-
1Academic Journal
المؤلفون: К. V. Dergilev, Z. I. Tsokolaeva, I. B. Beloglazova, Yu. D. Vasilets, D. O. Traktuev, N. B. Kulbitsky, E. V. Parfenova, К. В. Дергилев, З. И. Цоколаева, И. Б. Белоглазова, Ю. Д. Василец, Д. О. Трактуев, Б. Н. Кульбицкий, Е. В. Парфенова
المساهمون: This work was supported by the Russian Science Foundation grants 17-15-01368P and RFBR 19-015-00231, Работа выполнена при финансовой поддержке грантов РНФ 17-15-01368П и РФФИ 19-015-00231
المصدر: General Reanimatology; Том 18, № 2 (2022); 76-82 ; Общая реаниматология; Том 18, № 2 (2022); 76-82 ; 2411-7110 ; 1813-9779
مصطلحات موضوعية: ангиогенез, vasculogenic cells, vasculogenesis, angiogenesis, васкулогенные клетки, васкулогенез
وصف الملف: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/2215/1605; https://www.reanimatology.com/rmt/article/view/2215/1614; Arjmand B., Abedi M., Arabi M., Alavi-Moghadam S., Rezaei-Tavirani M., Hadavandkhani M., Tayanloo-Beik A., Kordi R., Roudsari P. P., Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol. 2021; 9: 704903. DOI:10.3389/fcell.2021.704903.; Vidal-Calés P., Cepas-Guillén P. L., Brugaletta S., Sabaté M. New Interventional Therapies beyond Stenting to Treat ST-Segment Elevation Acute Myocardial Infarction. J Cardiovasc Dev Dis. 2021; 8 (9): 100. DOI:10.3390/jcdd8090100.; Viola M., de Jager S. C. A., Sluijter J. P. G. Targeting Inflammation after Myocardial Infarction: A Therapeutic Opportunity for Extracellular Vesicles? Int J Mol Sci. 2021; 22 (15): 7831. DOI:10.3390/ijms22157831.; He L., Huang X., Kanisicak O., Li Yi., Wang Y., Li Y., Pu W., Liu Q., Zhang H., Tian X., Zhao H., Liu X., Zhang S., Nie Yu., Hu S., Miao X., Dong Wang Q., Wang F., Chen T., Xu Q., Lui K., Molkentin J. D, Zhou B. Preexisting endothelial cells mediate cardiac neovascularization after injury. J Clin Invest. 2017. DOI:10.1172/JCI93868. PMID: 2865034. PMID: 28650345. PMCID: PMC5531398.; Дергилев К. В. Характеристика ангиогенных свойств с-kit+ клеток миокарда / К. В. Дергилев [и др.] // Гены и клетки. – 2018. – 14 (3): 86–93. DOI:10.23868/201811038.; Scalise M., Marino F., Cianflone E., Mancuso T., Marotta P., Aquila I., Torella M., Nadal-Ginard B., Torella D. Heterogeneity of Adult Cardiac Stem Cells. Adv Exp Med Biol. 2019; 1169: 141–178. DOI:10.1007/978-3-030-24108-7_8. PMID: 31487023.; Bhartiya D., Flora Y., Sharma D., Mohammad S. A. Two Stem Cell Populations Including VSELs and CSCs Detected in the Pericardium of Adult Mouse Heart. Stem Cell Rev Rep. 2021; 17 (2): 685–693. DOI:10.1007/s12015-021-10119-9.; Iancu C. B., Iancu D., Renţea I., Hostiuc S., Dermengiu D., Rusu M. C. Molecular signatures of cardiac stem cells. Rom J Morphol Embryol. 2015; 56 (4): 1255–1262. PMID: 26743269.; Santi L. A., Napolitano F., Montuori N., Ragno P. The Urokinase Recep-tor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci. 2021; 22 (8): 4111. DOI:10.3390/ijms22084111. PMID: 33923400. PMCID: PMC8073738.; Dergilev K. V., Stepanova V. V., Beloglazova I. B., Tsokolayev Z. I., Parfenova E. V. Multifaced Roles of the Urokinase System in the Regulation of Stem Cell Niches. Acta Naturae. 