-
1Academic Journal
المؤلفون: А.Ю. Трапезникова, Д.О. Иванов
المصدر: University Therapeutic Journal, Vol 5, Iss 4 (2024)
مصطلحات موضوعية: недоношенные дети, бронхолегочная дисплазия, апноэ, Medicine
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: A. A. Burov, V. V. Zubkov, А. А. Буров, В. В. Зубков
المصدر: PULMONOLOGIYA; Том 34, № 3 (2024); 340-349 ; Пульмонология; Том 34, № 3 (2024); 340-349 ; 2541-9617 ; 0869-0189
مصطلحات موضوعية: новорожденные, chronic neonatal pulmonary hypertension, nitric oxide (NO), persistent pulmonary hypertension of newborns (PPHN), bronchopulmonary dysplasia, premature newborns, newborns, хроническая неонатальная легочная гипертензия, оксид азота, персистирующая легочная гипертензия новорожденных, бронхолегочная дисплазия, недоношенные новорожденные
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/4557/3657; Абдулатипова И.В., Белкина М.В., Белозеров Ю.М. и др. Легочная гипертензия у детей: руководство. М.: Актелион Фармасьютикалз; 2013.; Министерство здравоохранения Российской Федерации. Клинические рекомендации. Легочная гипертензия у детей. М.; 2017. Доступно на: https://cr.minzdrav.gov.ru/recomend/31_1?ysclid=lwumvccw7r222227221; Ruoss J.L., Rios D.R., Levy P.T. Updates on management for acute and chronic phenotypes of neonatal pulmonary hypertension. Clin. Perinatol. 2020; 47 (3): 593–615. DOI:10.1016/j.clp.2020.05.006.; Буров А.А., Пруткин М.Е., Гребенников В.А. и др. Проект клинического протокола по диагностике и терапии персистируюшей легочной гипертензии новорожденных. Неонатология: новости, мнения, обучение. 2014; (1): 145–160. Доступно на: https://www.neonatology-nmo.ru/ru/jarticles_neonat/82.html; Миклашевич И.М., Школьникова М.А., Горбачевский С.В. и др. Современная стратегия терапии легочной гипертензии у детей. Кардиоваскулярная терапия и профилактика. 2018; 17 (2): 101–124. DOI:10.15829/1728-8800-2018-2-101-124.; Буров А.А. Терапия оксидом азота в неонатологии. Неонатология: новости, мнения, обучение. 2014; (4): 73–86. Доступно на: https://www.neonatology-nmo.ru/ru/jarticles_neonat/123.html?SSr=410134d89315ffffffff27c__07e8051f0f2905-1352; Roberts J.D., Polaner D.M., Lang P., Zapol W.M. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992; 340 (8823): 818–819. DOI:10.1016/0140-6736(92)92686-a.; Kinsella J.P., Neish S.R., Shaffer E., Abman S.H. Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992; 340 (8823): 819–820. DOI:10.1016/0140-6736(92)92687-b.; Neonatal Inhaled Nitric Oxide Study Group. Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N. Engl. J. Med. 1997; 336 (9): 597–604. DOI:10.1056/NEJM199702273360901.; Clark R.H., Kueser T.J., Walker M.W. et al. Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group. N. Engl. J. Med. 2000; 342 (7): 469–474. DOI:10.1056/NEJM200002173420704.; Stahlman M. Treatment of cardiovascular disorders of the newborn. Pediatr. Clin. North Am. 1964; 11 (2): 363–400. DOI:10.1016/s0031-3955(16)31554-1.; Rudolph A.M., Drorbaugh J.E., Auld P.A. et al. Studies on the circulation in the neonatal period. The circulation in the respiratory distress syndrome. Pediatrics. 1961; 27: 551–566. DOI:10.1542/peds.27.4.551.; Roberton N.R., Hallidie-Smith K.A., Davis J.A. Severe respiratory distress syndrome mimicking cyanotic heart-disease in term babies. Lancet. 1967; 2 (7526): 1108–1110. DOI:10.1016/s0140-6736(67)90616-2.; Gersony W.M., Duc G.V., Sinclair J.C. "PFC" syndrome (persistence of fetal circulation). Circulation. 1969; 40 (Suppl. 1): 3–87.; Levin D.L., Heymann M.A., Kitterman J.A. et al. Persistent pulmonary hypertension of the newborn infant. J. Pediatr. 1976; 89 (4): 626–630. DOI:10.1016/s0022-3476(76)80405-2.; Harrison M.R., de Lorimier A.A. Congenital diaphragmatic hernia. Surg. Clin. North Am. 1981; 61 (5): 1023–1035. DOI:10.1016/s0039-6109(16)42528-4.; Rudolph A.M. High pulmonary vascular resistance after birth: I. Pathophysiologic considerations and etiologic classification. Clin. Pediatr. (Phila). 1980; 19 (9): 585–590. DOI:10.1177/000992288001900902.; Mous D.S., Buscop-van Kempen M.J., Wijnen R.M.H. et al. Changes in vasoactive pathways in congenital diaphragmatic hernia associated pulmonary hypertension explain unresponsiveness to pharmacotherapy. Respir. Res. 2017; 18 (1): 187. DOI:10.1186/s12931-017-0670-2.; Furchgott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980; 288 (5789): 373–376. DOI:10.1038/288373a0.; Cornfield D.N., Chatfield B.A., McQueston J.A. et al. Effects of birth-related stimuli on L-arginine-dependent pulmonary vasodilation in ovine fetus. Am. J. Physiol. 1992; 262 (5, Pt 2): H1474–1481. DOI:10.1152/ajpheart.1992.262.5.H1474.; Abman S.H., Chatfield B.A., Hall S.L., McMurtry I.F. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am. J. Physiol. 1990; 259 (6, Pt 2): H1921–1927. DOI:10.1152/ajpheart.1990.259.6.H1921.; Abman S.H., Chatfield B.A., Rodman D.M. et al. Maturational changes in endothelium-derived relaxing factor activity of ovine pulmonary arteries in vitro. Am. J. Physiol. 1991; 260 (4, Pt 1): L280–285. DOI:10.1152/ajplung.1991.260.4.L280.; Fineman J.R., Soifer S.J., Heymann M.A. The role of pulmonary vascular endothelium in perinatal pulmonary circulatory regulation. Semin. Perinatol. 1991; 15 (1): 58–62. Available at: https://www.researchgate.net/publication/21093259_The_role_of_pulmonary_vascular_endothelium_in_perinatal_pulmonary_circulatory_regulation; Kinsella J.P., McQueston J.A., Rosenberg A.A., Abman S.H. Hemodynamic effects of exogenous nitric oxide in ovine transitional pulmonary circulation. Am. J. Physiol. 1992; 263 (3, Pt 2): H875–880. DOI:10.1152/ajpheart.1992.263.3.H875.; Kinsella J.P., Ivy D.D., Abman S.H. Ontogeny of NO activity and response to inhaled NO in the developing ovine pulmonary circulation. Am. J. Physiol. 1994; 267 (5, Pt 2): H1955–1961. DOI:10.1152/ajpheart.1994.267.5.H1955.; Shaul P.W., Afshar S., Gibson L.L. et al. Developmental changes in nitric oxide synthase isoform expression and nitric oxide production in fetal baboon lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 283 (6): L1192–1199. DOI:10.1152/ajplung.00112.2002.; Pepke-Zaba J., Higenbottam T.W., Dinh-Xuan A.T. et al. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet. 1991; 338 (8776): 1173–1174. DOI:10.1016/0140-6736(91)92033-x.; Frostell C., Fratacci M.D., Wain J.C. et al. Inhaled nitric oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation. 1991; 83 (6): 2038–2047. DOI:10.1161/01.cir.83.6.2038.; Roberts J.D. Jr., Chen T.Y., Kawai N. et al. Inhaled nitric oxide reverses pulmonary vasoconstriction in the hypoxic and acidotic newborn lamb. Circ. Res. 1993; 72 (2): 246–254. DOI:10.1161/01.res.72.2.246.; Villamor E., Le Cras T.D., Horan M.P. et al. Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. Am. J. Physiol. 1997; 272 (5, Pt 1): L1013–1020. DOI:10.1152/ajplung.1997.272.5.L1013.; Zayek M., Cleveland D., Morin F.C. 3rd. Treatment of persistent pulmonary hypertension in the newborn lamb by inhaled nitric oxide. J. Pediatr. 1993; 122 (5, Pt 1): 743–750. DOI:10.1016/s0022-3476(06)80020-x.; Kinsella J.P., Parker T.A., Galan H. et al. Independent and combined effects of inhaled nitric oxide, liquid perfluorochemical, and high-frequency oscillatory ventilation in premature lambs with respiratory distress syndrome. Chest. 1999; 116 (1, Suppl.): 15–16S. DOI:10.1378/chest.116.suppl_1.15s.; Rossaint R., Falke K.J., López F. et al. Inhaled nitric oxide for the adult respiratory distress syndrome. N. Engl. J. Med. 1993; 328 (6): 399–405. DOI:10.1056/NEJM199302113280605.; Tworetzky W., Bristow J., Moore P. et al. Inhaled nitric oxide in neonates with persistent pulmonary hypertension. Lancet. 2001; 357 (9250): 118–120. DOI:10.1016/S0140-6736(00)03548-0.; Davidson D., Barefield E.S., Kattwinkel J. et al. Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double-masked, placebo-controlled, dose-response, multicenter study. The I-NO/PPHN Study Group. Pediatrics. 1998; 101 (3, Pt 1): 325–334. DOI:10.1542/peds.101.3.325.; Sokol G.M., Fineberg N.S., Wright L.L., Ehrenkranz R.A. Changes in arterial oxygen tension when weaning neonates from inhaled nitric oxide. Pediatr. Pulmonol. 2001; 32 (1): 14–19. DOI:10.1002/ppul.1083.; Black S.M., Heidersbach R.S., McMullan D.M. et al. Inhaled nitric oxide inhibits NOS activity in lambs: potential mechanism for rebound pulmonary hypertension. Am. J. Physiol. 1999; 277 (5): H1849–1856. DOI:10.1152/ajpheart.1999.277.5.H1849.; Rawat M., Lakshminrusimha S., Vento M. Pulmonary hypertension and oxidative stress: where is the link? Semin. Fetal Neonatal Med. 2022; 27 (4): 101347. DOI:10.1016/j.siny.2022.101347.; Roberts J.D. Jr, Fineman J.R., Morin F.C. 3rd et al. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N. Engl. J. Med. 1997; 336 (9): 605–610. DOI:10.1056/NEJM199702273360902.; Kinsella J.P., Truog W.E., Walsh W.F. et al. Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J. Pediatr. 1997; 131 (1, Pt 1): 55–62. DOI:10.1016/s0022-3476(97)70124-0.; Goldman A.P., Tasker R.C., Haworth S.G. et al. Four patterns of response to inhaled nitric oxide for persistent pulmonary hypertension of the newborn. Pediatrics. 1996; 98 (4, Pt 1): 706–713. DOI:10.1542/peds.98.4.706.; Foubert L., Fleming B., Latimer R. et al. Safety guidelines for use of nitric oxide. Lancet. 1992; 339 (8809): 1615–1616. DOI:10.1016/0140-6736(92)91886-d.; Frostell C.G., Zapol W.M. Inhaled nitric oxide, clinical rationale and applications. Adv. Pharmacol. 1995; 34: 439–456. DOI:10.1016/s1054-3589(08)61102-3.; Van Meurs K.P., Wright L.L., Ehrenkranz R.A. et al. Inhaled nitric oxide for premature infants with severe respiratory failure. N. Engl. J. Med. 2005; 353 (1): 13–22. DOI:10.1056/NEJMoa043927.; Van Meurs K.P., Rhine W.D., Asselin J.M., Durand D.J. Response of premature infants with severe respiratory failure to inhaled nitric oxide. Preemie NO Collaborative Group. Pediatr. Pulmonol. 1997; 24 (5): 319–323. DOI:10.1002/(sici)1099-0496(199711)24:53.0.co;2-d.; Högman M., Frostell C., Arnberg H., Hedenstierna G. Bleeding time prolongation and NO inhalation. Lancet. 1993; 341 (8861): 1664–1665. DOI:10.1016/0140-6736(93)90802-n.; Bassenge E. Antiplatelet effects of endothelium-derived relaxing factor and nitric oxide donors. Eur. Heart. J. 1991; 12 (Suppl. E): 12–15. DOI:10.1093/eurheartj/12.suppl_e.12.; George T.N., Johnson K.J., Bates J.N., Segar J.L. The effect of inhaled nitric oxide therapy on bleeding time and platelet aggregation in neonates. J. Pediatr. 1998; 132 (4): 731–734. DOI:10.1016/s0022-3476(98)70370-1.; Ward J., Motwani J., Baker N. et al. Congenital methemoglobinemia identified by pulse oximetry screening. Pediatrics. 2019; 143 (3): e20182814. DOI:10.1542/peds.2018-2814.; Bischoff A.R., Habib S., McNamara P.J., Giesinger R.E. Hemodynamic response to milrinone for refractory hypoxemia during therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy. J. Perinatol. 2021; 41 (9): 2345–2354. DOI:10.1038/s41372-021-01049-y.; James A.T., Corcoran J.D., McNamara P.J. et al. The effect of milrinone on right and left ventricular function when used as a rescue therapy for term infants with pulmonary hypertension. Cardiol. Young. 2016; 26 (1): 90–99. DOI:10.1017/S1047951114002698.; Kinsella J.P., Steinhorn R.H., Mullen M.P. et al. The left ventricle in congenital diaphragmatic hernia: Implications for the management of pulmonary hypertension. J. Pediatr. 2018; 197: 17–22. DOI:10.1016/j.jpeds.2018.02.040.; Cookson M.W., Abman S.H., Kinsella J.P., Mandell E.W. Pulmonary vasodilator strategies in neonates with acute hypoxemic respiratory failure and pulmonary hypertension. Semin. Fetal Neonatal Med. 2022; 27 (4): 101367. DOI:10.1016/j.siny.2022.101367.; Kinsella J.P., Abman S.H. Clinical approach to inhaled nitric oxide therapy in the newborn with hypoxemia. J. Pediatr. 