соединительной ткани в генезе варикозного расширения вен малого таза у подростков. Казанский медицинский журнал. 2006; 87(2): 102-104; Рудаева Е.В., Мозес В.Г., Кашталап В.В., Захаров И.С., Елгина С.И., Рудаева Е.Г. Врожденные пороки сердца и беременность. Фундаментальная и клиническая медицина. 2019; 4 (3): 102-112; Safirstein J.G., Ro A.S., Grandhi S., Wang L., Fett J.D., Staniloae C. Predictors of left ventricular recovery in a cohort of peripartum cardiomyopathy patients recruited via the internet. Int J Cardiol. 2012; 154: 27-31. doi:10.1016/j.ijcard.2010.08.065.; McNamara D.M., Elkayam U., Alharethi R., Damp J., Hsich E., Ewald G. et al. Clinical outcomes for peripartum cardiomyopathy in North America: results of the IPAC Study (Investigations of Pregnancy-Associated Cardiomyopathy). J Am Coll Cardiol. 2015; 66: 905-14. doi:10.1016/j.jacc.2015.06.1309; Brar S.S., Khan S.S., Sandhu G.K., Jorgensen M.B., Parikh N., Hsu J.W., Shen A.Y. Incidence, mortality, and racial differences in peripartum cardiomyopathy. Am J Cardiol 2007; 100: 302-304. doi:10.1016/j.amjcard.2007.02.092.; Lee Y.Z.J., Judge D.P. The role of genetics in peripartum cardiomyopathy. Review J Cardiovasc Transl Res. 2017; 10 (56): 437-445. doi:10.1007/s12265-017-9764-y; McNally E.M., Puckelwartz M.J. Genetic variation in cardiomyopathy and cardiovascular disorders. Circ J 2015; 79: 1409-1415. doi:10.1253/circj.CJ-15-0536.; Morales A., Painter T., Li R., iegfried J,D,, Li D,, Norton N,, Hershberger R,E. Rare variant mutations in pregnancy-associated or peripartum cardiomyopathy. Circulation. 2010; 121 (20): 2176-82. doi:10.1161/circulationaha.109.931220; van Spaendonck-Zwarts K.Y., van Tintelen J.P., van Veldhuisen D.J., van der Werf R., Jongbloed J.D., Paulus W.J., Dooijes D., van den Berg M.P. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation. 2010; 121 (20): 2169-75. doi:10.1161/circulationaha.109.929646; Шибельгут Н.М., Захаров И.С., Мозес В.Г. Клинико-биохимические проявления недифференцированных форм дисплазии соединительной ткани у беременных с варикозной болезнью вен малого таза. Саратовский научно-медицинский журнал. 2010; 6 (1). С. 56-60; Шибельгут Н.М., Мозес В.Г., Захаров И.С., Колесникова Н.Б. Течение беременности и исходы родов у женщин с недифференцированными формами дисплазии соединительной ткани. Медицина в Кузбассе. 2009; 8 (4). С. 28-31; van Spaendonck-Zwarts K.Y., van Tintelen J.P., van Veldhuisen D.J., van der Werf R., Jongbloed J.D., Paulus W.J., Dooijes D., van den Berg M.P. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation 2010; 121: 2169-2175. doi:10.1161/CIRCULATIONAHA.109.929646.; van Spaendonck-Zwarts K.Y., Posafalvi A., van den Berg M.P., Hilfiker-Kleiner D., Bollen I.A., Sliwa K., Alders M., Almomani R., van Langen I.M., van der Meer P., Sinke R.J., van der Velden J., Van Veldhuisen D.J., van Tintelen J.P., Jongbloed J.D. Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. Eur Heart J 2014; 35: 2165-2173. doi:10.1093/eurheartj/ehu050.; Hayward C., Patel H., Lyon A. Gene therapy in heart failure: SERCA2a as a therapeutic target. Circ J 2014; 78: 2577-2587. doi:10.1253/circj.cj-14-1053; Onusko E., McDermott M.R., Robbins N. Probenecid treatment improves outcomes in a novel mouse model of peripartum cardiomyopathy. PLoS One. 2020; 15 (3): e0230386. doi:10.1371/journal.pone.0230386; de la Torre P., Perez-Lorenzo M.J., Alcazar-Garrido A., Flores A.I. Cell-based nanoparticles delivery systems for targeted cancer therapy: lessons from anti-angiogenesis treatments. Molecules. 