2018; 10 (4): 19–32. PMID: 30713759. PMCID: PMC6351041.; Baart V. M., Houvast R. D., de Geus-Oei L. F., Quax P. H. A., Kuppen P. J. K., Vahrmeijer A. L, Sier C. F. M. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res. 2020; 10 (1): 87. DOI:10.1186/s13550-020-00673-7. PMID: 32725278. PMCID: PMC7387399.; Dewerchin M., Nuffelen A. V., Wallays G., Bouché A., Moons L., Carmeliet P., Mulligan R. C., Collen D. Generation and characterization of urokinase receptor-deficient mice. J Clin Invest. 1996; 97 (3): 870–878. PMID: 8609247. PMCID: PMC507128. DOI:10.1172/JCI118489.; Dergilev K. V., Tsokolaeva Z. I., Beloglazova I. B., Ratner E. I., Molokotina Yu. D., Parfenova E. V. Angiogenic properties of myocardial c-kit+ cells. Genes & Cells. 2018; 13 (3): 82–88. DOI:10.23868/201811038.; Xiao Q., Zeng L., Zhang Z., Margariti A., Ali Z. A., Channon K. M., Xu Q., Hu Y. Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler Thromb Vasc Biol. 2006; 26 (10): 2244–2251. DOI:10.1161/01.ATV.0000240251.50215.50.; Dergilev K. V., Tsokolaeva Z. I., Beloglazova I. B., Zubkova E. S., Ratner E. I., Molokotina Y. D., Parfenova E. V. Urokinase Receptor Regulates Adhesion of Progenitor Cardiac Cells to Vitronectin. Bull Exp Biol Med. 2019; 167 (3): 315–319. DOI:10.1007/s10517-019-04517-w. PMID: 31346863.; Li Santi A., Napolitano F., Montuori N., Ragno P. The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci. 2021; 22 (8): 4111. DOI:10.3390/ijms22084111.; Jia C., Malone H. M., Keasey M. P., Lovins C., Elam J., Hagg T. Blood Vitronectin Induces Detrimental Brain Interleukin-6 and Correlates With Outcomes After Stroke Only in Female Mice. Stroke. 2020; 51 (5): 1587–1595. DOI:10.1161/STROKEAHA.120.029036.; Keasey M. P., Jia C., Pimentel L. F., Sante R. R., Lovins C., Hagg T. Blood vitronectin is a major activator of LIF and IL-6 in the brain through integrin-FAK and uPAR signaling. J Cell Sci. 2018; 131 (3): jcs202580. DOI:10.1242/jcs.202580.; Napolitano F., Montuori N. The Role of the Plasminogen Activation System in Angioedema: Novel Insights on the Pathogenesis. J Clin Med. 2021; 10 (3): 518. DOI:10.3390/jcm10030518.; Gorrasi A., Petrone A. M., Li Santi A., Alfieri M., Montuori N., Ragno P. New Pieces in the Puzzle of uPAR Role in Cell Migration Mechanisms. Cells. 2020; 9 (12): 2531. DOI:10.3390/cells9122531.; Heydarkhan-Hagvall S., Gluck J. M., Delman C., Jung M., Ehsani N., Full S., Shemin R. J. The effect of vitronectin on the differentiation of embryonic stem cells in a 3D culture system. Biomaterials. 2012 (7): 2032–2040. DOI:10.1016/j.biomaterials.2011.11.065. PMID: 22169822. PMCID: PMC7731733.; Ferraris G. M., Schulte C., Buttiglione V., De Lorenzi V., Piontini A., Galluzzi M., Podestà A., Madsen C. D., Sidenius N. The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins. EMBO J. 2014; 33 (21): 2458–2472. DOI:10.15252/embj.201387611. PMID: 25168639.; Chillà A., Margheri F., Biagioni A., Del Rosso M., Fibbi G., Laurenzana A. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis. J Exp Clin Cancer Res. 2018; 37 (1): 74. DOI:10.1186/s13046-018-0742-2.; Manetti M., Rosa I., Fazi M., Guiducci S., Carmeliet P., Ibba-Manneschi L., Matucci-Cerinic M. Systemic sclerosis-like histopathological features in the myocardium of uPAR-deficient mice. Ann Rheum Dis. 2016; 75 (2): 474–478. DOI:10.1136/annrheumdis-2015-207803 PMID: 26269399.; Manetti M., Rosa I., Milia A. F., Guiducci S., Carmeliet P., Ibba-Manneschi L., Matucci-Cerinic M. Inactivation of urokinase-type plasminogen activator receptor (uPAR) gene induces dermal and pulmonary fibrosis and peripheral microvasculopathy in mice: a new model of experimental scleroderma? Ann Rheum Dis. 2014; 73 (9): 1700–1709. DOI:10.1136/annrheumdis-2013-203706. PMID: 23852693.; D’Alessio S., Fibbi G., Cinelli M., Guiducci S., Del Rosso A., Margheri F., Serratì S., Pucci M., Kahaleh B., Fan P., Annunziato F., Cosmi L., Liotta F., Matucci-Cerinic M., Del Rosso M. Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum. 2004; 50 (10): 3275–3285. DOI:10.1002/art.20562. PMID: 15476218.; Serratì S., Cinelli M., Margheri F., Guiducci S., Del Rosso A., Pucci M., Fibbi G., Bazzichi L., Bombardieri S., Matucci-Cerinic M., Del Rosso M. Systemic sclerosis fibroblasts inhibit in vitro angiogenesis by MMP-12-dependent cleavage of the endothelial cell urokinase receptor. J Pathol. 2006; 210 (2): 240–248. DOI:10.1002/path.2048. PMID: 16917801.; Margheri F., Luciani C., Taddei M. L., Giannoni E., Laurenzana A., Biagioni A., Chillà A., Chiarugi P., Fibbi G., Del Rosso M. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style. Oncotarget. 2014 30; 5 (6): 1538–1553. DOI:10.18632/oncotarget.1754. PMID: 24681666.; Bernstein A. M., Twining S. S., Warejcka D. J., Tall E., Masur S. K. Urokinase receptor cleavage: a crucial step in fibroblast-to-myofibroblast differentiation. Mol Biol Cell. 2007; 18 (7): 2716–2727. DOI:10.1091/mbc.e06-10-0912. PMID: 17507651.; Bernstein A. M., Greenberg R. S., Taliana L., Masur S. K. Urokinase anchors uPAR to the actin cytoskeleton. Invest Ophthalmol Vis Sci. 2004; 45 (9): 2967–2977. DOI:10.1167/iovs.04-0030. PMID: 15326109.; https://www.reanimatology.com/rmt/article/view/2215
-
2Academic Journal
المؤلفون: K. V. Dergilev, Z. I. Tsokolayeva, I. B. Beloglazova, Yu. D. Vasilets, D. O. Traktuyev, B. N. Kulbitsky, E. V. Parfenova, К. В. Дергилев, З. И. Цоколаева, И. Б. Белоглазова, Ю. Д. Василец, Д. О. Трактуев, Б. Н. Кульбицкий, Е. В. Парфенова
المساهمون: This work was supported by the Russian Science Foundation grant 17-15-01368P and the Russian Foundation for Basic Research 19-29-04164 (epicardial cell-based spheroids assembly)., Работа выполнена при финансовой поддержке гранта РНФ 17-15-01368П и РФФИ 19-29-04164 (сборка сфероидов на основе клеток эпикарда).