2000; 136 (6): 717–726. DOI:10.1016/S0022-3476(00)10660-2.; Clark R.H., Yoder B.A., Sell M.S. Prospective, randomized comparison of high-frequency oscillation and conventional ventilation in candidates for extracorporeal membrane oxygenation. J. Pediatr. 1994; 124 (3): 447–454. DOI:10.1016/s0022-3476(94)70374-4.; Kuluz M.A., Smith P.B., Mears S.P. et al. Preliminary observations of the use of high-frequency jet ventilation as rescue therapy in infants with congenital diaphragmatic hernia. J. Pediatr. Surg. 2010; 45 (4): 698–702. DOI:10.1016/j.jpedsurg.2009.07.025.; Lotze A., Mitchell B.R., Bulas D.I. et al. Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. Survanta in term infants study group. J. Pediatr. 1998; 132 (1): 40–47. DOI:10.1016/s0022-3476(98)70482-2.; González A., Bancalari A., Osorio W. et al. Early use of combined exogenous surfactant and inhaled nitric oxide reduces treatment failure in persistent pulmonary hypertension of the newborn: a randomized controlled trial. J. Perinatol. 2021; 41 (1): 32–38. DOI:10.1038/s41372-020-00777-x.; Cornfield D.N., Reeve H.L., Tolarova S. et al. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc. Natl. Acad. Sci. USA. 1996; 93 (15): 8089–8094. DOI:10.1073/pnas.93.15.8089.; Cornfield D.N. Developmental regulation of oxygen sensing and ion channels in the pulmonary vasculature. Adv. Exp. Med. Biol. 2010; 661: 201–220. DOI:10.1007/978-1-60761-500-2_13.; Farrow K.N., Groh B.S., Schumacker P.T. et al. Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ. Res. 2008; 102 (2): 226–233. DOI:10.1161/CIRCRESAHA.107.161463.; Giesinger R.E., McNamara P.J. Hemodynamic instability in the critically ill neonate: an approach to cardiovascular support based on disease pathophysiology. Semin. Perinatol. 2016; 40 (3): 174–188. DOI:10.1053/j.semperi.2015.12.005.; Nakanishi H., Suenaga H., Uchiyama A. et al. Persistent pulmonary hypertension of the newborn in extremely preterm infants: a Japanese cohort study. Arch. Dis. Child. Fetal Neonatal Ed. 2018; 103 (6): F554–561. DOI:10.1136/archdischild-2017-313778.; Nelin L., Kinsella J.P., Courtney S.E. et al. Use of inhaled nitric oxide in preterm vs term/near-term neonates with pulmonary hypertension: results of the PaTTerN registry study. J. Perinatol. 2022; 42 (1): 14–18. DOI:10.1038/s41372-021-01252-x.; Peliowski A., Finer N.N., Etches P.C. et al. Inhaled nitric oxide for premature infants after prolonged rupture of the membranes. J. Pediatr. 1995; 126 (3): 450–453. DOI:10.1016/s0022-3476(95)70467-1.; Abman S.H., Hansmann G., Archer S.L. et al. Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation. 2015; 132 (21): 2037–2099. DOI:10.1161/CIR.0000000000000329.; Kinsella J.P., Steinhorn R.H., Krishnan U.S. et al. Recommendations for the use of inhaled nitric oxide therapy in premature newborns with severe pulmonary hypertension. J. Pediatr. 2016; 170: 312–314. DOI:10.1016/j.jpeds.2015.11.050.; Chock V.Y., Van Meurs K.P., Hintz S.R. et al. Inhaled nitric oxide for preterm premature rupture of membranes, oligohydramnios, and pulmonary hypoplasia. Am. J. Perinatol. 2009; 26 (4): 317–322. DOI:10.1055/s-0028-1104743.; Kinsella J.P., Cutter G.R., Walsh W.F. et al. Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N. Engl. J. Med. 2006; 355 (4): 354–364. DOI:10.1056/NEJMoa060442.; Ballard R.A., Truog W.E., Cnaan A. et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N. Engl. J. Med. 2006; 355 (4): 343–353. DOI:10.1056/NEJMoa061088.; Kinsella J.P., Walsh W.F., Bose C.L. et al. Inhaled nitric oxide in premature neonates with severe hypoxaemic respiratory failure: a randomised controlled trial. Lancet. 1999; 354 (9184): 1061–1065. DOI:10.1016/s0140-6736(99)03558-8.; Balasubramaniam V., Maxey A.M., Morgan D.B. et al. Inhaled NO restores lung structure in eNOS-deficient mice recovering from neonatal hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006; 291 (1): L119–127. DOI:10.1152/ajplung.00395.2005.; Tourneux P., Markham N., Seedorf G. et al. Inhaled nitric oxide improves lung structure and pulmonary hypertension in a model of bleomycin-induced bronchopulmonary dysplasia in neonatal rats. Am. J. Physiol. Lung Cell Mol. Physiol. 2009; 297 (6): L1103–1111. DOI:10.1152/ajplung.00293.2009.; Kinsella J.P., Parker T.A., Galan H. et al. Effects of inhaled nitric oxide on pulmonary edema and lung neutrophil accumulation in severe experimental hyaline membrane disease. Pediatr. Res. 1997; 41 (4, Pt 1): 457–463. DOI:10.1203/00006450-199704000-00002.; Kumar P.; Committee on Fetus and Newborn; American Academy of Pediatrics. Use of inhaled nitric oxide in preterm infants. Pediatrics. 2014; 133 (1): 164–170. DOI:10.1542/peds.2013-3444.; Giesinger R.E., Rios D.R., Chatmethakul T. et al. Impact of early hemodynamic screening on extremely preterm outcomes in a high-performance center. Am. J. Respir. Crit. Care Med. 2023; 208 (3): 290–300. DOI:10.1164/rccm.202212-2291OC.; Kinsella J.P., Parker T.A., Ivy D.D., Abman S.H. Noninvasive delivery of inhaled nitric oxide therapy for late pulmonary hypertension in newborn infants with congenital diaphragmatic hernia. J. Pediatr. 2003; 142 (4): 397–401. DOI:10.1067/mpd.2003.140.; Буранов С.Н., Карелин В.И., Селемир В.Д., Ширшин А.С. Аппарат для ингаляционной NO-терапии. Приборы и техника эксперимента. 2019; (5): 158–159. DOI:10.1134/S0032816219040037.; Володин Н.Н., Дегтярев Д.Н., ред. Неонатология: национальное руководство. 2-е изд. М.: ГЭОТАР-Медиа; 2023; Т. 1. DOI:10.33029/9704-7828-8-NNG-2023-1-752.; Володин Н.Н., Дегтярев Д.Н., ред. Неонатология: национальное руководство. 2-е изд. М.: ГЭОТАР-Медиа; 2023; Т. 2. DOI:10.33029/9704-7829-5-NNG-2023-1-768.; https://journal.pulmonology.ru/pulm/article/view/4557
-
3Academic Journal
المؤلفون: A. A. Babayan, A. V. Filin, A. V. Metelin, N. A. Koroteeva, O. V. Kazakova, A. Yu. Zaitsev, R. B. Mayachkin, D. I. Novikov, V. B. Silkov, А. А. Бабаян, А. В. Филин, А. В. Метелин, Н. А. Коротеева, О. В. Казакова, А. Ю. Зайцев, Р. Б. Маячкин, Д. И. Новиков, В. Б. Силков
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 1 (2024); 52-57 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 1 (2024); 52-57 ; 2413-5496 ; 2311-1267
مصطلحات موضوعية: бронхолегочная дисплазия, liver resection, extremely preterm, extremely low birthweight, ventriculoperitoneal shunt, bronchopulmonary dysplasia, резекция печени, глубоко недоношенный ребенок, экстремально низкая масса тела, вентрикулоперитонеальный шунт
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/1019/893; Linabery A.M., Ross J.A. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer. 2008;112(2):416–32. doi:10.1002/cncr.23169.; Howlader N., Noone A.M., Krapcho M., Neyman N., Aminou R., Waldron W., Altekruse S.F., Kosary C.L., Ruhl J., Tatalovich Z., Cho H., Mariotto A., Eisner M.P., Lewis D.R., Chen H.S., Feuer E.J., Cronin K.A., Edwards B.K. SEER Cancer Statistics Review, 1975– 2008. National Cancer Institute, Bethesda, MD. Based on November 2010 SEER Data Submission. Posted to SEER Web Site, 2011 [Electronic resource]. URL: https://seer.cancer.gov/csr/1975_2008/.; Ikeda H., Matsuyama S., Tanimura M. Association between hepatoblastoma and very low birth weight: A trend or a chance? J Pediatr. 1997;130(4):557–60. doi:10.1016/S0022-3476(97)70239-7.; Spector L.G., Johnson K.J., Soler J.T., Puumala S.E. Perinatal risk factors for hepatoblastoma. Br J Cancer. 2008;98(9):1570–3. doi:10.1038/sj.bjc.6604335.; Paquette K., Coltin H., Boivin A., Amre D., Nuyt A.M., Luu T.M. Cancer risk in children and young adults born preterm: a systematic review and meta-analysis. PLoS One 2019;14(1):1–15. doi:10.1371/journal.pone.0210366.; Внутрижелудочковые кровоизлияния, постгеморрагическая гидроцефалия у новорожденных детей. Принципы оказания медицинской помощи. Методические рекомендации Российской ассоциации специалистов перинатальной медицины совместно с Ассоциацией детских нейрохирургов России. Под ред. Володина Н.Н., Горелышева С.К., Попова В.Е. М., 2014.; Пальчик А.Б., Федорова Л.А., Понятишин А.Е. Внутрижелудочковые кровоизлияния у новорожденных детей. СПб.: СПбГПМУ, 2019. 50 с.; Deger J., Goethe E.A., LoPresti M.A., Lam S. Intraventricular Hemorrhage in Premature Infants: A Historical Review. World Neurosurg. 2021;153:21–5. doi:10.1016/j.wneu.2021.06.043.; Баранов А.А., Намазова-Баранова Л.С., Володин Н.Н., Давыдова И.В., Овсянников Д.Ю., Иванов Д.О., Бойцова Е.В., Яцык Г.В., Антонов А.Г., Ионов О.В., Рындин А.Ю., Гребенников В.А., Солдатова И.Г., Чубарова А.И. Ведение детей с бронхолегочной дисплазией. Педиатрическая фармакология. 2016;13(4):319–33. doi:10.15690/pf.v13i4.1603.; Овсянникова Д.Ю., Геппе Н.А., Малахова А.Б., Дегтярева Д.Н. Бронхолегочная дисплазия. Монография. Российское респираторное общество, Педиатрическое респираторное общество, Российское общество неонатологов, Федерация педиатров стран СНГ, 2020.; Jensen E.A., Edwards E.M., Greenberg L.T., Soll R.F., Ehret D.E.Y., Horbar J.D. Severity of bronchopulmonary dysplasia among very preterm infants in the United States. Pediatrics. 2021;148(1):1–8. doi:10.1542/peds.2020-030007.; Spector L.G., Birch J. The epidemiology of hepatoblastoma. Pediatr Blood Cancer. 2012;59(5):776–9. doi:10.1002/pbc.24215.; Al-Holou W.N., Wilson T.J., Ali Z.S., Brennan R.P., Bridges K.J., Guivatchian T., Habboub G., Krishnaney A.A., Lanzino G., Snyder K.A., Flanders T.M., Than K.D., Pandey A.S. Gastrostomy tube placement increases the risk of ventriculoperitoneal shunt infection: A multiinstitutional study. J Neurosurg. 2018:1–6. doi:10.3171/2018.5.JNS18506.; Ong A.W., Lapham D.A., Psarros S. Infectious complications in patients with ventriculoperitoneal shunts after intra-abdominal procedures. Am J Surg. 2016;82(7):E146–9. doi:10.1177/000313481608200707.; Li G., Dutta S. Perioperative management of ventriculoperitoneal shunts during abdominal surgery. Surg Neurol. 2008;70(5):492–5. doi:10.1016/j.surneu.2007.08.050.; Roeder B.E., Said A., Reichelderfer M., Gopal D.V. Placement of gastrostomy tubes in patients with ventriculoperitoneal shunts does not result in increased incidence of shunt infection or decreased survival. Dig Dis Sci. 2007;52(2):518–22. doi:10.1007/s10620-006-9311-1.; Cools M.J., Vance E.H., Bonfi eld C.M. Ventriculoperitoneal shunt management in children undergoing liver transplantation. Child’s Nerv Syst. 2022;38(7):1393–5. doi:10.1007/s00381-021-05411-5.; Speicher P.J., Nussbaum D.P., Scarborough J.E., Zani S., White R.R., Blazer D.G. 3rd, Mantyh C.R., Tyler D.S., Clary B.M. Wound classifi cation reporting in HPB surgery: Can a single word change public perception of institutional performance? HPB (Oxford). 2014;16(12):1068–73. doi:10.1111/hpb.12275.; Faybush E., Mulligan D.C., Birch B.D., Sirven J.I., Balan V. Liver transplant in a patient with a ventriculoperitoneal shunt. Liver Transplant. 2005;11(4):467–8. doi:10.1002/lt.20371.; https://journal.nodgo.org/jour/article/view/1019
-
4Academic Journal
المؤلفون: Е.А. Лозовская, А.А. Костарева, Н.А. Петрова
المصدر: Российские биомедицинские исследования, Vol 8, Iss 2 (2023)
مصطلحات موضوعية: бронхолегочная дисплазия, животная модель, гипероксия, Medicine (General), R5-920
وصف الملف: electronic resource
-
5Academic Journal
المؤلفون: Павел Иванович Миночкин, Александр Сергеевич Ткаченко, Ирина Владимировна Боронина, Матвей Андреевич Кулев, Константин Викторович Пшениснов
المصدر: Российские биомедицинские исследования, Vol 7, Iss 4 (2023)
مصطلحات موضوعية: длительная вентиляция легких, новорожденные дети, полиорганная недостаточность, бронхолегочная дисплазия, вентиляция с целевым объемом вдоха, long term lung ventilation, Medicine (General), R5-920
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Şciuca, S.S., Щука, С., Filimon-Ceahlău, M., Cotoman, A., Selevestru, R.
