يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"В. А. Зайка"', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Acta Biomedica Scientifica; Том 9, № 1 (2024); 136-141 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4608/2741; Reddy MV. Human dirofilariasis: An emerging zoonosis. Trop Parasitol. 2013; 3(1): 2-3.; Permi HS, Veena S, Prasad HK, Kumar YS, Mohan R, Shetty KJ. Subcutaneous human dirofilariasis due to Dirofilaria repens: Report of two cases. J Glob Infect Dis. 2011; 3(2): 199-201. doi:10.4103/0974-777X.81702; Чистенко Г.Н., Веденьков А.Л., Дронина А.М., Семижон О.А. Дирофиляриоз человека. Медицинский журнал.2013; 3(45): 30-33.; Kartashev V. Human subcutaneous/ocular dirofilariasis in the Russian Federation and Belarus, 1997–2013. Int J Infect Dis. 2015; 33: 209-211.; Бронштейн А.М., Супряга В.Г., Ставровский Б.И. Дирофиляриоз человека в Московском регионе. Медицинская паразитология и паразитарные болезни. 2003; 3: 51-56.; Kalogeropoulos CD, Stefaniotou MI, Gorgoli KE, Papadopoulou CV, Pappa CN, Paschidis CA. Ocular dirofilariasis: A case series of 8 patients. Middle East Afr J Ophthalmol. 2014; 21(4): 312- 316. doi:10.4103/0974-9233.142267; Molyneux DH. Control of human parasitic diseases: Context and overview. Adv Parasitol. 2006; 61: 1-45. doi:10.1016/S0065-308X(05)61001-9; Гущина М.Б., Терещенко А.В., Южакова Н.С. Клинические формы глазного дирофиляриоза. Вестник офтальмологии. 2019; 135(4): 113-120. doi:10.17116/oftalma2019135041113; Сергиев В.П., Супряга В.Г., Бронштейн А.М., Ганушкина Л.А., Ракова В.М., Морозов Е.Н., и др. Итоги изучения дирофиляриоза в России. Медицинская паразитология и паразитарные болезни. 2014; 3: 3-4.; Pietikäinen R, Nordling S, Jokiranta S, Saari S, Heikkinen P, Gardiner C, et al. Dirofilaria repens transmission in southeastern Finland. Parasit Vectors. 2017; 10(1): 561. doi:10.1186/s13071-017- 2499-4; Байтингер В.Ф., Курочкина О.С., Полторацкая Т.Н., Полторацкая Н.В. Клинические случаи хирургического лечения дирофиляриоза в Томской области. Вопросы реконструктивной и пластической хирургии. 2023; 26(2): 56-63. doi:10.52581/1814-1471/85/07; Казайкин В.Н., Гурьев А.В., Лизунов А.В., Мазеин Д.А. Редкий случай интраокулярного дирофиляриоза. Способ хирургического удаления. Офтальмология. 2019; 16(4): 556-560. doi:10.18008/1816-5095-2019-4-556-560; Riebenbauer K, Weber PB, Walochnik J, Karlhofer F, Winkler S, Dorfer S, et al. Human dirofilariosis in Austria: The past, the present, the future. Parasit Vectors. 2021; 14(1): 227. doi:10.1186/s13071-021-04696-4; Колесова Г.Г., Решетников А.Д., Слепцов Е.С., Барашкова А.И. Дирофиляриоз плотоядных животных в Якутии, способ выделения из крови микрофилярий. Российский паразитологический журнал. 2013; (3): 87-91.; Файзрахманов Р.Р., Богданова В.А., Лебедько М.С., Босов Э.Д. Дирофиляриоз витреальной полости. Клинические случаи в офтальмологии. 2023; 1: 25-29. doi:10.25276/2949-4494-2023-1-25-29; Gupta P, Pradeep S, Biswas J, Rishi P, Muthusamy R. Extensive chorio-retinal damage due to Dirofilaria repens – Report of a case. Ocul Immunol Inflamm. 2021; 29(6): 1142-1144. doi: 10.1 080/09273948.2020.1727532; https://www.actabiomedica.ru/jour/article/view/4608

  2. 2
    Academic Journal

    المساهمون: The study was done as part of the Russian Science Foundation grant 18-17-00002., Исследование выполнено за счет гранта Российского научного фонда № 18-17-00002.