المصدر: General Reanimatology; Том 17, № 6 (2021); 49-55 ; Общая реаниматология; Том 17, № 6 (2021); 49-55 ; 2411-7110 ; 1813-9779
مصطلحات موضوعية: урокиназный рецептор, epicardial mesothelium, urokinase receptor, эпикардиальный мезотелий
وصف الملف: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/2159/1574; https://www.reanimatology.com/rmt/article/view/2159/1583; Derrick C.J., Noël E.S. The ECM as a driver of heart development and repair. Development. 2021; 148 (5): DOI:10.1242/dev.191320. PMID: 33674261.; Nair N. Epidemiology and pathogenesis of heart failure with preserved ejection fraction. Review. Cardiovasc Med. 2020; 21 (4): 531–540. DOI:10.31083/j.rcm.2020.04.154.; Mocumbi A.O., Stothard J.R., Correia-de-Sá P., Yacoub M. Endomyocardial Fibrosis: an Update After 70 Years.Curr Cardiol Rep. 2019; 21 (11): 148. DOI:10.1007/s11886-019-1244-3. PMID: 317583524.; Zhou B., A. von Gise., Ma Q., Hu Y.W., Pu W.T. Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev. Biol. 338 (2010) 251–261. DOI:10.1016/j.ydbio.2009.12.007. PMID: 20025864. PMCID: PMC2815244; Wessels. A, van den Hoff M.J., Adamo R.F., Phelps A.L., Lockhart M.M., Sauls K., Briggs L.E., Norris R.A., van Wijk B., Perez-Pomares J.M., Dettman R.W., Burch J.B. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev. Biol. 2012; 366: 111–124. DOI:10.1016/j.ydbio.2012.04.020. PMID: 22546693. PMCID: PMC3358438; von Gise A., Zhou B., Honor L.B., Ma Q., Petryk A., Pu W.T. WT1 regulates epicardial epithelial to mesenchymal transition through betacatenin and retinoic acid signaling pathways, Dev. Biol. 2011; 356: 421–431. DOI:10.1016/j.ydbio.2011.05.668. PMID: 21663736. PMCID: PMC3147112; Braitsch C.M., Combs M.D., Quaggin, S.E., Yutzey K.E. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Dev. Biol. 2012; 368: 345–357. DOI:10.1016/j.ydbio.2012.06.002. PMID: 22687751. PMCID: PMC3414197; Acharya, A., Baek, S.T., Huang, G., Eskiocak, B., Goetsch, S., Sung, C.Y., Banfi, S., Sauer M.F., OlsenG.S., Duffield J.S. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012; 139: 2139–2149. DOI:10.1242/dev.079970. PMID: 22573622. PMCID: PMC3357908; Moore-Morris T., Cattaneo P., Guimaraes-Camboa N., Bogomolovas J., Cedenilla M., Banerjee I., Ricote M., Kisseleva T., Zhang L., Gu Y., Dalton N.D., Peterson K.L., Chen J., Puceat M., Evans S.M. Infarct fibroblasts do not derive from bone marrow lineages. Circ. Res. 2012; 122 (4): 583–590. DOI:10.1161/CIRCRESAHA.117.311490. PMID: 29269349. PMCID: PMC5815911; Moore-Morris T., Guimaraes-Camboa N., Banerjee I., Zambon A.C., Kisseleva T., Velayoudon A., Stallcup W.B., Gu Y. Dalton N.D, Cedenilla M., Gomez-Amaro R., Zhou B. Brenner D.A, Peterson K.L., Chen J., Evans S.M. Resident fibroblast lineages mediate pressure overloadinduced cardiac fibrosis. J Clin Invest. 2014; 124 (7): 2921–2934. DOI:10.1172/JCI7478.3. PMID: 24937432. PMCID: PMC4071409; Braitsch C.M., Kanisicak O., van Berlo J.H., Molkentin J.D, Yutzey K.E. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J. Mol. Cell. Cardiol. 2013; 65: 108–119. DOI:10.1016/j.yjmcc.2013.10.005. PMID: 24140724. PMCID: PMC3848425; Santi A.Li., Napolitano F., Montuori N., Ragno P. The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci. 2021; 22 (8): 4111. DOI:10.3390/ijms22084111. PMID: 33923400. PMCID: PMC8073738; Dergilev K.V., Stepanova V.V., Beloglazova I.B., Tsokolayev Z.I., Parfenova E.V. Multifaced Roles of the Urokinase System in the Regulation of Stem Cell Niches. Acta Naturae. 