المصدر: Buletinul Academiei de Ştiinţe a Moldovei. Ştiinţe Medicale 77 (3) 127-132
مصطلحات موضوعية: displazia bronhopulmonară, copii prematuri, bronchopulmonary dysplasia, premature babies, бронхолегочная дисплазия, недоношенные дети
وصف الملف: application/pdf
Relation: https://ibn.idsi.md/vizualizare_articol/192567; urn:issn:18570011
-
7Academic Journal
المؤلفون: Irina A. Belyaeva, Elena P. Bombardirova, Evgeniia A. Prihodko, Andrey Yu. Kruglyakov, Anna A. Mikheeva, Arina R. Larina, И. А. Беляева, Е. П. Бомбардирова, Е. А. Приходько, А. Ю. Кругляков, А. А. Михеева, А. Р. Ларина
المساهمون: The article was funded by Nutricia Advance, Статья опубликована при финансовой поддержке компании «Нутриция Эдванс»
المصدر: Current Pediatrics; Том 21, № 6 (2022); 467-478 ; Вопросы современной педиатрии; Том 21, № 6 (2022); 467-478 ; 1682-5535 ; 1682-5527
مصطلحات موضوعية: лечебный продукт, nutritional correction, premature infant, bronchopulmonary dysplasia, heart defects, perinatal pathology, medical food, нутритивная коррекция, недоношенные дети, бронхолегочная дисплазия, пороки сердца, перинатальная патология
وصف الملف: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/3078/1261; Rodríguez-Cano AM, Mier-Cabrera J, Muñoz-Manrique C, et al. Anthropometric and clinical correlates of fat mass in healthy term infants at 6 months of age. BMC Pediatr. 2019;19(1):60. doi: https://doi.org/10.1186/s12887-019-1430-x; Barstow C, Rerucha C. Evaluation of Short and Tall Stature in Children. Am Fam Physician. 2015;92(1):43–50.; Singhal A. Long-Term Adverse Effects of Early Growth Acceleration or Catch-Up Growth. Ann Nutr Metab. 2017;70(3):236–240. doi: https://doi.org/10.1159/000464302; de Onís M, Monteiro C, Akré J, Glugston G. The worldwide magnitude of protein-energy malnutrition: an overview from the WHO Global Database on Child Growth. Bull World Health Organ. 1993;71(6):703–712.; Black RE, Victora CG, Walker SP, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382(9890):427–451. doi: https://doi.org/10.1016/S0140-6736(13)60937-X; Guerrant RL, DeBoer MD, Moore SR, et al. The impoverished gut — a triple burden of diarrhoea, stunting and chronic disease. Nat Rev Gastroenterol Hepatol. 2013;10(4):220–229. doi: https://doi.org/10.1038/nrgastro.2012.239; Mayneris-Perxachs J, Swann JR. Metabolic phenotyping of malnutrition during the first 1000 days of life. Eur J Nutr. 2019; 58(3):909–930. doi: https://doi.org/10.1007/s00394-018-1679-0; Dipasquale V, Cucinotta U, Romano C. Acute Malnutrition in Children: Pathophysiology, Clinical Effects and Treatment. Nutrients. 2020;12(8):2413. doi: https://doi.org/10.3390/nu12082413; Patterson GT, Manthi D, Osuna F, et al. Environmental, Metabolic, and Inflammatory Factors Converge in the Pathogenesis of Moderate Acute Malnutrition in Children: An Observational Cohort Study. Am J Trop Med Hyg. 2021;104(5):1877–1888. doi: https://doi.org/10.4269/ajtmh.20-0963; World Health Organization: WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: methods and development. 217. Geneva: World Health Organization; 2006.; World Health Organization: WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. 336. Geneva: World Health Organization; 2006.; Caulfield LE, de Onis M, Blossner M, Black RE. Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles. Am J Clin Nutr. 2004;80(1): 193–198. doi: https://doi.org/10.1093/ajcn/80.1.193; Bartz S, Mody A, Hornik C, et al. Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J Clin Endocrinol Metab. 2014;99(6):2128–2137. doi: https://doi.org/10.1210/jc.2013-4018; Chisti MJ, Graham SM, Duke T, et al. Post-discharge mortality in children with severe malnutrition and pneumonia in Bangladesh. PLoS One. 2014;9(9):e107663. doi: https://doi.org/10.1371/journal.pone.0107663; Mayneris-Perxachs J, Lima AA, Guerrant RL, et al. Urinary N-methylnicotinamide and beta-aminoisobutyric acid predict catchup growth in undernourished Brazilian children. Sci Rep. 2016; 6:19780. doi: https://doi.org/10.1038/srep19780; Maes M, Leonard BE, Myint AM, et al. The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indo leamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):702–721. doi: https://doi.org/10.1016/j.pnpbp.2010.12.017; Semba RD, Shardell M, Sakr Ashour FA, et al. Child stunting is associated with low circulating essential amino acids. EBioMedicine. 2016;6:246–252. doi: https://doi.org/10.1016/j.ebiom.2016.02.030; Larson-Nath C, Goday P. Malnutrition in Children With Chronic Disease. Nutr Clin Pract. 2019;34(3):349–358. doi: https://doi.org/10.1002/ncp.10274; Kiely ME. Risks and benefits of vegan and vegetarian diets in children. Proc Nutr Soc. 2021;80(2):159–164. doi: https://doi.org/10.1017/S002966512100001X; Kostecka M, Kostecka-Jarecka J. Knowledge on the Complementary Feeding of Infants Older than Six Months among Mothers Following Vegetarian and Traditional Diets. Nutrients. 2021; 13(11):3973. doi: https://doi.org/10.3390/nu13113973; Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832):2162–2172. doi: https://doi.org/10.1016/S0140-6736(12)60820-4; Ruys CA, van de Lagemaat M, Rotteveel J, et al. Improving longterm health outcomes of preterm infants: how to implement the findings of nutritional intervention studies into daily clinical practice. Eur J Pediatr. 2021;180(6):1665–1673. doi: https://doi.org/10.1007/s00431-021-03950-2; Spittle AJ, Cameron K, Doyle LW, Cheong JL. Motor impair ment trends in extremely preterm children: 1991–2005. Pediatrics. 2018;141(4):e20173410. doi: https://doi.org/10.1542/peds.2017-3410; Twilhaar ES, Wade RM, de Kieviet JF, et al. Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors: a meta-analysis and meta-regression. JAMA Pediatr. 2018;172(4):361–367. doi: https://doi.org/10.1001/jamapediatrics.2017.5323; Sipola-Leppanen M, Kajantie E. Should we assess cardiovascular risk in young adults born preterm? Curr Opin Lipidol. 2015;26(4): 282–287. doi: https://doi.org/10.1097/MOL.0000000000000190; Fenton TR, Cormack B, Goldberg D, et al. “Extrauterine growth restriction” and “postnatal growth failure” are misnomers for preterm infants. J Perinatol. 2020;40(5):704–714. doi: https://doi.org/10.1038/s41372-020-0658-5; Crump C. An overview of adult health outcomes after preterm birth. Early Hum Dev. 2020;150:105187. doi: https://doi.org/10.1016/j.earlhumdev.2020; Fenton TR, Kim JHA. Systematic review and meta-analysis to revise the fenton growth chart for preterm infants. BMC Pediatr. 2013;13:1–13. doi: https://doi.org/10.1186/1471-2431-13-59; Villar J, Cheikh Ismail L, Victora CG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):857–868. doi: https://doi.org/10.1016/S0140-6736(14)60932-6; Fenton TR, Chan HT, Madhu A, et al. Preterm infant growth velocity calculations: a systematic review. Pediatrics. 2017;139(3):e20162045. doi: https://doi.org/10.1542/peds.2016-2045; González-García L, García-López E, Fernández-Colomer B, et al. Extrauterine Growth Restriction in Very Low Birth Weight Infants: Concordance Between Fenton 2013 and INTERGROWTH-21st Growth Charts. Front Pediatr. 2021;9:690788. doi: https://doi.org/10.3389/fped.2021.690788; Yang YN. Current concepts of very low birth weight infants with extra-uterine growth restriction. Pediatr Neonatol. 2022;63(1):3–4. doi: https://doi.org/10.1016/j.pedneo.2021.12.001; Fenton TR, Nasser R, Creighton D, et al. Weight, length, and head circumference at 36 weeks are not predictive of later cognitive impairment in very preterm infants. J Perinatol. 2021;41(3): 606–614. doi: https://doi.org/10.1038/s41372-020-00855-0; Tozzi MG, Moscuzza F, Michelucci A, et al. Extra-Uterine Growth Restriction (EUGR) in Preterm Infants: Growth Patterns, Nutrition, and Epigenetic Markers. A Pilot Study. Front Pediatr. 2018;6:408. doi: https://doi.org/10.3389/fped.2018.00408; Maiocco G, Migliaretti G, Cresi F, et al. Evaluation of Extrauterine Head Growth From 14-21 days to Discharge With Longitudinal Intergrowth-21st Charts: A New Approach to Identify Very Preterm Infants at Risk of Long-Term Neurodevelopmental Impairment. Front Pediatr. 2020;8:572930. doi: https://doi.org/10.3389/fped.2020.572930; De Rose DU, Cota F, Gallini F, et al. Extra-uterine growth restriction in preterm infants: neurodevelopmental outcomes according to different definitions. Eur J Paediatr Neurol. 2021;33:135–145. doi: https://doi.org/10.1016/j.ejpn.2021.06.004; Figueras-Aloy J, Palet-Trujols C, Matas-Barceló I, et al. Extrauterine growth restriction in very preterm infant: etiology, diagnosis, and 2-year follow-up. Eur J Pediatr. 2020;179(9):1469–79. doi: https://doi.org/10.1007/s00431-020-03628-1; Ehrenkranz RA, Dusick AM, Vohr BR, et al. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117(4): 1253–1261. doi: https://doi.org/10.1542/peds.2005-1368; Greenbury SF, Angelini ED, Ougham K, et al. Birthweight and patterns of postnatal weight gain in very and extremely preterm babies in England and Wales, 2008-19: a cohort study. Lancet Child Adolesc Health. 2021;5(10):719–728. doi: https://doi.org/10.1016/S2352-4642(21)00232-7; Singh AS, Mulder C, Twisk JW, et al. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9(5):474–488. doi: https://doi.org/10.1111/j.1467-789X.2008.00475.x; Kerkhof GF, Willemsen RH, Leunissen RW, et al. Health profile of young adults born preterm: negative effects of rapid weight gain in early life. J Clin Endocrinol Metab. 2012;97(12):4498–4506. doi: https://doi.org/10.1210/jc.2012-1716; Schneider N, Garcia-Rodenas CL. Early nutritional interventions for brain and cognitive development in preterm infants: a review of the literature. Nutrients. 2017;9(3):187. doi: https://doi.org/10.3390/nu9030187; Hay WW Jr. Strategies for feeding the preterm infant. Neonatology. 2008;94(4):245–254. doi: https://doi.org/10.1159/000151643; Agostoni C, Buonocore G, Carnielli VP, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50(1):85–91. doi: https://doi.org/10.1097/MPG.0b013e3181adaee0; Lapillonne A, O’Connor DL, Wang D, Rigo J. Nutritional recommen dations for the late-preterm infant and the preterm infant after hospital discharge. J Pediatr. 2013;162(3 Suppl):S90–S100. doi: https://doi.org/10.1016/j.jpeds.2012.11.058; Senterre T, Rigo J. Optimizing early nutritional support based on recent recommendations in VLBW infants and postnatal growth restriction. J Pediatr Gastroenterol Nutr. 2011;53(5):536–542. doi: https://doi.org/10.1097/MPG.0b013e31822a009d; Сафронова Л.Н., Федорова Л.А. Недоношенный ребенок: справочник. М.: Status Praesens; 2020. 312 c.; Fenton TR, Al-Wassia H, Premji SS, Sauve RS. Higher versus lower protein intake in formula-fed low birth weight infants. Cochrane Database Syst Rev. 2020;6(6):CD003959. doi: https://doi.org/10.1002/14651858.CD003959.pub4; Olsen IE, Harris CL, Lawson ML, Berseth CL. Higher protein intake improves length, not weight, z scores in preterm infants. J Pediatr Gastroenterol Nutr. 2014;58(4):409–416. doi: https://doi.org/10.1097/MPG.0000000000000237; Atchley CB, Cloud A, Thompson D, et al. Enhanced protein diet for preterm infants: a prospective, randomized, double-blind, controlled trial. J Pediatr Gastroenterol Nutr. 2019;69(2):218–223. doi: https://doi.org/10.1097/MPG.0000000000002376; Hay WW Jr, Brown LD, Denne SC. Energy requirements, proteinenergy metabolism and balance, and carbohydrates in preterm infants. World Rev Nutr Diet. 2014;110:64–81. doi: https://doi.org/10.1159/000358459; Amissah EA, Brown J, Harding JE. Protein supplementation of human milk for promoting growth in preterm infants. Cochrane Database Syst Rev. 2020;9(9):Cd000433. doi: https://doi.org/10.1002/14651858.CD000433.pub3; Teller IC, Embleton ND, Griffin IJ, van Elburg RM. Post-discharge formula feeding in preterm infants: a systematic review mapping evidence about the role of macronutrient enrichment. Clin Nutr. 2016;35(4):791–801. doi: https://doi.org/10.1016/j.clnu.2015.08.006; Young L, Embleton ND, McGuire W. Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge. Cochrane Database Syst Rev. 2016;12(12):CD004696. doi: https://doi.org/10.1002/14651858.CD004696.pub5; Amesz EM, Schaafsma A, Cranendonk A, Lafeber HN. Opti mal growth and lower fat mass in preterm infants fed a protein-enriched postdischarge formula. J Pediatr Gastroenterol Nutr. 2010;50(2):200–207. doi: https://doi.org/10.1097/MPG.0b013e3181a8150d; Ruys CA, van de Lagemaat M, Finken MJ, Lafeber HN. Follow-up of a randomized trial on postdischarge nutrition in preterm-born children at age 8 y. Am J Clin Nutr. 2017;106(2):549–558. doi: https://doi.org/10.3945/ajcn.116.145375; Ruys CA, Broring T, van Schie PEM, et al. Neurodevelopment of children born very preterm and/or with a very low birth weight: 8-Year follow-up of a nutritional RCT. Clinical Nutrition ESPEN. 2019;30: 190–198. doi: https://doi.org/10.1016/j.clnesp.2018.12.083; Cooke RJ, Embleton ND, Griffin IJ, et al. Feeding preterm infants after hospital discharge: growth and development at 18 months of age. Pediatr Res. 2001;49(5):719–722. doi: https://doi.org/10.1203/00006450-200105000-00018; Villar J, Giuliani F, Barros F, et al. Monitoring the postnatal growth of preterm infants: a paradigm change. Pediatrics. 2018;141(2):e20172467. doi: https://doi.org/10.1542/peds.2017-2467; Karnati S, Kollikonda S, Abu-Shaweesh J. Late preterm in fants — Changing trends and continuing challenges. Int J Pediatr Adolesc Med. 2020;7(1):36–44. doi: https://doi.org/10.1016/j.ijpam.2020.02.006; Quan MY, Li ZH, Wang DH, et al. Multi-center Study of Enteral Feeding Practices in Hospitalized Late Preterm Infants in China. Biomed Environ Sci. 2018;31(7):489–498. doi: https://doi.org/10.3967/bes2018.066; Santos IS, Matijasevich A, Domingues MR, et al. Late preterm birth is a risk factor for growth faltering in early childhood: a cohort study. BMC Pediatr. 2009;9:71. doi: https://doi.org/10.1186/1471-2431-9-71; Приходько Е.А., Беляева И.А., Кругляков А.