    المصدر: Geodynamics & Tectonophysics; Том 13, № 5 (2022); 0674 ; Геодинамика и тектонофизика; Том 13, № 5 (2022); 0674 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1585/710; Arizona LaserChron Center, 2022. Available from: https://sites.google.com/laserchron.org/arizonalaserchroncenter/home?pli=1 (Last Accessed August 9, 2022).; Bussien D., Gombojav N., Winkler W., Quadt A., 2011. The Mongol-Okhotsk Belt in Mongolia – An Appraisal of the Geodynamic Development by the Study of Sandstone Provenance and Detrital Zircons. Tectonophysics 510 (1–2), 132–150. https://doi.org/10.1016/j.tecto.2011.06.024.; Geological Map of the Baikal-Amur Railroad Region, 1984a. Scale 1:500000. Sheet N-52-В. Explanatory Note. VSEGEI, Leningrad, 89 р. (in Russian) [Геологическая карта региона БАМ. Масштаб 1:500000. Лист N-52-В: Объяснительная записка. Л.: ВСЕГЕИ, 1984. 89 с.].; Geological Map of the Baikal-Amur Railroad Region, 1984b. Scale 1:500000. Sheet N-52-Г. Explanatory Note. VSEGEI, Leningrad, 93 р. (in Russian) [Геологическая карта региона БАМ. Масштаб 1:500000. Лист N-52-Г: Объяснительная записка. Л.: ВСЕГЕИ, 1984. 93 с.].; Geological Map of the Baikal-Amur Railroad Region, 1984с. Scale 1:500000. Sheet N-53-В. Explanatory Note. VSEGEI, Leningrad, 75 р. (in Russian) [Геологическая карта региона БАМ. Масштаб 1:500000. Лист N-53-В: Объяснительная записка. Л.: ВСЕГЕИ, 1984. 75 с.].; Goldstein S.J., Jacobsen S.B., 1988. Nd and Sr Isotopic Systematics of Rivers Water Suspended Material: Implications for Crustal Evolution. Earth and Planetary Science Letters 87, 249–265. https://doi.org/10.1016/0012-821X(88)90013-1.; Hara H., Kurihara T., Tsukada K., Kon Y., Uchino T., Suzuki T., Takeuchi M., Nakane Y., Nuramkhaan M., Chuluun M., 2013. Provenance and Origins of a Late Paleozoic Accretionary Complex within the Khangai–Khentei Belt in the Central Asian Orogenic Belt, Central Mongolia. Journal of Asian Earth Sciences 75, 141–157. https://doi.org/10.1016/j.jseaes.2013.07.019.; Jacobsen S.B., Wasserburg G.J., 1984. Sm-Nd Evolution of Chondrites and Achondrites. Earth and Planetary Science Letters 67 (2), 137–150. https://doi.org/10.1016/0012-821X(84)90109-2.; Kelty T.K., Yin A., Dash B., Gehrels G.E., Ribeiro A.E., 2008. Detrital-Zircon Geochronology of Paleozoic Sedimentary Rocks in the Hangay-Hentey Basin, North-Central Mongolia: Implications for the Tectonic Evolution of the Mongol-Okhotsk Ocean in Central Asia. Tectonophysics 451 (1–4), 290–311. https://doi.org/10.1016/j.tecto.2007.11.052.; Keto L.S., Jacobsen S.B., 1987. Nd and Sr Isotopic Variations of Early Paleozoic Oceans. Earth and Planetary Science Letters 84 (1), 27–41. https://doi.org/10.1016/0012-821X(87)90173-7.; Khanchuk A.I. (Ed.), 2006. Geodynamics, Magmatism and Metallogeny of the Eastern Regions of Russia. Book 1. Dal’nauka, Vladivostok, 572 p. (in Russian) [Геодинамика, магматизм и металлогения востока России / Ред. А.И. Ханчук. Владивосток: Дальнаука, 2006. Кн. 1. 572 с.].; Khanchuk A.I., Didenko A.N., Popeko L.I., Sorokin A.A., Shevchenko B.F., 2015. Structure and Evolution of the Mongol-Okhotsk Orogenic Belt. The Central Asian Orogenic Belt. In: A. Kröner (Ed.), Geology, Evolution, Tectonics, and Models. Schweizerbart Science Publishers, Stuttgart, p. 211–234.; Khubanov V.B., Buyantuev M.D., Tsygankov A.A., 2016. U-Pb Dating of Zircons from PZ3–MZ Igneous Complexes of Transbaikalia by Sector-Field Mass Spectrometry with Laser Sampling: Technique and Comparison with SHRIMP. Russian Geology and Geophysics 57 (1), 190–205. https://doi.org/10.1016/j.rgg.2016.01.013.; Ludwig K.R., 2008. ISOPLOT 3.6. A Geochronological Toolkit for Microsoft Excel. User’s Manual. Berkeley Geochronology Center Special Publication 4, 77 p.; Martinyk M.V., Ryamov S.A., Kondrat’eva V.A., 1990. Explanatory Note to the Scheme of Correlation of Igneous Complexes of the Khabarovsk Territory and the Amur Region. Khabarovsk, Dal’geologiya, 215 p. (in Russian) [Мартынюк М.В., Рямов С.А., Кондратьева В.А. Объяснительная записка к схеме корреляции магматических комплексов Хабаровского края и Амурской области. Хабаровск: ПГО Дальгеология, 1990. 215 с.].; Natal’in B.A., 1993. History and Modes of Mesozoic Accretion in Southeastern Russia. Island Arc 2 (1), 15–34. https://doi.org/10.1111/j.1440-1738.1993.tb00072.x.; Nokleberg W.J., Bundtzen T.K., Eremin R.A., Ratkin V.V., Dawson K.M., Shpikerman V.I., Goryachev N.A., Byalobzhesky S.G., Frolov Y.F., Khanchuk A.I., Koch R.D. et al., 2005. Metallogenesis and Tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. USGS Professional Paper 1697. U.S. Geological Survey, Reston, Virginia, 397 p.; Parfenov L.M., Berzin N.A., Khanchuk A.I., Badarch G., Belichenko V.G., Bulgatov A.N., Dril S.I., Kirillova G.L. et al., 2003. Model of the Formation of Orogenic Belts in Central and North-East Asia. Pacific Geology 22 (6), 7–41 (in Russian) [Парфенов Л.