2020; 25 (3): 715. doi:10.3390/molecules25030715; Cunningham F.G., Byrne J.J., Nelson D.B. Peripartum cardiomyopathy. Obstet Gynecol. 2019; 133 (1): 167-179. doi:10.1097/AOG.0000000000003011; Yang S.H., Sharrocks A.D., Whitmarsh A.J. MAP kinase signalling cascades and transcriptional regulation. Gene. 2013; 513 (1): 1-13. doi:10.1016/j.gene.2012.10.033; Lee S.H., Kunz J., Lin S.H., Yu-Lee L. 16-kDa prolactin inhibits endothelial cell migration by down-regulating the ras-tiam1-rac1-pak1 signaling pathway. Cancer Res. 2007 15; 67 (22): 11045-53. doi:10.1158/0008-5472.CAN-07-0986; Hilfiker-Kleiner D., Kaminski K., Podewski E., Bonda T., Schaefer A., Sliwa K. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007; 128: 589-600. doi:10.1016/j.cell.2006.12.036.; Ricke-Hoch M., Bultmann I., Stapel B., Condorelli G., Rinas U., Sliwa K., Scherr M., Hilfiker-Kleiner D. Opposing roles of Akt and STAT3 in the protection of the maternal heart from peripartum stress. Cardiovasc Res. 2014; 101(4): 587-96. doi:10.1093/cvr/cvu010; Halkein J., Tabruyn S.P., Ricke-Hoch M., Haghikia A., Nguyen N.Q., Scherr M., Castermans K., Malvaux L., Lambert V., Thiry M., Sliwa K., Noel A., Martial J.A., Hilfiker-Kleiner D., Struman I. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest. 2013; 123: 2143-54. doi:10.1172/JCI64365.; Sliwa K., Blauwet L., Tibazarwa K., Libhaber E., Smedema J.P., Becker A., McMurray J., Yamac H., Labidi S., Struman I., Hilfiker-Kleiner D. Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy: a proof-of-concept pilot study. Circulation. 2010; 121: 14651473. doi:10.1161/CIRCULATIONAHA.109.901496.; Hilfiker-Kleiner D., Meyer G.P., Schieffer E., Goldmann B., Podewski E., Struman I., Fischer P., Drexler H. Recovery from postpartum cardiomyopathy in 2 patients by blocking prolactin release with bromocriptine. J. Am. Coll. Cardiol. 2007; 50: 2354-2355. doi:10.1016/j.jacc.2007.10.006.; Hilfiker-Kleiner D., Haghikia A., Berliner D., Vogel-Claussen J., Schwab J., Franke A., Schwarzkopf M., Ehlermann P., Pfister R., Michels G., Westenfeld R., Stangl V., Kindermann I., Kuhl U., Angermann C.E., Schlitt A., Fischer D., Podewski E., Bohm M., Sliwa K., Bauersachs J. Bromocriptine for the treatment of peripartum cardiomyopathy: a multicentre randomized study. Randomized Controlled Trial Eur Heart J. 2017; 38(35):2671-2679. doi:10.1093/eurheartj/ehx355; Koenig T., Bauersachs J., Hilfiker-Kleiner D. Bromocriptine for the treatment of peripartum cardiomyopathy. Card Fail Rev. 2018; 4 (1): 46-49. doi:10.15420/cfr.2018:2:2; Avila M.S., Siqueira S.R.R., Ferreira S.M.A., Bocchi E.A. Prevention and treatment of chemotherapy-induced cardiotoxicity. Methodist Debakey Cardiovasc J. 2019; 15 (4): 267-273. doi:10.14797/mdcj-15-4-267; Behrens I., Basit S., Lykke J.A., Ranthe M.F., Wohlfahrt J., Bundgaard H., Melbye M., Boyd H.A. Hypertensive disorders of pregnancy and peripartum cardiomyopathy: a nationwide cohort study. PLoS One. 2019; 14 (2): e0211857. doi:10.1371/journal.pone.0211857; Bello N., Rendon I.S.H., Arany Z. The relationship between pre-eclampsia and peripartum cardiomyopathy: a systematic review and meta-analysis. Review J Am Coll Cardiol. 2013; 62 (18): 1715-1723. doi:10.1016/j.jacc.2013.08.717; Приходько Н.Г. Роль факторов роста в инвазии трофобласта и их ассоциация с патологическим течением беременности. Бюллетень физиологии и патологии дыхания. 2019; 74: 111-118. doi:10.36604/1998-5029-2019-74-111-118; Яковлева Н.Ю., Хазова Е.Л., Васильева Е.Ю., Зазер-ская И.Е. Соотношение ангиогенных и антиангиогенного факторов при преэклампсии. Артериальная гипертензия. 