Ю. и др. Факторы, ассоциированные с исключительно грудным вскармливанием поздних недоношенных детей в неонатальном стационаре: одномоментное исследование // Вопросы современной педиатрии. — 2022. — Т. 21. — № 1. — С. 29–35. — doi: https://doi.org/10.15690/vsp.v21i1.2384; Zhang L, Li Y, Liang S, et al. Postnatal length and weight growth velocities according to Fenton reference and their associated perinatal factors in healthy late preterm infants during birth to termcorrected age: an observational study. Ital J Pediatr. 2019;45(1):1. doi: https://doi.org/10.1186/s13052-018-0596-4; Lapillonne A, Bronsky J, Campoy C, et al. Feeding the late and moderately preterm infant: a position paper of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2019;69(2):259–270. doi: https://doi.org/10.1097/MPG.0000000000002397; Johnson MJ, King C, Boddy B, et al. The nutritional needs of moderate-late preterm infants. Br J Hosp Med (Lond). 2022;83(4):1–9. doi: https://doi.org/10.12968/hmed.2022.0148; Намазова-Баранова Л.С., Турти Т.В., Лукоянова О.Л. и др. Лечебное питание с применением специализированного детского молочного продукта для энтерального питания с повышенным содержанием белка и энергии у детей первого года жизни с белково-энергетической недостаточностью // Педиатрическая фармакология. — 2016. — Т. 13. — № 1. — С. 27–32. — doi: https://doi.org/10.15690/pf.v13i1.1511; Bancalari E, Jain D. Bronchopulmonary Dysplasia: 50 Years after the Original Description. Neonatology. 2019;115(4):384–391. doi: https://doi.org/10.1159/000497422; Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Cell Mol Physiol. 2019;317(6):L832–L887. doi: https://doi.org/10.1152/ajplung.00369.2019; Poindexter BB, Martin CR. Impact of Nutrition on Bronchopulmonary Dysplasia. Clin Perinatol. 2015;42(4):797–806. doi: https://doi.org/10.1016/j.clp.2015.08.007; Milanesi BG, Lima PA, Villela LD, et al. Assessment of early nutritional intake in preterm infants with bronchopulmonary dys plasia: Eur J Pediatr. 2021;180(5):1423–1430. doi: https://doi.org/10.1007/s00431-020-03912-0; Al-Jebawi Y, Agarwal N, Wargo SG, et al. Low caloric intake and high fluid intake during the first week of life are associated with the severity of bronchopulmonary dysplasia in extremely low birth weight infants. J Neonatal Perinatal Med. 2020;13(2):207–214. doi: https://doi.org/10.3233/NPM-190267; Rocha G, Guimarães H, Pereira-da-Silva L. The Role of Nutrition in the Prevention and Management of Bronchopulmonary Dysplasia: A Literature Review and Clinical Approach. Int J Environ Res Public Health. 2021;18(12):6245. doi: https://doi.org/10.3390/ijerph18126245; Zhang R, Lin XZ, Chang YM, et al. Nutritional Committee of Neonatology Branch of Chinese Medical Doctor Association; Editorial Committee of Chinese Journal of Contemporary Pediatrics. Expert consensus on nutritional management of preterm infants with bronchopulmonary dysplasia. Chin J Contemp Paediatr. 2020;22(8):805–814. doi: https://doi.org/10.7499/j.issn.1008-8830.2005080; Guo MMH, Chung CH, Chen FS, et al. Severe Bronchopulmonary Dysplasia is Associated with Higher Fluid Intake in Very Low-Birth- Weight Infants: A Retrospective Study. Am J Perinatol. 2014;30: 155–162. doi: https://doi.org/10.1055/s-0034-1376393; Gianni ML, Roggero P, Colnaghi MR, et al. The role of nutrition in promoting growth in pre-term infants with bronchopulmonary dysplasia: A prospective non-randomised interventional cohort study. BMC Pediatr. 2014;14:235. doi: https://doi.org/10.1186/1471-2431-14-235; Kashyap S, Towers HM, Sahni R, et al. Effects of quality of energy on substrate oxidation in enterally fed, low-birth-weight infants. Am J Clin Nutr. 2001;74(3):374–380. doi: https://doi.org/10.1093/ajcn/74.3.374; Fenton TR, Anderson D, Groh-Wargo S, et al. An Attempt to Standardize the Calculation of Growth Velocity of Preterm Infants — Evaluation of Practical Bedside Methods. J Pediatr. 2018;196: 77–83. doi: https://doi.org/10.1016/j.jpeds.2017.10.005; Manley BJ, Makrides M, Collins CT, et al. For the DINO Steering Committee High-Dose Docosahexaenoic Acid Supplementation of Preterm Infants: Respiratory and Allergy Outcomes. Am Acad Pediatr. 2011;128(1):e71–e77. doi: https://doi.org/10.1542/peds.2010-2405; Wang Q, Zhou B, Cui Q, Chen C. Omega-3 Long-chain Polyunsaturated Fatty Acids for Bronchopulmonary Dysplasia: A Metaanalysis. J Pediatr. 2019;144(1):e20190181. doi: https://doi.org/10.1542/peds.2019-0181; Tanaka K, Tanaka S, Shah N, et al. Docosahexaenoic acid and bronchopulmonary dysplasia in preterm infants: A systematic review and meta-analysis. J Matern Neonatal Med. 2022;35(9):1730–1738. doi: https://doi.org/10.1080/14767058.2020.1769590; Mank E, Naninck EFG, Limpens J, et al. Enteral Bioactive Factor Supplementation in Preterm Infants: A Systematic Review. Nutrients. 2020;12(10):2916. doi: https://doi.org/10.3390/nu12102916; Vázquez-Gomis R, Bosch-Gimenez V, Juste-Ruiz M, et al. Zinc concentration in preterm newborns at term age, a prospective observational study. BMJ Paediatr Open. 2019;3(1):e000527. doi: https://doi.org/10.1136/bmjpo-2019-000527; Dani C, Poggi C. Nutrition and bronchopulmonary dysplasia. J Matern Neonatal Med. 2012;25(Suppl 3):37–40. doi: https://doi.org/10.3109/14767058.2012.712314; Denne SC. Energy Expenditure in Infants with Pulmonary Insufficiency: Is There Evidence for Increased Energy Needs? J Nutr. 2001;131(3):935S–937S. doi: https://doi.org/10.1093/jn/131.3.935S; White AM, Liu P, Yee K, et al. Determinants of Severe Metabolic Bone Disease in Very Low-Birth-Weight Infants with Severe Bronchopulmonary Dysplasia Admitted to a Tertiary Referral Center. Am J Perinatol. 2015;33(1):107–113. doi: https://doi.org/10.1055/s-0035-1560043; Park JS, Jeong SA, Cho JY, et al. Risk Factors and Effects of Severe Late-Onset Hyponatremia on Long-Term Growth of Prematurely Born Infants. Pediatr Gastroenterol Hepatol Nutr. 2020;23(5):472–483. doi: https://doi.org/10.5223/pghn.2020.23.5.472; Arslanoglu S, Boquien CY, King C, et al. Fortification of Human Milk for Preterm Infants: Update and Recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front Pediatr. 2019;7:76. doi: https://doi.org/10.3389/fped.2019.00076; Villamor-Martínez E, Pierro M, Cavallaro G, et al. Donor Human Milk Protects against Bronchopulmonary Dysplasia: A Systematic Review and Meta-Analysis. Nutrients. 2018;10(2):238. doi: https://doi.org/10.3390/nu10020238; Arslanoglu S, Moro GE, Ziegler EE. Adjustable fortification of human milk fed to preterm infants: Does it make a difference? J Perinatol. 2006;26(10):614–621. doi: https://doi.org/10.1038/sj.jp.7211571; McLeod G, Sherriff J, Hartmann PE, et al. Comparing different methods of human breast milk fortification using measured v. assumed macronutrient composition to target reference growth: A randomised controlled trial. Br J Nutr. 2015;115(3):431–439. doi: https://doi.org/10.1017/S0007114515004614; Bott L, Béghin L, Devos P, et al. Nutritional Status at 2 Years in Former Infants with Bronchopulmonary Dysplasia Influen - ces Nutrition and Pulmonary Outcomes During Childhood. Pediatr Res. 2006;60(3):340–344. doi: https://doi.org/10.1203/01.pdr.0000232793.90186.ca; Brunton JA, Saigal S, Atkinson SA. Growth and body composition in infants with bronchopulmonary dysplasia up to 3 months corrected age: A randomized trial of a high-energy nutrient-enriched formula fed after hospital discharge. J Pediatr. 1998;133(3):340–345. doi: https://doi.org/10.1016/s0022-3476(98)70266-5; Pereira-Da-Silva L, Dias MPG, Virella D, et al. Osmolality of pre term formulas supplemented with nonprotein energy supplements. Eur J Clin Nutr. 2007;62:274–278. doi: https://doi.org/10.1038/sj.ejcn.1602736; Konnikova Y, Zaman MM, Makda M, et al. Late Enteral Feedings Are Associated with Intestinal Inflammation and Adverse Neonatal Outcomes. PLoS One. 2015;10(7):e0132924. doi: https://doi.org/10.1371/journal.pone.0132924; Moltu SJ, Bronsky J, Embleton N, et al. ESPGHAN Committee on Nutrition. Nutritional management of the critically ill neonate: A Position Paper of the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2021;73(2):274–289. doi: https://doi.org/10.1097/MPG.0000000000003076; Malcolm WF, Smith PB, Mears S, et al. Transpyloric tube feeding in very low birthweight infants with suspected gastroesophageal reflux: Impact on apnea and bradycardia. J Perinatol. 2009;29(5): 372–375. doi: https://doi.org/10.1038/jp.2008.234; Guimarães H, Rocha G, Guedes MB, et al. Nutrition of preterm infants with bronchopulmonary dysplasia after hospital discharge — Part I. J Pediatr Neonatal Individ Med. 2014;3(1):e030116. doi: https://doi.org/10.7363/030116; Guimarães H, Rocha G, Guedes MB, et al. Nutrition of preterm infants with bronchopulmonary dysplasia after hospital discharge — Part II. J Pediatr Neonatal Individ Med. 2014;3:e030117. doi: https://doi.org/10.7363/030117; Villa E, Barachetti R, Barbarini M. Nutritional management of preterm newborn after hospital discharge: Energy and nutrients. Pediatr Medica Chir. 2017;39(4):170. doi: https://doi.org/10.4081/pmc.2017.170; Pereira-da-Silva L, Virella D, Frutuoso S, et al. Recommendation of charts and reference values for assessing growth of preterm infants: Update by the Portuguese Neonatal Society. Port J Pediatr. 2020;51:73–78. doi: https://doi.org/10.25754/pjp.2020.18888; Pereira-Da-Silva L, Virella D, Fusch C. Nutritional Assessment in Preterm Infants: A Practical Approach in the NICU. Nutrients. 2019;11(9):1999. doi: https://doi.org/10.3390/nu11091999; Johnson MJ, Wiskin AE, Pearson F, et al. How to use: Nutritional assessment in neonates. Arch Dis Child Educ Pract Ed. 2014;100(3):147–154. doi: https://doi.org/10.1136/archdischild-2014-306448; Visser F, Sprij AJ, Brus F. The validity of biochemical markers in metabolic bone disease in preterm infants: A systematic review. Acta Paediatr. 2012;101(6):562–568. doi: https://doi.org/10.1111/j.1651-2227.2012.02626.x; Беляева И.А., Бомбардирова Е.П., Турти Т.В., Приходько Е.А. Использование специализированного лечебного продукта у не доношенного ребенка с постнатальной недостаточностью питания: клинический случай // Вопросы современной педиатрии. — 2021. — Т. 20. — № 6. — С. 521–529. — doi: https://doi.org/10.15690/vsp.v20i6.2359; Marino LV, Johnson MJ, Hall NJ, et al. The development of a consensus-based nutritional pathway for infants with CHD before surgery using a modified Delphi process. Cardiol Young, 2018;28(7):938–948. doi: https://doi.org/10.1017/S1047951118000549; Marino LV, Johnson MJ, Davies NJ, et al. Improving growth of infants with congenital heart disease using a consensus-based nutritional pathway. Clin Nutr. 2020;39(8):2455–2462. doi: https://doi.org/10.1016/j.clnu.2019.10.031; Argent AC, Balachandran R, Vaidyanathan B, et al. Management of undernutrition and failure to thrive in children with congenital heart disease in low- and middle-income countries. Cardiol Young. 2017;27(S6):S22–S30. doi: https://doi.org/10.1017/S104795111700258X; Schwalbe-Terilli CR, Hartman DH, Nagle ML, et al. Enteral feeding and caloric intake in neonates after cardiac surgery. Am J Crit Care. 2009;18(1):52–57. doi: https://doi.org/10.4037/ajcc2009405; Hehir DA, Cooper DS, Walters EM, Ghanayem NS. Feeding, growth, nutrition, and optimal interstage surveillance for infants with hypoplastic left heart syndrome. Cardiol Young. 2011;21(Suppl 2): 59–64. doi: https://doi.org/10.1017/S1047951111001600; Norman M, Hakansson S, Kusuda S, et al. Neonatal outcomes in very preterm infants with severe congenital heart defects: An international cohort study. J Am Heart Assoc. 2020;9(5):e015369. doi: https://doi.org/10.1161/JAHA.119.015369; Salvatori G, De Rose DU, Massolo AC, et al. Current Strategies to Optimize Nutrition and Growth in Newborns and Infants with Congenital Heart Disease: A Narrative Review. J Clin Med. 2022;11(7):1841. doi: https://doi.org/10.3390/jcm11071841.; Karpen HE. Nutrition in the Cardiac Newborns. Evidence-based Nutrition Guidelines for Cardiac Newborns. Clin Perinatol. 2016;43(1):131–145. doi: https://doi.org/10.1016/j.clp.2015.11.009; Steltzer M, Rudd N, Pick B. Nutrition care for newborns with congenital heart disease. Clin Perinatol. 2005;32(4):1017–1030, xi. doi: https://doi.org/10.1016/j.clp.2005.09.010; Wong JJM, Cheifetz IM, Ong C, et al. Nutrition Support for Children Undergoing Congenital Heart Surgeries: A Narrative Review. World J Pediatr Congenit Heart Surg. 2015;6(3):443–454. doi: https://doi.org/10.1177/2150135115576929; Jones CE, Desai H, Fogel JL, et al. Disruptions in the development of feeding for infants with congenital heart disease. Cardiol Young. 2021;31(4):589–596. doi: https://doi.org/10.1017/S1047951120004382; Cognata A, Kataria-Hale J, Griffiths P, et al. Human Milk Use in the Preoperative Period Is Associated with a Lower Risk for Necrotizing Enterocolitis in Neonates with Complex Congenital Heart Disease. J Pediatr. 2019;215:11–16.e2. doi: https://doi.org/10.1016/j.jpeds.2019.08.009; Martini S, Aceti A, Galletti S, et al. To feed or not to feed: A critical overview of enteral eeding management and gastrointestinal complications in preterm neonates with a patent ductus arteriosus. Nutrients. 2020;12(1):83. doi: https://doi.org/10.3390/nu12010083; Malhotra A, Veldman A, Menahem S. Does milk fortification increase the risk of necrotising enterocolitis in preterm infants with congenital heart disease? Cardiol Young. 2013;23(30:450–453. doi: https://doi.org/10.1017/S1047951112000947; Tume LN, Balmaks R, Da Cruz E, et al. Enteral Feeding Practices in Infants with Congenital Heart Disease Across European PICUs: A European Society of Pediatric and Neonatal Intensive Care Survey. Pediatr Crit Care Med. 2018;19(2):137–144. doi: https://doi.org/10.1097/PCC.0000000000001412; Furlong-Dillard J, Neary A, Marietta J, et al. Evaluating the Impact of a Feeding Protocol in Neonates before and after Biventricular Cardiac Surgery. Pediatr Qual Saf. 2018;3(3):e080. doi: https://doi.org/10.1097/pq9.0000000000000080; Newcombe J, Fry-Bowers E. A Post-operative Feeding Protocol to Improve Outcomes for Neonates with Critical Congenital Heart Disease. J Pediatr Nurs. 2017;35:139–143. doi: https://doi.org/10.1016/j.pedn.2016.12.010; O’Neal Maynord P, Johnson M, Xu M, et al. A Multi-Interventional Nutrition Program for Newborns with Congenital Heart Disease. J Pediatr. 