-
1Academic Journal
المؤلفون: T. Yu. Demidova, A. S. Teplova, E. V. Stepanova, Т. Ю. Демидова, А. С. Теплова, Е. В. Степанова
المصدر: Meditsinskiy sovet = Medical Council; № 16 (2024); 223-229 ; Медицинский Совет; № 16 (2024); 223-229 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: грудное вскармливание, polycystic ovary syndrome, pregnancy, gestational diabetes mellitus, obesity, breast feeding, синдром поликистозных яичников, беременность, гестационный сахарный диабет, ожирение
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8630/7579; Адамян ЛВ, Андреева ЕН, Абсатарова ЮС, Григорян ОР, Дедов ИИ, Мельниченко ГА и др. Клинические рекомендации «Синдром поликистозных яичников». Проблемы эндокринологии. 2022;68(2):112–127. https://doi.org/10.14341/probl12874.; Григорян ОР, Михеев РК, Куринова АН, Чернова МО, Сазонова ДВ, Ахматова РР и др. Сравнительный анализ влияния факторов риска на течение и исходы беременности при гестационном сахарном диабете. Проблемы эндокринологии. 2021;67(3):78–86. https://doi.org/10.14341/probl12756.; American Diabetes Association Professional Practice Committee. 15. Management of diabetes in pregnancy: Standards of medical care in diabetes – 2022. Diabetes Care. 2022;45(Suppl. 1):S232–S243. https://doi.org/10.2337/dc22-S015.; Feig DS, Berger H, Donovan L, Godbout A, Kader T et al. Diabetes and pregnancy. Can J Diabetes. 2018;42(1 Suppl.):S255–S282. https://doi.org/10.1016/j.jcjd.2017.10.038.; Sciacca L, Bianchi C, Burlina S, Formoso G, Manicardi E, Sculli MA et al. Position paper of the Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), and the Italian Study Group of Diabetes in pregnancy: metformin use in pregnancy. Acta Diabetol. 2023;60(10):1421–1437. https://doi.org/10.1007/s00592-023-02137-5.; Дедов ИИ, Шестакова МВ, Майоров АЮ, Мокрышева НГ, Андреева ЕН, Безлепкина ОБ и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под редакцией ИИ Дедова, МВ Шестаковой, АЮ Майорова. 11-й выпуск. Сахарный диабет. 2023;26(2S):1–157. https://doi.org/10.14341/DM13042.; Espnes KA, Hønnås A, Løvvik TS, Gundersen POM, Naavik A, Skogvoll E et al. Metformin serum concentrations during pregnancy and post partum – a clinical study in patients with polycystic ovary syndrome. Basic Clin Pharmacol Toxicol. 2022;130(3):415–422. https://doi.org/10.1111/bcpt.13703.; Wu Y, Tu M, Huang Y, Liu Y, Zhang D. Association of Metformin With Pregnancy Outcomes in Women With Polycystic Ovarian Syndrome Undergoing In Vitro Fertilization: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020;3(8):e2011995. https://doi.org/10.1001/jamanetworkopen.2020.11995.; Abu Hashim H. Twenty years of ovulation induction with metformin for PCOS; what is the best available evidence? Reprod Biomed Online. 2016;32(1):44–53. https://doi.org/10.1016/j.rbmo.2015.09.015.; Attia GM, Almouteri MM, Alnakhli FT. Role of Metformin in Polycystic Ovary Syndrome (PCOS)-Related Infertility. Cureus. 2023;15(8):e44493. https://doi.org/10.7759/cureus.44493.; Practice Committee of the American Society for Reproductive Medicine. Electronic address: ASRM@asrm.org; Practice Committee of the American Society for Reproductive Medicine. Role of metformin for ovulation induction in infertile patients with polycystic ovary syndrome (PCOS): a guideline. Fertil Steril. 2017;108(3):426–441. https://doi.org/10.1016/j.fertnstert.2017.06.026.; Notaro ALG, Neto FTL. The use of metformin in women with polycystic ovary syndrome: an updated review. J Assist Reprod Genet. 2022;39(3):573–579. https://doi.org/10.1007/s10815-022-02429-9.; Tso LO, Costello MF, Albuquerque LET, Andriolo RB, Macedo CR. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2020;12(12):CD006105. https://doi.org/10.1002/14651858.CD006105.pub4.; Моргунов ЛЮ. Применение метформина у беременных с сахарным диабетом. Лечение и профилактика. 2019;9(4):63–71. Режим доступа: https://www.elibrary.ru/iticmn.; Kautzky-Willer A, Harreiter J, Winhofer-Stöckl Y, Weitgasser R, Lechleitner M. Clinical practice recommendations for diabetes in pregnancy (Update 2019). Wien Klin Wochenschr. 2019;131(Suppl. 1):103–109. (In German) https://doi.org/10.1007/s00508-019-1456-y.; Mitric C, Desilets J, Brown RN. Recent advances in the antepartum management of diabetes. F1000Res. 2019;8(F1000 Faculty Rev):622. https://doi.org/10.12688/f1000research.15795.1.; Coetzee EJ, Jackson WP. Pregnancy in established non-insulin-dependent diabetics. A five-and-a-half year study at Groote Schuur Hospital. S Afr Med J. 1980;58(20):795–802. Available at: https://www.researchgate.net/publication/16420890_Pregnancy_in_established_non-insulin-dependent_diabetics_A_five-and-a-half_year_study_at_Groote_Schuur_Hospital.; Nguyen L, Chan SY, Teo AKK. Metformin from mother to unborn child – Are there unwarranted effects? EBioMedicine. 2018;35:394–404. https://doi.org/10.1016/j.ebiom.2018.08.047.; Bao LX, Shi WT, Han YX. Metformin versus insulin for gestational diabetes: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2021;34(16):2741–2753. https://doi.org/10.1080/14767058.2019.1670804.; Butalia S, Gutierrez L, Lodha A, Aitken E, Zakariasen A, Donovan L. Shortand long-term outcomes of metformin compared with insulin alone in pregnancy: a systematic review and meta-analysis. Diabet Med. 2017;34(1):27–36. https://doi.org/10.1111/dme.13150.; Løvvik TS, Carlsen SM, Salvesen Ø, Steffensen B, Bixo M, Gómez-Real F et al. Use of metformin to treat pregnant women with polycystic ovary syndrome (PregMet2): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7(4):256–266. https://doi.org/10.1016/S2213-8587(19)30002-6.; Gonzalez CD, Alvariñas J, Bagnes MFG, Di Girolamo G. Metformin and Pregnancy Outcomes: Evidence Gaps and Unanswered Questions. Curr Clin Pharmacol. 2019;14(1):54–60. https://doi.org/10.2174/1574884714666181224151116.; Glueck CJ, Wang P. Metformin before and during pregnancy and lactation in polycystic ovary syndrome. Expert Opin Drug Saf. 2007;6(2):191–198. https://doi.org/10.1517/14740338.6.2.191.; Chiswick C, Reynolds RM, Denison F, Drake AJ, Forbes S, Newby DE et al. Effect of metformin on maternal and fetal outcomes in obese pregnant women (EMPOWaR): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2015;3(10):778–786. https://doi.org/10.1016/S2213-8587(15)00219-3.; do Nascimento IB, Sales WB, Dienstmann G, de Souza MLR, Fleig R, Silva JC. Metformin for prevention of cesarean delivery and large-for-gestational-age newborns in non-diabetic obese pregnant women: a randomized clinical trial. Arch Endocrinol Metab. 2020;64(3):290–297. https://doi.org/10.20945/2359-3997000000251.; Dienstmann G, Nascimento IBD, Sales WB, Leite Ramos de Souza M, Silva GDD, de Oliveira LC, Silva JC. No effect of a low dose of metformin on the lipid profile, body mass index and weight gain in pregnant women with obesity: A randomized trial. Obes Res Clin Pract. 2020;14(6):561–565. https://doi.org/10.1016/j.orcp.2020.09.005.; Nommsen-Rivers LA, Chantry CJ, Peerson JM, Cohen RJ, Dewey KG. Delayed onset of lactogenesis among first-time mothers is related to maternal obesity and factors associated with ineffective breastfeeding. Am J Clin Nutr. 2010;92(3):574–584. https://doi.org/10.3945/ajcn.2010.29192.; Nommsen-Rivers L, Thompson A, Riddle S, Ward L, Wagner E, King E. Feasibility and acceptability of metformin to augment low milk supply: a pilot randomized controlled trial. J Hum Lact. 2019;35(2):261–271. https://doi.org/10.1177/0890334418819465
-
2Academic Journal
المؤلفون: T. G. Malanicheva, E. V. Agafonova, Ch. I. Ashrafullina, Т. Г. Маланичева, Е. В. Агафонова, Ч. И. Ашрафуллина
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 5 (2024); 37-44 ; Российский вестник перинатологии и педиатрии; Том 69, № 5 (2024); 37-44 ; 2500-2228 ; 1027-4065
مصطلحات موضوعية: клеточный мукозальный иммуните, breastfeeding, cellular mucosal immunity, грудное вскармливание
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/2063/1529; Kuciel N., Mazurek J., Czosnykowska-Łukacka M., Królak-Olejnik B. Stem cells in breast milk. Pediatria Polska — Polish J Paediatr 2018; 93(3): 260–263. DOI:10.5114/polp.2018.77440; Ninkina N., Kukharsky M.S., Hewitt M.V., Lysikova E.A., Skuratovska L.N., Deykin A.V., Buchman V.L. Stem cells in human breast milk. Human Cell 2019; 32(3): 223–230. DOI:10.1007/s13577–019–00251–7; Molès J.P., Tuaillon E., Kankasa C., Bedin A.S., Nagot N., Marchant A. et al. Breastmilk cell trafficking induces microchimerism-mediated immune system maturation in the infant. Pediatr Allergy Immunol 2018; 29(2): 133–143. DOI:10.1111/pai.12841; Ninkina N., Kukharsky M.S., Hewitt M.V., Lysikova E.A., Skuratovska L.N., Deykin A.V., Buchman V.L. Human Cell 2019; 32(3): 223–230. DOI:10.1007/s13577–019–00251–7; Хаитов М.Р., Ильина Н.И., Лусс Л.В., Бабахин А.А. Мукозальный иммунитет респираторного тракта и его роль при профессиональных патологиях. Медицина экстремальных ситуаций 2017; 3: 8–24.; Несторова И.В., Чудилова Г.А., Ковалева С.В., Ломтатидзе М.В., Колесникова М.В., Евглевский А.А. Методы комплексной оценки функциональной активности нейтрофильных гранулоцитов в норме и патологии. Методические рекомендации для иммунологов-аллергологов, врачей и биологов клинической лабораторной диагностики Краснодар, 2017: 51.; Матвеева Л.А. Местная защита респираторного тракта у детей. Томск: Изд-во Томского университета 1993: 276.; Маланичева Т.Г., Мизерницкий Ю.Л., Агафонова Е.В., Можгина С.С. Особенности мукозального иммунитета у детей с внебольничной пневмоний на фоне сниженной резистентости организма. Педиатрия 2020; 99(6): 105–111.; Маланичева Т.Г., Агафонова Е.В., Зиатдинова Н.В., Скидан И.Н. Влияние характера вскармливания детей первого года жизни на формирование резистентности организма. Российский вестник перинатологии и педиатрии 2020; 65(6):145–154.; Виксман М.Е., Маянский А.Н. Способ оценки функциональной активности нейтрофилов человека по реакции восстановления нитросинего тетразолия. Методические рекомендации. Казань: Казанский НИИЭМ 1979: 11.; Герасимов И.Г., Калуцкая О.А. Кинетика реакции восстановления нитросинего тетразолия нейтрофилами крови человека. Цитология 2000; 42(2): 160–165.; Хаитов Р.М., Пинегин Б.В., Истамов Х.И. Экологическая иммунология. М: ВНИРО 1995; 219.; Козлов В.А. Некоторые аспекты проблемы цитокинов. Цитокины и воспаление 2002; 1 (1): 1–8.; Серебренникова С.Н., Семинский И.Ж. Роль цитокинов в воспалительном процессе (сообщение 2). Сибирский медицинский журнал 2008; 8: 5–8.; Кушнарева М.В., Виноградова Т.В., Кешишян Е.С., Парфенов В.В., Кольцов В.Д., Брагина Г.С. и др. Особенности иммунного статуса и системы интерферона у детей раннего возраста. Российский вестник перинатологии и педиатрии 2016; 61 (3): 12–21.; Андрюков Б.Г., Сомова Л.М., Дробот Е.И., Матосова Е.В. Антимикробные стратегии нейтрофилов при инфекционной патологии. Клиническая лабораторная диагностика 2016; 61(12): 825–833.; Casanova-Acebes M., Nicolas-Avila J.A., Li J.L., Garcia-Silva S., Balachander A., Rubio-Ponce A. et al. Neutrophils instruct homeostatic and pathological states in naive tiss. J Exper Med 2018; 215(11): 2778–2795. DOI:10.1084/jem.20181468
-
3Academic Journal
المؤلفون: Irina A. Belyaeva, Leyla S. Namazova-Baranova, Elena P. Bombardirova, Regina A. Shukenbayeva, Tatyana V. Turti, И. А. Беляева, Л. С. Намазова-Баранова, Е. П. Бомбардирова, Р. A. Шукенбаева, Т. В. Турти
المصدر: Current Pediatrics; Том 22, № 6 (2023); 506-512 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 506-512 ; 1682-5535 ; 1682-5527
مصطلحات موضوعية: злаковый прикорм, breastfeeding, supplemental feeding, intestinal microbiota, immunity, cereal supplemental feeding, грудное вскармливание, прикорм, кишечная микробиота, иммунитет
وصف الملف: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/3353/1347; Milani C, Duranti S, Bottacini F, et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036-17. doi: https://doi.org/10.1128/MMBR.00036-17; Sommer F, Backhed F. The gut microbiota — masters of host development and physiology. Nat Rev Microbiol. 2013;11(4): 227-238. doi: https://doi.org/10.1038/nrmicro2974; Turroni F, Milani C, Duranti S, et al. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr. 2020; 46(1):16. doi: https://doi.org/10.1186/s13052-020-0781-0; DeGruttola AK, Low D, Mizoguchi A, et al. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137-1150. doi: https://doi.org/10.1097/MIB.0000000000000750; Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331-1340. doi: https://doi.org/10.1161/HYPERTENSIONAHA.115.05315; Battson ML, Lee DM, Jarrell DK, et al. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am J Physiol Endocrinol Metab. 2018;314(5):E468-E477. doi: https://doi.org/10.1152/ajpendo.00187.2017; Simon AK, Hollander GA, McMichael A. Evolution of the Immune System in Humans from Infancy to Old Age. Proc Biol Sci. 2015;282(1821):20143085. doi: https://doi.org/10.1098/rspb.2014.3085; Ratsika A, Codagnone MC, O'Mahony S, et al. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients. 2021;13(2):423. doi: https://doi.org/10.3390/nu13020423; Chu DM, Antony KM, Ma J, et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016;8(1):77. doi: https://doi.org/10.1186/s13073-016-0330-z; Garci'a-Mantrana I, Selma-Royo M, Gonzalez S, et al. Distinct maternal microbiota clusters are associated with diet during pregnancy: Impact on neonatal microbiota and infant growth during the first 18 months of life. Gut Microbes. 2020;11(4):962-978. doi: https://doi.org/10.1080/19490976.2020.1730294; Collado M, Isolauri E, Laitinen K, Salminen S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010;92(5):1023-1030. doi: https://doi.org/10.3945/ajcn.2010.29877; Romero R, Hassan SS, Gajer P, et al. The Composition and Stability of the Vaginal Microbiota of Normal Pregnant Women Is Different from That of Non-Pregnant Women. Microbiome. 