М., Берзин Н.А., Ханчук А.И., Бадарч Г., Беличенко В.Г., Булгатов А.Н., Дриль С.И., Кириллова Г.Л. и др. Модель формирования орогенных поясов Центральной и Северо-Восточной Азии // Тихоокеанская геология. 2003. Т. 22. № 6. С. 7–41].; Parfenov L.M., Popeko L.I., Tomurtogoo O., 2001. Problems of Tectonics of the Mongol-Okhotsk Orogenic Belt. Geology of Pacific Ocean 16 (5), 797–830.; Ruppen D., Knaf A., Bussien D., Winkler W., Chimedtseren A., Quadt A., 2014. Restoring the Silurian to Carboniferous Northern Active Continental Margin of the Mongol-Okhotsk Ocean in Mongolia: Hangay-Hentey Accretionary Wedge and Seamount Collision. Gondwana Research 25 (4), 1517–1534. https://doi.org/10.1016/j.gr.2013.05.022.; Sorokin A.A., Kolesnikov A.A., Kotov A.B., Sorokin A.P., Kovach V.P., 2015. Sources of Detrital Zircons from Terrigenous Deposits in the Yankan Terrane of the Mongolian-Okhotsk Mobile Belt. Doklady Earth Sciences 462, 621–625. https://doi.org/10.1134/S1028334X15060161.; Sorokin A.A., Sorokin A.P., Kudryashov N.M., Rublev A.G., Levchenkov O.A., Kotov A.B., Sal’nikova E.B., Kovach V.P., 2003. Geochronology, Geochemistry, and Geodynamic Setting of Paleozoic Granitoids in the Eastern Segment of Mongol-Okhotsk Belt. Doklady Earth Sciences 393 (8), 1136–1140.; Sorokin A.A., Zaika V.A., Kovach V.P., Kotov A.B., Xu W., Yang H., 2020. Timing of Closure of the Eastern Mongol-Okhotsk Ocean: Constraints from U-Pb and Hf Isotopic Data of Detrital Zircons from Metasediments along the Dzhagdy Transect. Gondwana Research 81, 58–78. https://doi.org/10.1016/j.gr.2019.11.009.; Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T., Yuhara M., Orihashi Y. et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with Lajolla Neodymium. Chemical Geology 168 (3–4), 279–281. https://doi.org/10.1016/S0009-2541(00)00198-4.; Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 p.; State Geological Map of the Russian Federation, 2007. Far Eastern Series. Scale 1:1000000. Sheet N-53 (Shantar Islands). Explanatory Note. VSEGEI Publishing House, Saint Petersburg, 448 p. (in Russian) [Государственная геологическая карта Российской Федерации. Серия Дальневосточная. Масштаб 1:1000000. Лист N-53 (Шантарские острова): Объяснительная записка. СПб.: Изд-во ВСЕГЕИ, 2007. 448 с.].; State Geological Map of the Russian Federation, 2009. Far Eastern Series. Scale 1:1000000. Sheet M-53 (Khabarovsk). Explanatory Note. VSEGEI Publishing House, Saint Petersburg, 376 p. (in Russian) [Государственная геологическая карта Российской Федерации. Серия Дальневосточная. Масштаб 1:1000000. Лист М-53 (Хабаровск): Объяснительная записка. СПб.: ВСЕГЕИ, 2009. 376 с.].; Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Tolmacheva E.V., Sorokin A.A., Sal’nikova E.B., Larin A.M., Zagornaya N.Y., Wang K.L., Chung S.-L., 2017. Age and Tectonic Position of the Stanovoi Metamorphic Complex in the Eastern Part of the Central Asian Foldbelt. Geotectonics 51, 341–352. https://doi.org/10.1134/S0016852117040070.; Velikoslavinskii S.D., Kotov A.B., Sal’nikova E.B., Larin A.M., Sorokin A.A., Sorokin A.P., Kovach V.P., Tolmacheva E.V., Gorokhovskii B.M., 2011. Age of the Ilikan Sequence from the Stanovoi Complex of the Dzhugdzhur-Stanovoi Superterrane, Central-Asian Fold Belt. Doklady Earth Sciences 438, 612–616. https://doi.org/10.1134/S1028334X11050400.; Zabrodin V.Yu., 2009. Reconstructions of the Mesozoide Structures in the Eastern Amur-Okhotsk Fold System, Far East. Russian Journal of Pacific Geology 3, 260–268. https://doi.org/10.1134/S1819714009030063.; Zaika V.A., Kadashnikova A.Y., Sorokin A.A., 2022. Taking a Fresh Look at the Stratigraphy of the Selemdzha and Tokur Terranes of the Mongol-Okhotsk Belt: The Results of U-Pb, Lu-Hf, and Sm-Nd Isotope Studies. Russian Journal of Pacific Geology 16, 300–316. https://doi.org/10.1134/S181971402204008X.; Zaika V.A., Sorokin A.A., 2020а. Age and Sources of the Sedimentary Rocks of the Lan Terrane of the Mongol-Okhotsk Fold Belt: Results of the U-Pb and Lu-Hf Isotope Studies. Russian Journal of Pacific Geology 14, 193–205. https://doi.org/10.1134/S1819714020030070.; Zaika V.A., Sorokin A.A., 2020b. Tectonic