2021;228:66–73.e2. https://doi.org/10.1016/j.jpeds.2020.08.039; Hansson L, Lind T, Wiklund U, et al. Fluid restriction negatively affects energy intake and growth in very low birthweight infants with haemodynamically significant patent ductus arteriosus. Acta Paediatr. 2019;108(11):1985–1992. doi: https://doi.org/10.1111/apa.14815; McCammond AN, Axelrod DM, Bailly DK, et al. Pediatric cardiac intensive care society 2014 consensus statement: Pharmacotherapies in cardiac critical care fluid management. Pediatr Crit Care Med. 2016;17(3 Suppl 1):S35–S48. doi: https://doi.org/10.1097/PCC.0000000000000633; Hanot J, Dingankar AR, Sivarajan VB, et al. Fluid management practices after surgery for congenital heart disease: A worldwide survey. Pediatr Crit Care Med. 2019;20(4):357–364. doi: https://doi.org/10.1097/PCC.0000000000001818; Zhang J, Cui YQ, Luo Y, et al. Assessment of Energy and Protein Requirements in Relation to Nitrogen Kinetics, Nutrition, and Clinical Outcomes in Infants Receiving Early Enteral Nutrition Following Cardiopulmonary Bypass. JPEN J Parenter Enter Nutr. 2021;45(3):553–566. doi: https://doi.org/10.1002/jpen.1863; Mehta NM, Skillman HE, Irving SY, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Pediatr Crit Care Med. 2017;18(7):675–715. doi: https://doi.org/10.1097/PCC.0000000000001134; Terrin G, De Nardo MC, Boscarino G, et al. Early Protein Intake Influences Neonatal Brain Measurements in Preterms: An Observational Study. Front Neurol. 2020;11:885. doi: https://doi.org/10.3389/fneur.2020.00885; Gu Y, Hu Y, Zhang H, et al. Implementation of an Evidence- Based Guideline of Enteral Nutrition for Infants with Congenital Heart Disease: A Controlled Before-And-After Study. Pediatr Crit Care Med. 2020;21(6):e369–e377. doi: https://doi.org/10.1097/PCC.0000000000002296; Singal A, Sahu MK, Trilok Kumar G, Kumar A. Effect of energyand/ or protein-dense enteral feeding on postoperative outcomes of infant surgical patients with congenital cardiac disease: A systematic review and meta-analysis. Nutr Clin Pract. 2022;37(3):555–566. doi: https://doi.org/10.1002/ncp.10799; Zhang J, Cui YQ, Ma Md ZM, et al. Energy and Protein Requirements in Children Undergoing Cardiopulmonary Bypass Surgery: Current Problems and Future Direction. JPEN J Parenter Enter Nutr. 2019;43(1):54–62. doi: https://doi.org/10.1002/jpen.1314; Ni P, Chen X, Zhang Y, et al. High-Energy Enteral Nutrition in Infants After Complex Congenital Heart Surgery. Front Pediatr. 2022;10:869415. doi: https://doi.org/10.3389/fped.2022.869415; https://vsp.spr-journal.ru/jour/article/view/3078
-
8Academic Journal
المؤلفون: A. V. Mostovoi, A. L. Karpova, S. S. Mezhinsky, N. N. Volodin, А. В. Мостовой, А. Л. Карпова, С. С. Межинский, Н. Н. Володин
المساهمون: The authors declare no funding. The authors express gratitude to the director of statistics of LLC “Techdepartament”, Department Statistics for Medicine", PhD, E.V. Shchepkina for statistical data processing. We warmly thank for the help in collecting the material the doctors at all perinatal centers and personally Nailya Kharitonova, Olga Avdei, Marina Kovaleva, Anastasia Petrova, Maksim Kondrat’ev, Inessa Mebelova, Maksim Tkachuk, Olga Sapun for organizing work in locations. Special thanks to Petr Ermolinsky, Laboratory of Biomedical Photonics, Faculty of Physics, Lomonosov Moscow State University, and Leonid Karpov (student at the International Faculty of Pirogov Russian National Research Medical University) for help in preparing the study. The authors express deep gratitude to Dr Sci Med Boris Kramer, Chief Scientific Officer, Chief Medical Director of Neuroplast BV (Maastricht, the Netherlands), Clinical Professor University of Western Australia, for scientific advice in preparing the manuscript for publication and highly assessed quality of our study., Авторы заявляют об отсутствии финансовой поддержки. Авторы выражают благодарность директору по статистике ООО «Техдепартамент», отдел статистики медицины, к.c.н. Е.В. Щепкиной за статистическую обработку данных. Сердечно благодарим за помощь в сборе материала врачей всех перинатальных центров и лично Наилю Харитонову, Ольгу Авдей, Марину Ковалёву, Анастасию Петрову, Максима Кондратьева, Инессу Мебелову, Максима Ткачука, Ольгу Сапун за организацию работы на локациях. Также благодарим Петра Ермолинского из лаборатории биомедицинской фотоники физического факультета МГУ им. М.В. Ломоносова и Леонида Карпова (студента международного факультета ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России) за помощь в подготовке исследования. Авторы выражают особую глубокую благодарность доктору Борису Крамеру, д.м.н., главному научному сотруднику, главному медицинскому директору Neuroplast BV (Маастрихт, Нидерланды), клиническому профессору Университета Западной Австралии, за научные консультации при подготовке материала к публикации и за его высокую оценку качества нашего исследования.
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 5 (2023); 565-583 ; Акушерство, Гинекология и Репродукция; Vol 17, No 5 (2023); 565-583 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: вязкость сурфактанта, bronchopulmonary dysplasia, LISA, surfactant distribution, surfactant viscosity, бронхолегочная дисплазия, распределение сурфактанта
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1802/1151; Speer C.P., Robertson B., Curstedt T. et al. Randomized European multicenter trial of surfactant replacement therapy for severe neonatal respiratory distress syndrome: single versus multiple doses of Curosurf. Pediatrics. 1992;89(1):13–20.; Ramanathan R., Rasmussen M.R., Gerstmann D.R. et al. A randomized, multicenter masked comparison trial of poractant alfa (Curosurf) versus beractant (Survanta) in the treatment of respiratory distress syndrome in preterm infants. Am J Perinatol. 2004;21(3):109–19. https://doi.org/10.1055/s-2004-823779.; Cassidy K., Bull J., Glucksberg M. et al. A rat lung model of instilled liquid transport in the pulmonary airways. J Appl Physiol (1985). 2001;90(5):1955–67. https://doi.org/10.1152/jappl.2001.90.5.1955.; Anderson J., Molthen R., Dawson C. et al. Effect of ventilation rate on instilled surfactant distribution in the pulmonary airways of rats. J Appl Physiol (1985). 2004;97(1):45–56. https://doi.org/10.1152/japplphysiol.00609.2003.; King D., Wang Z., Kendig J. et al. Concentration-dependent, temperature-dependent non-Newtonian viscosity of lung surfactant dispersions. Chem Phys Lipids. 2001;112(1):11–9. https://doi.org/10.1016/s0009-3084(01)00150-5.; Espinosa F.F., Kamm R.D. Bolus dispersal through the lungs in surfactant replacement therapy. J Appl Physiol (1985). 1999;86(1):391–410. https://doi.org/10.1152/jappl.1999.86.1.391.; Zheng Y., Anderson J.C., Suresh V., Grotberg J.B. Effect of gravity on liquid plug transport through an airway bifurcation model. J Biomech Eng. 2005;127(5):798–806. https://doi.org/10.1115/1.1992529.; Zheng Y., Fujioka H., Grotberg J.C., Grotberg J.B. Effects of inertia and gravity on liquid plug splitting at a bifurcation. J Biomech Eng. 2006;128(5):707–16. https://doi.org/10.1115/1.2246235.; Copploe A., Vatani M., Choi J.W., Tavana H. A three-dimensional model of human lung airway tree to study therapeutics delivery in the lungs. Ann Biomed Eng. 2019;47(6):1435–45. https://doi.org/10.1007/s10439-019-02242-z.; Halpern D., Jensen O.E., Grotberg J.B. A theoretical study of surfactant and liquid delivery into the lung. J Appl Physiol (1985). 1998;85(1):333–52. https://doi.org/10.1152/jappl.1998.85.1.333.; Gilliard N., Richman P.M., Merritt T.A., Spragg R.G. Effect of volume and dose on the pulmonary distribution of exogenous surfactant administered to normal rabbits or to rabbits with oleic acid lung injury. Am Rev Respir Dis. 1990;141(3):743–7. https://doi.org/10.1164/ajrccm/141.3.743.; Ведение новорожденных с респираторным дистресс-синдромом. Клинические рекомендации. Под ред. академика РАН В.В. Володина. М., 2016. 48 с. Режим доступа: https://www.volgmed.ru/uploads/files/2018-4/82939vedenie_novorozhdennyh_s_respiratornym_distress-sindromom_2016_http_www_raspm_ru.pdf. [Дата обращения: 15.09.2023].; Robertson B., Curstedt T., Johansson J. et al. Structural and functional characterization of porcine surfactant isolated by liquid gel chromatography. In: Basic Research on Lung Surfactant. Progress in Respiration Research. Eds. P. von Wichert, B. Muller. Basel: Karger, 1990. Vol. 25. 237–46.; Мостовой А.В., Жакота Д.А., Карпова А.Л. и др. Анатомические параметры трахеи у недоношенных новорожденных с массой тела менее 1000 г для эффективного и безопасного малоинвазивного введения сурфактанта. Российский вестник перинатологии и педиатрии. 2021;66(5):60–6. https://doi.org/10.21508/1027-4065-2021-66-5-60-66.; Reynolds P., Bustani P., Darby C. et al. Less-invasive surfactant administration for neonatal respiratory distress syndrome: a consensus guideline. Neonatology. 2021;118(5):586–92. https://doi.org/10.1159/000518396.; Swartz D., Klein W., Row S. et al. Comparison of dynamic viscosities of lung surfactant drugs. Hot Topics in Neonatology, 2017. Available at: https://infasurf.com/about/the-science/viscosity. [Accessed: 15.09.2023].; King D.M., Wang Z., Palmer H.J. et al. Bulk shear viscosities of endogenous and exogenous lung surfactants. Am J Physiol Lung Cell Mol Physiol. 2002;282(2):L277–84. https://doi.org/10.1152/ajplung.00199.2001.; Garland J., Buck R., Weinberg M. Pulmonary hemorrhage risk in infants with a clinically diagnosed patent ductus arteriosus: a retrospective cohort study. Pediatrics. 1994;94(5):719–23.; Lewis M.J., McKeever P.K., Rutty G.N. Patent ductus arteriosus as a natural cause of pulmonary hemorrhage in infants: a medicolegal dilemma. Am J Forensic Med Pathol. 2004;25(3):200–4. https://doi.org/10.1097/01.paf.0000136444.09294.75.; Kappico J.M., Siassi B., Ebrahimi M., Ramanathan R. Pulmonary venous congestion and pulmonary hemorrhage in an extremely premature neonate with a large patent ductus arteriosus and closed patent foramen ovale: a case report. J Investig Med High Impact Case Rep. 2020;8:2324709620982430. https://doi.org/10.1177/2324709620982430.; Hagadorn J.I., Shaffer M.L., Tolia V.N., Greenberg R.G. Covariation of changing patent ductus arteriosus management and preterm infant outcomes in pediatrix neonatal intensive care units. J Perinatol. 2021;41(10):2526–31. https://doi.org/10.1038/s41372-021-01170-y.; Ngo S., Profit J., Gould J.B., Lee H.C. Trends in patent ductus arteriosus diagnosis and management for very low birth weight infants. Pediatrics. 2017;139(4):e20162390. https://doi.org/10.1542/peds.2016-2390.; Hagadorn J.I., Brownell E.A., Trzaski J.M. et al. Trends and variation in management and outcomes of very low-birth-weight infants with patent ductus arteriosus. Pediatr Res. 2016;80(6):785–92. https://doi.org/10.1038/pr.2016.166.; Harkin P., Marttila R., Pokka T. et al. Survival analysis of a cohort of extremely preterm infants born in Finland during 2005-2013. J Matern Fetal Neonatal Med. 2021;34(15):2506–12. https://doi.org/10.1080/14767058.2019.1668925.; Kong X., Xu F., Wu R. et al. Neonatal mortality and morbidity among infants between 24 to 31 complete weeks: a multicenter survey in China from 2013 to 2014. BMC Pediatr. 2016;16(1):174. https://doi.org/10.1186/s12887-016-0716-5.; Hines D., Modi N., Lee S.K. et al.; International Network for Evaluating Outcomes (iNeo) of Neonates. Scoping review shows wide variation in the definitions of bronchopulmonary dysplasia in preterm infants and calls for a consensus. Acta Paediatr. 2017;106(3):366–74. https://doi.org/10.1111/apa.13672.; Zheng Y., Fujioka H., Bian S. et al. Liquid plug propagation in flexible microchannels: a small airway model. Phys Fluids (1994). 2009;21(7):71903. https://doi.org/10.1063/1.3183777.; Мостовой А.В., Карпова А.Л., Межинский С.С., Володин Н.Н. Состояние проблемы организации оказания респираторной помощи новорожденным детям в России сегодня: результаты опроса врачей-неонатологов и анестезиологов-реаниматологов. Педиатрия. Журнал имени Г.Н. Сперанского. 2021;100(5):209–19. https://doi.org/10.24110/0031-403X2021-100-5-209-219.; De Luca D., Minucci A., Gentile L., Capoluongo E.D. Surfactant inadvertent loss using feeding catheters or endotracheal tubes. Am J Perinatol. 2014;31(3):209–12. https://doi.org/10.1055/s-00331345262.; https://www.gynecology.su/jour/article/view/1802
-
9Academic Journal
المصدر: Bulletin of the Academy of Sciences of Moldova. Medical Sciences; Vol. 76 No. 2 (2023): Medical Sciences; 56-62 ; Buletinul Academiei de Științe a Moldovei. Științe medicale; Vol. 76 Nr. 2 (2023): Ştiinţe medicale; 56-62 ; Вестник Академии Наук Молдовы. Медицина; Том 76 № 2 (2023): Медицина; 56-62 ; 1857-0011
مصطلحات موضوعية: бронхолегочная дисплазия, недоношенные дети, факторы риска, displazia bronhopulmonară, copii prematuri, factori de risc, bronchopulmonary dysplasia, premature babies, risk factors
وصف الملف: application/pdf
-
10Academic Journal
المصدر: Bulletin of the Academy of Sciences of Moldova. Medical Sciences; Vol. 76 No. 2 (2023): Medical Sciences; 63-68 ; Buletinul Academiei de Științe a Moldovei. Științe medicale; Vol. 76 Nr. 2 (2023): Ştiinţe medicale; 63-68 ; Вестник Академии Наук Молдовы. Медицина; Том 76 № 2 (2023): Медицина; 63-68 ; 1857-0011
مصطلحات موضوعية: ишемически модифицированный альбумин, бронхолегочная дисплазия, дети, albumina ischemic modificată, displazia bronhopulmonară, copii, modified ischemic albumin, bronchopulmonary dysplasia, children
وصف الملف: application/pdf
-
11Academic Journal
المؤلفون: Cotoman, A., Selevestru, R., Şciuca, S.S., Щука, С.