2018; 10 (4): 19–32. PMID: 30713759. PMCID: PMC6351041; Junqueira L.C., Bignolas G., Brentani R.R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J. 1979; 11: 447–455. DOI:10.1007/bf01002772; Dergilev K.V., Tsokolaeva Z.I., Beloglazova I.B., Ratner E.I., Parfenova E.V. Transforming Growth Factor Beta (TGF-β1) Induces Pro-Reparative Phenotypic Changes in Epicardial Cells in Mice.Bull Exp Biol Med. 2021; 170 (4): 565–570. DOI:10.1007/s10517-021-05107-5.; Baart V.M., Houvast R.D., de Geus-Oei L.F., Quax P.H.A., Kuppen P.J.K., Vahrmeijer A.L., Sier C.F.M. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res. 2020; 10 (1): 87. DOI:10.1186/s13550-020-00673-7. PMID: 32725278. PMCID: PMC7387399; Genua M., D'Alessio S., Cibella J., Gandelli A., Sala E., Correale C., Spinelli A., Arena V., Malesci A., Rutella S., Ploplis V.A., Vetrano S., Danese S. The urokinase plasminogen activator receptor (uPAR) controls macrophage phagocytosis in intestinal inflammation. Gut. 2015; 64 (4): 589–600. DOI:10.1136/gutjnl-2013-305933. PMID: 24848264; Jo M., Takimoto S., Montel V., Gonias S.L.The urokinase receptor promotes cancer metastasis independently of urokinase-type plasminogen activator in mice. Am J Pathol. 2009; 175 (1): 190–200. DOI:10.2353/ajpath.2009.081053. PMID: 19497996. PMCID: PMC2708805; Jo M., Lester R.D., Montel V., Eastman B., Takimoto S., Gonias S.L. Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling J Biol Chem. 2009; 284 (34): 22825–22833 DOI:10.1074/jbc.M109.023960. PMID: 19546228. PMCID: PMC2755690; Hinz B., Phan S.H., Thannickal V.J., Prunotto M., Desmoulière A., Varga J., De Wever O., Mareel M., Gabbiani G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012; 180 (4): 1340–1355. DOI:10.1016/j.ajpath.2012.02.004. PMID: 22387320. PMCID: PMC3640252; Castella L.F., Buscemi L., Godbout C., Meister J.J., Hinz B. A new lockstep mechanism of matrix remodelling based on subcellular contractile events. J Cell Sci. 2010; 123 (Pt 10): 1751–1760. DOI:10.1242/jcs.066795. PMID: 20427321; Wang L., Ly C.M., Ko C.Y., Meyers E.E., Lawrence D.A., Bernstein A.M. uPA binding to PAI-1 induces corneal myofibroblast differentiation on vitronectin. Invest Ophthalmol Vis Sci. 2012; 53 (8): 4765–4775. DOI:10.1167/iovs.12-10042. PMID: 22700714. PMCID: PMC3949353; Stepanova V., Lebedeva T., Kuo A., Yarovoi S., Tkachuk S., Zaitsev S., Bdeir K., Dumler I., Marks M.S., Parfyonova Y., Tkachuk V.A., Higazi A.A., Cines D.B. Nuclear translocation of urokinase-type plasminogen activator. Blood. 2008; 112 (1): 100–110. DOI:10.1182/blood-2007-07-104455. PMID: 18337556. PMCID: PMC2435680; Semina E.V., Rubina K.A., Shmakova A.A., Rysenkova K.D., Klimovich P.S., Aleksanrushkina N. A., Sysoeva V. Y., Karagyaur M.N., Tkachuk V.A. Downregulation of uPAR promotes urokinase translocation into the nucleus and epithelial to mesenchymal transition in neuroblastoma. J Cell Physiol. 