Nature of the Ul’ban Terrane (Mongol-Okhotsk Fold Belt): Results of U-Pb and Lu-Hf Isotope Studies of Detrital Zircons. Doklady Earth Sciences 492, 297–301. https://doi.org/10.1134/S1028334X20050232.; Zaika V.A., Sorokin A.A., 2020c. Two Types of Accretionary Complexes in the Eastern Mongol-Okhotsk Belt: Constraints from U-Pb and Hf Isotopic Data of Detrital Zircons from Metasedimentary Rocks of the Selemdzha and Tokur Terranes. Journal of Asian Earth Sciences 201, 104508. https://doi.org/10.1016/j.jseaes.2020.104508.; Zaika V.A., Sorokin A.A., 2021. Age and Sources of Metasedimentary Rocks of the Galam Terrane in the Mongol-Okhotsk Fold Belt: Results of U-Pb Age and Lu-Hf Isotope Data from Detrital Zircons. Geotectonics 55, 779–794. https://doi.org/10.1134/S001685212106008X.; Zaika V.A., Sorokin A.A., Xu B., Kotov A.B., Kovach V.P., 2018. Geochemical Features and Sources of Metasedimentary Rocks of the Western Part of the Tukuringra Terrane of the Mongol-Okhotsk Fold Belt. Stratigraphy and Geological Correlation 26, 157–178. https://doi.org/10.1134/S0869593818020077.; https://www.gt-crust.ru/jour/article/view/1585

  3. 3
    Academic Journal

    المصدر: Acta Biomedica Scientifica; Том 6, № 6-1 (2021); 159-167 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3123/2262; Белый Ю.А., Терещенко А.В., Шкворченко Д.О., Ерохина Е.В., Шилов Н.М. Хирургическое лечение больших идиопатических макулярных разрывов. Практическая медицина. 2015; 2(87): 119-123.; Белый Ю.А., Терещенко А.В., Шкворченко Д.О., Ерохина Е.В., Шилов Н.М. Новый подход к хирургии больших идиопатических макулярных разрывов. Современные технологии лечения витреоретинальной патологии – 2015: Сборник научных статей. М.; 2015: 24-27.; Жигулин А.В., Худяков А.Ю., Мащенко Н.В. Анализ результатов хирургического лечения макулярных разрывов большого диаметра. Современные технологии в офтальмологии. 2014; (2): 62-63.; Алпатов С.А., Щуко А.Г., Малышев В.В. Классификация идиопатических макулярных разрывов сетчатки. Сибирский медицинский журнал. 2004; 6(47): 56-59.; Алпатов С.А., Щуко А.Г., Малышев В.В. Патогенез в лечении идиопатических макулярных разрывов. Новосибирск: Наука; 2005.; Файзрахманов Р.Р., Павловский О.А., Ларина Е.А. Способ закрытия макулярных разрывов с частичным сохранением внутренней пограничной мембраны. Вестник офтальмологии. 2020; 136(1): 73-79.; Шпак А.А., Шкворченко Д.О., Шарафетдинов И.Х., Юханова О.А. Прогнозирование анатомического эффекта хирургического лечения идиопатического макулярного разрыва. Современные технологии в офтальмологии. 2015; (1): 136-138.; Kwork AK, Lai TY, Wong VW. Idiopathic macular hole surgery in Chinese patients: A randomised study to compare indocyanine green-assisted internal limiting membrane peeling with no internal limiting membrane peeling. Hon Kong Med. J. 2005; 11(4): 259-266.; Балашевич Л.И., Байбородов Я.В., Жоголев К.С. Хирургическое лечение патологии витремакулярного интерфейса. Обзор литературы в вопросах и ответах. Офтальмохирургия. 2015; (2): 80-85.; Самойлов А.Н., Мухаметзянова Г.М. Опыт хирургического лечения идиопатических макулярных разрывов большого диаметра. Современные технологии в офтальмологии. 2017; (1): 259-261.; Лыскин П.В., Захаров В.Д., Лозинская О.Л. Патогенез и лечение идиопатических макулярных разрывов. Эволюция вопроса. Офтальмохирургия. 2010; (3): 52-55.; Demirel S, Değirmenci MFK, Bilici S, Yanik Ö, Batıoğlu F, Özmert E, et al. The recovery of microvascular status evaluated by optical coherence tomography angiography in patients after successful macular hole surgery. Ophthalmic Res. 2018; 59(1): 53-57. doi:10.1159/000484092; Бронский Д.И. Способ хирургического лечения сквозного идиопатического макулярного разрыва: Патент № 2731812C1 Рос. Федерация; СПК A61F 9/007 (2020.02). № 2019109023; заявл. 28.03.2019; опубл. 08.09.2020. Бюл. № 25.; Бронский Д.И., Зайка В.А., Якимов А.П. Оценка клинической эффективности хирургического лечения идиопатических макулярных разрывов большого и среднего диаметра с использованием модифицированной технологии инвертированного лоскута ВПМ (предварительные результаты). Современные технологии в офтальмологии. 2021; 3(38): 20-25. doi:10.25276/2312-4911-2021-3-20-25; Файзрахманов Р.Р., Зайнуллин Р.М., Гильманшин Т.Р., Ярмухаметова А.Л. Картирование фовеолярной зоны сетчатки при идеопатическом макулярном разрыве. Вестник Оренбургского государственного университета. 2014; (13): 322-324.; Schumann RG, Yang Y, Haritoglou C, Schaumberger MM, Eibl KH, Kampik A, et al. Histopathology of internal limiting membrane peeling in traction induced maculopathies. J Clin Exp Ophthalmol. 