المصدر: Buletin de Perinatologie 93 (1) 201-206
مصطلحات موضوعية: bronchopulmonary dysplasia, children, bronchoobstructive syndrome, бронхолегочная дисплазия, дети, обструктивный синдром
وصف الملف: application/pdf
Relation: https://ibn.idsi.md/vizualizare_articol/171694; urn:issn:18105289
-
12Academic Journal
المؤلفون: D. Yu. Ovsyannikov, E. S. Keshishyan, I. V. Krsheminskaya, O. V. Bystrova, Д. Ю. Овсянников, Е. С. Кешишян, И. В. Кршеминская, О. В. Быстрова
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 3 (2022); 34-38 ; Российский вестник перинатологии и педиатрии; Том 67, № 3 (2022); 34-38 ; 2500-2228 ; 1027-4065
مصطلحات موضوعية: масса тела при рождении, bronchopulmonary dysplasia, epidemiology, gestational age, birth weight, бронхолегочная дисплазия, эпидемиология, гестационный возраст
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1649/1241; Овсянников Д.Ю. Эпидемиология бронхолегочной дисплазии: данные отечественных и зарубежных исследований. Педиатрия. Журнал им. Г.Н. Сперанского. 2012; 91(2): 102–107.; Голобородько М.М., Богданова А.В., Арестова Н.Е., Бойцова Е.В., Онучин Н.А., Старевская С.В. и др. Эпидемиологические аспекты болезней мелких бронхов у детей. Медлайн-экспресс. 2008; 5(199): 46–50.; Саева О.В., Павлинова Е.Б. Динамика эпидемиологических показателей бронхолегочной дисплазии у недоношенных детей в крупном промышленном центре. Педиатрия им. Г.Н. Сперанского. 2015; 94(4): 184–188.; Сахарова Е.С., Кешишян Е.С., Алямовская Г.А. Динамика заболеваемости и исходов развития к 3 годам жизни у недоношенных детей, наблюдавшихся в специализированном центре. Российский вестник перинатологии и педиатрии. 2015; 60(3): 108–112.; Ионов О.В., Киртбая А.Р., Балашова Е.Н., Косинова Т.А., Рындин А.Ю., Зубков В.В. и др. Результаты внедрения протокола стабилизации глубоконедоношенных новорожденных в родильном зале, включающего использование по показаниям продленного воздуха в комбинации с методом СРАР. Неонатология: новости, мнения, обучение. 2019; 7(2): 33–41. DOI:10.24411/2308-2402-2019-12002; Петрова А.С., Тамазян Г.В., Нароган М.В., Захарова Н.И., Серова О.Ф., Малютина Л.В. и др. Современные принципы реанимации и интенсивной терапии новорожденных с экстремально низкой и очень низкой массой тела. Вопросы практической педиатрии 2012; 7(1): 17–22.; Шабалов Н.П. Неонатология. Москва: ГЭОТАР-Медиа, 2016; 1: 367–450.; Федорова Л.А., Моисеева К.Е. Катамнез недоношенных детей. Детская медицина Северо-Запада. 2020; 8 (1): 354–355.; Дюмин И.И., Балакирева Е.А. Нозологическая структура патологии у глубоконедоношенных детей по данным Белгородской области. Российский педиатрический журнал. 2020; 23 (1): 69.; Руденко Н.В., Бениова С.Н. Состояние здоровья недоношенных детей с очень низкой и экстремально низкой массой тела при рождении. Тихоокеанский медицинский журнал. 2012; 3:34–36.; Брыксина Е.Ю., Почивалов А.В., Брыксин В.С., Крюков Ю.В., Боронина И.В. Частота развития, особенности течения и исходы бронхолегочной дисплазии у детей с микроаспирацией желудочного содержимого. Педиатрия 2014; 93(6): 197–198.; Шакирова К.П., Чистякова Г.Н., Ремизова И.И., Устьянцева Л.С., Рюмин В.Е. Выхаживание недоношенных детей с использованием современных технологий ухода. Лечение и профилактика 2020; 10(1): 36–40.; Межинский С.С., Шилова Н.А., Чаша Т.В., Родина М.А., Турова А.В. Клиническая характеристика детей с бронхолегочной дисплазией. Материалы I Международного Конгресса по перинатальной медицине. Москва, 2011; 113.; Межинский С.С., Шилова Н.А., Чаша Т.В., Фетисова И.Н., Харламова Н.В., Ратникова С.Ю. и др. Полиморфизм генов системы детоксикации у глубоконедоношенных детей с бронхолегочной дисплазией. Клиническая лабораторная диагностика 2018; 63(10): 658–660.; Клочан А.А., Бачиева А.Р. БЛД у новорожденных детей: эпидемиология и эффективность оказания медицинской помощи в г. Краснодаре. SCIENCE4HEALTH 2012. Клинические и теоретические аспекты современной медицины. Материалы IV Международной научной конференции. М.: РУДН, 2012; 83–84.; Кислюк Г.И., Стрелков Д.М., Никитина Л.В. Эпидемиологические аспекты бронхолегочной дисплазии у глубоконедоношенных детей. Возраст-ассоциированные и гендерные особенности здоровья и болезни. Сборник материалов Международной научно-практической конференции. Курск, 2016; 381–386.; Семериков В.В., Зубова Е.С., Лошкарева В.Н., Софронова Л.В., Пермякова М.А. Распространенность бронхолегочной патологии среди недоношенных детей и оценка профилактической эффективности и реактогенности применения 13-валентной пневмококковой конъюгированной вакцины у недоношенных детей с бронхолегочной дисплазией. Педиатрическая фармакология 2019; 16(6): 372–378. DOI:10.15690/pf.v16i6.2075; Кольцова Н.С., Захарова Л.И., Чикина Л.В. Формирование здоровья недоношенных детей с сочетанной перинатальной патологией. Вопросы современной педиатрии 2005; 4(1): 243.; Жирнов В.А., Ружейникова И.В., Шугуров Д.А. Синдром дыхательных расстройств как фактор высокого риска развития бронхолегочной патологии у детей. Сб. материалов XV Конгресса педиатров России с международным участием «Актуальные проблемы педиатрии». М., 2011; 288.; Ахмадеева Э.Н., Крывкина Н.Н., Брюханова О.А. Соматическое здоровье детей на первом году жизни с низкой и экстремально низкой массой тела при рождении, перенесших респираторный дистресс-синдром. Вестник РГМУ. 2008; 63(4): 11–12.; Панов П.В., Ахмадеева Э.Н., Байков Д.Э., Панова Л.Д. Перинатальные факторы риска бронхолегочной дисплазии у детей. Сборник трудов XXI Национального Конгресса по болезням органов дыхания. Уфа, 2011; 120–121.; Виноградова И.В. Заболеваемость и летальность детей с экстремально низкой массой тела. Вестник Чувашского университета. 2012; 3: 335–341.; Серебрякова Е.Н., Волосников Д.К., Бузуева Г.И. Распространенность бронхолегочной дисплазии у новорожденных с синдромом полиорганной недостаточности. Материалы IX Ежегодного Конгресса специалистов перинатальной медицины «Современная перинатология: организация, технологии, качество». Москва, 2014; 22–23.; Узунова А.Н., Онищенко Н.А. Анализ причин перинатального риска и структура патологии у недоношенных детей Челябинска, рожденных с экстремально низкой и очень низкой массой тела. Российский вестник перинатологии и педиатрии. 2019; 64 (3): 92–98. DOI:10.21508/1027-4065-2019-64-4-92-98; Володин Н.Н., Кешишян Е.С., Пакратова Л.Л., Мостовой А.В., Овсянников Д.Ю., Карпова А.Л. и др. Стратегия отечественной неонатологии: вызовы настоящего и взгляд в будущее. Педиатрия. 2022; 101 (1): 8–21.; https://www.ped-perinatology.ru/jour/article/view/1649
-
13Academic Journal
المؤلفون: A. Yu. Trapeznikova, N. A. Petrova, G. I. Obraztsova, E. V. Boytsova, Yu. V. Sviryaev, D. O. Ivanov, А. Ю. Трапезникова, Н. А. Петрова, Г. И. Образцова, Е. В. Бойцова, Ю. В. Свиряев, Д. О. Иванов
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 2 (2022); 94-99 ; Российский вестник перинатологии и педиатрии; Том 67, № 2 (2022); 94-99 ; 2500-2228 ; 1027-4065
مصطلحات موضوعية: периодическое дыхание, bronchopulmonary dysplasia, apnea, periodic breathing, бронхолегочная дисплазия, апноэ
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1624/1226; Stoll B.J., Hansen N.I., Bell E.F., Walsh M.C., Carlo W.A., Shankaran S. et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates. JAMA 2015; 314(10): 1039–1051. DOI: 10,1097/01.aoa.0000482610,95044,1b; Mourani P.M., Mullen M., Abman S.H. Pulmonary hypertention in brochopulmonary dysplasia. Prog Pediatr Cardiol 2009; 27: 43–48; Northway W.H., Rosan R.C., Porter D.Y. Pulmonary disease following respiratory therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 1967; 276(7): 357–368. DOI: 10,1056/nejm196702162760701; Kim D.H., Kim H.S., Choi C.W. Kim E.-K., Kim B. I., Choi J.-H. Risk factors for pulmonary artery hypertension in preterm infants with moderate or severe bronchopulmonary dysplasia. Neonatology 2012; 101(1): 40–46. DOI: 10,1159/000327891; Ambalavanan N., Mourani P. Pulmonary hypertension in bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol 2014; 100 (3): 240–246. DOI: 10,1002/bdra.23241; Decima P.F., Fyfe K.L., Odoi A., Wong F.Y., Horne R.S.C. The longitudinal effects of persistent periodic breathing on cerebral oxygenation in preterm infants. Sleep Med 2015; 16: 729–735. DOI: 10,1016/j.sleep.2015.02.537; Mohr M.A., Fairchild K.D., Patel M., Sinkin R.A., Clark M.T., Moorma J.R. et al. Quantifi cation of periodic breathing in premature infants. Physiol Meas 2015; 36(7): 1415–1427. DOI: 10,1088/0967–3334/36/7/1415; Payer C., Urlesberger B., Pauger M., Müller W. Apnea associated with hypoxia in preterm infants: impact on cerebral blood volume. Brain Dev 2003; 25(1): 25–31. DOI: 10,1016/s0387–7604(02)00121–3; Jobe A., Bancalary E. Bronchopulmonary dysplasia. NICHDNHLBI-ORD Workshop. Am J Respir Critical Care Med 2001; 163(7): 1723–1729. DOI: 10,1164/ajrccm.163,7.2011060; Баранов А.А., Намазова-Баранова Л.С., Володин Н.Н., Давыдова И.В., Овсянников Д.Ю., Иванов Д.О. и др. Ведение детей с бронхолегочной дисплазией. Клинические рекомендации. Педиатрическая фармакология 2016; 13(4): 319–333.; Abman S.H., Hansmann G., Archer S.L., Ivy D.D., Adatia I., Chu W.K. et al. Pediatric pulmonary hypertension. Guidelines from the American heart association and American thoracic society. Circulation 2015; 132(21): 2037–2099. DOI: 10,1161/CIR.0000000000000329; Barrington K.J., Finer N.N. The natural history of the appearance of apnea of prematurity. Pediatr Res 1991; 29: 372–375. DOI: 10,1038/pr.1991,72500; Cummings J.J., Polin R.A. Committee on Fetus and Newborn: Oxygen targeting inextremely low birth weight infants. Pediatrics 2016; 138(2): 1–9. DOI: 10,1542/peds.2016–1576; Bixler E.O., Vgontzas A.N., Lin H.-M., Liao D., Calhoun S., Vela-Bueno A. et al. Sleep disordered breathing in children in a general population sample: prevalence and risk factors. Sleep 2009; 32: 731–736. DOI: 10,1093/sleep/32,6.731; Emancipator J.L., Storfer-Isser A., Taylor H.G., Rosen C.L., Kirchner H.L., Johnson N.L. et al. Variation of cognition and achievement with sleep-disordered breathing in full-term and preterm children. Arch Pediatr Adolesc Med 2006; 160: 203– 210. DOI: 10,1001/archpedi.160,2.203; https://www.ped-perinatology.ru/jour/article/view/1624
-
14Academic Journal
المؤلفون: V. M. Malyshava, A. P. Mikhalenka, A. P. Suharava, M. V. Artsiusheuskaya, K. A. Gomolko, A. V. Kilchevsky, О. М. Малышева, Е. П. Михаленко, А. П. Сухарева, М. В. Артюшевская, К. А. Гомолко, А. В. Кильчевский
المصدر: Doklady of the National Academy of Sciences of Belarus; Том 66, № 2 (2022); 187-194 ; Доклады Национальной академии наук Беларуси; Том 66, № 2 (2022); 187-194 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2022-66-2
مصطلحات موضوعية: сурфактант, respiratory distress syndrome, bronchopulmonary dysplasia, premature newborns, surfactant, синдром дыхательных расстройств, бронхолегочная дисплазия, недоношенные новорожденные