2014;2(1):4. doi: https://doi.org/10.1186/2049-2618-2-4; Romero R, Hassan SS, Gajer P, et al. The Vaginal Microbiota of Pregnant Women Who Subsequently Have Spontaneous Preterm Labor and Delivery and Those with a Normal Delivery at Term. Microbiome. 2014;2:18. doi: https://doi.org/10.1186/2049-2618-2-18; Dierikx TH, Visser DH, Benninga MA, et al. The Influence of Prenatal and Intrapartum Antibiotics on Intestinal Microbiota Colonisation in Infants: A Systematic Review. J Infect. 2020;81(2):190-204. doi: https://doi.org/10.1016/j.jinf.2020.05.002; Mazzola G, Murphy K, Ross RP, et al. Early Gut Microbiota Perturbations Following Intrapartum Antibiotic Prophylaxis to Prevent Group B Streptococcal Disease. PLoS ONE. 2016;11(6):e0157527. doi: https://doi.org/10.1371/journal.pone.0157527; Seedat F, Stinton C, Patterson J, et al. Adverse Events in Women and Children Who Have Received Intrapartum Antibiotic Prophylaxis Treatment: A Systematic Review. BMC Pregnancy Childbirth. 2017;17(1):247. doi: https://doi.org/10.1186/s12884-017-1432-3; Stencel-Gabriel K, Gabriel I, Wiczkowski A, et al. Prenatal priming of cord blood T lymphocytes by microbiota in the maternal vagina. Am J Reprod Immunol. 2009;61(3):246-252. https://doi.org/10.1111/j.1600-0897.2009.00687.x; De Aguero MG, Ganal-Vonarburg SC, Fuhrer T, et al. The Maternal Microbiota Drives Early Postnatal Innate Immune Development. Science. 2016;351(6279):1296-1302. doi: https://doi.org/10.1126/science.aad2571; Bailey MT, Lubach GR, Coe CL. Prenatal Stress Alters Bacterial Colonization of the Gut in Infant Monkeys. J Pediatr Gastroenterol Nutr. 2004;38(4):414-421. doi: https://doi.org/10.1097/00005176-200404000-00009; Mold JE, Michaëlsson J, Burt TD, et al. Maternal Alloantigens Promote the Development of Tolerogenic Fetal Regulatory T Cells in Utero. Science. 2008;322(5907):1562-1565. doi: https://doi.org/10.1126/science.1164511; Marchant A, Appay V, Van Der Sande M, et al. Mature CD8(+) T Lymphocyte Response to Viral Infection during Fetal Life. J Clin Investig. 2003;111(11):1747-1755. doi: https://doi.org/10.1172/JCI200317470; Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, et al. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. doi: https://doi.org/10.1186/s40168-017-0268-4; Lauder AP, Roche AM, Sherrill-Mix S, et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;4(1):29. doi: https://doi.org/10.1186/s40168-016-0172-3; Palmer C, Bik EM, DiGiulio DB, et al. Development of the Human Infant Intestinal. Microbiota. PLoS Biol. 2007;5(7):e177. doi: https://doi.org/10.1371/journal.pbio.0050177; Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial Restoration of the Microbiota of Cesarean-Born Infants via Vaginal Microbial Transfer. Nat Med. 2016;22(3):250-253. doi: https://doi.org/10.1038/nm.4039; Fettweis JM, Serrano MG, Brooks JP, et al. The Vaginal Microbiome and Preterm Birth. Nat Med. 2019;25(6):1012-1021. doi: https://doi.org/10.1038/s41591-019-0450-2; Calder PC, Krauss-Etschmann S, de Jong EC, et al. Early Nutrition and Immunity — Progress and Perspectives. Br J Nutr. 2006;96(4):774-790. doi: https://doi.org/10.1079/BJN20061917; McDavid A, Laniewski N, Grier A, et al. Aberrant Newborn T Cell and Microbiota Developmental Trajectories Predict Respiratory Compromise during Infancy. iScience. 202;25(4):104007. doi: https://doi.org/10.1016/j.isci.2022.104007; Miyoshi J, Bobe AM, Miyoshi S, et al. Peripartum Antibiotics Promote Gut Dysbiosis, Loss of Immune Tolerance, and Inflammatory Bowel Disease in Genetically Prone Offspring. Cell Rep. 2017;20(2):491-504. doi: https://doi.org/10.1016/j.celrep.2017.06.060; Sidener HM, Park B, Gao L. Effect of Antibiotic Administration during Infancy on Growth Curves through Young Adulthood in Rhesus Macaques (Macaca Mulatta). Comp Med. 2017;67(3):270-276.; Al Nabhani Z, Eberl G. Imprinting of the Immune System by the Microbiota Early in Life. Mucosal Immunol. 2020;13(2):183-189. doi: https://doi.org/10.1038/s41385-020-0257-y; Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early Infancy Microbial and Metabolic Alterations Affect Risk of Childhood Asthma. Sci Transl Med. 2015;7(307):307ra152. doi: https://doi.org/10.1126/scitranslmed.aab2271; Tamburini S, Shen N, Wu HC, Clemente JC. The Microbiome in Early Life: Implications for Health Outcomes. Nat Med. 2016;22(7):713-722. doi: https://doi.org/10.1038/nm.4142; Lokossou GAG, Kouakanou L, Schumacher A, Zenclussen AC. Human Breast Milk: From Food to Active Immune Response With Disease Protection in Infants and Mothers. Front Immunol. 2022;13:849012. doi: https://doi.org/10.3389/fimmu.2022.849012; Gopalakrishna KP, Hand TW. Influence of Maternal Milk on the Neonatal Intestinal Microbiome. Nutrients. 2020;12(3):823. doi: https://doi.org/10.3390/nu12030823; Molès JP Tuaillon E, Kankasa C, et al. Breastmilk Cell Trafficking Induces Microchimerism-Mediated Immune System Maturation in the Infant. Pediatr Allergy Immunol. 2018;29(2):133-143. doi: https://doi.org/10.1111/pai.12841; Murphy K, Curley D, O'Callaghan TF, et al. The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study. Sci Rep. 2017;7:40597. doi: https://doi.org/10.1038/srep40597; Pärnänen K, Karkman A, Hultman J, et al. Maternal Gut and Breast Milk Microbiota Affect Infant Gut Antibiotic Resistome and Mobile Genetic Elements. Nat Commun. 2018;9(1):3891. doi: https://doi.org/10.1038/s41467-018-06393-w; Laouar A. Maternal Leukocytes and Infant Immune Programming during Breastfeeding. Trends Immunol. 2020;41(3):225-239. doi: https://doi.org/10.1016/j.it.2020.01.005; Koch S, Hufnagel M, Theilacker C, Huebner J. Enterococcal Infections: Host Response, Therapeutic, and Prophylactic Possibilities. Vaccine. 2004;22(7):822-830. doi: https://doi.org/10.1016/j.vaccine.2003.11.027; Torow N, Dittrich-Breiholz O, Hornef MW. Transcriptional Profiling of Intestinal CD4+ T Cells in the Neonatal and Adult Mice. Genom Data. 2015;5:371-374. doi: https://doi.org/10.1016/j.gdata.2015.07.009; Dettmer AM, Allen JM, Jaggers RM, Bailey MT. A Descriptive Analysis of Gut Microbiota Composition in Differentially-Reared Infant Rhesus Monkeys (Macaca Mulatta) across the First Six Months of Life. Am J Primatol. 2019;81(10-11):e22969. doi: https://doi.org/10.1002/ajp.22969; Ardeshir A, Narayan NR, Méndez-Lagares G, et al. Breast-Fed and Bottle-Fed Infant Rhesus Macaques Develop Distinct Gut Microbiotas and Immune Systems. Sci Transl Med. 2014;6(252): 252ra120. doi: https://doi.org/10.1126/scitranslmed.3008791; Narayan NR, Méndez-Lagares G, Ardeshir A, et al. Persistent Effects of Early Infant Diet and Associated Microbiota on the Juvenile Immune System. Gut Microbes. 2015;6(4):284-289. doi: https://doi.org/10.1080/19490976.2015.1067743; Laursen MF, Bahl MI, Michaelsen KF, Licht TR. First Foods and Gut Microbes. Front Microbiol. 2017;8:356. doi: https://doi.org/10.3389/fmicb.2017.00356; Magne F, Hachelaf W, Suau A, et al. A Longitudinal Study of Infant Faecal Microbiota during Weaning. FEMS Microbiol Ecol. 2006;58(3):563-571. doi: https://doi.org/10.1111/j.1574-6941.2006.00182.x; Программа оптимизации вскармливания детей первого года жизни в Российской Федерации: методические рекомендации. — М.: НМИЦ здоровья детей; 2019. — 112 с.; Koenig JE, Spor A, Scalfone N, et al. Succession of Microbial Consortia in the Developing Infant Gut Microbiome. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4578-4585. doi: https://doi.org/10.1073/pnas.1000081107; Laursen MF, Andersen LBB, Michaelsen KF, et al. Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. mSphere. 2016;1(1):e00069-15. doi: https://doi.org/10.1128/mSphere.00069-15; Knoop KA, Gustafsson JK, McDonald KG, et al. Microbial Antigen Encounter during a Preweaning Interval Is Critical for Tolerance to Gut Bacteria. Sci Immunol. 2017;2(18):eaao1314. doi: https://doi.org/10.1126/sciimmunol.aao1314; Al Nabhani Z, Dulauroy S, Marques R, et al. A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult. Immunity. 2019;50(5):1276-1288.e5. doi: https://doi.org/10.1016/j.immuni.2019.02.014; Mao K, Baptista AP, Tamoutounour S, et al. Innate and Adaptive Lymphocytes Sequentially Shape the Gut Microbiota and Lipid Metabolism. Nature. 2018;554(7691):255-259. doi: https://doi.org/10.1038/nature25437; Vatanen T, Kostic AD, d'Hennezel E, et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell. 2016;165(4):842-853. doi: https://doi.org/10.1016/j.cell.2016.04.007; Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front Microbiol. 2016;7:455. doi: https://doi.org/10.3389/fmicb.2016.00455; Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434-440. doi: https://doi.org/10.1016/j.jaci.2011.10.025; Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44(6):842-850. doi: https://doi.org/10.1111/cea.12253; Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17(2):260-273. doi: https://doi.org/10.1016/j.chom.2015.01.001; Ivarsson A, Persson LA, Nystrom L, et al. Epidemic of Coeliac Disease in Swedish Children. Acta Paediatr. 2000;89(2):165-171. doi: https://doi.org/10.1111/j.1651-2227.2000.tb01210.x; Ivarsson A, Myleus A, Norstrom F, et al. Prevalence of Childhood Celiac Disease and Changes in Infant Feeding. Pediatrics. 2013;131(3):e687-e694. doi: https://doi.org/10.1542/peds.2012-1015; Chassin C, Kocur M, Pott J, et al. MiR-146a Mediates Protective Innate Immune Tolerance in the Neonate Intestine. Cell Host Microbe. 2010;8(4):358-368. doi: https://doi.org/10.1016/j.chom.2010.09.005; Сорвачева Т.Н. «Первый выбор» должен быть правильным! // Эффективная фармакотерапия. Педиатрия. — 2015. — № 4-5. — С. 38-41. [Sorvacheva T.N. “Pervyi vybor” dolzhen byt' pravil'nym! Effektivnaya farmakoterapiya. Pediatriya. 2015;(4-5):38-41. (In Russ).]; Codex Alimentarius. Standard for Processed Cereal-Based Foods for Infants and Young Children. CODEX STAN 74-1981. Available online: https://www.isdi.org/wp-content/uploads/2020/04/CXS-74-1981.pdf. Accessed on November 30, 2023.; Agostoni C, Decsi T, Fewtrell M, et al. Complementary feeding: A commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2008;46(1):99-110. doi: https://doi.org/10.1097/01.mpg.0000304464.60788.bd; Grimes CA, Szymlek-Gay EA, Campbell KJ, Nicklas TA. Food sources of total energy and nutrients among US infants and toddlers: National Health and Nutrition Examination Survey 2005-2012. Nutrients. 2015;7(8):6797-6836. doi: https://doi.org/10.3390/nu7085310; Finn K, Callen C, Bhatia J, et al. Importance of dietary sources of iron in infants and toddlers: Lessons from the FITS study. Nutrients. 2017;9(7):733. doi: https://doi.org/10.3390/nu9070733; Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fiber? Nutr Res Rev. 2010;23(1):65-134. doi: https://doi.org/10.1017/S0954422410000041; Fallani M, Amarri S, Uusijarvi A, et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology. 2011;157(Pt 5):1385-1392. doi: https://doi.org/10.1099/mic.0.042143-0; Gamage HK, Tetu SG, Chong RW, et al. Cereal products derived from wheat, sorghum, rice and oats alter the infant gut microbiota in vitro. Sci Rep. 2017;7(1):14312. doi: https://doi.org/10.1038/s41598-017-14707-z; Vriezinga SL, Auricchio R, Bravi E, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med. 2014;371(14):1304-1315. doi: https://doi.org/10.1056/NEJMoa1404172; Dalmau Serra J, Moreno Villares J. Alimentacion complementaria: Puesta al día. Pediatr Integral. 2017;21(1):47.e1-47.e4.; Fewtrell M, Bronsky J, Campoy C, et al. Complementary feeding: A position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):119-132. doi: https://doi.org/10.1097/MPG.0000000000001454; Klerks M, Bernal MJ, Roman S, et al. Infant Cereals: Current Status, Challenges, and Future Opportunities for Whole Grains. Nutrients. 2019;11(2):473. doi: https://doi.org/10.3390/nu11020473; Plaza-Diaz J, Bernal MJ, Schutte S, et al. Effects of WholeGrain and Sugar Content in Infant Cereals on Gut Microbiota at Weaning: A Randomized Trial. Nutrients. 2021;13(5):1496. doi: https://doi.org/10.3390/nu13051496; Pham VT, Greppi A, Chassard C, et al. Stepwise establishment of functional microbial groups in the infant gut between 6 months and 2 years: A prospective cohort study. Front Nutr. 2022;9:948131. doi: https://doi.org/10.3389/fnut.2022.948131; Rachmühl C, Lacroix C, Giorgetti A, et al. Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants. BMC Microbiol. 2023;23(1):174. doi: https://doi.org/10.1186/s12866-023-02915-9; https://vsp.spr-journal.ru/jour/article/view/3353
-
4Academic Journal
المؤلفون: Irina A. Belyaeva, Elena P. Bombardirova, Elena O. Kurnatovskaya, И. А. Беляева, Е. П. Бомбардирова, Е. О. Курнатовская
المصدر: Current Pediatrics; Том 22, № 6 (2023); 498-505 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 498-505 ; 1682-5535 ; 1682-5527
مصطلحات موضوعية: фототерапия, breastfeeding, neonatal hyperbilirubinemia, infants, phototherapy, грудное вскармливание, гипербилирубинемия новорожденных, младенцы