2020; 235 (9): 6268–6286. DOI:10.1002/jcp.29555. PMID: 31990070. PMCID: PMC7318179; Zhang G., Kernan K.A., Thomas A., Collins S., Song Y., Li L., Zhu W., Leboeuf R.C., Eddy A.A. A novel signaling pathway: fibroblast nicotinic receptor alpha1 binds urokinase and promotes renal fibrosis. J Biol Chem. 2009; 284 (42): 29050–29064. DOI:10.1074/jbc.M109.010249. PMID: 19690163. PMCID: PMC2781451; Manetti M., Rosa I., Fazi M., Guiducci S., Carmeliet P., Ibba-Manneschi L., Matucci-Cerinic M. Systemic sclerosis-like histopathological features in the myocardium of uPAR-deficient mice. Ann Rheum Dis. 2016; 75 (2): 474–478. DOI:10.1136/annrheumdis-2015-207803. PMID: 26269399; Mohameden M., Vashisht P., Sharman T. Scleroderma And Primary Myocardial Disease. 2021. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. PMID: 32491618; Nikitorowicz-Buniak J., Denton C.P., Abraham D., Stratton R. Partially Evoked Epithelial-Mesenchymal Transition (EMT) Is Associated with Increased TGFβ Signaling within Lesional Scleroderma Skin. PLoS One. 2015; 10 (7): e0134092. DOI:10.1371/journal.pone.0134092. PMID: 26217927; https://www.reanimatology.com/rmt/article/view/2159
-
3Academic Journal
المؤلفون: K. V. Dergilev, Z. I. Tsokolaeva, I. B. Beloglazova, D. O. Traktuev, A. V. Gorelova, А. V. Zubko, B. N. Kulbitsky, Е. V. Parfenova, К. В. Дергилев, З. И. Цоколаева, И. Б. Белоглазова, Д. О. Трактуев, А. В. Горелова, А. В. Зубко, Б. Н. Кульбицкий, Е. В. Парфенова
المساهمون: The study was supported financially by Russian Foundation for Basic Research grant No.18-015-00438 and Russian Science Foundation grant No.17-15-01368 (epicardial activation model ex vivo), Работа выполнена при финансовой поддержке гранта РФФИ № 18-015-00438 и гранта РНФ 17-15-01368 (модель активации эпикарда ex vivo)
المصدر: General Reanimatology; Том 16, № 6 (2020); 54-64 ; Общая реаниматология; Том 16, № 6 (2020); 54-64 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2020-6
مصطلحات موضوعية: репарация сердца, epicardial cells, platelet growth factor, vascularization, heart repair, клетки эпикарда, фактор роста тромбоцитов, васкуляризация
وصف الملف: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/1986/1464; https://www.reanimatology.com/rmt/article/view/1986/1465; Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020; 3. DOI:10.1038/s41569-020-0403-y.; Adams R., Alitalo K. Molecular regulation of angiogenesis and lym-phangiogenesis/ Nat Rev Mol Cell Biol. 2007; 8 (6): 464-478. DOI:10.1038/nrm2183.; Bergers G., Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005; 7 (4): 452-464. DOI:10.1215/S1152851705000232.; Ross R., Glomset J., Kariya B., Harker L.A. Platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci U S A. 1974; 71 (4): 1207-1210. DOI:10.1073/pnas.71.4.1207.; Guo P., Hu B., Gu W. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol. 2003; 162: 1083-1093. DOI:10.1016/S0002-9440(10)63905-3.; Affleck D.G., Bull D.A., Bailey S.H., Albanil A., Connors R., Stringham J.C., Karwande S.V. PDGF (BB) increases myocardial production of VEGF: shift in VEGF mRNA splice variants after direct injection of bFGF, PDGF (BB), and PDGF (AB). J Surg Res. 2002; 107: 203-209. DOI:10.1006/jsre.2002.6510; Sato N., Beitz J., Kato J., Yamamoto M., Clark J., Calabresi P., Raymond A., Frackelton A. Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am. J. Pathol. 1993; 142: 1119-1130. PMID: 7682762; Folestad E., Kunath A., Wagsdter D. PDGF-C and PDGF-D signaling in vascular diseases and animal models. Mol Aspects Med. 2018; 62: 1-11. DOI:10.1016/j.mam.2018.01.005.; Medamana J., Clark R.A., Butler J. Platelet-Derived Growth Factor in Heart Failure. Handb Exp Pharmacol. 