2016; 22 (5): 488-494; Rajakumar A., Michael H.M., Rajakumar P.A., Shibata E., Hubel C.A., Karumanchi S.A., Thadhani R., Wolf M., Harger G., Markovic N. Extra-placental expression of vascular endothelial growth factor receptor-1, (Flt-1) and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cells (PBMCs) in normotensive and preeclamptic pregnant women. Placenta. 2005; 26: 563-73. doi:10.1016/j.placenta.2004.09.001.; Patten I.S., Rana S., Shahul S., Rowe G.C., Jang C., Liu L., Hacker M.R., Rhee J.S., Mitchell J., Mahmood F., Hess P., Farrell C., Koulisis N., Khankin E.V., Burke S.D., Tudorache I., Bauersachs J., del Monte F., Hilfiker-Kleiner D., Karumanchi S.A., Arany Z. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature. 2012; 485 (7398): 333-338. doi:10.1038/nature11040; van Opbergen C.J.M., den Braven L., Delmar M., van Veen T.A.B. Mitochondrial dysfunction as substrate for arrhythmogenic cardiomyopathy: a search for new disease mechanisms. Front Physiol. 2019; 10: 1496. doi:10.3389/fphys.2019.01496; Bello N.A., Zoltan Arany Z. Molecular mechanisms of peripartum cardiomyopathy: A vascular/hormonal hypothesis. Trends Cardiovasc Med. 2015; 25 (6): 499-504. doi:10.1016/j.tcm.2015.01.004; Alexander D., Langford K., Dresner M. Pregnancy and cardiac disease: peripartum aspects. In: Steer PJ, Gatzoulis MA eds. Heart disease and pregnancy, 2nd ed. Cambridge: Cambridge University Press; 2016. pp. 208-17.; ESC Guidelines on the Management of Cardiovascular Diseases During Pregnancy: The Task Force on the Management of Cardiovascular Diseases During Pregnancy of the European Society of Cardiology (ESC). Practice Guideline Eur Heart J. 2011; 32 (24): 3147-97. doi:10.1093/eurheartj/ehr218; Regitz-Zagrosek V., Roos-Hesselink J.W., Bauersachs J., Blomstrom-Lundqvist C., Ci'lkova R., De Bonis M., Iung B., Johnson M. 2018 ESC Guidelines for the Management of Cardiovascular Diseases During Pregnancy. Kardiol Pol. 2019; 77 (3): 245-326. doi:10.5603/KP.2019.0049; Ramsay M. Management of the puerperium in women with heart disease. In: Steer P.J., Gatzoulis M.A. eds. Heart disease and pregnancy, 2nd ed. Cambridge: Cambridge University Press; 2016. pp. 218-26.; Edupuganti M.M., Ganga V. Acute myocardial infarction in pregnancy: Current diagnosis and management approaches. Indian Heart J. 2019; 71 (5): 367-374. doi:10.1016/j.ihj.2019.12.003; Marstrand P., Picard K., Lakdawala N.K. Second hits in dilated cardiomyopathy. Curr Cardiol Rep. 2020; 22 (2): 8. doi:10.1007/s11886-020-1260-3; Seeland U., Goldin-Lang P., Regitz-Zagrosek V. Cardiovascular diseases in pregnancy: facts of the new guideline. Dtsch Med Wochenschr. 2012; 137 (31-32): 156872. doi:10.1055/s-0032-1305187; Koczo A., Marino A., McNamara D.M. Breastfeeding in patients with heart failure: Lack of evidence and consensus. JACC Basic Transl Sci. 2019; 4 (7): 867. doi:10.1016/j.jacbts.2019.10.001; Arany Z., Feldman A.M. To breastfeed or not to breastfeed with peripartum cardiomyopathy. JACC Basic Transl Sci. 2019; 4 (3): 301-303. doi:10.1016/j.jacbts.2019.03.005; Koczo A., Marino A., Jeyabalan A., Elkayam U., Cooper L.T., Fett J., Briller J., Hsich E., Blauwet L., McTiernan C., Morel P.A., Hanley-Yanez K., McNamara D.M.; IPAC Investigators. Breastfeeding, cellular immune activation, and myocardial recovery in peripartum cardiomyopathy. JACC Basic Transl Sci. 2019 Jun 24; 4 (3): 291-300. doi:10.1016/j.jacbts.2019.01.010; https://www.nii-kpssz.com/jour/article/view/818

  6. 6
    Academic Journal