وصف الملف: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/3351/1346; Шабалов Н.П., Софронова Л.Н. Неонатология: в 2 т.: учебное пособие. — 7-е изд., перераб. и доп. — М.: ГЭОТАР-Медиа; 2020. — 720 с.; Newman AJ, Gross S. Hyperbilirubinemia in Breast-Fed Infants. Pediatrics. 1963;32(6):995-1001. doi: https://doi.org/10.1542/peds.32.6.995; Schneider AP 2nd. Breast milk jaundice in the newborn. A real entity. JAMA. 1986;255(23):3270-3274. doi: https://doi.org/10.1001/jama.1986.03370230076034; Неонатология: клинические рекомендации / под ред. Н.Н. Володина, Д.Н. Дегтярева, Д.С. Крючко. — М.: ГЭОТАР-Медиа; 2019. — 320 с.; Kemper AR, Newman TB, Slaughter JL, et al. Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation. Pediatrics. 2022;150(3): e2022058859. doi: https://doi.org/10.1542/peds.2022-058859; Preer GL, Philipp BL. Understanding and managing breast milk jaundice. Arch Dis Child Fetal Neonatal Ed. 2011;96(6):F461- F466. doi: https://doi.org/10.1136/adc.2010.184416; Ullah S, Rahman K, Hedayati M. Hyperbilirubinemia in Neonates: Types, Causes, Clinical Examinations, Preventive Measures and Treatments: A Narrative Review Article. Iran J Public Health. 2016; 45(5):558-568.; Bratton S, Cantu RM, Stern M. Breast Milk Jaundice. 2023 Jan 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.; Ketsuwan S, Baiya N, Maelhacharoenporn K, Puapornpong P. The Association of Breastfeeding Practices with Neonatal Jaundice. J Med Assoc Thai. 2017;100(3):255-261.; Noel-Weiss J, Courant G, Woodend AK. Physiological weight loss in the breastfed neonate: a systematic review. Open Med. 2008;2(4):e99-e110.; Huang H, Huang J, Huang W, et al. Breast milk jaundice affects breastfeeding: From the perspective of intestinal flora and SCFAs-GPR41/43. Front Nutr. 2023;10:1121213. doi: https://doi.org/10.3389/fnut.2023.1121213; Prameela KK. Breastfeeding during breast milk jaundice — a pathophysiological perspective. Med J Malaysia. 2019;74(6):527-533.; Levitt DG, Levitt MD. Quantitative assessment of the multiple processes responsible for bilirubin homeostasis in health and disease. Clin Exp Gastroenterol. 2014;7:307-328. doi: https://doi.org/10.2147/CEG.S64283; Flaherman VJ, Maisels MJ. ABM Clinical Protocol #22: Guidelines for Management of Jaundice in the Breastfeeding Infant 35 Weeks or More of Gestation-Revised 2017. Breastfeed Med. 2017;12(5): 250-257. doi: https://doi.org/10.1089/bfm.2017.29042.vjf; Deshpande PG, Aslam M. Breast Milk Jaundice. In: Medscape. Updated: Nov 18, 2021. Available online: https://emedicine.medscape.com/article/973629-overview. Accessed on November 22, 2023.; Maisels MJ, Clune S, Coleman K, et al. The natural history of jaundice in predominantly breastfed infants. Pediatrics. 2014; 134(2):e340-e345. doi: https://doi.org/10.1542/peds.2013-4299; Bentz MG, Carmona N, Bhagwat MM, et al. Beyond “Asian”: Specific East and Southeast Asian Races or Ethnicities Associated With Jaundice Readmission. Hosp Pediatr. 2018;8(5):269-273. doi: https://doi.org/10.1542/hpeds.2017-0234; Gao C, Guo Y, Huang M, et al. Breast Milk Constituents and the Development of Breast Milk Jaundice in Neonates: A Systematic Review. Nutrients. 2023;15(10):2261. doi: https://doi.org/10.3390/nu15102261; Arias IM, Gartner LM, Seifter S, Furman M. Prolonged neonatal unconjugated hyperbilirubinemia associated with breast feeding and a steroid, pregnane-3(alpha), 20(beta)-diol, in maternal milk that inhibits glucuronide formation in vitro. J Clin Invest. 1964; 43(11):2037-2047. doi: https://doi.org/10.1172/jci105078; Guo Q, Cui M, Liu X, et al. Effect of Epidermal Growth Factor in Human Milk and Maternal Diet on Late-Onset Breast Milk Jaundice: A Case-Control Study in Beijing. Nutrients. 2022;14(21):4587. doi: https://doi.org/10.3390/nu14214587; Demirkol M, Bohles H. Breast milk taurine and its possible influence on the development of breast milk induced jaundice of the neonate — a hypothesis. Adv Exp Med Biol. 1994;359:405-410. doi: https://doi.org/10.1007/978-1-4899-1471-2_42; Amato M, Howald H, von Muralt G. Fat Content of Human Milk and Breast Milk Jaundice. Acta Paediatr Int J Paediatr. 1985;74(5):805-806. doi: https://doi.org/10.1111/j.1651-2227.1985.tb10039.x; Poland RL, Schultz GE, Garg G. High milk lipase activity associated with breast milk jaundice. Pediatr Res. 1980;14:1328-1331. doi: https://doi.org/10.1203/00006450-198012000-00011; Forsyth JS, Donnet L, Ross PE. A study of the relationship between bile salts, bile salt-stimulated lipase, and free fatty acids in breast milk: Normal infants and those with breast milk jaundice. J Pediatr Gastroenterol Nutr. 1990;11(2):205-210. doi: https://doi.org/10.1097/00005176-199008000-00009; Shibuya A, Itoh T, Tukey RH, Fujiwara R. Impact of fatty acids on human UDP-glucuronosyltransferase 1A1 activity and its expression in neonatal hyperbilirubinemia. Sci Rep. 2013;3:2903. doi: https://doi.org/10.1038/srep02903; Foliot A, Ploussard JP, Housset E, Christoforov. Breast milk jaundice: In vitro inhibition of rat liver bilirubin-uridine diphosphate glucuronyltransferase activity and Z protein-bromosulfophthalein binding by human breast milk. Pediatr Res. 1976;10(6):594-598. doi: https://doi.org/10.1203/00006450-197606000-00007; Gao C, Miller J, Middleton PF, et al. Changes to breast milk fatty acid composition during storage, handling and processing: A systematic review. Prostaglandins Leukot Essent Fatty Acids. 2019;146:1-10. doi: https://doi.org/10.1016/j.plefa.2019.04.008; Manganaro R, Marseglia L, Mami C, et al. Serum alphafetoprotein (AFP) levels in breastfed infants with prolonged indirect hyperbilirubinemia. Early Hum Dev. 2008;84:487-490. doi: https://doi.org/10.1016/j.earlhumdev.2008.01.005; Apaydin K, Ermis B, Arasli M, et al. Cytokines in human milk and late-onset breast milk jaundice. Pediatr Int. 2012;54(6):801-805. doi: https://doi.org/10.1111/j.1442-200X.2012.03680.x; Kumral A, Ozkan H, Duman N, et al. Breast milk jaundice correlates with high levels of epidermal growth factor. Pediatr Res. 2009;66(2):218-221. doi: https://doi.org/10.1203/PDR.0b013e3181ac4a30; Li Y, Shen N, Li J, et al. Changes in intestinal Flora and Metabolites in neonates with breast Milk jaundice. Front Pediatr. 2020;8:177. doi: https://doi.org/10.3389/fped.2020.00177; McCarville JL, Chen GY, Cuevas VD, et al. Microbiota metabolites in health and disease. Annu Rev Immunol. 2020;38:147-170. doi: https://doi.org/10.1146/annurev-immunol-071219-125715; Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70(6): 1174-1182. doi: https://doi.org/10.1136/gutjnl-2020-323071; Gonçalves P, Araújo JR, Di Santo JP. A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis. 2018;24(3):558-572. doi: https://doi.org/10.1093/ibd/izx029; Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol. 2020;38:23-48. doi: https://doi.org/10.1146/annurev-immunol-070119-115104; Hansen TWR, Wong RJ, Stevenson DK. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn. Physiol Rev. 2020;100(3):1291-346. doi: https://doi.org/10.1152/physrev.00004.2019; Chen K, Yuan T. The role of microbiota in neonatal hyperbilirubinemia. Am J Transl Res. 2020;12:7459-7474.; Novák P Jackson AO, Zhao GJ, Yin K. Bilirubin in metabolic syndrome and associated inflammatory diseases: new perspectives. Life Sci. 2020;257:118032. doi: https://doi.org/10.1016/j.lfs.2020.118032; Ma J, Li Z, Zhang W, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep. 2020;10:15792. doi: https://doi.org/10.1038/s41598-020-72635-x; Guo Q, Liu X, Cui M, et al. Characteristics of intestinal microbiota in infants with late-onset breast milk jaundice. Front Nutr. 2023;10: 1119768. doi: https://doi.org/10.3389/fnut.2023.1119768; Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol. 2000;40:581-616. doi: https://doi.org/10.1146/annurev.pharmtox.40.1.581.; Maisels MJ, Kring E. Rebound in serum bilirubin level following intensive phototherapy. Arch Pediatr Adolesc Med. 2002;156(7): 669-672. doi: https://doi.org/10.1001/archpedi.156.7.669; Fujiwara R, Maruo Y, Chen S, Tukey RH. Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia. Toxicol Appl Pharmacol. 2015;289(1):124-132. doi: https://doi.org/10.1016/j.taap.2015.08.018; Maruo Y, Nishizawa K, Sato H, et al. Prolonged unconjugated hyperbilirubinemia associated with breast milk and mutations of the bilirubin uridine diphosphate- glucuronosyltransferase gene. Pediatrics. 2000;106(5):E59. doi: https://doi.org/10.1542/peds.106.5.e59; Fujiwara R, Chen S, Karin M, Tukey RH. Reduced expression of UGT1A1 in intestines of humanized UGT1 mice via inactivation of NF-kB leads to hyperbilirubinemia. Gastroenterology. 2012;142(1): 109-118. doi: https://doi.org/10.1053/j.gastro.2011.09.045; Assenat E, Gerbal-Chaloin S, Larrey D, et al. Interleukin 1beta inhibits CAR-induced expression of hepatic genes involved in drug and bilirubin clearance. Hepatology. 2004;40(4):951-960. doi: https://doi.org/10.1002/hep.20387; Sumida K, Kawana M, Kouno E, et al. Importance of UDP-glucuronosyltransferase 1A1 expression in skin and its induction by UVB in neonatal hyperbilirubinemia. Mol Pharmacol. 2013;84(5): 679-686. doi: https://doi.org/10.1124/mol.113.088112; Ota Y Maruo Y Matsui K, et al. Inhibitory effect of 5e-pregnane-3a,20e-diol on transcriptional activity and enzyme activity of human bilirubin UDP-glucuronosyltransferase. Pediatr Res. 2011;70(5): 453-457. doi: https://doi.org/10.1203/PDR.0b013e31822f242e; Muchowski KE. Evaluation and treatment of neonatal hyperbilirubinemia. Am Fam Physician. 2014;89(11):873-878.; Xiao LL, Zhang XF, Wang XY. Changes in epidermal growth factor concentrations in neonates with late-onset breast milk jaundice after stopping breast feeding. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15(12):1079-1081.; Fawaz R, Baumann U, Ekong U, et al. Guideline for the Evaluation of Cholestatic Jaundice in Infants: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):154-168. doi: https://doi.org/10.1097/MPG.0000000000001334; Banakar MK, Subbarayan A. A study of prolonged jaundice screen in healthy term babies. Indian J Clin Biochem. 2008;23(3):286-289. doi: https://doi.org/10.1007/s12291-008-0064-9; Kaplan M, Kaplan E, Hammerman C, et al. Post-phototherapy neonatal bilirubin rebound: a potential cause of significant hyperbilirubinaemia. Arch Dis Child. 2006;91(1):31-34. https://doi.org/doi:10.1136/adc.2005.081224; Chang PW, Kuzniewicz MW, McCulloch CE, Newman TB. A Clinical Prediction Rule for Rebound Hyperbilirubinemia Following Inpatient Phototherapy. Pediatrics. 2017;139(3):e20162896. doi: https://doi.org/10.1542/peds.2016-2896; So V, Coo H, Khurshid F. Validation of published rebound hyperbilirubinemia risk prediction scores during birth hospitalization after initial phototherapy: a retrospective chart review. Pediatr Res. 2022; 91(4):888-895. doi: https://doi.org/10.1038/s41390-021-01478-7; Sachdeva M, Murki S, Oleti TP, Kandraju H. Intermittent versus continuous phototherapy for the treatment of neonatal non-hemolytic moderate hyperbilirubinemia in infants more than 34 weeks of gestational age: a randomized controlled trial. Eur J Pediatr. 2015; 174(2):177-181. doi: https://doi.org/10.1007/s00431-014-2373-8; Pettersson M, Eriksson M, Odlind A, Ohlin A. Home phototherapy of term neonates improves parental bonding and stress: findings from a randomized controlled trial. Acta Paediatr. 2022;111(4): 760-766. doi: https://doi.org/10.1111/apa.16231; Awad MH, Amer S, Hafez M, et al. Fenofibrate as an adjuvant to phototherapy in pathological unconjugated hyperbilirubinemia in neonates: a randomized control trial. J Perinatol. 2021;41(4): 865-872. doi: https://doi.org/10.1038/s41372-020-00861-2; Lazarus G, Francie J, Roeslani RD, et al. Role of ursodeoxycholic acid in neonatal indirect hyperbilirubinemia: a systematic review and meta-analysis of randomized controlled trials. Ital J Pediatr. 2022; 48(1):179. doi: https://doi.org/10.1186/s13052-022-01372-w; Mutlu M, Aslan Y, Kader Ş, Aktürk Acar F. Preventive Effects of Probiotic Supplementation on Neonatal Hyperbilirubinemia Caused by Isoimmunization. Am J Perinatol. 2020;37(11):1173-1176. doi: https://doi.org/10.1055/s-0039-1692690; Nuzzi G, Trambusti I, DI Cicco ME, Peroni DG. Breast milk: more than just nutrition! Minerva Pediatr (Torino). 2021;73(2):111-114. doi: https://doi.org/10.23736/S2724-5276.21.06223-X; Geddes DT, Gridneva Z, Perrella SL, et al. 25 Years of Research in Human Lactation: From Discovery to Translation. Nutrients. 2021;13(9):3071. doi: https://doi.org/10.3390/nu13093071; Rahkonen P, Heinonen K, Pesonen AK, et al. Mother-child interaction is associated with neurocognitive outcome in extremely low gestational age children. Scand J Psychol. 2014;55(4): 311-318. doi: https://doi.org/10.1111/sjop.12133; Liu J, Leung P, Yang A. Breastfeeding and active bonding protects against children's internalizing behavior problems. Nutrients. 2013;6(1):76-89. doi: https://doi.org/10.3390/nu6010076; Vidavalur R, Devapatla S. Trends in hospitalizations of newborns with hyperbilirubinemia and kernicterus in United States: an epidemiological study. J Matern Fetal Neonatal Med. 2022;35(25):7701-7706. doi: https://doi.org/10.1080/14767058.2021.1960970; Alkén J, Håkansson S, Ekéus C, et al. Rates of Extreme Neonatal Hyperbilirubinemia and Kernicterus in Children and Adherence to National Guidelines for Screening, Diagnosis, and Treatment in Sweden. JAMA Netw Open. 2019;2(3):e190858. doi: https://doi.org/10.1001/jamanetworkopen.2019.0858; McNamara RK, Vannest JJ, Valentine CJ. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology. World J Psychiatry. 2015;5(1):15-34. doi: https://doi.org/10.5498/wjp.v5.i1.15; Anderson JW, Johnstone BM, Remley DT. Breast feeding and cognitive development: a meta-analysis. Am J Clin Nutr. 1999; 70(4):525-535. doi: https://doi.org/10.1093/ajcn/70.4.525; Kramer MS, Aboud F, Mironova E, et al. Breastfeeding and child cognitive development: new evidence from a large randomized trial. Arch Gen Psychiatry. 2008;65(5):578-584. doi: https://doi.org/10.1001/archpsyc.65.5.578; Horta BL, Loret de Mola C, Victora CG. Breastfeeding and intelligence: a systematic review and meta-analysis. Acta Paediatr. 2015;104(467):14-19. doi: https://doi.org/10.1111/apa.13139; Deoni SCL, Dean DC, Piryatinsky I, et al. Breastfeeding and early white matter development: A cross-sectional study. Neuroimage. 2013;82:77-86. doi: https://doi.org/10.1016/j.neuroimage.2013.05.090; Schött U, Solomon C, Fries D, Bentzer P The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand J Trauma Resusc Emerg Med. 2016; 24:48. doi: https://doi.org/10.1186/s13049-016-0239-y; Kutuzov N, Flyvbjerg H, Lauritzen M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier. Proc Natl Acad Sci USA. 2018;115(40): E9429-E9438. doi: https://doi.org/10.1073/pnas.1802155115; Liu B, Newburg DS. Human milk glycoproteins protect infants against human pathogens. Breastfeed Med. 2013;8(4):354-362. doi: https://doi.org/10.1089/bfm.2013.0016; Hassiotou F, Beltran A, Chetwynd E, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012;30(10):2164-2174. doi: https://doi.org/10.1002/stem.1188; Velasco I, Santos C, Limon J, et al. Bioactive components in human milk along the first month of life: effects of iodine supplementation during pregnancy. Ann Nutr Metab. 