2017; 243: 355-369. DOI:10.1007/164_2016_80.; Дергилев К., Комова А., Цоколаева З., Белоглазова И., Парфенова Е. Эпикард как новая мишень для регенеративных технологий в кардиологии. Гены & Клетки. 2020; 14 (2): 33-40.; Winter E.M., Gittenberger-de Groot A.C. Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci. 2007; 64: 692-703. DOI:10.1007/s00018-007-6522-3; Olivey H.E., Svensson E.C. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ Res. 2010; 106: 818-832. DOI:10.1161/CIRCRESAHA.109.209197; Дергилев К., Цоколаева З., Белоглазова И., Ратнер Е., Молоко-тина Ю., Парфенова Е. Характеристика ангиогенных свойств C-KIT+ — клеток миокарда. Гены & Клетки. 2018: 13 (3): 82-88 DOI:10.23868/201811038; Cao J., Poss K.D. The epicardium as a hub for heart regeneration. Nat Rev Cardiol. 2018; 15 (10): 631-647. DOI:10.1038/s41569-018-0046-4; Edelberg J.M., Tang, L., Hattori, K., Lyden, D., Rafii S. Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ. Res. 2002 90: 89-93. DOI:10.1161/01.res.0000020861.20064.7e; Wyler von Ballmoos M., YangZ., Volzmann J., Baumgartner I., Kalka C., Di Santo S. Endothelial progenitor cells induce a phenotype shift in differentiated endothelial cells towards PDGF/PDGFRe axis-mediated angiogenesis. PLoS One. 2010; 5 (11): 14107. DOI:10.1371/journal.pone.0014107; Wilkinson-Berka J.L., Babic S., De Gooyer T. Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am J Pathol. 2004; 164: 1263-1273. DOI:10.1016/S0002-9440(10)63214-2; Lindahl P., Johansson B.R., Leveen P., Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997; 277: 242-245. DOI:10.1126/science.277.5323.242; Leveen P., Pekny M., Gebre-Medhin S., Swolin B., Larsson E., Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994; 8: 1875-1887. DOI:10.1101/gad.8.16.1875; Soriano P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994; 8: 1888-1896. DOI:10.1101/gad.8.16.1888; Sano H., Sudo T., Yokode M. Functional blockade of platelet derived growth factor receptor-beta but not of receptor-alpha prevents vascular smooth muscle cell accumulation in fibrous cap lesions inapolipoprotein E-deficient mice. Circulation 2001; 103: 2955-2960. DOI:10.1161/01.cir.103.24.2955; Lavine K.J., Yu K., White A.C., Zhang X., Smith C., Partanen J., Ornitz D.M. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell. 2005; 8: 85-95. DOI:10.1016/j.devcel.2004.12.002; Pennisi D.J., Mikawa T. Normal patterning of the coronary capillaryplexus is dependent on the correct transmural gradient of FGF expression in the myocardium. Dev Biol. 2005; 279: 378-390. DOI:10.1016/j.ydbio.2004.12.028; Wang K., Shen H., Gan P., Cavallero S., Kumar S.R., Lien C.L., Sucov H.M. Differential roles of insulin like growth factor 1 receptor and insulin receptor during embryonic heart development. BMC Dev Biol. 2019; 19: 5. DOI:10.1186/s12861-019-0186-8; Ramjee V., Li D., Manderfield L.J., Liu F., Engleka K.A., Aghajanian H., Rodell C.B., Lu W., Ho V., Wang T. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest. 2017; 127: 899-911. DOI:10.1172/JCI88759; Balmer G.M., Bollini S., DubeK.N., Martinez-Barbera J.P., Williams O., Riley P.R. Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nat Commun. 2014; 5: 4054. DOI:10.1038/ncomms5054; https://www.reanimatology.com/rmt/article/view/1986