    المصدر: Ophthalmology in Russia; Том 17, № 2 (2020); 181-187 ; Офтальмология; Том 17, № 2 (2020); 181-187 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2020-2

    وصف الملف: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1194/687; Банта Джеймс Т. Травма глаза. Пер. с англ. М.: Мед. лит.; 2013:256. [Banta James T. Ocular Trauma. Мoscow: Medicinskaja literatura; 2013:256 (In Russ.)].; Hoskin A.K., Mackey D.A., Keay L., Agrawal R., Watson S. Eye Injuries across history and the evolution of eye protection. Acta Ophthalmol. 2019;97(6):637–643. DOI:10.1111/aos.14086; Петраевский А.В., Гндоян И.А., Тришкин К.С., Виноградов А.Р. Глазной травматизм в Российской Федерации. Вестник офтальмологии. 2018;134(4):80–83. [Petrayevsky A.V., Gndoyan I.A., Trishkin K.S., Vinogradov A.R. Ocular traumatism in Russian Federation. Annals of Ophthalmology = Vestnik oftal’mologii. 2018;134(4):80–83 (In Russ.)]. DOI:10.17116/oftalma201813404180; Sharma S., Thapa R., Bajimaya S., Pradhan E., Poudyal G. Clinical characteristics and visual outcome, prognostic factor, visual acuity and globe survival in posterior segment intraocular foreign body at Tilganga Institute of Ophthalmology. Nepal J Ophthalmol. 2018;10(19):66–72. DOI:10.3126/nepjoph.v10i1.21691; Micieli J.A., Easterbrook M. Clin Sports Med. Eye and Orbital Injuries in Sports. 2017;36(2):299–314. DOI:10.1016/j.csm.2016.11.006; Luo H., Shrestha S., Zhang X., Saaddine J., Zeng X., Reeder T. Trends in Eye Injuries and Associated Medical Costs among Children in the United States, 2002–2014. Ophthalmic Epidemiol. 2018;25(4):280–287. DOI:10.1080/09286586.2018.1441425; Iftikhar M., Latif A., Usmani B., Canner J.K., Shah S.M.A. Trends and Disparities in Inpatient Costs for Eye Trauma in the United States (2001–2014). Am J Ophthalmol. 2019;207:1–9. DOI:10.1016/j.ajo.2019.05.021; Morescalchi F., Duse S., Gambicorti E., Romano M.R., Costagliola C., Semeraro F. Proliferative vitreoretinopathy after eye injuries: an overexpression of growth factors and cytokines leading to a retinal keloid. Mediators Inflamm. 2013;2013:269787. DOI:10.1155/2013/269787; Травмы глаза. Под общ. ред. Гундоровой Р.А. Нероева В.В., Кашникова В.В. 2-е изд. М.: ГЭОТАР-Медиа; 2014:560. [Gundorova R.A., Neroev V.V., Kashnikov V.V., editors. Eye injuries. 2nd ed. Мoscow: GEOTAR-Media; 2014:560 (In Russ.)].; Нероев В.В., Гундорова Р.А., Алексеева И.Б., Галчин А.А. Восстановление жизненных функций глаза: дальнейшие пути и направления работ по проблеме травм органа зрения. Медицина катастроф. 2010;3(71):31–33. [Neroev V.V., Gundorova R.A., Alexeeva I.B., Galchin A.A. Eye Functional Recovery: Ways and Directions of Further Work on Eye Trauma Problem. Emergency Medicine. = Medicina katastrof. 2010;3(71):31–33 (In Russ.)].; Reorganized text. JAMA Otolaryngol Head Neck Surg. 2015;141(5):428. DOI:10.1001/jamaoto.2015.0540; Baillif S., Paoli V. Open-globe injuries and intraocular foreign bodies involving the posterior segment. J Fr Ophtalmol. 2012;35(2):136–145. DOI:10.1016/j.jfo.2011.08.003; Abouammoh M.A., Al-Mousa A., Gogandi M., Al-Mezaine H., Osman E., Alsharidah A.M., et. al. Prophylactic intravitreal antibiotics reduce the risk of post-traumatic endophthalmitis after repair of open globe injuries. Acta Ophthalmol. 2018; 96(3):e361–e365. DOI:10.1111/aos.13531; El Chehab H., Renard J.P., Dot C. Post-traumatic endophthalmitis. J Fr Ophtalmol. 2016;39(1):98–106. DOI:10.1016/j.jfo.2015.08.005; Nowell C.S., Radtke F. Corneal epithelial stem cells and their niche at a glance. Corneal epithelial stem cells and their niche at a glance. J Cell Sci. 2017;130:1021–1025. DOI:10.1242/jcs.198119; Dziasko M.A., Tuft S.J., Daniels J.T. Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments. Exp Eye Res. 2015;138:70–79. DOI:10.1016/j.exer.2015.06.026; Bath C., Muttuvelu D., Emmersen J., Vorum H., Hjortdal J., Zachar V. Print 2013. Transcriptional dissection of human limbal niche compartments by massive parallel sequencing. PLoS One. 2013;8(5):e64244. DOI:10.1371/journal.pone.0064244; Bian F., Xiao Y., Zaheer M., Volpe E.A., Pflugfelder S.C., Li D.Q., de Paiva C.S. Inhibition of NLRP3 Inflammasome Pathway by Butyrate Improves Corneal Wound Healing in Corneal Alkali Burn. Int J Mol Sci. 2017;18(3). PII: E562. DOI:10.3390/ijms18030562; Nowell C.S., Odermatt P.D., Azzolin L., Hohnel S., Wagner E.F., Fantner G.E., et. al. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat. Cell Biol. 2016;18:168–180. DOI:10.1038/ncb3290; Jumblatt M.M., Willer S.S. Corneal endothelial repair. Regulation of prostaglandin E2 synthesis. Invest Ophthalmol Vis Sci. 1996;37(7):1294–1301.; Castro-Muñozledo F. Review: corneal epithelial stem cells, their niche and wound healing. Mol Vis. 2013;19:1600–1613.; Kawakita T., Higa K., Shimmura S., Tomita M., Tsubota K., Shimazaki J. Fate of corneal epithelial cells separated from limbus in vivo. Invest Ophthalmol Vis Sci. 2011;52(11):8132–8137. DOI:10.1167/iovs.11-7984; Труфанов С.В., Суббот А.М., Маложен С.А., Крахмалев Д.А. Гипотеза иммунной привилегии роговицы и патофизиология отторжения кератотрансплантата. Вестник офтальмологии. 2016;132(5):117–124. [Trufanov S.V., Subbot A.M., Malozhen S.A., Krakhmalev D.A. Hypothesis of immune privilege of the cornea and pathophysiology of graft rejection. Annals of Ophthalmology = Vestnik oftal’mologii. 2016;132(5):117–124 (In Russ.)]. DOI:10.17116/oftalma20161325117-124; Mobaraki M., Abbasi R., Omidian Vandchali S., Ghaffari M., Moztarzadeh F., Mozafari M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front Bioeng Biotechnol. 2019;7:135. DOI:10.3389/fbioe.2019.00135; Омельяненко Н.П., Ковалев А.В., Сморчков М.М., Мишина Е.С. Структура собственного вещества роговицы глаза человека. Морфология. 2017;151(3):93. [Omelyanenko N.P., Kovalyov A.V., Smorchkov M.M., Mishina Ye.S. Structure of the corneal substantia propria of the human eye. Morphology = Morfologiia. 2017;151(3):93 (In Russ.)].; Parreno J., Cheng C., Nowak R.B., Fowler V.M. The effects of mechanical strain on mouse eye lens capsule and cellular microstructure. Mol Biol Cell. 2018;29(16):1963–1974. DOI:10.1091/mbc.E18-01-0035; Шевлюк Н.Н., Радченко А.В., Стадников А.А. Структурно-функциональные основы физиологической и репаративной регенерации тканей роговицы. Журнал анатомии и гистопатологии. 2019;8(2);82–90 [Shevlyuk N.N., Radchenko A.V., Stadnikov A.A. The Structural and Functional Basis of Physiological and Reparative Regeneration of Corneal Tissues. Journal of Anatomy and Histopathology = Zhurnal anatomii i gistopatologii. 2019;8(2):82–90 (In Russ.)]. DOI:10.18499/2225-7357-2019-8-2-82-90; Niederkorn J.Y. High-risk corneal allografts and why they lose their immune privilege. Curr Opin Allergy Clin Immunol. 2010;10:493–497. DOI:10.1097/ACI.0b013e32833dfa11; Cursiefen C. Immune privilege and angiogenic privilege of the cornea. Chem Immunol Allergy. 2007;92:50–57. DOI:10.1159/000099253; Kim J.K., Jin H.S., Suh H.W., Jo E.K. Negative regulators and their mechanisms in NLRP3 inflammasome activation and signaling. Immunol Cell Biol. 2017;95(7):584–592. DOI:10.1038/icb.2017.23; Singh N., Tiem M., Watkins R., Cho Y.K., Wang Y., Olsen T., Uehara H., Mamalis C., Luo L., Oakey Z., Ambati B.K. Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood. 2013 May 16;121(20):4242–4249. DOI:10.1182/blood-2012-08-453043; Cursiefen C., Masli S., Ng T.F., Dana M.R., Bornstein P., Lawler J., Streilein J.W. Roles of thrombospondin-1 and -2 in regulating corneal and iris angiogenesis. Investig Ophthalmol Vis Sci. 2004;45(4):1117–1124. DOI:10.1167/iovs.03-0940; Gao X., Guo K., Santosa S.M., Montana M., Yamakawa M., Hallak J.A., et. al. Application of corneal injury models in dual fluorescent reporter transgenic mice to understand the roles of the cornea and limbus in angiogenic and lymphangiogenic privilege. Sci Rep. 2019;9(1):12331. DOI:10.1038/s41598-019-48811-z; Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408. DOI:10.1016/j.cell.2012.01.021; Bath C. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling. Acta Ophthalmol. 2013;91 Thesis 4:1–34. DOI:10.1111/aos.12157; Cursiefen C., Chen L., Dana M.R., Streilein J.W. Corneal lymphangiogenesis: evidence, mechanisms, and implications for corneal transplant immunology. Cornea. 2003;22(3):273–281. DOI:10.1097/00003226-200304000-00021; Niederkorn J. Corneal Transplantation and Immune Privilege. Int Rev Immunol. 2013;32(1):57–67. DOI:10.3109/08830185.2012.737877; Chauhan S.K., Dohlman T.H., Dana R. Corneal Lymphatics: Role in Ocular Inflammation as Inducer and Responder of Adaptive Immunity. J Clin Cell Immunol. 2014;5. PII: 1000256. DOI:10.4172/2155-9899.1000256; Cunha-Vaz J., Bernardes R., Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21 Suppl 6:S3–9. DOI:10.5301/EJO.2010.6049; Ji Y.W., Lee J.L., Kang H.G., Gu N., Byun H., Yeo A., et. al. Corneal lymphangiogenesis facilitates ocular surface inflammation and cell trafficking in dry eye disease. Ocul Surf. 2018;16(3):306–313. DOI:10.1016/j.jtos.2018.03.008; Гаврилова Т.В., Чуприна В.В., Давыдова Е.В., Черешнева М.В., Черешнев В.А., Шилов Ю.И. Иммуномодулирующее действие миелопида при его включении в комплексную терапию пациентов с проникающим ранением глаза. Медицинская иммунология. 2008;10(2–3):239–244. [Gavrilova T.V., Chuprina V.V., Davydova E.V., Chereshneva M.V., Chereshnev V.A., Shilov Yu.I. Immunomodulatory action of myelopidum under its inclusion in complex therapy of patients with penetrating ocular injuries. Medical Immunology = Medicinskaja immunologija. 2008;10 (2–3):239–244 (In Russ.)].; Chong E., Dana M. Graft failure IV. Immunologic mechanisms of corneal transplant rejection. International Ophthalmology. 2007;28(3):209–222. DOI:10.1007/s10792-007-9099-9; Brissette-Storkus C.S., Reynolds S.M., Lepisto A.J., Hendricks R.L. Identification of a novel macrophage population in the normal mouse corneal stroma. Investig Ophthalmol Vis Sci. 2002;43(7):2264–2271.; Симбирцев А.С. Цитокины в патогенезе и лечении заболеваний человека. СПб.: Фолиант; 2018:511. [Simbirtsev A.S. Cytokines in the pathogenesis and treatment of human diseases Sankt-Peterburg: Foliant; 2018:511 (In Russ.)].; Meng Q., Yang P., Li B., Zhou H., Huang X., Zhu L., Ren Y., Kijlstra A. CD4+PD-1+T cells acting as regulatory cells during the induction of anterior chamber-associated immune deviation. Invest Ophthalmol Vis Sci. 2006;47(10):4444–4452. DOI:10.1167/iovs.06-0201; Hori J., Wang M., Miyashita M., Tanemoto K., Takahashi H., Takemori T., et. al. B7-H1-Induced Apoptosis as a Mechanism of Immune Privilege of Corneal Allografts. J Immunol. 