2016;68(2):130-136. doi: https://doi.org/10.1159/000443800; Aydin MS, Yiğit EN, Vatandaşlar E, et al. Transfer and integration of breast milk stem cells to the brain of suckling pups. Sci Rep. 2018; 8(1):4289. doi: https://doi.org/10.1038/s41598-018-32715-5; Irmak MK, Oztas Y, Oztas E. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase. Theor Biol Med Model. 2012;9:20. doi: https://doi.org/10.1186/1742-4682-9-20; Păduraru L, Dimitriu DC, Avasiloaiei AL, et al. Total antioxidant status in fresh and stored human milk from mothers of term and preterm neonates. Pediatr Neonatol. 2018;59(6):600-605. doi: https://doi.org/10.1016/j.pedneo.2018.02.004; DiNicolantonio JJ, McCarty MF, O'Keefe JH. Antioxidant bilirubin works in multiple ways to reduce risk for obesity and its health complications. Open Heart. 2018;5(2):e000914. doi: https://doi.org/10.1136/openhrt-2018-000914; Hansen R, Gibson S, De Paiva Alves E, et al. Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin. Sci Rep. 2018;8(1):6470. doi: https://doi.org/10.1038/s41598-018-24811-3; Altuntaş N. Is There Any Effect of Hyperbilirubinemia on Breastfeeding? If Any, at Which Level? Breastfeed Med. 2020;15(1):29-34. doi: https://doi.org/10.1089/bfm.2019.0176; Huang Y, Chen L, Wang X, et al. Maternal knowledge, attitudes and practices related to neonatal jaundice and associated factors in Shenzhen, China: a facility-based cross-sectional study. BMJ Open. 2022;12(8):e057981. doi: https://doi.org/10.1136/bmjopen-2021-057981; Chu KH, Teng SW, Tai CJ, et al. Does Jaundice in Newborn Infants Affect Exclusivity and Duration of Breastfeeding in Taiwan? J Nurs Res. 2021;29(2):e145. doi: https://doi.org/10.1097/jnr.0000000000000420; Hokkanen L, Launes J, Michelsson K. Adult neurobehavioral outcome of hyperbilirubinemia in full term neonates — A 30 year prospective follow-up study. PeerJ. 2014;2:e294. doi: https://doi.org/10.7717/peerj.294; Tsao PC, Yeh HL, Shiau YS, et al. Long-term neurodevelopmental outcomes of significant neonatal jaundice in Taiwan from 20002003: A nationwide, population-based cohort study. Sci Rep. 2020; 10(1):11374. doi: https://doi.org/10.1038/s41598-020-68186-w; Chiu YW, Cheng SW, Yang CY, Weng YH. Breastfeeding in Relation to Neonatal Jaundice in the First Week After Birth: Parents' Perceptions and Clinical Measurements. Breastfeed Med. 2021; 16(4):292-299. doi: https://doi.org/10.1089/bfm.2020.0293; https://vsp.spr-journal.ru/jour/article/view/3351
-
5Academic Journal
المؤلفون: A. V. Dmitriev, R. A. Gudkov, V. I. Petrova, N. V. Fedina, A. L. Zaplatnikov, А. В. Дмитриев, Р. А. Гудков, В. И. Петрова, Н. В. Федина, А. Л. Заплатников
المصدر: Meditsinskiy sovet = Medical Council; № 17 (2023); 133-141 ; Медицинский Совет; № 17 (2023); 133-141 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: младенец, amino acid composition, protein, breastfeeding, artificial feeding, goat’s milk, cow’s milk, baby, аминокислотный состав, белок, грудное вскармливание, искусственное вскармливание, козье молоко, коровье молоко
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7832/6953; La Vieille S et al. Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA J. 2014;12(7):37602014. https://doi.org/10.2903/j.efsa.2014.3760.; Gridneva Z, Rea A, Tie WJ, Lai CT, Kugananthan S, Ward LC et al. Carbohydrates in Human Milk and Body Composition of Term Infants during the First 12 Months of Lactation. Nutrients. 2019;11(7):1472. https://doi.org/10.3390/nu11071472.; O’Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front Microbiol. 2016;7:925. https://doi.org/10.3389/fmicb.2016.00925.; Keikha M, Shayan-Moghadam R, Bahreynian M, Kelishadi R. Nutritional supplements and mother’s milk composition: a systematic review of interventional studies. Int Breastfeed J. 2021;16(1):1. https://doi.org/10.1186/s13006-020-00354-0.; Shawahna R, Zyoud A, Jallad D, Hadwan L, Ihssan N, Hilal H. Blood zinc levels in nursing women from different regions of the West Bank of Palestine. Women Health. 2018;58(7):822–833. https://doi.org/10.1080/03630242.2017.1342743.; Butte NF, Lopez-Alarcon MG, Garza С. Nutrient adequacy of exclusive breastfeeding for the term infant during the first six months of life. World Health Organization; 2002. 47 p. Available at: https://iris.who.int/handle/10665/42519.; Rempel J, Grover K, El-Matary W. Micronutrient Deficiencies and Anemia in Children with Inflammatory Bowel Disease. Nutrients. 2021;13(1):236. https://doi.org/10.3390/nu13010236.; Ehrlich S, Mark AG, Rinawi F, Shamir R, Assa A. Micronutrient Deficiencies in Children With Inflammatory Bowel Diseases. Nutr Clin Pract. 2020;35(2):315–322. https://doi.org/10.1002/ncp.10373.; Ahmed T, Michaelsen KF, Frem JC, Tumvine J. Malnutrition: Report of the FISPGHAN Working Group. J Pediatr Gastroenterol Nutr. 2012;55(5):626–631. https://doi.org/10.1097/MPG.0b013e318272b600.; Imdad A, Rogner J, Sherwani RN, Sidhu J, Regan A, Haykal MR et al. Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years. Cochrane Database Syst Rev. 2023;3(3):CD009384. https://doi.org/10.1002/14651858.CD009384.pub3.; Crisóstomo M, Santos MC, Tavares E, Cunha F. Transient symptomatic zinc deficiency in an exclusively breastfed infant. BMJ Case Rep. 2021;14(6):e241754. https://doi.org/10.1136/bcr-2021-241754.; Saeki K, Saito Y, Komaki H, Sakakibra T, Nakagawa E, Sugai K et al. Thiamine-deficient encephalopathy due to excessive intake of isotonic drink or overstrict diet therapy in Japanese children. Brain Dev. 2010;32(7):556–563. https://doi.org/10.1016/j.braindev.2009.08.004.; Sakurai K, Fujiwara N, Takahashi K, Nakayashiro M. Excessive soft drink may induce pulmonary hypertension via thiamine deficiency. Pediatr Int. 2019;61(8):823–824. https://doi.org/10.1111/ped.13913.; Bzikowska-Jura A, Sobieraj P, Michalska-Kacymirow M, Wesołowska A. Investigation of Iron and Zinc Concentrations in Human Milk in Correlation to Maternal Factors: An Observational Pilot Study in Poland. Nutrients. 2021;13(2):303. https://doi.org/10.3390/nu13020303; El-Farrash RA, Ismail EA, Nada AS. Cord blood iron profile and breast milk micronutrients in maternal iron deficiency anemia. Pediatr Blood Cancer. 2012;58(2):233–238. https://doi.org/10.1002/pbc.23184.; Victora CG, Bahl R, Barros AJ, França GV, Horton S, Krasevec J et al. Lancet Breastfeeding Series Group. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–490. https://doi.org/10.1016/S0140-6736(15)01024-7.; Hochwallner H, Schulmeister U, Swoboda I, Focke-Tejkl M, Reininger R, Civaj V et al. Infant milk formulas differ regarding their allergenic activity and induction of T-cell and cytokine responses. Allergy. 2017;72(3):416–424. https://doi.org/10.1111/all.12992.; Van Lieshout GAA, Lambers TT, Bragt MCE, Hettinga KA. How processing may affect milk protein digestion and overall physiological outcomes: A systematic review. Crit Rev Food Sci Nutr. 2020;60(14):2422–2445. https://doi.org/10.1080/10408398.2019.1646703.; Chen Z, Leinisch F, Greco I, Zhang W, Shu N, Chuang CY et al. Characterisation and quantification of protein oxidative modifications and amino acid racemisation in powdered infant milk formula. Free Radic Res. 2019;53(1):68–81. https://doi.org/10.1080/10715762.2018.1554250.; Giblin L, Yalçın AS, Biçim G, Krämer AC, Chen Z, Callanan MJ et al. Whey proteins: Targets of oxidation, or mediators of redox protection. Free Radic Res. 2019;53(1):1136–1152. https://doi.org/10.1080/10715762.2019.1632445.; He T, Rombouts W, Einerhand AWC, Hotrum N, van de Velde F. Gastric protein digestion of goat and cow milk infant formula and human milk under simulated infant conditions. Int J Food Sci Nutr. 2021;73(1):28–38. https://doi.org/10.1080/09637486.2021.1921705.; Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules. 2019;9(12):888. https://doi.org/10.3390/biom9120888.; Krishna TC, Najda A, Bains A, Tosif MM, Papliński R, Kapłan M, Chawla P. Influence of ultra-heat treatment on properties of milk proteins. Polymers (Basel). 2021;13(18):3164. https://doi.org/10.3390/polym13183164.; Nguyen NHA, Streicher C, Anema SG. The effect of thiol reagents on the denaturation of the whey protein in milk and whey protein concentrate solutions. Int Dairy J. 2018;85:285–293. https://doi.org/10.1016/j.idairyj.2018.06.012.; Abbring S, Xiong L, Diks MAP, Baars T, Garssen J, Hettinga K, Van Esch BCAM. Loss of allergy-protective capacity of raw cow’s milk after heat treatment coincides with loss of immunologically active whey proteins. Food Funct. 2020;11(6):4982–4993. https://doi.org/10.1039/D0FO01175D.; Halabi A, Deglaire A, Hamon P, Bouhallab S, Dupont D, Croguennec T. Kinetics of heat-induced denaturation of proteins in model infant milk formulas as a function of whey protein composition. Food Chem. 2020;302:125296. https://doi.org/10.1016/j.foodchem.2019.125296.; Boutrou R, Jardin J, Blais A, Tome D, Leonil J. Glycosylations of k-caseinderived caseinomacropeptide reduce its accessibility to endo- but not exo- intestinal brush border membrane peptidases. J Agric Food Chem. 2008;56(17):8166–8173. https://doi.org/10.1021/jf801140d.; Boutrou R, Coirre E, Jardin J, Leonil J. Phosphorylation and coordination link of mineral inhibit the hydrolysis of the casein (1–25) peptide by intestinal brush-border membrane enzymes. J Agric Food Chem. 2010;58(13):7955–7961. https://doi.org/10.1021/jf100568r; Wölk M, Milkovska-Stamenova S, Hoffmann R. Comprehensive profiling of the native and modified peptidomes of raw bovine milk and processed milk products. Foods. 2020;9(12):1841. https://doi.org/10.3390/foods9121841.; Villa C, Costa J, Oliveira MBPP, Mafra I. Bovine Milk Allergens: A Comprehensive Review. Compr Rev Food Sci Food Saf. 2018;17(1):137–164. https://doi.org/10.1111/1541-4337.12318.; Golkar A, Milani JM, Vasiljevic T. Altering allergenicity of cow’s milk by food processing for applications in infant formula. Crit Rev Food Sci Nutr. 2019;59(1):159–172. https://doi.org/10.1080/10408398.2017.1363156.; Castenmiller J, Hirsch-Ernst KI, Kearney J, Knutsen HK, Maciuk A, Mangelsdorf I et al. Efficacy of an infant formula manufactured from a specific protein hydrolysate derived from whey protein isolate and concentrate produced by Société des Produits Nestlé S.A. in reducing the risk of developing atopic dermatitis. EFSA J. 2021;19(6):e06603. https://doi.org/10.2903/j.efsa.2021.6603.; Halken S, Muraro A, de Silva D, Khaleva E, Angier E, Arasi S et al. EAACI guideline: Preventing the development of food allergy in infants and young children (2020 update) Pediatr Allergy Immunol. 2021;32(5):843–858. https://doi.org/10.1111/pai.13496.; Fleischer DM, Chan ES, Venter C, Spergel JM, Abrams EM, Stukus D et al. A Consensus Approach to the Primary Prevention of Food Allergy Through Nutrition: Guidance from the American Academy of Allergy, Asthma, and Immunology; American College of Allergy, Asthma, and Immunology; and the Canadian Society for Allergy and Clinical Immunology. J Allergy Clin Immunol Pract. 2021;9(1):22–43. https://doi.org/10.1016/j.jaip.2020.11.002.; Joshi PA, Smith J, Vale S, Campbell DE. The Australasian Society of Clinical Immunology and Allergy infant feeding for allergy prevention guidelines. Med J Aust. 2019;210(2):89–93. https://doi.org/10.5694/mja2.12102.; Vandenplas Y, Latiff AHA, Fleischer DM, Gutiérrez-Castrellón P, Miqdady MIS, Smith PK et al. Partially hydrolyzed formula in non-exclusively breastfed infants: A systematic review and expert consensus. Nutrition. 2019;57:268–274. Available at: https://doi.org/10.1016/j.nut.2018.05.018.; Fleischer DM, Spergel JM, Assa’ad AH, Pongracic JA. Primary Prevention of Allergic Disease Through Nutritional Interventions. J Allergy Clin Immunol Pract. 2013;1(1):29–36. https://doi.org/10.1016/j.jaip.2012.09.003.; Muraro A, Halken S, Arshad SH, Beyer K, Dubois AEJ, du Toit G et al. EAACI Food Allergy and Anaphylaxis Guidelines. Primary prevention of food allergy. Allergy. 2014;69(5):590–601. https://doi.org/10.1111/all.12398.; Баранов АА, Намазова-Баранова ЛС, Хаитов РМ, Ильина НИ, Курбачева ОМ, Новик ГА и др. Аллергия к белкам коровьего молока у детей: клинические рекомендации. М.; 2018. 52 с. Режим доступа: https://www.pediatr-russia.ru/information/klin-rek/deystvuyushchie-klinicheskie-rekomendatsii/АБКМ%20дети%20СПР.v1%20_2019%20испр.pdf; Szajewska H, Horvath A. A partially hydrolyzed 100% whey formula and the risk of eczema and any allergy: an updated meta-analysis. World Allergy Organ J. 2017;10(1):27. https://doi.org/10.1186/s40413-017-0158-z.; Berg A von, Koletzko S, Grübl A, Schoetzau A, Wichmann HE, Bauer CP et al. GINI. German International Nutrition Intervention Study. 2003.; Berg A, Filipiak-Pittroff B, Schulz H, Hoffmann U, Link E, Sußmann M et al. Allergic manifestation 15 years after early intervention with hydrolyzed formulas – the GINI Study. Allergy. 2016;71(2):210–219. https://doi.org/10.1111/all.12790.; Berg A von, Filipiak-Pittroff B, Krämer U, Link E, Heinrich J, Koletzko S et al. The German Infant Nutritional Intervention Study (GINI) for the preventive effect of hydrolysed infant formulas in infants at high risk for allergic diseases. Design and selected results. Allergol Sel. 2017;1(1):28–39. https://doi.org/10.5414/ALX01462E.; Boyle R, Ierodiakonou D, Khan T, Chivinge J, Robinson Z, Geoghegan N et al. Hydrolyzed formula and risk of allergic or autoimmune disease: systematic review and meta-analysis. BMJ. 2016;352:974–985. https://doi.org/10.1136/bmj.i974.; Osborn DA, Sinn JK, Jones LJ. Infant formulas containing hydrolysed protein for prevention of allergic disease and food allergy. Cochrane Database Syst Rev. 2017;3(3):CD003664. https://doi.org/10.1002/14651858.CD003664.pub6.; Баранов АА, Намазова-Баранова ЛС, Алексеева АА. Методические рекомендации по применению у детей смесей на основе частично гидролизованного белка. М.: ПедиатрЪ; 2023. 