وصف الملف: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/1053/1049; Jackson, J. C. Respiratory distress in the preterm infant / J. C. Jackson // Avery’s Diseases of the Newborn: 9th ed. / ed. C. A. Gleason, S. U. Devaskar. – 2012. – Ch. 46. – P. 633–646. https://doi.org/10.1016/b978-1-4377-0134-0.10046-0; Bronchopulmonary dysplasia / B. Thébaud [et al.] // Nat. Rev. Dis. Primers. – 2019. – Vol. 5, N 1. – P. 1–23. https://doi.org/10.1038/s41572-019-0127-7; Sambrook, J. Isolation of highmolecular-weight DNA from mammalian cells / J. Sambrook, E. F. Fritsch, T. Maniatis // Molecular Cloning: a laboratory manual. – 2nd ed. – N. Y., 1989. – P. 9.14–9.23.; Surfactant protein B deficiency and gene mutations for neonatal respiratory distress syndrome in China Han ethnic population / X. Yin [et al.] // J. Clin. Exp. Pathol. – 2013. – Vol. 6, N 2. – P. 267–272.; Relationship between the microsatellite D2S388-5 and D2S2232 polymorphisms and chronic obstructive pulmonary disease in the Chinese Kazakh population / J. Gu [et al.] // Respirology. – 2013. – Vol. 18, N 2. – P. 303–307. https://doi.org/10.1111/resp.12000; Surfactant proteins A and B as interactive genetic determinants of neonatal respiratory distress syndrome / R. Haataja [et al.] // Hum. Mol. Gen. – 2000. – Vol. 9, N 18. – P. 2751–2760. https://doi.org/10.1093/hmg/9.18.2751; Genetic association of pulmonary surfactant protein genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD with cystic fibrosis / Z. Lin [et al.] // Front. Immunol. – 2018. – Vol. 9. – P. 1–17. https://doi.org/10.3389/fimmu.2018.02256; Two novel mutations in surfactant protein-C, lung function and obstructive lung disease / M. Bækvad-Hansen [et al.] // Respiratory Medicine. – 2010. – Vol. 104, N 3. – P. 418–425. https://doi.org/10.1016/j.rmed.2009.10.012; Moorsel, C. Genetic disorders of the surfactant system: focus on adult disease / C. Moorsel, J. Vis, J. Grutters // Eur. Respir. Rev. – 2021. – Vol. 30, N 159. – Art. 200085. https://doi.org/10.1183/16000617.0085-2020; Surfactant protein B gene polymorphisms is associated with risk of bronchopulmonary dysplasia in Chinese Han population / S. Zhang [et al.] // Int. J. Clin. Exp. Pathol. – 2015. – Vol. 8, N 3. – P. 2971–2978.; Association of surfactant protein B gene polymorphisms (C/A-18, C/T1580, intron 4 and A/G9306) and haplotypes with bronchopulmonary dysplasia in Chinese Han population / B. Cai [et al.] // J. Huazhong Univ. Sci. Technol. – 2013. – Vol. 33, N 3. – P. 323–328. https://doi.org/10.1007/s11596-013-1118-7; Family-based association tests suggest linkage between surfactant protein B (SP-B) (and flanking region) and respiratory distress syndrome (RDS): SP-B haplotypes and alleles from SP-B-linked loci are risk factors for RDS / J. Floros [et al.] // Pediatr. Research. – 2006. – Vol. 59, N 4, part 1. – P. 616–621. https://doi.org/10.1203/01.pdr.0000203145.48585.2c; Genetic variants of surfactant proteins A, B, C, and D in bronchopulmonary dysplasia / J. Pavlovic [et al.] // Disease Markers. – 2006. – Vol. 22, N 5–6. – P. 277–291. https://doi.org/10.1155/2006/817805; Association of SP-C gene codon 186 polymorphism (rs1124) and risk of RDS / N. Fatahi [et al.] // Journal of Maternal-Fetal & Neonatal Medicine. – 2016. – Vol. 30, N 21. – P. 2585–2589. https://doi.org/10.1080/14767058.2016.1256994; Clinical biological and genetic heterogeneity of the inborn errors of pulmonary surfactant metabolism / M. Tredano [et al.] // Clin. Chem. Lab. Med. – 2001. – Vol. 39, N 2. – P. 90–108. https://doi.org/10.1515/cclm.2001.018; https://doklady.belnauka.by/jour/article/view/1053
-
15Academic Journal
المؤلفون: L. N. Sinitsa, N. S. Paramonova
المصدر: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 20, Iss 1, Pp 80-85 (2022)
مصطلحات موضوعية: недоношенные дети, бронхолёгочная дисплазия, кальцидиол, дефицит витамина d, обеспеченность витамином d, созревание лёгких, Medicine
Relation: http://journal-grsmu.by/index.php/ojs/article/view/2763; https://doaj.org/toc/2221-8785; https://doaj.org/toc/2413-0109; https://doaj.org/article/3ed9c4cf11c9400e890e756140ebe049
-
16Academic Journal
المؤلفون: Irina А. Belyaeva, Elena P. Bombardirova, Tatiana V. Turti, Evgeniia A. Prikhodko, И. А. Беляева, Е. П. Бомбардирова, Т. В. Турти, Е. А. Приходько
المساهمون: The article was funded by Nutricia Advance., Статья опубликована при финансовой поддержке компании «Нутриция Эдванс».
المصدر: Current Pediatrics; Том 20, № 6 (2021); 521-529 ; Вопросы современной педиатрии; Том 20, № 6 (2021); 521-529 ; 1682-5535 ; 1682-5527
مصطلحات موضوعية: клинический случай, malnutrition, premature, bronchopulmonary dysplasia, perinatal pathology, nutrition therapy, clinical case, недостаточность питания, недоношенные, бронхолегочная дисплазия, перинатальная патология, лечебное питание
وصف الملف: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/2802/1134; Schwatzenberg SJ, Georgieff MK. Advocacy for improving nutrition in the first 1000 days to support childhood development and adult health. Pediatrics. 2018;141(2):e20173716. doi:10.1542/peds.2017-3716; WHO. Global Nutrition Targets 2025: Policy Brief Series (WHO/NMH/NHD/14.2). Geneva, Switzerland: World Health Organization; 2014.; Zhang Z, Li F, Hannon BA, et al. Effect of Oral Nutritional Supplementation on Growth in Children with Undernutrition: A Systematic Review and Meta-Analysis. Nutrients. 2021;13(9):3036. doi:10.3390/nu13093036; Perkins JM, Kim R, Krishna A, et al. Understanding the association between stunting and child development in low- and middle-income countries: Next steps for research and intervention. Soc Sci Med. 2017;193:101–109. doi:10.1016/j.socscimed.2017.09.039; Ong KK, Kennedy K, Castaneda-Gutierrez E, et al. Postnatal growth in preterm infants and later health outcomes: a systematic review. Acta Paediatr. 2015;104(10):974–986. doi:10.1111/apa.13128; Figueras-Aloy J, Palet-Trujols C, Matas-Barceló I, et al. Extrauterine growth restriction in very preterm infant: etiology, diagnosis, and 2-year follow-up. Eur J Pediatr. 2020;179(9):1469–1479. doi:10.1007/s00431-020-03628-1; Makker K, Ji Y, Hong X, Wang X. Antenatal and neonatal factors contributing to extra uterine growth failure (EUGR) among preterm infants in Boston Birth Cohort (BBC). J Perinatol. 2021;41(5): 1025–1032. doi:10.1038/s41372-021-00948-4; Martinez-Jimenez MD, Gomez-Garcia FJ, Gil-Campos M, et al. Comorbidities in childhood associated with extrauterine growth restriction in preterm infants: a scoping review. Eur J Pediatr. 2020; 179(8):1255–1265. doi:10.1007/s00431-020-03613-8; Hiltunen H, Loyttyniemi E, Isolauri E, Rautava S. Early nutrition and growth until the corrected age of 2 years in extremely preterm infants. Neonatology. 2018;113(2):100–107. doi:10.1159/000480633; Raaijmakers A, Jacobs L, Rayyan M, et al. Catch-up growth in the first two years of life in Extremely Low Birth Weight (ELBW) infants is associated with lower body fat in young adolescence. PLoS One. 2017;12(3):e0173349. doi:10.1371/journal.pone.0173349; Embleton N, Korada M, Wood CL, et al. Catch-up growth and metabolic outcomes in adolescents born preterm. Arch Dis Child. 2016;101(11):1026–1031. doi:10.1136/archdischild-2015-310190; Teller IC, Embleton ND, Griffin IJ, et al. Post-discharge formula feeding in preterm infants: A systematic review mapping evidence about the role of macronutrient enrichment. Clin Nutr. 2016;35(4):791–801. doi:10.1016/j.clnu.2015.08.006; Peila C, Spada E, Giuliani F, et al. Extrauterine Growth Restriction: Definitions and Predictability of Outcomes in a Cohort of Very Low Birth Weight Infants or Preterm Neonates. Nutrients. 2020 Apr 26; 12(5):1224. doi:10.3390/nu12051224.; Wiechers C; Bernhard W, Goelz R, et al. Optimizing Early Neonatal Nutrition and Dietary Pattern in Premature Infants. Int J Environ Res Public Health. 2021;18(14):7544. doi:10.3390/ijerph18147544; Stocker JT, Dehner LP, Husain AN. Means and standard deviations of weights and measurements of lifeborn infants by body weight (Appendix 28–29). In: Stocker & Dehner’s Pediatric Pathology. Stocker JT, Dehner LP, eds. 2nd ed. Philadelphia, PA, USA: Lippinkott Williams &Wilkins; 2002.; Fabrizio V, Trzaski JM, Brownell EA, et al. Individualized versus standard diet fortification for growth and development in preterm infants receiving human milk. Cochrane Database Syst Rev. 2020; 11(11):CD013465. doi:10.1002/14651858.CD013465.pub2; Ruys CA, van de Lagemaat M, Rotteveel J, et al. Improving long-term health outcomes of preterm infants: how to implement the findings of nutritional intervention studies into daily clinical practice. Eur J Pediatr. 2021;180(6):1665–1673. doi:10.1007/s00431-021-03950-2; Ahnfeldt AM, Stanchev H, Jørgensen HL, et al. Age and weight at final discharge from an early discharge programme for stable but tube-fed preterm infants. Acta Paediatr. 2015;104(4):377–383. doi:10.1111/apa.12917; Wilson E, Bonamy A-KE, Bonet M, et al. The EPICE Research Group. Room for improvement in breast milk feeding after very preterm birth in Europe: Results from the EPICE cohort. Matern Child Nutr. 2017;14(1):e12485. doi:10.1111/mcn.12485; Agostoni C, Buonocore G, Carnielli VP, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50(1):85–91. doi:10.1097/MPG.0b013e3181adaee0; Young L, Embleton ND, McGuire W. Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge. Cochrane Database Syst Rev. 2016;12(12):CD004696. doi:10.1002/14651858.CD004696; Guimarães H, Rocha G, Vasconcellos G, et al. Risk factors for bronchopulmonary dysplasia in five Portuguese neonatal intensive care units. Rev Port Pneumol. 2010;16(3):419–430. doi:10.1016/s0873-2159(15)30039-8; Bancalari E, Jain D. Bronchopulmonary Dysplasia: 50 Years after the Original Description. Neonatology. 2019;115(4):384–391. doi:10.1159/000497422; Milanesi BG, Lima PA, Villela LD, et al. Assessment of early nutritional intake in preterm infants with bronchopulmonary dysplasia: A cohort study. Eur J Pediatr. 2021;180(5):1423–1430. doi:10.1007/s00431-020-03912-0; Uberos J, Lardón-Fernández M, Machado-Casas I, et al. Nutrition in extremely low birth weight infants: Impact on bronchopulmonary dysplasia. Minerva Paediatr. 2016;68(6):419–426.; Bott L, Béghin L, Devos P, et al. Nutritional Status at 2 Years in Former Infants with Bronchopulmonary Dysplasia Influences Nutrition and Pulmonary Outcomes During Childhood. Pediatr Res. 2006;60(3):340–344. doi:10.1203/01.pdr.0000232793.90186.ca; Gianni ML, Roggero P, Colnaghi MR, et al. The role of nutrition in promoting growth in pre-term infants with bronchopulmonary dysplasia: A prospective non-randomised interventional cohort study. BMC Pediatr. 2014;14:235. doi:10.1186/1471-2431-14-235; Barrington KJ, Fortin-Pellerin E, Pennaforte T. Fluid restriction for treatment of preterm infants with chronic lung disease. Cochrane Database Syst Rev. 2017;2(2):CD005389. doi:10.1002/14651858.CD005389.pub2; Mangili G, Garzoli E, Sadou Y. Feeding dysfunctions and failure to thrive in neonates with congenital heart diseases. Pediatr Med Chir. 2018;40(1). doi:10.4081/pmc.2018.196; Jadcherla S. Dysphagia in the high-risk infant: potential factors and mechanisms. Am J Clin Nutr. 2016;103(2):622S–628S. doi:10.3945/ajcn.115.110106; Baillat M, Pauly V, Dagau G, et al. Association of First-Week Nutrient Intake and Extrauterine Growth Restriction in Moderately Preterm Infants: A Regional Population-Based Study. Nutrients. 2021;13(1):227. doi:10.3390/nu13010227; Roggero P, Liotto N, Menis C, Mosca F. New Insights in Preterm Nutrition. Nutrients. 2020;12(6):1857. doi:10.3390/nu12061857; EFSA Panel on Dietetic Products, N.a.A.N. Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA J. 2014;12(7):3760. doi:10.2903/j.efsa.2014.3760; Roggero P, Gianni ML, Amato O, et al. Growth and fat-free mass gain in preterm infants after discharge: a randomized controlled trial. Pediatrics. 2012;130(5):e1215–e1221. doi:10.1542/peds.2012-1193; Roggero P, Gianni ML, Liotto N, et al. Small for gestational age preterm infants: nutritional strategies and quality of growth after discharge. J Matern Fetal Neonatal Med. 2011;24(Suppl. 1):144e6. doi:10.3109/14767058.2011.607657; Lin L, Amissah E, Gamble GD, et al. Impact of macronutrient supplements on later growth of children born preterm or small for gestational age: A systematic review and meta-analysis of randomized and quasirandomised controlled trials. PLoS Med. 2020;17(5):e1003122. doi:10.1371/journal.pmed.1003122; Moon K, Rao SC, Schulzke SM, et al. Long-chain polyunsaturated fatty acid supplementation in preterm infants. Cochrane Database Syst Rev. 2016;12:CD000375. doi:10.1002/14651858.CD000375.pub5; Ilardi L, Proto A, Ceroni F, et al. Overview of Important Micronutrients Supplementation in Preterm Infants after Discharge: A Call for Consensus. Life (Basel). 2021;11(4):331. doi:10.3390/life11040331; Fernández R, Urbano J, Carrillo A, et al. Comparison of the effect of three different protein content enteral diets on serum levels of proteins, nitrogen balance, and energy expenditure in critically ill infants: study protocol for a randomized controlled trial. Trials. 2019;20(1):585. doi:10.1186/s13063-019-3686-8; Cui Y, Li L, Hu C, et al. Effects and Tolerance of Protein and Energy-Enriched Formula in Infants Following Congenital Heart Surgery: A Randomized Controlled Trial. JPEN J Parenter Enteral Nutr. 2018;42(1):196–204. doi:10.1002/jpen.1031; Yu M-X, Zhuang S-Q, Gao X-Y, et al. Effects of a nutrient-dense formula compared with a post-discharge formula on post-discharge growth of preterm very low birth weight infants with extrauterine growth retardation: a multicentre randomised study in China. J Hum Nutr Diet. 2020;33(4):557–565. doi:10.1111/jhn.12733; Намазова-Баранова Л.С., Турти Т.В., Лукоянова О.Л. и др. Лечебное питание с применением специализированного детского молочного продукта для энтерального питания с повышенным содержанием белка и энергии у детей первого года жизни с белково-энергетической недостаточностью // Педиатрическая фармакология. — 2016. — Т. 13. — № 1. — С. 27–32. doi:10.15690/pf.v13i1.1511; https://vsp.spr-journal.ru/jour/article/view/2802