2012; (3): 220-224.; Yun C, Ahn J, Kim M, Kim JT, Hwang SY, Kim SW, et al. Characteristics of retinal vessels in surgically closed macular hole: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2017; 255(10): 1923-1934. doi:10.1007/s00417-017-3742-6; Поздеева О.Г., Олейничук О.П., Ермак Е.М. Особенности хориоидального кровотока в патогенезе развития идиопатического макулярного разрыва. Вестник Оренбургского государственного университета. 2014; (14): 307-309.; Cho JH, Yi HCh, Bae SH, Kim H. Foveal microvasculature features of surgically closed macular hole using optical coherence tomography angiography. BMC Ophthalmol. 2017; 17(1): 217. doi:10.1186/s12886-017-0607-z; Baba T, Kakisu M, Nizawa T, Oshitari T, Yamamoto S. Superficial foveal avascular zone determined by optical coherence tomography angiography before and after macular hole surgery. Retina. 2017; (37): 444-450.; Kita Y, Inoue M, Kita R, Sano M, Orihara T, Itoh Y, et al. Changes in the size of the foveal avascular zone after vitrectomy with internal limiting membrane peeling for a macular hole. Jpn J Ophthalmol. 2017; 61(6): 465-471. doi:10.1007/s10384-017-0529-6; https://www.actabiomedica.ru/jour/article/view/3123

  4. 4
    Academic Journal

    المصدر: Geodynamics & Tectonophysics; Том 10, № 3 (2019); 801-813 ; Геодинамика и тектонофизика; Том 10, № 3 (2019); 801-813 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/900/460; Amelin Y., Lee D.C., Halliday A.N., Pidgeon R.T., 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399 (6733), 252–255. https://doi.org/10.1038/20426.; Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C., 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standarts. Chemical Geology 205 (1–2), 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003.; Blichert-Toft J., Albarède F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148 (1–2), 243–258. https://doi.org/10.1016/S0012-821X(97)00040-X.; Buchko I.V., Sal’nikova E.B., Kotov A.B., Larin A.M., Velikoslavinskii S.D., Sorokin A.A., Sorokin A.P., Yakovleva S.Z., 2006. Paleoproterozoic gabbroanorthosites of the Selenga-Stanovoi Superterrane, southern framing of the Siberian Craton. Doklady Earth Sciences 407 (2), 372–375. https://doi.org/10.1134/S1028334X06030068.; Buchko I.V., Sorokin A.A., Sal’nikova E.B., Kotov A.B., Larin A.M., Sorokin A.P., Velikoslavinskii S.D., Yakovleva S.Z., 2008. Age and tectonic setting of the Kengurak-Sergachi gabbro-anorthosite massif (the Selenga-Stanovoi superterrane, southern frame of the Siberian craton). Stratigraphy and Geological Correlation 16 (4), 349–359. https://doi.org/10.1134/S0869593808040011.; Gehrels G.E., Valencia V., Ruiz J., 2008. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems 9 (3), Q03017. https://doi.org/10.1029/2007GC001805.; Griffin W.L., Belousova E.A., Shee S.R., Pearson N.J., O’Reilly S.Y., 2004. Archean crustal evolution in the northern Yilgarn craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131 (3–4), 231–282. https://doi.org/10.1016/j.precamres.2003.12.011.; Khanchuk A.I., Didenko A.N., Popeko L.I., Sorokin A.A., Shevchenko B.F., 2015. Structure and evolution of the Mongol-Okhotsk orogenic belt. In: A. Kröner (Ed.), The Central Asian orogenic belt. Geology, evolution, tectonics, and models. Germany. Borntraeger Science Publishers, Stuttgart, p. 211–234.; Kotov A.B., Velikoslavinskii S.D., Kovach V.P., Sorokin A.A., Sorokin A.P., Skovitina T.M., Zagornaya N.Yu., Wang K.-L., Chung S.-L., Jahn B.-M., 2016. Paleoproterozoic age of the Zeya group, Stanovoy complex of the Dzhugdzhur–Stanovoy superterrane (Central Asian mobile belt): results of Sm–Nd isotopic and U–Th–Pb geochronological (LA-ICP-MS) analyses. Doklady Earth Sciences 471 (2), 1234–1237. https://doi.org/10.1134/S1028334X16120114.; Larin A.M., Kotov A.B., Kovach V.P., Sal’nikova E.B., Yarmolyuk V.V., Velikoslavinskii S.D., Yakovleva S.Z., Plotkina Yu.V., 2015. Granitoids of the Olekma Complex in the Selenga–Stanovoi superterrane of the Central Asian mobile belt: Age and tectonic position. Doklady Earth Sciences 464 (1), 903–906. https://doi.org/10.1134/S1028334X15090093.; Larin A.M., Kotov A.B., Sal’nikova E.B., Kovach V.P., Ovchinnikova G.V., Savatenkov V.M., Velikoslavinskii S.D., Sorokin A.A., Vasil’eva I.M., Sergeeva N.A., Mel’nikov N.N., Wang K.-L., Chun S.