88 с.; Vandenplas Y, Al-Hussaini B, Al-Mannaei K, Al-Sunaid A, Ayesh WH, ElDegeir M et al. Prevention of Allergic Sensitization and Treatment of Cow’s Milk Protein Allergy in Early Life: The Middle-East Step-Down Consensus. Nutrients. 2019;11(7):1444. https://doi.org/10.3390/nu11071444.; Koletzko S, Niggemann B, Arato A, Dias JA, Heuschkel R, Husby S et al. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J Pediatr Gastroenterol Nutr. 2012;55(2):221–229. https://doi.org/10.1097/MPG.0b013e31825c9482; Vandenplas Y. Prevention and Management of Cow’s Milk Allergy in Non Exclusively Breastfed Infants. Nutrients. 2017;9(7):731. https://doi.org/10.3390/nu9070731.; Vandenplas Y, Munasir Z, Hegar B, Kumarawati D, Suryawan A, Kadim M et al. A perspective on partially hydrolyzed protein infant formula in nonexclusively breastfed infants. Korean J Pediatr. 2019;62(5):149–154. https://doi.org/10.3345/kjp.2018.07276.; Picaud JC, Pajek B, Arciszewska M, Tarczón I, Escribano J, Porcel R et al. An Infant Formula with Partially Hydrolyzed Whey Protein Supports Adequate Growth and Is Safe and Well-Tolerated in Healthy, Term Infants: A Randomized, Double-Blind, Equivalence Trial. Nutrients. 2020;12(7):1–16. https://doi.org/10.3390/nu12072072.; Salami M, Moosavi-Movahedi AA, Moosavi-Movahedi F, Ehsani MR, Yousefi R, Farhadi M et al. Biological activity of camel milk casein following enzymatic digestion. J Dairy Res. 2011;78(4):471–478. https://doi.org/10.1017/S0022029911000628.; Turck D, Bresson J, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M et al. Scientific and technical guidance for the preparation and presentation of an application for authorisation of an infant and/or follow-on formula manufactured from protein hydrolysates. EFSA J. 2017;15(5):4779. https://doi.org/10.2903/j.efsa.2017.4680.; Rzehak P, Sausenthaler S, Koletzko S, Reinhardt D, von Berg A, Krämer U et al. Long-term effects of hydrolyzed protein infant formulas on growth – extended follow-up to 10 y of age: results from the German Infant Nutritional Intervention (GINI) study. Am J Clin Nutr. 2011;94(6):1803–1807. https://doi.org/10.3945/ajcn.110.000679.; Exl BM, Deland U, Secretin MC, Preysch U, Wall M, Shmerling DH. Improved general health status in an unselected infant population following an allergenreduced dietary intervention programme: the ZUFF-STUDY-PROGRAMME. Eur J Nutr. 2000;39(4):145–156. https://doi.org/10.1007/s003940070018.; Rigo J, Schoen S, Verghote M, van Overmeire B, Marion W, Abrahamse Berkeveld M et al. Partially Hydrolysed Whey-Based Formulae with Reduced Protein Content Support Adequate Infant Growth and Are Well Tolerated: Results of a Randomised Controlled Trial in Healthy Term Infants. Nutrients. 2019;11(7):1654. Available at: https://doi.org/10.3390/nu11071654.; Yang J, Yang SI, Jeong K, Kim KW, Kim YH, Min TK et al. A partially hydrolyzed whey formula provides adequate nutrition in high-risk infants for allergy. Nutr Res Pract. 2022;16(3):344. Available at: https://doi.org/10.4162/nrp.2022.16.3.344.; Гордеева ЕА, Елкина ТН, Суровикина ЕА. Смеси на основе частично гидролизованного белка в питании детей первого года с функциональными нарушениями желудочно-кишечного тракта. Взгляд гастроэнтеролога. Лечащий врач. 2020;(9):44–49. https://doi.org/10.26295/OS.2020.56.41.009.; Savino F, Maccario S, Castagno E, Cresi F, Cavallo F, Dalmasso P et al. Advances in the management of digestive problems during the first months of life. Acta Paediatr. 2007;94(449):120–124. https://doi.org/10.1111/j.1651-2227.2005.tb02167.x.; Savino F, Palumeri E, Castagno E, Cresi F, Dalmasso P, Cavallo F et al. Reduction of crying episodes owing to infantile colic: a randomized controlled study on the efficacy of a new infant formula. Eur J Clin Nutr. 2006;60(11):1304–1310. https://doi.org/10.1038/sj.ejcn.1602457.; Мигачева НБ, Мухаметова ЕМ, Макарова ЕГ, Украинцев СЕ. Роль и место смесей на основе частично гидролизованных белков в питании доношенных детей: пищеварительный комфорт и предупреждение аллергии. Вопросы современной педиатрии. 2020;19(4):279–290. https://doi.org/10.15690/vsp.v19i4.2135.; Koopman R, Crombach N, Gijsen AP, Walrand S, Fauquant J, Kies AK et al. Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. Am J Clin Nutr. 2009;90(1):106–115. https://doi.org/10.1007/s003940070001.; Boza JJ, Moënnoz D, Vuichoud J, Jarret AR, Gaudard-de-Weck D, Ballèvre O. Protein hydrolysate vs free amino acid-based diets on the nutritional recovery of the starved rat. Eur J Nutr. 2000;39(6):237–243. Available at: https://pubmed.ncbi.nlm.nih.gov/11395982.; Mihatsch WA, Högel J, Pohlandt F. Hydrolysed protein accelerates the gastrointestinal transport of formula in preterm infants. Acta Paediatr. 2001;90(2):196–198. https://doi.org/10.1111/j.1651-2227.2001.tb00284.x; Alexander DD, Cabana MD. Partially Hydrolyzed 100% Whey Protein Infant Formula and Reduced Risk of Atopic Dermatitis: A Meta-analysis. J Pediatr Gastroenterol Nutr. 2010;50(4):422–430. https://doi.org/10.1097/MPG.0b013e3181cea52b.; Vandenplas Y, Alarcon P, Fleischer D, Hernell O, Kolacek S, Laignelet H et al. Should partial hydrolysates be used as starter infant formula? A Working Group Consensus. J Pediatr Gastroenterol Nutr. 2016;62(1):22–35. https://doi.org/10.1097/MPG.0000000000001014.; Manninen AH. Protein hydrolysates in sports nutrition. Nutr Metab (Lond). 2009;6(1):38. https://doi.org/10.1186/1743-7075-6-38.; Nutten S, Maynard F, Järvi A, Rytz A, Simons PJ, Heine RG, Kuslys M. Peptide size profile and residual immunogenic milk protein or peptide content in extensively hydrolyzed infant formulas. Allergy. 2020;75(6):1446–1449. https://doi.org/10.1111/all.14098.; McCarthy KS, Parker M, Ameerally A, Drake SL, Drake MA. Drivers of choice for fluid milk versus plant-based alternatives: What are consumer perceptions of fluid milk? J Dairy Sci. 2017;100(8):6125–6138. https://doi.org/10.3168/jds.2016-12519.; Silva ARA, Silva MMN, Ribeiro BD. Health issues and technological aspects of plant-based alternative milk. Food Res Int. 2020;131:108972. https://doi.org/10.1016/j.foodres.2019.108972.; Roy D, Ye A, Moughan PJ, Singh H. Composition, Structure, and Digestive Dynamics of Milk From Different Species. Front Nutr. 2020;7:577759. https://doi.org/10.3389/fnut.2020.577759.; Dupont C, Bocquet A, Tomé D, Bernard M, Campeotto F, Dumond P et al. Hydrolyzed Rice Protein-Based Formulas, a Vegetal Alternative in Cow’s Milk Allergy. Nutrients. 2020;12(9):2654. https://doi.org/10.3390/nu12092654.; D’Auria E, Salvatore S, Acunzo M, Peroni D, Pendezza E, Di Profio E et al. Hydrolysed Formulas in the Management of Cow’s Milk Allergy: New Insights, Pitfalls and Tips. Nutrients. 2021;13(8):2762. https://doi.org/10.3390/nu13082762.; Bocquet A, Dupont C, Chouraqui JP, Darmaun D, Feillet F, Frelut ML et al. Efficacy and safety of hydrolyzed rice-protein formulas for the treatment of cow’s milk protein allergy. Arch Pediatr. 2019;26(4):238–246. https://doi.org/10.1016/j.arcped.2019.03.001.; Verduci E, D’Elios S, Cerrato L, Comberiati P, Calvani M, Palazzo S et al. Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients. 2019;11(8):1739. https://doi.org/10.3390/nu11081739.; Muehlhoff E, Bennett A, McMahon D. Milk and Dairy Products in Human Nutrition. Dairy Technol. 2014;67:303–304. https://doi.org/10.1111/1471-0307.12124.; Оразов А, Надточий ЛА, Сафронова АВ. Оценка биологической ценности молока сельскохозяйственных животных. Техника и технология пищевых производств. 2019;49(3):447–453. https://doi.org/10.21603/2074-9414-2019-3-447-453.; Богатова ОВ, Догарева НГ. Химия и физика молока. Оренбург; 2004. 137 с.; Zabodalova L, Ishchenko T, Skvortcova N, Baranenko D, Chernjavskij V. Liposomal beta-carotene as a functional additive in dairy products. Agronomy Research. 2014;12(3):825–834. Available at: https://www.researchgate.net/publication/287477174_Liposomal_beta-carotene_as_a_functional_additive_in_dairy_products.; Скурихин ИМ, Волгарева МН. Химический состав пищевых продуктов. М.: Агропромиздат; 1987. 360 с.; Гурова ММ. Смеси на основе козьего молока. Кому, зачем, как. Медицинский совет. 2022;16(1):128–133. https://doi.org/10.21518/2079-701X-2022-16-1-128-133.; Бельмер СВ, Волынец ГВ, Гурова ММ, Звягин АА, Корниенко ЕА, Новикова ВП и др. Проект клинических рекомендаций Российского общества детских гастроэнтерологов, гепатологов и нутрициологов по диагностике и лечению функциональных расстройств органов пищеварения у детей. Вопросы детской диетологии. 2019;17(6):27–48. Режим доступа: https://www.phdynasty.ru/katalog/zhurnaly/voprosydetskoy-dietologii/2019/tom-17-nomer-6/37538.; Геппе НА, Мелешкина АВ, Яблокова ЕА, Чебышева СН. Достоинства адаптированных смесей на основе козьего молока при функциональных нарушениях желудочно-кишечного тракта у детей раннего возраста на искусственном вскармливании. Лечащий врач. 2020;(3):43–49. Режим доступа: https://www.lvrach.ru/2020/03/15437520.; Panel E, Nda A. Scientific Opinion on the suitability of goat milk protein as a source of protein in infant formulae and in follow-on formulae. EFSA J. 2012;10:2603.; Fiocchi A, Brozek J, Schu H, Von Berg A, Beyer K, Bozzola M et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines. Pediatr Allergy Immunol. 2010;21:1–125. https://doi.org/10.1097/WOX.0b013e3181defeb9.; Prosser CG. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J Food Sci. 2021;86(2):257–265. https://doi.org/10.1111/1750-3841.15574.; Maathuis A, Havenaar R, He T, Bellmann S. Protein digestion and quality of goat and cow milk infant formula and human milk under simulated infant conditions. J Pediatr Gastroenterol Nutr. 2017;65(6):661–666. https://doi.org/10.1097/MPG.0000000000001740.; https://www.med-sovet.pro/jour/article/view/7832
-
6Academic Journal
المؤلفون: Яков Яковлевич Яковлев, Владимир Иванович Фурцев, Марина Михайловна Котович, Елена Ивановна Лютина, Елена Германовна Сарычева, Марина Афанасьевна Соколовская, Ольга Александровна Загородникова
المصدر: Мать и дитя в Кузбассе, Vol 23, Iss 3, Pp 147-156 (2022)
مصطلحات موضوعية: грудное вскармливание, обучение врачей, обучение матерей, поддержка грудного вскармливания, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Яков Яковлевич Яковлев
المصدر: Мать и дитя в Кузбассе, Vol 23, Iss 3, Pp 23-29 (2022)
مصطلحات موضوعية: грудное вскармливание, мало молока, лактация, онкм, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: Мансурова Шахсанамхан Нурмухаммадовна
المصدر: XXI ASRDA INNOVATSION TEXNOLOGIYALAR, FAN VA TA'LIM TARAQQIYOTIDAGI DOLZARB MUAMMOLAR, 1(2), 127-130, (2023-04-29)
مصطلحات موضوعية: маммография, гормонотерапия, малогрудное вскармливание, генетическая предрасположенность, апитерапия, скрининговые центры
Relation: https://doi.org/10.5281/zenodo.7879241; https://doi.org/10.5281/zenodo.7879242; oai:zenodo.org:7879242
-
9Academic Journal
المؤلفون: Babayan, Lilit
المصدر: Journal of Sociology: Bulletin of Yerevan University; Vol. 14 No. 2 (38) (2023); 107-117 ; Բանբեր Երևանի համալսարանի. Սոցիոլոգիա; Vol. 14 No. 2 (38) (2023); 107-117 ; Вестник Ереванского Университета: Социология; Том 14 № 2 (38) (2023); 107-117 ; 2738-263X ; 2579-2938 ; 10.46991/BYSU:F/2023.14.2
مصطلحات موضوعية: breastfeeding, discourse, Armenia, soviet legacy, Western values, Michel Foucault, childrearing, Грудное вскармливание, дискурс, Армения, советское наследие, Мишель Фуко, уход за детьми, Կրծքով կերակրում, դիսկուրս, Հայաստան, խորհրդային ժառանգություն, Միշել Ֆուկո, երեխաների խնամք
وصف الملف: application/pdf
Relation: https://journals.ysu.am/index.php/bulletin-ysu-sociology/article/view/11310/8874; https://journals.ysu.am/index.php/bulletin-ysu-sociology/article/view/11310
-
10Academic Journal
المؤلفون: Brovko, A. E., Skakunov, V. V., Myshinskaya, O. I., Бровко, А. Е., Скакунов, В. В., Мышинская, О. И.
المصدر: Сборник статей
مصطلحات موضوعية: BREASTFEEDING, BREAST MILK, RESPIRATORY INFECTION, SOMATIC DISEASES, ГРУДНОЕ ВСКАРМЛИВАНИЕ, ОРЗ, СОМАТИЧЕСКИЕ ЗАБОЛЕВАНИЯ
وصف الملف: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; Бровко, А. Е. Влияние грудного вскармливания на частоту респираторной и соматической патологии у детей раннего и дошкольного возраста / А. Е. Бровко, В. В. Скакунов, О. И. Мышинская. - Текст электронный. // Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г. – Екатеринбург : УГМУ, 2023. – C. 2317-2323.; http://elib.usma.ru/handle/usma/14384
-
11Academic Journal
المؤلفون: Tkach, Y. O., Levchuk, L. V., Ткач, Ю. О., Левчук, Л. В.
المصدر: Сборник статей
مصطلحات موضوعية: COMPLEMENTARY FOODS, FEEDING, PREMATURE CHILDREN, PHYSICAL DEVELOPMENT, ПРИКОРМ, ВСКАРМЛИВАНИЕ, НЕДОНОШЕННЫЕ ДЕТИ, ФИЗИЧЕСКОЕ РАЗВИТИЕ
وصف الملف: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; Ткач, Ю. О. Особенности введения прикормов недоношенным детям / Ю. О. Ткач, Л. В. Левчук. - Текст электронный. // Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г. – Екатеринбург : УГМУ, 2023. – C. 2471-2476.; http://elib.usma.ru/handle/usma/14369
-
12Academic Journal
المؤلفون: Krasnova, K. S., Pomeshchenko, D. V., Tagoev, Y. Sh., Myshinskaya, O. I., Краснова, К. С., Помещенко, Д. В., Тагоев, Ю. Ш., Мышинская, О. И.
المصدر: Сборник статей
مصطلحات موضوعية: HEALTH, FEEDING, DEVELOPMENT, MORBIDITY, ЗДОРОВЬЕ, ВСКАРМЛИВАНИЕ, РАЗВИТИЕ, ЗАБОЛЕВАЕМОСТЬ
وصف الملف: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; Влияние типа вскармливания на состояние здоровья, физическое развитие детей до 1 года жизни / К. С. Краснова, Д. В. Помещенко, Ю. Ш. Тагоев, О. И. Мышинская. - Текст электронный. // Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г. – Екатеринбург : УГМУ, 2023. – C. 2397-2403.; http://elib.usma.ru/handle/usma/14355
-
13Academic Journal
المؤلفون: Shurygina, M. S., Pereladova, O. V., Laykovskaya, E. E., Шурыгина, М. С., Переладова, О. В., Лайковская, Е. Э.