-
17Academic Journal
المؤلفون: Е. А. Krasilnikova, V. D. Zavadovskaya, V. A. Zhelev, J. O. Lyulko, S. P. Ermolenko, M. A. Zorkaltsev, Е. А. Красильникова, В. Д. Завадовская, В. А. Желев, Ю. О. Люлько, С. П. Ермоленко, М. А. Зоркальцев
المصدر: Diagnostic radiology and radiotherapy; Том 12, № 2 (2021); 59-69 ; Лучевая диагностика и терапия; Том 12, № 2 (2021); 59-69 ; 2079-5343
مصطلحات موضوعية: пневмония, premature infants, X-ray changes in the lungs, hyaline membranes, pulmonary hemorrhages, bronchopulmonary dysplasia, pneumonia, недоношенные новорожденные, рентгенологические изменения легких, гиалиновые мембраны, легочные геморрагии, бронхолегочная дисплазия
وصف الملف: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/623/485; Sharma D., Padmavathi I.V., Tabatabaii S.A., Farahbakhsh N. Late preterm: a new high risk group in neonatology // J. Matern. Fetal Neonatal Med. 2019. Oct. 1. Р. 1–14, doi:10.1080/14767058.2019.1670796.; Байбарина Е.Н., Антонов А.Г., Ленюшкина А.А. Клинические рекомендации по уходу за новорожденными с экстремально низкой массой тела при рождении // Вопросы практической педиатрии. 2006. Т. 4, № 1. С. 96–97.; Овсянников Д.Ю., Кузьменко Л.Г., Дегтярева Е.А., Кустова О.В., Болибок А.М., Маркарян О.В., Пагадаева Н.П., Полянин Д.В. Возможности высокоразрешающей компьютерной томографии в диагностике бронхолегочной дисплазии у детей первых двух лет жизни // Педиатрия. Журнал им. Г.Н.Сперанского. 2010. № 1.; Thébaud В., Goss K.N., Laughon M. et al. Bronchopulmonary dysplasia: Author manuscript // Nat. Rev. Dis Primers. 2019. Nov. 14, Vol. 5, No. 1. Р. 78. doi:10.1038/s41572–019–0127–7.; Dominguez MC, Alvares BR. Pulmonary atelectasis in newborns with clinically treatable diseases who are on mechanical ventilation: clinical and radiological aspects // Radiol. Bras. 2018. Vol. 51, No. 1. Р. 20–25. doi:10.1590/0100-3984.2016.0157.; Reuter S., Moser C., Baack M. // Pediatr Rev. 2014. Oct; Vol. 35, No. 10. Р. 417–428; quiz 429. doi:10.1542/pir.35-10-417.; Agrons G.A., Courtney S.E., Stocker J.Th., Markowitz R.I. Lung Disease in Premature Neonates: Radiologic-Pathologic Correlation // Anales de Radiología México. 2005. Vol. 4, No. 3. Р. 1047–1073. doi:10.1148/rg.254055019.; Lovrensky J. Lung ultrasonography of pulmonary complications in preterm infants with respiratory distress syndrome // Upsala Journal of Medical Sciences. 2012. Vol. 117. Р. 10–17. doi:10.3109/03009734.2011.643510.; Lee M., Wu К., Yu A., Roumiantsev S., Shailam R., Nimkin K., Sagar P. Pulmonary hemorrhage in neonatal respiratory distress syndrome: Radiographic evolution, course, complications and long-term clinical outcomes // J. Neonatal. Perinatal. Med. 2019. Vol. 12, No. 2. Р. 161–171. doi:10.3233/NPM-1867.; Hiles М., Culpan A.-M., Watts С., Munyombwe Т., Wolstenhulme S. Neonatal respiratory distress syndrome: Chest X-ray or lung ultrasound. A systematic review // Ultrasound. 2017. Vol. 25, No. 2. Р. 80–91, doi:10.1177/1742271X16689374.; Shui-Wen Chen 1, Wei Fu, Jing Liu, Yan Wang. Routine application of lung ultrasonography in the neonatal intensive care unit // Observational Study Medicine (Baltimore). 2017. Vol. 96, No. 2. Р. e5826, doi:10.1097/MD.0000000000005826.; Park Ji Soo, Choi Yun Jung, Kim Young Tae et al. Pediatric Case Report on an Interstitial Lung Disease with a Novel Mutation of SFTPC Successfully Treated with Lung Transplantation // J. Korean. Med. Sci. 2018. May 28; Vol. 33, No. 22. e159. doi:10.3346/jkms.2018.33.e159.; https://radiag.bmoc-spb.ru/jour/article/view/623
-
18Academic Journal
المؤلفون: L. S. Ustyantseva, G. N. Chistyakova, I. I. Remizova, V. E. Ryumin, Л. С. Устьянцева, Г. Н. Чистякова, И. И. Ремизова, В. Е. Рюмин
المساهمون: The study was carried with financial support from the Ministry of Education and Science, grant of the President of the Russian Federation № MK-1140.2020.7., Исследование проведено при финансовой поддержке Минобрнауки, грант Президента Российской Федерации № МК-1140.2020.7.
المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 66, № 2 (2021); 56-61 ; Российский вестник перинатологии и педиатрии; Том 66, № 2 (2021); 56-61 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2021-66-2
مصطلحات موضوعية: врожденный иммунитет, prematurity, extremely low body weight, bronchopulmonary dysplasia, innate immunity, недоношенность, экстремально низкая масса тела, бронхолегочная дисплазия
وصف الملف: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1374/1073; Keller R.L., Feng R., DeMauro S.B., Ferkol T., Hardie W., Rogers E.E. et al. Bronchopulmonary dysplasia and perinatal characteristics predict 1-year respiratory outcomes in newborns born at extremely low gestational age: a prospective cohort study. Pediatr 2017; 187: 89–97. DOI:10.1016/j.jpeds.2017.04.026; Лебедева О.В. Факторы риска формирования бронхолегочной дисплазии у новорожденных с очень низкой и экстремально низкой массой тела при рождении. Педиатрическая фармакология 2014; 14(3): 37–41. [Lebedeva O.V. Risk factors for the formation of bronchopulmonary dysplasia in newborns with very low and extremely low birth weight. Pediatricheskaya farmakologiya 2014; 14(3): 37–41. (In Russ.)]; Дегтярева Е.А., Овсянников Д.Ю., Зайцева Н.О., Шокин А.А. Легочная гипертензия и легочное сердце у детей с бронхолегочной дисплазией: факторы риска, диагностика, возможности терапии и профилактики. Педиатрия 2013; 5: 32–39. [Degtyareva E.A., Ovsjannikov D.Yu., Zaitceva N.O., Shokin A.A. Pulmonary hypertensia and pulmonary heart at children with bronchopulmonary dysplasia: risk factors, diagnostics, possibilities of therapy and prophylaxis. Pediatriya 2013; 5: 32–39. (In Russ.)]; Беляшова М.А., Овсянников Д.Ю., Огородова Л.М. Молекулярно-генетические механизмы развития бронхолегочной дисплазии. Неонатология: новости, мнения, обучение 2015; 3: 50–68. [Beljashova M.A., Ovsjannikov D.Yu., Ogorodova L.M. Molecular genetic mechanisms of development of bronchopulmonary dysplasia. Neonatologiya: novosti, mneniya, obuchenie 2015; 3: 50–68. (in Russ.)]; Cerro M.J., Abman S., Diaz G., Freudenthal A.H., Freudenthal F., Harikrishnan S. et al. A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: Report from the PVRI Pediatric Taskforce, Panama 2011. Pulm Circ 2011; 1(2): 286–298. DOI:10.4103/2045-8932.83456; Klinger G., Levy I., Sirota L. Outcome of early-onset sepsis in a national cohort of very low birth weight infants. Pediatrics 2010; 125(4): 736–740. DOI:10.1542/peds.2009-2017; Hintz S.R., Kendrick D.E., Wilson-Costello D.E., Das A., Bell E.F., Vohr B.R. et al. Early-Childhood neurodevelopmental outcomes are not improving for infants born at; Суханова Л.П., Бушмелева Н.Н., Сорокина З.Х. Младенческая смертность в России с позиций достоверности ее регистрации. Социальные аспекты здоровья населения [Электронный ресурс] 2012; 6. Электронный журнал – Режим доступа: http://vestnik.mednet.ru/content/view/441/30/lang,ru/. [Suhanova L.P., Bushmeleva N.N., Sorokina Z.H. Mladencheskaja smertnost’ v Rossii s pozicij dostovernosti ee registracii. Social’nye aspekty zdorov’ja naselenija [Jelektronnyj resurs]. 2012; 6. Jelektronnyj zhurnal – Rezhim dostupa: http://vestnik.mednet.ru. (in Russ.)]; Hammoud M.S., Al-Taiar A., Thalib L., Al-Sweih N., Pathan S., Isaacs D. Incidence, etiology and resistance of late-onset neonatal sepsis: A five-year prospective study. J Paediatr Child Health 2012; 23: 1–6. DOI:10.1111/j.1440-1754.2012.02432.x; Mularoni A., Madrid M., Azpeitia A., Soler A.V. The role of coagulase-negative staphylococci in early onset sepsis in a large European cohort of very low birth weight infants. Pediatr Infect Dis J 2014; 33(5): 121–125. DOI:10.1097/INF.0000000000000175; Иванов Д.О., Капустина О.Г., Мавропуло Т.К. Особенности оказания медицинской помощи детям, родившимся в сроках гестации 22–27 недель. СПб.: Информ-Навигатор, 2013; 132. [Ivanov D.O., Kapustina O.G., Mavropulo T.K. Features of the provision of medical slop to children born at a gestational age of 22–27 weeks. SPb.: Inform-Navigator, 2013; 132. (in Russ.)]; Виноградова И.В., Краснов М.В., Ногтева Л.Г. Катамнестическое наблюдение за детьми с экстремально низкой массой тела при рождении. Практическая медицина 2008; 7: 67–69. [Vinogradova I.V., Krasnov M.V., Nogteva L.G. Follow-up observation of children with extremely low birth weight. Prakticheskaya meditsina 2008; 7: 67–69. (in Russ.)]; Воробьев А.А., Быков А.С., Караулов А.В. Иммунология и аллергология. М.: Практическая медицина, 2006; 72– 74. [Vorob’ev A.A., Bykov A.S., Karaulov A.V. Immunology and Allergology. Moscow: Prakticheskaja meditsina 2006; 72–74. (in Russ.)]; Володин Н.Н., Дегтярева М.В., Симбирцева А.С., Котов А.Ю., Ковальчук Л.В., Ганковская Л.В. и др. Роль про- и противовоспалительных цитокинов в иммунной адаптации новорожденных детей. International Journal on Immunorehabilitation 2000; 2(1): 175–185. [Volodin N.N., Degtjareva M.V., Simbirceva A.S., Kotov A.Yu., Kovalcthuk L.V., Gankovskaya A.V. et al. The role of pro- and anti-inflammatory cytokines in the immune adaptation of newborns. International Journal on Immuno rehabilitation 2000; 2(1): 175–185. (in Russ.)]; Auffray C., Sieweke M.H., Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Ann Rev Immunol 2009; 27: 669–692. DOI:10.1146/annurev.immunol.021908.132557; Du J., Li L., Dou Y., Pelpel L., Chen R., Liu H. Diagnostic utility of neutrophil CD64 as a marker for early-onset sepsis in preterm neonates. PLoS One 2014; 9(7): 1026–1047. DOI:10.1371/journal.pone.0102647; Kanakoudi-Tsakalidou F., Debonera F., Drossou-Agakidou V., Sarafidis K., Tzimouli V., Taparkou A. Flow cytometric measurement of HLA-DR expression on circulating monocytes in healthy and sick neonates using monocyte negative selection. Clin Exp Immunol 2001; 123(3): 402–407. DOI:10.1046/j.1365-2249.2001.01471.x; Genel F., Atlihan F., Ozsu E., Ozbek E. Monocyte HLADR expression as predictor of poor outcome in neonates with late onset neonatal sepsis. J Infect 2010; 60(3): 224–228. DOI:10.1016/j.jinf.2009.12.004; https://www.ped-perinatology.ru/jour/article/view/1374
-
19Academic Journal
المؤلفون: Меньшикова, А., Добрянський, Д.
المصدر: Neonatology, surgery and perinatal medicine; Vol. 11 No. 4(42) (2021): NEONATOLOGY, SURGERY AND PERINATAL MEDICINE; 53-59 ; Неонатологія, хірургія та перинатальна медицина; Том 11 № 4(42) (2021): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 53-59 ; Неонатология, хирургия и перинатальная медицина; Том 11 № 4(42) (2021): НЕОНАТОЛОГИЯ, ХИРУРГИЯ И ПЕРИНАТАЛЬНАЯ МЕДИЦИНА; 53-59 ; 2413-4260 ; 2226-1230
مصطلحات موضوعية: легенева гіпертензія, бронхолегенева дисплазія, передчасно народжені немовлята, легочная гипертензия, бронхолегочная дисплазия, преждевременно рожденные младенцы, Pulmonary Hypertension, Bronchopulmonary Dysplasia: Preterm Infants
وصف الملف: application/pdf
Relation: http://neonatology.bsmu.edu.ua/article/view/248123/245524; http://neonatology.bsmu.edu.ua/article/view/248123
-
20Academic Journal
مصطلحات موضوعية: медицина, педиатрия, дети, бронхолегочная дисплазия, недоношенность, Белгород
Relation: Анализ и прогнозирование заболеваемости бронхолегочной дисплазией и недоношенности / Н.М. Агарков [и др.] // Здравоохранение Российской Федерации. - 2021. - Т.65, №1.-С. 30-36.; http://dspace.bsu.edu.ru/handle/123456789/52090