-L., 2018. Granitoids of the Pozdnestanovoy complex of the Dzhugdzhur–Stanovoy superterrane, Central Asia fold belt: age, tectonic setting, and sources. Petrology 26 (5), 447–468. https://doi.org/10.1134/S0869591118050041.; Ludwig K.R., 2008. Isoplot 3.6. Berkeley Geochronology Center Special Publication, vol. 4, 77 p.; Mattinson J.M., 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chemical Geology 275 (3–4), 186–198. https://doi.org/10.1016/j.chemgeo.2010.05.007.; Natal'in B., 1993. History and modes of Mesozoic accretion in southeastern Russia. Island Arc 2 (1), 15–34. https://doi.org/10.1111/j.1440-1738.1993.tb00072.x.; Paces J.B., Miller Jr. J.D., 1993. Precise U‐Pb ages of Duluth complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research: Solid Earth 98 (B8), 13997–14013. https://doi.org/10.1029/93JB01159.; Parfenov L.M., Popeko L.I., Tomurtogoo O., 2001. Problems of tectonics of the Mongol-Okhotsk orogenic belt. Geology of Pacific Ocean 16 (5), 797–830.; Sal’nikova E.B., Larin A.M., Kotov A.B., Glebovitsky V.A., Velikoslavinsky S.D., Sorokin A.A., Yakovleva S.Z., Fedoseenko A.M., Anisimova I.V., 2006. The Toksko-Algomin igneous complex of the Dzhugdzhur-Stanovoi folded region: age and geodynamic setting. Doklady Earth Sciences 409 (2), 888–892. https://doi.org/10.1134/S1028334X06060110.; Сережников А.Н., Волкова Ю.Р. Государственная геологическая карта Российской Федерации. Масштаб 1:1000000. Третье поколение. Лист N-52 (Зея). Дальневосточная серия. Санкт-Петербург: Картографическая фабрика ВСЕГЕИ, 2007]; Сорокин А.А. Палеозойские аккреционные комплексы восточного сегмента Монголо-Охотского складчатого пояса // Тихоокеанская геология. 2001. Т. 20. № 6. С. 31–36.; Sorokin A.A., Kotov A.B., Kudryashov N.M., Kovach V.P., 2005. Late Paleozoic Urusha magmatic complex in the southern framing of the Mongolia-Okhotsk belt (Amur Region): age and geodynamic setting. Petrology 13 (6), 596–610.; Sorokin A.A., Kotov A.B., Kudryashov N.M., Kovach V.P., 2016. Early Mesozoic granitoid and rhyolite magmatism of the Bureya Terrane of the Central Asian orogenic belt: Age and geodynamic setting. Lithos 261, 181–194. https://doi.org/10.1016/j.lithos.2016.03.008.; Sorokin A.A., Kudryashov N.M., Kotov A.B., Kovach V.P., 2017. Age and tectonic setting of the Early Paleozoic magmatism of the Mamyn Terrane, Central Asian orogenic belt, Russia. Journal of Asian Earth Sciences 144, 22–39. https://doi.org/10.1016/j.jseaes.2017.01.017.; Sorokin A.A., Ovchinnikov R.O., Xu W.L., Kovach V.P., Yang H., Kotov A.B., Ponomarchuk V.A., Travin A.V., Plotkina Yu.V., 2019. Ages and nature of the protolith of the Tulovchikha metamorphic complex in the Bureya Massif, Central Asian orogenic belt, Russia: evidence from U–Th–Pb, Lu–Hf, Sm–Nd, and 40Ar/39Ar data. Lithos 332–333, 340–354. https://doi.org/10.1016/j.lithos.2019.03.001.; Söderlund U., Patchett P.J., Vervoort J.D., Isachsen C.E., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219 (3–4), 311–324. https://doi.org/10.1016/S0012-821X(04)00012-3.; Stacey J.S., Kramers I.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planet Science Letters 26 (2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6.; Sun D.Y., Gou J., Wang T.H., Ren Y.S., Liu Y.J., Guo H.Y., Liu X.M., Hu Z.C., 2013. Geochronological and geochemical constraints on the Erguna massif basement, NE China – subduction history of the Mongol–Okhotsk oceanic crust. International Geology Review 55 (14), 1801–1816. https://doi.org/10.1080/00206814.2013.804664.; Tang J., Xu W.L., Wang F., Zhao S., Wang W., 2016. Early Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Research 31, 218–240. https://doi.org/10.1016/j.gr.2014.12.010.; Velikoslavinskii S.D., Kotov A.B., Sal’nikova E.B., Larin A.M., Sorokin A.A., Sorokin A.P., Kovach V.P., Tolmacheva E.V., Gorokhovskii B.M., 2011. Age of the Ilikan Sequence from the Stanovoi Complex of the Dzhugdzhur-Stanovoi Superterrane, Central-Asian fold belt. Doklady Earth Sciences 438 (1). https://doi.org/10.1134/S1028334X11050400.; Velikoslavinskii S.D., Kotov A.B., Salnikova E.B., Larin A.M., Sorokin A.A., Sorokin A.P., Kovach V.P., Tolmacheva E.V., Yakovleva S.Z., Anisimova I.V., 2012. Age of the Ust’-Gilyui sequence in the Stanovoi Complex of the Selenga-Stanovoi Superterrain, Central Asian fold belt. Doklady Earth Sciences 444 (2), 661–665. https://doi.org/10.1134/S1028334X12060086.; Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Sorokin A.A., Sorokin A.P., Tolmacheva E.V., Wang K.L., Cung S.L., 2015. The Paleoproterozoic age of protoliths of metasedimentary rocks of the Sutam formation of the Aldan granulite-gneiss megacomplex (Stanovoi suture). Doklady Earth Sciences 463 (2), 765–769. https://doi.org/10.1134/S1028334X15080073.; Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Tolmacheva E.V., Larin A.M., Sorokin A.A., Sorokin A.P., Wang K.L., Salnikova E.B., 2016a. Age, sources, and provenances of protoliths of metasedimentary rocks of the Dzheltulak group, Dzheltulak suture. Doklady Earth Sciences 468 (2), 545–548. https://doi.org/10.1134/S1028334X16060027.; Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Larin A.M., Sorokin A.A., Sorokin A.P., Tolmacheva E.V., Salnikova E.B., Wang K.L., Jahn B.M., Cung S.L., 2016b. Mesozoic age of the Gilyui Metamorphic Complex in the junction zone of the Selenga–Stanovoi and Dzhugdzhur–Stanovoi superterranes, Central Asian fold belt. Doklady Earth Sciences 468 (2), 561–565. https://doi.org/10.1134/S1028334X16060167.; Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Tolmacheva E.V., Sorokin A.A., Sal’nikova E.B., Larin A.M., Zagornaya N.Yu., Wang K.L., Chung S.-L., 2017. Age and tectonic position of the Stanovoi metamorphic complex in the eastern part of the Central Asian foldbelt. Geotectonics 51 (4), 341–352. https://doi.org/10.1134/S0016852117040070.; Vervoort J.D., Patchett P.J., 1996. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta 60 (19), 3717–3733. https://doi.org/10.1016/0016-7037(96)00201-3.; Wang W., Tang J., Xu W.L., Wang F., 2015. Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, northeast China: Petrogenesis and implications for the tectonic evolution of the Mongol–Okhotsk suture belt. Lithos 218–219, 73–86. https://doi.org/10.1016/j.lithos.2015.01.012.; Wu F.Y., Sun D.Y., Ge W.C., 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41 (1), 1–30. https://doi.org/10.1016/j.jseaes.2010.11.014.; Заика В.А., Сорокин А.А., Ковач В.П. Источники и области сноса верхнепалеозойских метаосадочных пород Джагдинского террейна Монголо-Охотского складчатого пояса: результаты Sm-Nd изотопно-геохимических исследований // Геодинамика и тектонофизика. 2018. Т. 9. № 4. С. 1331–1338. https://doi.org/10.5800/GT-2018-9-4-0398.; Zaika V.A., Sorokin A.A., Xu B., Kotov A.B., Kovach V.P., 2018b. Geochemical features and sources of metasedimentary rocks of the western part of the Tukuringra terrane of the Mongol–Okhotsk fold belt. Stratigraphy and Geological Correlation 26 (2), 157–178. https://doi.org/10.1134/S0869593818020077.; Zaika V.A., Sorokin A.A., Kovach V.P., Sorokin A.P., Kotov A.B., 2019. Age and sources of Lower Mesozoic metasedimentary rocks of the Un’ya-Bom terrane in the Mongol–Okhotsk fold belt: results of U–Pb geochronological (LA-ICP-MS) and Sm–Nd isotope studies. Doklady Earth Sciences 484 (2), 115–119. https://doi.org/10.1134/S1028334X19020089.; https://www.gt-crust.ru/jour/article/view/900

  5. 5
    Academic Journal

    المساهمون: РФФИ, проект № 18-05-00206

    المصدر: Geodynamics & Tectonophysics; Том 9, № 4 (2018); 1331-1338 ; Геодинамика и тектонофизика; Том 9, № 4 (2018); 1331-1338 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/684/419; Didenko A.N., Kaplun V.B., Malyshev Y.F., Shevchenko B.F., 2010. Lithospheric structure and Mesozoic geodynamics of the eastern Central Asian orogen. Russian Geology and Geophysics 51 (5), 492–506. https://doi.org/10.1016/j.rgg.2010.04.006.; Goldstein S.J., Jacobsen S.B., 1988. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth and Planetary Science Letters 87 (3), 249–265. https://doi.org/10.1016/0012-821X(88)90013-1.; Jacobsen S.B., Wasserburg G.J., 1984. Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth and Planetary Science Letters 67 (2), 137–150. https://doi.org/10.1016/0012-821X(84)90109-2.; Khanchuk A.I. (Ed.), 2006. Geodynamics, Magmatism and Metallogeny of the Eastern Russia. Book 1. Dalnauka Publishing House, Vladivostok, 572 p. (in Russian) [Геодинамика, магматизм и металлогения востока России / Ред. А.И. Ханчук. Кн. 1. Владивосток: Дальнаука, 2006. 572 с.].; Khanchuk A.I., Didenko A.N., Popeko L.I., Sorokin A.A., Shevchenko B.F., 2015. Structure and evolution of the Mongol-Okhotsk orogenic belt. In: A. Kröner (Ed.), The Central Asian orogenic belt. Geology, evolution, tectonics, and models. Borntraeger Science Publishers, Stuttgart, Germany, p. 211–234.; Kotov A.B., Velikoslavinsky S.D., Kovach V.P., Sorokin A.A., Sorokin A.P., Skovitina T.M., Zagornaya N.Yu., Wang K.-L., Chung S.-L., Jahn B.