المصدر: Сборник статей
مصطلحات موضوعية: NEWBORN CARE, AWARENESS, MOTHERS, LACTATION, BREASTFEEDING, VITAMINS, VACCINATIONS, RATIONAL NUTRITION, УХОД ЗА НОВОРОЖДЕННЫМ, ИНФОРМИРОВАННОСТЬ, МАМЫ, ЛАКТАЦИЯ, ГРУДНОЕ ВСКАРМЛИВАНИЕ, ВИТАМИНЫ, ПРИВИВКИ, РАЦИОНАЛЬНОЕ ПИТАНИЕ
وصف الملف: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; Шурыгина, М. С. Анализ информированности матерей детей первого года жизни / М. С. Шурыгина, О. В. Переладова, Е. Э. Лайковская. - Текст электронный. // Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г. – Екатеринбург : УГМУ, 2023. – C. 1895-1901.; http://elib.usma.ru/handle/usma/14191
-
14Academic Journal
المصدر: Сборник статей
مصطلحات موضوعية: BREASTFEEDING, PREGNANT WOMEN, PUERPERAL, AGE, ГРУДНОЕ ВСКАРМЛИВАНИЕ, БЕРЕМЕННЫЕ, РОДИЛЬНИЦЫ, ВОЗРАСТ
وصف الملف: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; Ширихина, Е. Л. Проблемы отношения к грудному вскармливанию беременных и родильниц / Е. Л. Ширихина, О. В. Прохорова. – Текст электронный. // Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г. – Екатеринбург : УГМУ, 2023. – C. 162-166.; http://elib.usma.ru/handle/usma/13266
-
15Academic Journal
المؤلفون: Yulia O. Tkach, Larisa V. Levchuk, Ю. О. Ткач, Л. В. Левчук
المصدر: Pediatric pharmacology; Том 20, № 1 (2023); 42-46 ; Педиатрическая фармакология; Том 20, № 1 (2023); 42-46 ; 2500-3089 ; 1727-5776
مصطلحات موضوعية: физическое развитие, feeding, children, physical development, вскармливание, дети
وصف الملف: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/2261/1460; Программа оптимизации вскармливания детей первого года жизни в Российской Федерации: методические рекомендации / ФГАУ «НМИЦ здоровья детей» Минздрава России. — М.; 2019.; Скворцова В.А., Боровик Т.Э., Фисенко А.П. и др. Оценка результатов внедрения «Национальной программы оптимизации вскармливания детей первого года жизни в Российской Федерации» 2009 г. // Педиатрия. Consilium Medicum. — 2022. — № 4. — С. 286–294. — doi: https://doi.org/10.26442/26586630.2022.4.201969; Agostoni C, Decsi T, Fewtrell M, et al. Complementary feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2008;46(1):99–110. doi: https://doi.org/10.1097/01.mpg.0000304464.60788.bd; Dube K, Schwartz J, Mueller MJ, et al. Complementary food with low (8%) or high (12%) meat content as source of dietary iron: a doubleblinded randomized controlled trial. Eur J Nutr. 2010;49(1):11–18. doi: https://doi.org/10.1007/s00394-009-0043-9; Fewtrell M, Bronsky J, Campoy C, et al. Complementary Feeding: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):119–132. doi: https://doi.org/10.1097/MPG.0000000000001454; Лукоянова О.Л., Боровик Т.Э., Скворцова В.А. и др. Оптимальные сроки начала введения прикорма доношенным детям на исключительно грудном вскармливании: результаты обсервационного исследования // Вопросы современной педиатрии. — 2016. — Т. 15. — № 4. — С. 371–378. — doi: https://doi.org/10.15690/vsp.v15i4.1588; https://www.pedpharma.ru/jour/article/view/2261
-
16Academic Journal
المؤلفون: I. N. Zakharova, A. E. Kuchina, I. N. Kholodova, V. V. Pupykina, И. Н. Захарова, А. Е. Кучина, И. Н. Холодова, В. В. Пупыкина
المصدر: Meditsinskiy sovet = Medical Council; № 17 (2023); 34-41 ; Медицинский Совет; № 17 (2023); 34-41 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: профилактика заболеваний, breastfeeding, breast milk microbiota, prenatal nursing care, disease prevention, грудное вскармливание, микробиота грудного молока, дородовой педиатрический патронаж
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7819/6940; Ickes SB. Corrigendum to: Formal maternal employment is associated with lower odds of exclusive breastfeeding by 14-weeks postpartum: a crosssectional survey in Naivasha, Kenya. Am J Clin Nutr. 2021;113(3):562–573. Am J Clin Nutr. 2021;113(4):1060. https://doi.org/10.1093/ajcn/nqab055.; Balogun OO, Dagvadorj A, Anigo KM, Ota E, Sasaki S. Factors influencing breastfeeding exclusivity during the first 6 months of life in developing countries: a quantitative and qualitative systematic review. Matern Child Nutr. 2015;11(4):433–451. https://doi.org/10.1111/mcn.12180.; Shortall J. Work. Pump. Repeat.: The New Mom`s Survival Guide to Breastfeeding and Going Back to Work. New York: Abrams Image; 2015. 208 p. Avaibale at: https://www.jneb.org/article/S1499-4046(17)30228-2/pdf.; Радзинский ВЕ. Медицина молочной железы и гинекологические болезни. 2-е изд., перераб. и доп. М.: Редакция журнала StatusPraesens; 2017. 352 с. Режим доступа: https://praesens.ru/files/2021/web/mmzh_demo.pdf.; Тарасова МА, Шаповалова КА. Физиология лактации, фертильность и контрацепция после родов. Гинекология. 2011;13(4):66–69. Режим доступа: https://omnidoctor.ru/upload/iblock/22f/22f08ffcdf3d09c09330513b27aa4db6.pdf.; Жукова ЛГ, Андреева ЮЮ, Завалишина ЛЭ, Закиряходжаев АД, Королева ИА, Назаренко АВ и др. Рак молочной железы: клинические рекомендации. 2021. Режим доступа: https://oncology-association.ru/wp-content/uploads/2021/02/rak-molochnoj-zhelezy-2021.pdf.; Qiu R, Zhong Y, Hu M, Wu B. Breastfeeding and Reduced Risk of Breast Cancer: A Systematic Review and Meta-Analysis. Comput Math Methods Med. 2022;2022:8500910. https://doi.org/10.1155/2022/8500910.; Xing P, Li J, Jin F. A case-control study of reproductive factors associated with subtypes of breast cancer in Northeast China. Med Oncol. 2010;27(3):926–931. https://doi.org/10.1007/s12032-009-9308-7.; Юрьева ВВ, Хомич ММ, Гуркина ЕЮ, Алешина ЕИ. Пропедевтика детских болезней. М.: ГЭОТАР-Медиа; 2012. 720 с.; Kapil U, Bhadoria AS, Sareen N, Singh P, Dwivedi SN. Reproductive factors and risk of breast cancer: A Review. Indian J Cancer. 2014;51(4):571–576. https://doi.org/10.4103/0019-509X.175345.; Xing P, Li J, Jin F. A case – control study of reproductive factors associated with subtypes of breast cancer in Northeast China. Medical Oncology. 2010;27(3):926–931. https://doi.org/10.1007/s12032-009-9308-7.; Wroblewski LE, Peek RM Jr. Helicobacter pylori in gastric carcinogenesis: mechanisms. Gastroenterol Clin North Am. 2013;42(2):285–298. https://doi.org/10.1016/j.gtc.2013.01.006.; Abreu MT, Peek RM Jr. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146(6):1534–1546.e3. https://doi.org/10.1053/j.gastro.2014.01.001.; Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306. https://doi.org/10.1101/gr.126516.111.; Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–625. https://doi.org/10.1038/nature07008.; Родригес Х. Мастит у женщин: новый взгляд на старую проблему. Медицинский совет. 2017;(1):34–44. https://doi.org/10.21518/2079-701X-2017-1-34-44.; Захарова ИН, Кучина АЕ, Бережная ИВ, Санникова ТН. Мастит и/или лактостаз? Как отличить? Чем помочь? Как лечить? Медицинский совет. 2019;(11):10–15. https://doi.org/10.21518/2079-701X-2019-11-10-15.; Hurtado JA, Maldonado-Lobón JA, Díaz-Ropero MP, Flores-Rojas K, Uberos J, Leante JL et al. Oral Administration to Nursing Women of Lactobacillus fermentum CECT5716 Prevents Lactational Mastitis Development: A Randomized Controlled Trial. Breastfeed Med. 2017;12(4):202–209. https://doi.org/10.1089/bfm.2016.0173.; Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70(4):2782–2858. https://doi.org/10.1099/ijsem.0.004107.; Zhang Y, Gao Y, He X, Ding S, Gao H. Oral Lactobacillus fermentum CECT5716 in the patients with lactational abscess treated by needle aspiration: The late follow-up of a randomized controlled trial. Medicine (Baltimore). 2022;101(26):e29761. https://doi.org/10.1097/MD.0000000000029761.; Xuan C, Shamonki JM, Chung A, Dinome ML, Chung M, Sieling PA, Lee DJ. Microbial dysbiosis is associated with human breast cancer. PLoS ONE. 2014;9(1):e83744. https://doi.org/10.1371/journal.pone.0083744.; Maroof H, Hassan ZM, Mobarez AM, Mohamadabadi MA. Lactobacillus acidophilus could modulate the immune response against breast cancer in murine model. J Clin Immunol. 2012;32:1353–1359. https://doi.org/10.1007/s10875-012-9708-x.; Aragón F, Carino S, Perdigón G, de Moreno de LeBlanc A. The administration of milk fermented by the probiotic Lactobacillus casei CRL 431 exerts an immunomodulatory effect against a breast tumour in a mouse model. Immu nobiology.2014;219:457–464. https://doi.org/10.1016/j.imbio.2014.02.005.; Cordina-Duverger E, Leux C, Neri M, Tcheandjieu C, Guizard AV, Schvartz C et al. Hormonal and reproductive risk factors of papillary thyroid cancer: A population-based case-control study in France. Cancer Epidemiol. 2017;48:78–84. https://doi.org/10.1016/j.canep.2017.04.001.; Yi X, Zhu J, Zhu X, Liu GJ, Wu L. Breastfeeding and thyroid cancer risk in women: A dose-response meta-analysis of epidemiological studies. Clin Nutr. 2016;35(5):1039–1046. https://doi.org/10.1016/j.clnu.2015.12.005.; Kim H, Kim KY, Baek JH, Jung J. Are pregnancy, parity, menstruation and breastfeeding risk factors for thyroid cancer? Results from the Korea National Health and Nutrition Examination Survey, 2010–2015. Clin Endocrinol (Oxf). 2018;89(2):233239. https://doi.org/10.1111/cen.13750.; Tran TV, Kitahara CM, Leenhardt L, de Vathaire F, Boutron-Ruault MC, Journy N. The effect of thyroid dysfunction on breast cancer risk: an updated meta-analysis. Endocr Relat Cancer. 2022;30(1):e220155. https://doi.org/10.1530/ERC-22-0155.; Babic A, Sasamoto N, Rosner BA, Tworoger SS, Jordan SJ, Risch HA et al. Association Between Breastfeeding and Ovarian Cancer Risk. JAMA Oncol. 2020;6(6):e200421. https://doi.org/10.1001/jamaoncol.2020.0421.; Li DP, Du C, Zhang ZM, Li GX, Yu ZF, Wang X et al. Breastfeeding and ovarian cancer risk: a systematic review and meta-analysis of 40 epidemiological studies. Asian Pac J Cancer Prev. 2014;15(12):4829–4837. https://doi.org/10.7314/apjcp.2014.15.12.4829.; Youseflu S, Savabi-Esfahani M, Asghari-Jafarabadi M, Maleki A. The Protective Effect of Breastfeeding and Ingesting Human Breast Milk on Subsequent Risk of Endometriosis in Mother and Child: A Systematic Review and Meta-Analysis. Breastfeed Med. 2022;17(10):805–816. https://doi.org/10.1089/bfm.2022.0126.; Prosperi Porta R, Sangiuliano C, Cavalli A, Hirose Marques Pereira LC, Masciullo L, Piacenti I et al. Effects of Breastfeeding on EndometriosisRelated Pain: A Prospective Observational Study. Int J Environ Res Public Health. 2021;18(20):10602. https://doi.org/10.3390/ijerph182010602.; Zhan B, Liu X, Li F, Zhang D. Breastfeeding and the incidence of endometrial cancer: A meta-analysis. Oncotarget. 2015;6(35):38398–409. https://doi.org/10.18632/oncotarget.5049.; Lain KY, Catalano PM. Metabolic changes in pregnancy. Clin Obstet Gynecol. 2007;50(4):938–948. https://doi.org/10.1097/GRF.0b013e31815a5494.; Butte NF, Wong WW, Hopkinson JM. Energy requirements of lactating women derived from doubly labeled water and milk energy output. J Nutr. 2001;131:53–58. https://doi.org/10.1093/jn/131.1.53.; Gunderson EP, Lewis CE, Wei GS, Whitmer RA, Quesenberry CP, Sidney S. Lactation and changes in maternal metabolic risk factors. Obstet Gynecol. 2007;109(3):729–738. https://doi.org/10.1097/01.AOG.0000252831.06695.03.; Gotto AM Jr. High-density lipoprotein cholesterol and triglycerides as therapeutic targets for preventing and treating coronary artery disease. Am Heart J. 2002;144(6 Suppl.):33–42. https://doi.org/10.1067/mhj.2002.130301; Stuebe AM, Rich-Edwards JW. The reset hypothesis: lactation and maternal metabolism. Am J Perinatol. 2009;26(1):81–88. https://doi.org/10.1055/s-0028-1103034.; Schwarz EB, Ray RM, Stuebe AM, Allison MA, Ness RB, Freiberg MS, Cauley JA. Duration of lactation and risk factors for maternal cardiovascular disease. Obstet Gynecol. 2009;113(5):974–982. https://doi.org/10.1097/01.AOG.0000346884.67796.ca.; Tschiderer L, Seekircher L, Kunutsor SK, Peters SAE, O’Keeffe LM, Willeit P. Breastfeeding Is Associated With a Reduced Maternal Cardiovascular Risk: Systematic Review and Meta-Analysis Involving Data From 8 Studies and 1 192 700 Parous Women. J Am Heart Assoc. 2022;11(2):e022746. https://doi.org/10.1161/JAHA.121.022746.; Aune D, Norat T, Romundstad P, Vatten LJ. Breastfeeding and the maternal risk of type 2 diabetes: a systematic review and dose-response metaanalysis of cohort studies. Nutr Metab Cardiovasc Dis. 2014;24(2):107–115. https://doi.org/10.1016/j.numecd.2013.10.028.; Stuebe AM, Schwarz EB, Grewen K, Rich-Edwards JW, Michels KB, Foster EM et al. Duration of lactation and incidence of maternal hypertension: a longitudinal cohort study. Am J Epidemiol. 2011;174(10):1147–1158. https://doi.org/10.1093/aje/kwr227.; Sanghavi M, Rutherford JD. Cardiovascular physiology of pregnancy. Circulation. 2014;130(12):1003–1008. https://doi.org/10.1161/CIRCULATIONAHA.114.009029.; Peters SA, van der Schouw YT, Wood AM, Sweeting MJ, Moons KG, Weiderpass E et al. Parity, breastfeeding and risk of coronary heart disease: A pan-European case-cohort study. Eur J Prev Cardiol. 2016;23(16):1755–1765. https://doi.org/10.1177/2047487316658571.; Peters SAE, Yang L, Guo Y, Chen Y, Bian Z, Du J et al. Breastfeeding and the Risk of Maternal Cardiovascular Disease: A Prospective Study of 300 000 Chinese Women. J Am Heart Assoc. 2017;6(6):e006081. https://doi.org/10.1161/JAHA.117.006081.; Gunderson EP, Jacobs DR Jr, Chiang V, Lewis CE, Feng J, Quesenberry CP Jr, Sidney S. Duration of lactation and incidence of the metabolic syndrome in women of reproductive age according to gestational diabetes mellitus status: a 20-Year prospective study in CARDIA (Coronary Artery Risk Development in Young Adults). Diabetes. 2010;59(2):495–504. https://doi.org/10.2337/db09-1197.; Nguyen B, Gale J, Nassar N, Bauman A, Joshy G, Ding D. Breastfeeding and Cardiovascular Disease Hospitalization and Mortality in Parous Women: Evidence From a Large Australian Cohort Study. J Am Heart Assoc. 2019;8(6):e011056. https://doi.org/10.1161/JAHA.118.011056.; Pelucchi C, Bosetti C, Rossi M, Negri E, La Vecchia C. Selected aspects of Mediterranean diet and cancer risk. Nutr Cancer. 2009;61:756–766. https://doi.org/10.1080/01635580903285007.; Castelló A, Pollán M, Buijsse B, Ruiz A, Casas AM, Baena-Cañada JM et al. GEICAM researchers. Spanish Mediterranean diet and other dietary patterns and breast cancer risk: case-control EpiGEICAM study. Br J Cancer. 2014;111:1454–1462. https://doi.org/10.1038/bjc.2014.434.; Shively CA, Register TC, Appt SE, Clarkson TB, Uberseder B, Clear KYJ et al. Consumption of Mediterranean versus Western Diet Leads to Distinct Mammary Gland Microbiome Populations. Cell Rep. 2018;25(1):47–56.e3. https://doi.org/10.1016/j.celrep.2018.08.078.; Лиманова ОА, Торшин ИЮ, Сардарян ИС, Калачева АГ, Юдина НВ, Егорова ЕЮ и др. Обеспеченность микронутриентами и женское здоровье: интеллектуальный анализ клинико-эпидемиологических данных. Вопросы гинекологии, акушерства и перинатологии. 2014;13(2):5–15. Режим доступа: https://www.phdynasty.ru/katalog/zhurnaly/voprosyginekologii-akusherstva-i-perinatologii/2014/tom-13-nomer-2/25054?ysclid=lmszr0bwc1774327895.; Орлова СВ, Никитина ЕА, Водолазкая АН, Балашова НВ, Прокопенко ЕВ. Витамин А при беременности и кормлении грудью: актуальный взгляд на проблему. Медицинский алфавит. 2022;(16):109–114. https://doi.org/10.33667/2078-5631-2022-16-109-114.; Гомошинская МВ. Факторы, влияющие на лактацию. Вопросы современной педиатрии. 2013;12(2):139–141. https://doi.org/10.15690/vsp.v12i2.633.; https://www.med-sovet.pro/jour/article/view/7819