2006;177(9):5928–5935. DOI:10.4049/jimmunol.177.9.5928; Wilbanks G.A., Streilein J.V. Studies on the induction of anterior chamberassociated immune deviation (ACAID). I. Evidence that an antigen specific, ACAID-inducing, cell-associated signal exists in the peripheral blood. J Immunol. 1991;146(8):2610–2617.; Соломатина М.В., Лихванцева В.Г., Колесников Д.В. Иммунологические аспекты глаукомы. Практическая медицина. 1917;3(104):16–21. [Solomatina M.V., Likhvantseva V.G., Kolesnikov A.V. Immunological aspects of glaucoma. Practical medicine = Prakticheskaya meditsina.1917;3(104):16–21 (In Russ.)].; Ljubimov A.V., Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17–45. DOI:10.1016/j.preteyeres.2015.07.002; Spadea L., Giammaria D., Trabucco P. Corneal wound healing after laser vision correction. Br. J. Ophthalmol. 2016;100:28–33. DOI:10.1136/bjophthalmol-2015-306770; Norman Anthony W., Henry Helen L. Hormones. 3rd ed. Elsevier. Academic Press; 2014:430. DOI:10.1016/C2009-0-02025-X; Yamaguchi T., Hamrah P., Shimazaki J. Bilateral Alterations in Corneal Nerves, Dendritic Cells and Tear Cytokine Levels in Ocular Surface Disease. Cornea. 2016;35(Suppl 1):S65–S70. DOI:10.1097/ICO.0000000000000989; Shaheen B.S., Bakir M., Jain S. Corneal nerves in health and disease. Surv Ophthalmol. 2014;59(3):263–285. DOI:10.1016/j.survophthal.2013.09.002; Blanco-Mezquita T., Martinez-Garcia C., Proença R., Zieske J.D., Bonini S., Lambiase A., Merayo-Lloves J. Nerve growth factor promotes corneal epithelial migration by enhancing expression of matrix metalloprotease-9. Invest Ophthalmol Vis Sci. 2013;54(6):3880–3890. DOI:10.1167/iovs.12-10816; Ambrósio R. Jr., Kara-José N., Wilson S.E. Early Keratocyte Apoptosis after Epithelial Scrape Injury in the Human Cornea. Exp Eye Res. 2009;89(4):597–599. DOI:10.1016/j.exer.2009.06.003; Eming S.A., Martin P., Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. DOI:10.1126/scitranslmed.3009337; Petroll W.M., Kivanany P.B., Hagenasr D., Graham E.K. Corneal fibroblast migration patterns during intrastromal wound healing correlate with ECM structure and alignment. Investig Ophthalmol Vis Sci. 2015;56:7352–7361. DOI:10.1167/iovs.15-17978; Jester J.V., Ho-Chang J. Modulation of cultured corneal keratocyte phenotype by growth factors/cytokines control in vitro contractility and extracellular matrix contraction. Exp Eye Res. 2003;77:581–592. DOI:10.1016/s0014-4835(03)00188-x; McKay T.B., Hutcheon A.E.K., Zieske J.D. Biology of corneal fibrosis: soluble mediators, integrins, and extracellular vesicles. Eye (Lond). 2020;34(2):271–278. DOI:10.1038/s41433-019-0736-0; Medeiros C.S., Marino G.K., Santhiago M.R., Wilson S.E. The Corneal Basement Membranes and Stromal Fibrosis. Invest Ophthalmol Vis Sci. 2018;59(10):4044– 4053. DOI:10.1167/iovs.18-24428; Roy O., Leclerc V.B., Bourget J.-M., Thériault M., Proulx S. Understanding the process of corneal endothelial morphological change in vitro. Investig Ophthalmol Vis Sci. 2015;56:1228–1237. DOI:10.1167/iovs.14-16166; Miyamoto T., Sumioka T., Saika S. Endothelial mesenchymal transition: A therapeutic target in retrocorneal membrane. Cornea. 2010;29 Suppl 1:S52–S56. DOI:10.1097/ICO.0b013e3181efe36a; Lee J.G., Ko M.K., Kay E.P. Endothelial mesenchymal transformation mediated by IL-1β-induced FGF-2 in corneal endothelial cells. Exp Eye Res. 2012;95:35–39. DOI:10.1016/j.exer.2011.08.003; Дикинов З.Х. Поиск надежных и информативных молекулярных маркеров воспаления при посттравматическом увеите. Курский научно-практический вестник «Человек и его здоровье». 