-M., 2016. Paleoproterozoic age of the Zeya Group, Stanovoy Complex of the Dzhugdzhur–Stanovoy superterrane (Central Asian mobile belt): Results of Sm–Nd isotopic and U–Th–Pb geochronological (LA-ICP-MS) analyses. Doklady Earth Sciences 471 (2), 1234–1237. https://doi.org/10.1134/S1028334X16120114.; Metelkin D.V., Gordienko I.V., Klimuk V.S., 2007. Paleomagnetism of Upper Jurassic basalts from Transbaikalia: new data on the time of closure of the Mongol-Okhotsk Ocean and Mesozoic intraplate tectonics of Central Asia. Russian Geology and Geophysics 48 (10), 825–834. https://doi.org/10.1016/j.rgg.2007.09.004.; Natal'in B., 1993. History and modes of Mesozoic accretion in southeastern Russia. Island Arc 2 (1), 15–34. https://doi.org/10.1111/j.1440-1738.1993.tb00072.x.; Parfenov L.M., Popeko L.I., Tomurtogoo O., 2001. Problems of tectonics of the Mongol-Okhotsk orogenic belt. Geology of the Pacific Ocean 16 (5), 797–830.; Сережников А.Н., Волкова Ю.Р. Государственная геологическая карта Российской Федерации. Масштаб 1:1000000. Третье поколение. Лист N-52 (Зея). Дальневосточная серия. Санкт-Петербург: Картографичесая фабрика ВСЕГЕИ, 2007.; Smirnova Y.N., Sorokin A.A., Popeko L.I., Kotov A.B., Kovach V.P., 2017. Geochemistry and provenances of the Jurassic terrigenous rocks of the Upper Amur and Zeya–Dep troughs, Eastern Central Asian fold belt. Geochemistry International 55 (2), 163–183. https://doi.org/10.1134/S181971401703006X.; Sorokin A.A., Kotov A.B., Kovach V.P., Ponomarchuk V.A., Savatenkov V.M., 2014. Sources of the Late Mesozoic magmatic associations in the northeastern part of the Amurian microcontinent. Petrology 22 (1), 65–76. https://doi.org/10.1134/S0869591113050068.; Sorokin A.A., Kotov A.B., Kudryashov N.M., Kovach V.P., 2005. Late Paleozoic Urusha magmatic complex in the southern framing of the Mongolia-Okhotsk Belt (Amur Region): age and geodynamic setting. Petrology 13 (6), 596–610.; Sorokin A.A., Smirnova Yu.N., Kotov A.B., Kovach V.P., Sal’nikova E.B., Popeko L.I., 2015. Provenances of the Paleozoic terrigenous sequences of the Oldoi terrane of the Central Asian orogenic belt: Sm-Nd isotope geochemistry and U-Pb geochronology (LA-ICP-MS). Geochemistry International 53 (6), 534–544. https://doi.org/10.1134/S0016702915040072.; Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Larin A.M., Sorokin A.A., Sorokin A.P., Tolmacheva E.V., Salnikova E.B., Wang K.L., Jahn B.M., Cung S.L., 2016b. Mesozoic age of the Gilyui Metamorphic Complex in the junction zone of the Selenga–Stanovoi and Dzhugdzhur–Stanovoi superterranes, Central Asian fold belt. Doklady Earth Sciences 468 (2), 561–565. https://doi.org/10.1134/S1028334X16060167.; Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Sorokin A.A., Sorokin A.P., Tolmacheva E.V., Wang K.L., Cung S.L., 2015. The Paleoproterozoic age of protoliths of metasedimentary rocks of the Sutam formation of the Aldan granulite-gneiss megacomplex (Stanovoi suture). Doklady Earth Sciences 463 (2), 765–769. https://doi.org/10.1134/S1028334X15080073.; Velikoslavinskii S.D., Kotov A.B., Kovach V.P., Tolmacheva E.V., Larin A.M., Sorokin A.A., Sorokin A.P., Wang K.L., Salnikova E.B., 2016a. Age, sources, and provenances of protoliths of metasedimentary rocks of the Dzheltulak group, Dzheltulak suture. Doklady Earth Sciences 468 (2), 545–548. https://doi.org/10.1134/S1028334X16060027.; Velikoslavinskii S.D., Kotov A.B., Sal’nikova E.B., Larin A.M., Sorokin A.A., Sorokin A.P., Kovach V.P., Tolmacheva E.V., Gorokhovskii B.M., 2011. Age of Ilikan Sequence from the Stanovoi complex of the Dzhugdzhur–Stanovoi superterrane, Central-Asian foldbelt. Doklady Earth Sciences 438 (1), 612–616. https://doi.org/10.1134/S1028334X11050400.; Velikoslavinskii, S.D., Kotov, A.B., Salnikova, E.B., Larin A.M., Sorokin A.A., Sorokin A.P., Kovach V.P., Tolmacheva E.V., Yakovleva S.Z., Anisimova I.V., 2012. Age of the Ust’-Gilyui sequence in the Stanovoi Complex of the Selenga-Stanovoi Superterrain, Central Asian fold belt. Doklady Earth Sciences 444 (2), 661–665. https://doi.org/10.1134/S1028334X12060086.; Wasserburg G.J., Jacobsen S.B., DePaolo D.J., McCulloch M.T., Wen T., 1981. Precise determination of SmNd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta 45 (12), 2311–2323. https://doi.org/10.1016/0016-7037(81)90085-5.; Zaika V.A., Sorokin A.A., Xu B., Kotov A.B., Kovach V.P., 2018. Geochemical features and sources of metasedimentary rocks of the western part of the Tukuringra terrane of the Mongol–Okhotsk Fold Belt. Stratigraphy and Geological Correlation 26 (2), 157–178. https://doi.org/10.1134/S0869593818020077.; https://www.gt-crust.ru/jour/article/view/684