-
17Academic Journal
المؤلفون: E. N. Pavlyukova, M. V. Kolosova, G. V. Neklyudova, R. S. Karpov, Е. Н. Павлюкова, М. В. Колосова, Г. В. Неклюдова, Р. С. Карпов
المصدر: Medical Immunology (Russia); Том 26, № 1 (2024); 37-56 ; Медицинская иммунология; Том 26, № 1 (2024); 37-56 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: детское сердце, недоношенность, грудное молоко, микрохимеризм, экзосомы, грудное вскармливание, prematurity, breast milk, microchimerism, exosomes, breast feeding
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2619/1779; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10367; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10368; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10369; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10370; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10371; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10372; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10373; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10374; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10375; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10376; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10526; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10527; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10528; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10529; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10530; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/10531; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2619/12682; Владимирская Е.Б. Мезенхимальные стволовые клетки (МСК) в клеточной терапии // Онкогематология, 2007. № 1. С. 4-16.; Клиорин А.И. Некоторые возрастные особенности функций желудочно-кишечного тракта у детей. Справочник по детской диететике / Под ред. И.М. Воронцова, А.В. Мазурина. Л.: Медицина, 1977. С. 5-11.; Кулида Л.В., Марченко М.В., Перетятко Л.П. Патоморфология гипоксически-ишемических поражений миокарда у новорождённых 22-27 недель гестации // Архив патологии, 2021. Т. 83, № 4. С. 2.; Максимяк Л.А., Котлукова Н.П. Роль соединительной ткани сердца в обеспечении его структурных и функциональных свойств, ремоделирование на фоне патологии у детей // Педиатрия. Журнал им. Г.Н. Сперанского, 2016. Т. 95, № 3. С. 169-174.; Малышева М.В., Кулида Л.В. Иммуногистохимические и ультраструктурные параметры гипоксических повреждений миокарда у новорождённых с экстремально низкой массой тела // Детская медицина Северо-Запада, 2020. Т. 8, № 1. С. 217.; Павлюкова Е.Н., Колосова М.В., Неклюдова Г.В., Карпов Р.С. Механика левого желудочка у детей в возрасте от одного года до пяти лет, рождённых с очень низкой и экстремально низкой массой тела // Ультразвуковая и функциональная диагностика, 2020. № 3. С. 74-90.; Румянцев А.Г. Перспективы развития клинической иммунологии // Вопросы гематологии/онкологии и иммунопатологии в педиатрии, 2021. Т. 19, № 4. С. 14-17.; Самойлова Е.М., Кальсин В.А., Беспалова В.А., Девиченский В.М., Баклаушев В.П. Экзосомы: от биологии к клинике // Гены и клетки, 2017, № 4, С. 7-19.; Спирина Г.А. Морфология сердца и лёгких плодов человека в исследованиях на кафедре анатомии человека // Фундаментальные исследования, 2007. № 12. С. 173-174.; Татаринова О.С., Осипова Е.Ю., Румянцев С.А. Биологические свойства и возможности клинического использования мезенхимальных стволовых клеток // Онкогематология, 2009. № 4. С. 33-44.; Abbaszadeh H., Ghorbani F., Derakhshani M., Movassaghpour A., Yousefi M. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: A novel therapeutic paradigm. J. Cell. Physiol., 2020, Vol. 235, no. 2, pp. 706-717.; Abd Allah S.H., Shalaby S.M., El-Shal A.S., El Nabtety S.M., Khamis T., Abd El Rhman S.A., Kelani H.M. Breast milk MSCs: An explanation of tissue growth and maturation of offspring. IUBMB Life, 2016, Vol. 68, no. 12, pp. 935-942.; Ahmed W., Tariq S., Khan G. Tracking EBV-encoded RNAs (EBERs) from the nucleus to the excreted exosomes of B-lymphocytes. Sci. Rep., 2018, Vol. 8, no. 1, pp. 1-11.; Alsaweed M., Hartmann P.E., Geddes D.T., Kakulas F. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int. J. Environ. Res. Public Health, 2015, Vol. 12, no. 11, pp. 13981-14020.; Alsaweed M., Lai C.T., Hartmann P.E., Geddes D.T., Kakulas F. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci. Rep., 2016, Vol. 6, no. 1, pp. 1-13.; Anel A., Gallego-Lleyda A., de Miguel D., Naval J., Martínez-Lostao L. Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells, 2019, Vol. 8, no. 2, 154. doi:10.3390/cells8020154.; Angelini A., Thiene G., Frescura C., Baroldi G. Coronary arterial wall and atherosclerosis in youth (1-20 years): a histologic study in a northern Italian population. Int. J. Cardiol., 1990, Vol. 28, no. 3, pp. 361-370.; Aydın M.Ş., Yiğit E.N., Vatandaşlar E., Erdoğan E., Öztürk G. Transfer and Integration of Breast Milk Stem Cells to the Brain of Suckling Pups. Sci. Rep., 2018, no. 8, 14289. doi:10.1038/s41598-018-32715-5.; Baban B., Malik A., Bhatia J., Jack C.Y. Presence and profile of innate lymphoid cells in human breast milk. JAMA Pediatr., 2018, Vol. 172, no. 6, pp. 594-596.; Balle C., Armistead B., Kiravu A., Song X., Happel A.U., Hoffmann A.A., Kanaan S.B., Nelson J.L., Gray C.M., Jaspan H.B., Harrington W.E. Factors influencing maternal microchimerism throughout infancy and its impact on infant T cell immunity. J. Clin. Invest., 2022 Vol. 132, no. 13, e148826. doi:10.1172/JCI148826.; Bardanzellu F., Fanos V., Strigini F.A., Artini P.G., Peroni D.G. Human breast milk: exploring the linking ring among emerging components. Front. Pediatr., 2018, Vol. 6, 215. doi:10.3389/fped.2018.00215.; Bensley J.G., Stacy V.K., de Matteo R. Cardiac remodelling as a result of pre-term birth: implications for future cardiovascular disease. Eur. Heart J.,2010, Vol. 31, no. 16, 2058. doi:10.1093/eurheartj/ehq104.; Bertagnolli M., Xie L.F., Paquette K., He Y., Cloutier A., Fernandes R.O., Béland C., Sutherland M.R., Delfrate J., Curnier D., Bigras J.-L., Rivard A., Thébaud B., Luu T.M., Nuyt A.M. Endothelial colony-forming cells in young adults born preterm: a novel link between neonatal complications and adult risks for cardiovascular disease. J. Am. Heart Assoc., 2018, Vol. 7, no. 14, e009720. doi:10.1161/JAHA.118.009720.; Bianchi D.W., Khosrotehrani K., Way S.S., MacKenzie T.C., Bajema I., O’Donoghue K. Forever connected: the lifelong biological consequences of fetomaternal and maternofetal microchimerism. Clin. Chem., 2021, Vol. 67, no. 2, pp. 351-362.; Boudry G., Charton E., le Huerou-Luron I., Ferret-Bernard S., le Gall S., Even S., Blat S. The relationship between breast milk components and the infant gut microbiota. Front. Nutr., 2021, Vol. 8, 629740. doi:10.3389/fnut.2021.629740.; Bourlieu C., Michalski M.C. Structure–function relationship of the milk fat globule. Curr. Opin. Clin. Nutr. Metab. Care, 2015, Vol. 18, no. 2, pp. 118-127.; Briana D.D., Malamitsi-Puchner A. Coronary intimal thickening begins in fetuses: proof of concept for the “fetal origins of adult disease” hypothesis. Angiology, 2020, Vol. 71, no. 1, pp. 89-89.; Carr H., Cnattingius S., Granath F., Ludvigsson J.F., Bonamy A.K.E. Preterm birth and risk of heart failure up to early adulthood. J. Am. Coll. Cardiol., 2017, Vol. 69, no. 21, pp. 2634-2642.; Chehade H., Simeoni U., Guignard J.P., Boubred F. Preterm birth: long term cardiovascular and renal consequences. Curr. Pediatr. Rev., 2018, Vol. 14, no. 4, pp. 219-226.; Collins A., Weitkamp J.H., Wynn J.L. Why are preterm newborns at increased risk of infection? Arch. Dis. Child. Fetal Neonatal Ed., 2018, Vol. 103, no. 4, pp. F391-F394.; Cox D.J., Bai W., Price A.N., Edwards A.D., Rueckert D., Groves A.M. Ventricular remodeling in preterm infants: computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle. Pediatr. Res., 2019, Vol. 85, no. 6, pp. 807-815.; Cui J., Zhou B., Ross S.A., Zempleni J. Nutrition, microRNAs, and human health. Adv. Nutr., 2017, Vol. 8, no. 1, pp. 105-112.; Davies H. Atherogenesis and the coronary arteries of childhood. Int. J. Cardiol., 1990, no. 28, pp. 283-291.; de Weerth C., Aatsinki A.K., Azad M.B., Bartol F.F., Bode L., Collado M.C., Dettmer A.M., Field C.J., Guilfoyle M., Hinde K., Korosi A., Lustermans H., Shukri N.H.M., Moore S.E., Pundir S., Rodriguez J.M., Slupsky C.M., Turner S., van Goudoever J.B., Ziomkiewicz A., Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit. Rev. Food Sci. Nutr., 2022, pp. 1-38.; Duale A., Singh P., Al Khodor S. Breast milk: a meal worth having. Front. Nutr., 2022, Vol. 8, 800927. doi:10.3389/fnut.2021.800927.; Dutta P., Burlingham W.J. Stem cell microchimerism and tolerance to non-inherited maternal antigens. Chimerism, 2010, Vol. 1, no. 1, pp. 2-10.; El-Khuffash A., Jain A., Lewandowski A.J., Levy P.T. Preventing disease in the 21st century: early breast milk exposure and later cardiovascular health in premature infants. Pediatr. Res., 2020, Vol. 87, no. 2, pp. 385-390.; Fernández-Domínguez I.J., Manzo-Merino J., Taja-Chayeb L., Dueñas-González A., Pérez-Cárdenas E., Trejo-Becerril C. The role of extracellular DNA (exDNA) in cellular processes. Cancer Biol. Ther., 2021, Vol. 22, no. 4, pp. 267-278.; Gallier S., Vocking K., Post J.A., van de Heijning B., Acton D., van Der Beek E.M., van Baalen T. A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids Surf. B Biointerfaces, 2015, no. 136, pp. 329-339.; Gleeson J.P., Chaudhary N., Fein K.C., Doerfler R., Hredzak-Showalter P., Whitehead, K. A. Profiling of mature-stage human breast milk cells identifies six unique lactocyte subpopulations. Sci. Adv., 2022, Vol. 8, no. 26, eabm6865. doi:10.1126/sciadv.abm6865.; Golan Gerstl R., Elbaum Shiff Y., Moshayoff V., Schecter D., Leshkowitz D., Reif S. Characterization and biological function of milk-derived miRNAs. Mol. Nutr. Food Res., 2017, Vol. 61, no. 10, 1700009. doi:10.1002/mnfr.201700009.; Gomzikova M.O., Zhuravleva M.N., Vorobev V.V., Salafutdinov I.I., Laikov A.V., Kletukhina S.K., Martynova E.V., Tazetdinova L.G., Ntekim A.I., Khaiboullina S.F., Rizvanov A.A. Angiogenic activity of cytochalasin B-induced membrane vesicles of human mesenchymal stem cells. Cells, 2020, Vol. 9, no. 1, 95. doi:10.3390/cells9010095.; González A., López B., Ravassa S., San José G., Díez J. The complex dynamics of myocardial interstitial fibrosis in heart failure. Focus on collagen cross-linking. Biochim. Biophys. Acta Mol. Cell Res., 2019, Vol. 1866, no. 9, 1421. doi:10.1016/j.bbamcr.2019.06.001.; Goss K.N., Haraldsdottir K., Beshish A.G., Barton G.P., Watson A.M., Palta M., Eldridge M.W. Association between preterm birth and arrested cardiac growth in adolescents and young adults. JAMA Сardiol., 2020, Vol. 5, no. 8, pp. 910-919.; Guerri-Guttenberg R., Castilla R., Cao G., Azzato F., Ambrosio G., Milei J. Coronary intimal thickening begins in fetuses and progresses in pediatric population and adolescents to atherosclerosis. Angiology, 2020, Vol. 71, no. 1, pp. 62-69.; Hård A.L., Nilsson A.K., Lund A.M., Hansen-Pupp I., Smith L.E., Hellström A. Review shows that donor milk does not promote the growth and development of preterm infants as well as maternal milk. Acta Paediatr., 2019, Vol. 108, no. 6, pp. 998-1007.; Harris S.L., Bray H., Troughton R., Elliott J., Frampton C., Horwood J., Darlow B.A. Cardiovascular outcomes in young adulthood in a population-based very low birth weight cohort. J. Pediatr., 2020, no. 225, pp. 74-79.; Hassiotou F., Geddes D.T. Immune cell-mediated protection of the mammary gland and the infant during breastfeeding. Adv. Nutr., 2015, Vol. 6, no. 3, pp. 267-275.; Hassiotou F., Geddes D.T., Hartmann P.E. Cells in human milk: state of the science. J. Hum. Lact., 2013, Vol. 29, no. 2, pp. 171-182.; Hatmal M.M.M., Al-Hatamleh M.A., Olaimat A.N., Alshaer W., Hasan H., Albakri K.A., Alkhafaji E., Issa N.N., Al-Holy M.A., Abderrahman S.M., Abdallah A.M., Mohamud R. Immunomodulatory properties of human breast milk: microrna contents and potential epigenetic effects. Biomedicines, 2022, Vol. 10, no. 6, 1219. doi:10.3390/biomedicines10061219.; Humberg A., Fortmann I., Siller B., Kopp M.V., Herting E., Göpel W., Härtel C. Preterm birth and sustained inflammation: consequences for the neonate. Semin. Immunopathol., 2020, no. 42, 451. doi:10.1007/s00281-02000803-2.; Jain N. The early life education of the immune system: Moms, microbes and (missed) opportunities. Gut Microbes, 2020, Vol. 12, no. 1, 1824564. doi:10.1080/19490976.2020.1824564.; Jiang B., Godfrey K.M., Martyn C.N., Gale C.R. Birth weight and cardiac structure in children. Pediatrics, 2006, Vol. 117, no. 2, pp. e257-e261.; Joo H.S., Suh J.H., Lee H.J., Bang E.S., Lee J.M. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int. J. Mol. Sci., 2020, Vol. 21, no. 3, 727. doi:10.3390/ ijms2103072.; Kahn S., Liao Y., Du X., Xu W., Li J., Lönnerdal B. Exosomal microRNAs in milk from mothers delivering preterm infants survive in vitro digestion and are taken up by human intestinal cells. Mol. Nutr. Food Res., 2018, Vol. 62, no. 11, 1701050. doi:10.1002/mnfr.201701050.; Kakulas F. Breast milk: a source of stem cells and protective cells for the infant. Infant, 2015, Vol. 11, no. 6, pp. 187-191.; Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, Vol. 367, no. 6478, eaau6977. doi:10.1126/science.aau6977.; Kara R.J., Bolli P., Karakikes I., Matsunaga I. Fetal cells traffic to injured maternal myocardium and undergo cardiac differentiation. Circ. Res., 2011, no. 111, 249037. doi:10.1161/CIRCRESAHA.111.249037.; Kinder J.M., Stelzer I.A., Arck P.C., Way S.S. Immunological implications of pregnancy-induced microchimerism. Nat. Rev. Immunol., 2017, Vol. 17, no. 8, 483. doi:10.1038/nri.2017.38.; Kuciel N., Mazurek J., Czosnykowska-Łukacka M., Królak-Olejnik B. Stem cells in breast milk. Pediatria Polska Polish J. Paediatr., 2018, Vol. 93, no. 3, pp. 260-263.; Lässer C., Alikhani V.S., Ekström K., Eldh M., Paredes P.T., Bossios A., Sjöstrand M., Gabrielsson S., Lötvall J., Valadi H. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J. Transl. Med., 2011, Vol. 9, no. 1, 9. doi:10.1186/1479-5876-9-9.; Lawrence R.M. Host-resistance factors and immunologic significance of human milk. Breastfeeding. Elsevier, 2022, рр. 145-192.; Leeson P., Lewandowski A.J. A new risk factor for early heart failure: preterm birth. J. Am. Coll. Cardiol., 2017, Vol. 69, no. 21, pp. 2643-2645.; Leiferman A., Shu J., Upadhyaya B., Cui J., Zempleni J. Storage of extracellular vesicles in human milk, and microRNA profiles in human milk exosomes and infant formulas. J. Pediatr. Gastroenterol. Nutr., 2019, Vol. 69, no. 2, 235. doi:10.1097/MPG.0000000000002363.; Lewandowski A.J., Raman B., Bertagnolli M., Mohamed A., Williamson W., Pelado J.L., Leeson P. Association of preterm birth with myocardial fibrosis and diastolic dysfunction in young adulthood. J. Am. Coll. Cardiol., 2021, Vol. 78, no. 7, pp. 683-692.; Liao Y., Du X., Li J., Lönnerdal B. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol. Nutr. Food Res., 2017, Vol. 61, no. 11, 1700082. doi:10.1002/mnfr.201700082.; Lokossou G.A., Kouakanou L., Schumacher A., Zenclussen A.C. Human breast milk: from food to active immune response with disease protection in infants and mothers. Front. Immunol., 2022, Vol. 13, 849012. doi:10.3389/fimmu.2022.849012.; Macia L., Nanan R., Hosseini-Beheshti E., Grau G.E. Host-and microbiota-derived extracellular vesicles, immune function, and disease development. Int. J. Mol. Sci., 2020, Vol. 21, no. 1, 107. doi:10.3390/ijms21010107.; Manca S., Upadhyaya B., Mutai E., Desaulniers A.T., Cederberg R.A., White B.R. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci. Rep., 2018, no. 8, 11. doi:10.1038/s41598-018-29780-1.; Martin C., Patel M., Williams S., Arora H., Sims B. Human breast milk-derived exosomes attenuate cell death in intestinal epithelial cells. Innate Immun., 2018, Vol. 24, pp. 278-284.; Massari C.H., Ferreira-Silva A., Riceti-Magalhães H.I., Souza-Silva D.R., Miglino M.A. Computed tomography examination of the os cordis in a lamb (Ovis aries Linnaeus, 1758). Rev. MVZ Cordoba, 2022, Vol. 27, no. 1, e2153.; Matturri L., Ottaviani G., Corti G., Lavezzi A.M. Pathogenesis of early atherosclerotic lesions in infants. Pathol. Res. Pract., 2004, Vol. 200, no. 5, pp. 403-410.; Melnik B.C., Stremmel W., Weiskirchen R., John S.M., Schmitz G. Exosome-derived microRNAs of human milk and their effects on infant health and development. Biomolecules, 2021, Vol. 11, no. 6, 851. doi:10.3390/biom11060851.; Melville J.M., Moss T.J.M. The immune consequences of preterm birth. Front. Neurosci., 2013, Vol. 7, 79. doi:10.3389/fnins.2013.00079.; Meyer W.W., Lind J., Yao A.C., Kauffman S.L. Early arterial lesions in infancy and childhood and ways of prevention. Paediatrician, 1982, no. 11, pp. 136-156.; Michalski M.C., Briard V., Michel F., Tasson F., Poulain P. Size distribution of fat globules in human colostrum, breast milk, and infant formula. J. Dairy Sci., 2005, Vol. 88, no. 6, pp. 1927-1940.; Milei J., Grana D.R., Navari C., Azzato F., Guerri-Guttenberg R.A., Ambrosio G. Coronary intimal thickening in newborn babies and ≤ 1-year-old infants. Angiology, 2010, Vol. 61, no. 4, pp. 350-356.; Mohamed A., Lamata P., Williamson W., Alsharqi M., Tan C.M.J., Burchert H., Huckstep O.J., Suriano K., Francis J.M., Pelado J.L., Monteiro C., Neubauer S., Levy P.T., Leeson P., Lewandowski A.J. Multimodality imaging demonstrates reduced right-ventricular function independent of pulmonary physiology in moderately pretermborn adults. JACC Cardiovasc. Imaging, 2020, Vol. 13, no. 9, pp. 2046-2048.; Molès J.P., Tuaillon E., Kankasa C., Bedin A.S., Nagot N., Marchant A., McDermid J.M., van de Perre P. Breastmilk cell trafficking induces microchimerism-mediated immune system maturation in the infant. Pediatr. Allergy Immunol., 2018, Vol. 29, no. 2, pp. 133-143.; Monguio-Tortajada M., Roura S., Galvez-Monton C., Pujal J. M., Aran G., Sanjurjo L. Nanosized UCMSCderived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine. Theranostics, 2017, Vol. 7, no. 2, pp. 270-284. doi:10.7150/thno.16154.; Mourtzi N., Siahanidou T., Tsifintaris M., Karamichali E., Tasiopoulou A., Sertedaki A., Pesmatzoglou M., Kapetanaki A., Liosis G., Baltatzis G., Vlachakis D., Chrousos G.P., Giannakakis A. 3lncRNA NORAD is consistently detected in breastmilk exosomes and its expression is downregulated in mothers of preterm infants. Int. J. Mol. Med., 2021, Vol. 48, no. 6, pp. 1-10.; Mulcahy L.A., Pink R.C., Carter D.R.F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles, 2014, Vol. 3, no. 1, 24641. doi:10.3402/jev.v3.24641.; Munir J., Lee M., Ryu S. Exosomes in food: Health benefits and clinical relevance in diseases. Adv. Nutr., 2020, Vol. 11, no. 3, pp. 687-696.; Mutai E., Ngu A.K.H., Zempleni J. Preliminary evidence that lectins in infant soy formula apparently bind bovine milk exosomes and prevent their absorption in healthy adults. BMC Nutr., 2022, Vol. 8, no. 1, pp. 1-6.; Nanou A., Crespo M., Flohr P., de Bono J.S., Terstappen L.W. Scanning electron microscopy of circulating tumorcellsandtumor-derivedextracellularvesicles. Cancers, 2018, Vol. 10, no. 11, 416. doi:10.3390/cancers10110416.; Nanou A., Zeune L.L., Terstappen L.W.M.M. Leukocyte-derived extracellular vesicles in blood with and without EpCAM enrichment. Cells, 2019, Vol. 8, no. 8, 937. doi:10.3390/cells8080937.; Ninkina N., Kukharsky M.S., Hewitt M.V., Lysikova E.A., Skuratovska L.N., Deykin A.V., Buchman V.L. Stem cells in human breast milk. Hum. Cell, 2019, рр. 1-8.; Noh S.K., Koo S.I. Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. J. Nutr., 2004, Vol. 134, no. 10, pp. 2611-2616.; Ortmann W., Kolaczkowska E. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell Tissue Res., 2018, Vol. 371, no. 3, pp. 473-488.; Palmeira P., Carneiro-Sampaio M. Immunology of breast milk. Rev. Assoc. Med. Bras., 2016, Vol. 62, no. 6, pp. 584-593.; Panova N.A., Skopichev V.G. A role for cellular immunity in early postpartum period. Medical Immunology (Russia), 2021, Vol. 23, no. 4, pp. 853-858. doi:10.15789/1563-0625-ARF-2275.; Peyman G., Shraddha R., Afsoon G., Hashem B.M., Nasibeh D. Biology, properties and clinical application of Mesenchymal stem cells. Russian Open Medical Journal, 2014, Vol. 3, no. 2. doi:10.15275/rusomj.2014.0202.; Pisano C., Galley J., Elbahrawy M., Wang Y., Farrell A., Brigstock D., Besner G.E. Human breast milkderived extracellular vesicles in the protection against experimental necrotizing enterocolitis. J. Pediatr. Surg., 2020, Vol. 55, no. 1, pp. 54-58.; Ramadan M., Cooper B., Posnack N. G. Bisphenols and phthalates: Plastic chemical exposures can contribute to adverse cardiovascular health outcomes. Birth Defects Res., 2020, Vol. 112, no. 17, pp. 1362-1385.; Reif S., Shiff Y.E., Golan-Gerstl R. Milk-derived exosomes (MDEs) have a different biological effect on normal fetal colon epithelial cells compared to colon tumor cells in a miRNA-dependent manner. J. Transl. Med., 2019, Vol. 17, no. 1, 325. doi:10.1186/s12967-019-2072-3.; Riskin A., Almog M., Peri R., Halasz K., Srugo I., Kessel A. Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr. Res., 2012, Vol. 71, no. 2, pp. 220-225.; Rodríguez J.M., Fernández L., Verhasselt V. The gut-breast axis: programming health for life. Nutrients, 2021, Vol. 13, no. 2. 606. doi:10.3390/nu13020606.; Rubio M., Bustamante M., Hernandez-Ferrer C., Fernandez-Orth D., Pantano L., Sarria Y., Estivill X. Circulating miRNAs, isomiRs and small RNA clusters in human plasma and breast milk. PLoS One, 2018, Vol. 13, no. 3, e0193527. doi:10.1371/journal.pone.0193527.; Rueda R. The role of complex lipids in attaining metabolic health. Curr. Cardiovasc. Risk Rep., 2014, no. 8, 371. doi:10.1007/s12170-013-0371-4.; Samsonraj R.M., Raghunath M., Nurcombe V., Hui J.H., Cool S.M. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Сells Transl. Med., 2017, Vol. 6, no. 12, pp. 2173-2185.; Sani M., Hosseini S.M., Salmannejad M., Aleahmad F., Ebrahimi S., Jahanshahi S., Talaei-Khozani T. Origins of the breast milk‐derived cells; an endeavor to find the cell sources. Cell Biol. Int., 2015, Vol. 39, no. 5, pp. 611-618.; Sedykh S.E., Burkova E.E., Purvinsh L.V., Klemeshova D.A., Ryabchikova E.I., Nevinsky G.A. Milk exosomes: Isolation, biochemistry, morphology and perspectives of use. Extracellular Vesicles and Their Importance in Human Health, 2020, pp. 1-28.; Sicco C.L., Reverberi D., Balbi C., Ulivi V., Principi E., Pascucci L., Becherini P., Bosco M.C., Varesio L., Franzin C., Pozzobon M., Cancedda R., Tasso R. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells Transl. Med., 2017, Vol. 6, no. 3, pp. 1018-1028.; Singh H. Symposium review: Fat globules in milk and their structural modifications during gastrointestinal digestion. J. Dairy Sci., 2019, Vol. 102, no. 3, pp. 2749-2759.; Sluijter J.P.G., Davidson S.M., Boulanger C.M., Buzas E.I., de Kleijn D.P.V., Engel F.B., Giricz Z., Hausenloy D.J., Kishore R., Lecour S., Leor J., Madonna R., Perrino C., Prunier F., Sahoo S., Schiffelers R.M., Schulz R., van Laake L.W., Ytrehus K., Ferdinandy P. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc. Res., 2018, Vol. 114, no. 1, pp. 19-34.; Sokolova V., Ludwig A.K., Hornung S., Rotan O., Horn P.A., Epple M., Giebel B. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces, 2011, Vol. 87, no. 1, pp. 146-150.; Stary H.C. Macrophages, macrophage foam cells, and eccentric intimal thickening in the coronary arteries of young children. Atherosclerosis, 1987, Vol. 64, no. 2-3, pp. 91-108.; Stevens A.M., Hermes H.M., Rutledge J.C., Buyon J.P., Nelson J.L. Myocardial-tissue-specific phenotype of maternal microchimerism in neonatal lupus congenital heart block. Lancet, 2003, Vol. 362, no. 9396, pp. 1617-1623.; Szabo G., Momen-Heravi F. Extracellular vesicles and exosomes: biology and pathobiology. The Liver. Biology and Pathobiology, 2020, pp. 1022-1027.; Tachibana A., Santoso M.R., Mahmoudi M., Shukla P., Wang L., Bennett M., Goldstone A.B., Wang M., Fukushi M., Ebert A.D., Woo Y.J., Rulifson E., Yang P.C. Paracrine effects of the pluripotent stem cellderived cardiac myocytes salvage the injured myocardium. Circ. Res., 2017, Vol. 121, no. 6, e22. doi:10.1161/CIRCRESAHA.117.310803.; Tian T., Wang Y., Wang H., Zhu Z., Xiao Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J. Cell. Biochem., 2010, Vol. 111, no. 2, pp. 488-496.; Tingö L., Ahlberg E., Johansson L., Pedersen S.A., Chawla K., Sætrom P., Cione E., Simpson M.R. Noncoding RNAs in human breast milk: a systematic review. Front. Immunol., 2021, Vol. 12, 725323. doi:10.3389/fimmu.2021.725323.; Tomé-Carneiro J., Fernández-Alonso N., Tomás-Zapico C., Visioli F., Iglesias-Gutierrez E., Dávalos A. Breast milk microRNAs harsh journey towards potential effects in infant development and maturation. Lipid encapsulation can help. Pharmacol. Res., 2018, no. 32, pp. 21-32.; Torralba D., Baixauli F., Villarroya-Beltri C., Fernández-Delgado I., Latorre-Pellicer A., Acín-Pérez R., Martín-Cófreces N.B., Jaso-Tamame Á.L., Iborra S., Jorge I., González-Aseguinolaza G., Garaude J., VicenteManzanares M., Enríquez J.A., Mittelbrunn M., Sánchez-Madrid F. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat. Commun., 2018, Vol. 9, no. 1, pp. 1-17.; Trainini J.C. Cardiac helical function. Fulcrum and torsion. Japan J. Clin. Med. Res., SRC/JJCMR-139, 2022, 136.; Trainini J., Beraudo M., Wernicke M. Physiology of the helical heart. Int. J. Anat. Appl. Physiol., 2021, Vol. 7, no. 5, 195.; Trainini J., Lowenstein J., Beraudo M., Wernicke M., Trainini A., Llabata V. M., Carreras C.F. Myocardial torsion and cardiac fulcrum. Morphologie, 2021, Vol. 105, no. 348, pp. 15-23.; Tripathy S., Singh S., Das S.K. Potential of breastmilk in stem cell research. Cell Tissue Bank., 2019, Vol. 20, no. 4, pp. 467-488.; Turchinovich A., Drapkina O., Tonevitsky A. Transcriptome of extracellular vesicles: State-of-the-art. Front. Immunol., 2019, Vol. 10, 202. doi:10.3389/fimmu.2019.00202.; van Gils F.A. The fibrous skeleton in the human heart: embryological and pathogenetic considerations. Virchows Arch. A Pathol. Anat. Histol., 1981, Vol. 393, no. 1, 61-73.; van Zyl B., Planas R., Ye Y., Foulis A., de Krijger R.R., Vives-Pi M., Gillespie K.M. Why are levels of maternal microchimerism higher in type 1 diabetes pancreas?. Chimerism, 2010, Vol. 1, no. 2, pp. 45-50.; Velican C., Velican D. Coronary arteries in children up to the age of ten years II. Intimal thickening and its role in atherosclerotic involvement. Med. Interne, 1976, Vol. 14, no. 1, pp. 17-24.; Vijayakumar M., Fall C.H., Osmond C., Barker D.J. Birth weight, weight at one year, and left ventricular mass in adult life. Heart, 1995, Vol. 73, no. 4, pp. 363-367.; Vrancken S.L., van Heijst A.F., de Boode W.P. Neonatal hemodynamics: from developmental physiology to comprehensive monitoring. Front. Pediatr., 2018, Vol. 6, 87. doi:10.3389/fped.2018.00087.; Vrselja A., Pillow J.J., Bensley J.G., Ellery S.J., Ahmadi-Noorbakhsh S., Moss T.J., Black M.J. Intrauterine inflammation exacerbates maladaptive remodeling of the immature myocardium after preterm birth in lambs. Pediatr. Res., 2022, Vol. 92, no. 6, pp. 1555-1565.; Waldenstrom A., Genneback N., Hellman U. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One, 2012, Vol. 7, no. 4, e34653. doi:10.1371/journal.pone.0034653.; Wang Z., Lon, D.W., Huan, Y., Che W.C., Ki K., Wang Y. Decellularized neonatal cardiac extracellular matrix prevents widespread ventricular remodeling in adult mammals after myocardial infarction. Acta Biomater., 2019, Vol. 87, pp. 140-151.; Witkowska-Zimny M., Kaminska-El-Hassan E. Cells of human breast milk. Cell. Mol. Biol. Lett., 2017, Vol. 22, 11. doi:10.1186/s11658-017-0042-4.; Zempleni J., Aguilar-Lozano A., Sadri M., Sukreet S., Manca S., Wu D., Mutai E. Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications for infants. J. Nutr., 2017, Vol. 147, no. 1, pp. 3-10.; Zhou Y., Yu Z., Wang X., Chen W., Liu Y., Zhang Y., Han S. Exosomal circRNAs contribute to intestinal development via the VEGF signalling pathway in human term and preterm colostrum. Aging (Albany NY), 2021, Vol. 13, no. 8, pp. 11218-11233.; Zonneveld M.I., Brisson A.R., van Herwijnen M.J., Tan S., van de Lest C.H., Redegeld F.A., Garssen J., Wauben M.H., Nolte-’t Hoen E.N. Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. J. Extracell. Vesicles, 2014, Vol. 3, 10.3402/jev.v3.24215. doi:10.3402/jev.v3.24215.; https://www.mimmun.ru/mimmun/article/view/2619
-
18Academic Journal
المؤلفون: Гурова, М. М., Проценко, Е. А., Балакирева, Е. А., Романова, Т. А., Подсвирова, Е. В., Кириенко, А. И., Хавкин, А. И.
مصطلحات موضوعية: медицина, педиатрия, дети, грудное вскармливание, искусственное вскармливание, прикорм
Relation: Введение прикормов у детей. Практические вопросы / М.М. Гурова [и др.] // Экспериментальная и клиническая гастроэнтерология. - 2022. - №202(6).-С. 106-112. - Doi:10.31146/1682-8658-ecg-202-6-106-112. - Библиогр.: с. 112.; http://dspace.bsu.edu.ru/handle/123456789/52683
-
19Academic Journal
المؤلفون: Юрий Иванович Ровда, Наталья Николаевна Миняйлова, Вероника Павловна Строева, Екатерина Дмитриевна Никитина
المصدر: Мать и дитя в Кузбассе, Vol 22, Iss 2, Pp 40-51 (2021)
مصطلحات موضوعية: белково-энергетическая недостаточность (бэн), гипотрофия, недостаточность питания, вскармливание, дети, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
وصف الملف: electronic resource
-
20Academic Journal
المؤلفون: Яков Яковлевич Яковлев, Фарок Каримович Манеров, Марина Михайловна Котович, Сергей Павлович Щепетков, Марина Афанасьевна Соколовская
المصدر: Мать и дитя в Кузбассе, Vol 21, Iss 4, Pp 12-18 (2020)
مصطلحات موضوعية: грудное вскармливание, питание беременных, питание кормящих, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
وصف الملف: electronic resource