2013;3:33–38. [Dikinov Z.H. A search for reliable and informative molecular markers of inflammation in post-traumatic uveitis. Bulletin “Man and His Health” = Kursk Scientific and Practical. 2013;3:33–38 (In Russ.)].; Козарийчук Н.Я. Современные данные о механизмах иммунной дисфункции при повреждении переднего отдела глазного яблока (обзор литературы). Клінічна та експериментальна патологія. 2016;15(2(1)):210–214. [Kozarijchuk N.Ya. Current data on the immune dysfunction mechanisms in case of damage to the anterior eyeball (literature review). Clinical and experimental pathology = Klіnіchna ta eksperimental’na patologіja. 2016;15(2(1)):210–214 (In Ukr.)].; Mohan R.R., Morgan B.R., Anumanthan G., Sharma A., Chaurasia S.S., Rieger F.G. Characterization of Inhibitor of differentiation (Id) proteins in human cornea. Exp Eye Res. 2016;146:145–153. DOI:10.1016/j.exer.2015.12.003; Li Z., Burns A.R., Smith C.W. Two waves of neutrophil emigration in response to corneal epithelial abrasion: Distinct adhesion molecule requirements. Investig Ophthalmol Vis Sci. 2006;47:1947–1955. DOI:10.1167/iovs.05-1193; Marrazzo G., Bellner L., Halilovic A., Volti G.L., Drago F., Dunn M.W., Schwartzman M.L. The role of neutrophils in corneal wound healing in HO-2 null mice. PLoS One. 2011;6:e21180. DOI:10.1371/journal.pone.0021180; Zhang C., Ding H., He M., Liu L., Liu L., Li G., Niu B., Zhong X. Comparison of Early Changes in Ocular Surface and Inflammatory Mediators between Femtosecond Lenticule Extraction and Small-Incision Lenticule Extraction. PLoS One. 2016;11(3):e0149503. DOI:10.1371/journal.pone.0149503; Watari K., Nakao S., Fotovati A., Basaki Y., Hosoi F., Bereczky B., et. al. Role of macrophages in inflammatory lymphangiogenesis: Enhanced production of vascular endothelial growth factor C and D through NF-κB activation. Biochem Biophys Res Commun. 2008;377:826–831. DOI:10.1016/j.bbrc.2008.10.077; Liu Q., Smith C.W., Zhang W., Burns A.R., Li Z. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing. Am J Pathol. 2012;181(2):452–462. DOI:10.1016/j.ajpath.2012.04.010; Bhagat N., Nagori S., Zarbin M. Post-traumatic Infectious Endophthalmitis. Surv Ophthalmol. 2011;56(3):214–251. DOI:10.1016/j.survophthal.2010.09.002; Szijártó Z., Gaál V., Kovács B., Kuhn F. Prognosis of penetrating eye injuries with posterior segment intraocular foreign body. Graefes Arch Clin Exp Ophthalmol. 2008;246(1):161–165. DOI:10.1007/s00417-007-0650-1; Loporchio D., Mukkamala L., Gorukanti K., Zarbin M., Langer P., Bhagat N. Intraocular foreign bodies: A review. Surv Ophthalmol. 2016;61(5):582–596. DOI:10.1016/j.survophthal.2016.03.005; Волик Е.И., Архипова Л.Т. Особенности клинического течения раневого процесса в глазу. Вестник офтальмологии. 2000;116(2):11–13 [Volik E.I., Arhipova L.T. Features of the clinical course of the wound process in the eye. Annals of Ophthalmology = Vestnik oftal’mologii. 2000;116(2):11–13 (In Russ.)].; Волков В.В. Открытая травма глаза. СПб.: ВМедА; 2016:280. [Volkov V.V. Open eye injury. Saint Peterburg: Military Medical Academy; 2016:280 (In Russ.)].; Jonas J.B., Knorr H.L., Budde W.M. Prognostic factors in ocular injuries caused by intraocular or retrobulbar foreign bodies. Ophthalmology. 2000;107(5):823–828. DOI:10.1016/s0161-6420(00)00079-8; Нероев В.В., Гундорова Р.А. Диагностика и удаление инородных тел. анализ разработок института за 40 лет. Офтальмология. 2010;7(2):7–10. [Neroev V.V., Gundorova R.A. Diagnostics and removal of foreign bodies: Analysis of Institute developments for 40 years. Ophthalmology = Ophthalmology in Russia (In Russ.)].; https://www.ophthalmojournal.com/opht/article/view/1194