يعرض 1 - 20 نتائج من 36 نتيجة بحث عن '"А. A. Измайлов"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Cancer Urology; Том 20, № 1 (2024); 52-59 ; Онкоурология; Том 20, № 1 (2024); 52-59 ; 1996-1812 ; 1726-9776

    وصف الملف: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1755/1515; Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022. 252 с.; Suardi N., Porter C.R., Reuther A.M. et al. A nomogram predicting long-term biochemical recurrence after radical prostatectomy. Cancer;112(6):1254–63. DOI:10.1002/cncr.23293; Morris M.J., Rowe S.P., Gorin M.A. et al. Diagnostic performance of 18F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR phase III, multicenter study. Clin Cancer Res 2021;27(13):3674–82. DOI:10.1158/1078-0432.CCR-20-4573; Fendler W.P., Calais J., Eiber M. et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol 2019;5(6):856–63. DOI:10.1001/jamaoncol.2019.0096; Trock B.J., Han M., Freedland S.J. et al. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA 2008;299(23):2760–9. DOI:10.1001/jama.299.23.2760; Tendulkar R.D., Agrawal S., Gao T. et al. Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. J Clin Oncol 2016;34(30):3648–54. DOI:10.1200/JCO.2016.67.9647; Pollack A., Karrison T., Balogh A. et al. Short term androgen deprivation therapy without or with pelvic lymph node treatment added to prostate bed only salvage radiotherapy: the NRG Oncology/RTOG 0534 SPPORT trial. Int J Radiat Oncol Biol Phys 2018;102(5):1605. DOI:10.1016/j.ijrobp.2018.08.052; Suardi N., Gallina A., Lista G. et al. Impact of adjuvant radiation therapy on urinary continence recovery after radical prostatectomy. Eur Urol 2014;65(3):546–51. DOI:10.1016/j.eururo.2013.01.027; Fossati N., Karnes R.J., Boorjian S.A. et al. Long-term impact of adjuvant versus early salvage radiation therapy in pT3N0 prostate cancer patients treated with radical prostatectomy: results from a multi-institutional series. Eur Urol 2017;71(6):886–93. DOI:10.1016/j.eururo.2016.07.028; Nguyen P.L., Alibhai S.M., Basaria S. et al. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Eur Urol 2015;67(5):825–36. DOI:10.1016/j.eururo.2014.07.010; Ploussard G., Gandaglia G., Borgmann H. et al. Salvage lymph node dissection for nodal recurrent prostate cancer: a systematic review. Eur Urol 2019;76(4):493–504. DOI:10.1016/j.eururo.2018.10.041; Sivaraman A., Benfante N., Touijer K. et al. Can pelvic node dissection at radical prostatectomy influence the nodal recurrence at salvage lymphadenectomy for prostate cancer? Investig Clin Urol 2018;59(2):83–90. DOI:10.4111/icu.2018.59.2.83; Нюшко К.М., Крашенинников А.А., Сергиенко С.А. и др. Результаты спасительной лимфаденэктомии у больных раком предстательной железы после радикального лечения. Исследования и практика в медицине 2017;4(S1):87.; Brassetti A., Proietti F., Pansadoro V. Oligometastatic prostate cancer and salvage lymph node dissection: systematic review. Minerva Chir 2019;74(1):97–106. DOI:10.23736/S0026-4733.18.07796-9; Измайлов А.А., Шкурников М.Ю., Алексеев Б.Я. Молекулярно-генетические методики выявления метастазов в лимфатических узлах у больных раком предстательной железы. Онкология. Журнал им. П.А. Герцена 2023;12(4):74–7. DOI:10.17116/onkolog20231204174; https://oncourology.abvpress.ru/oncur/article/view/1755

  2. 2
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 10 (2024); 74-80 ; Медицинский Совет; № 10 (2024); 74-80 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8367/7388; Waarts MR, Stonestrom AJ, Park YC, Levine RL. Targeting mutations in cancer. J Clin Invest. 2022;132(8):e154943. https://doi.org/10.1172/jci154943.; Shim HS, Choi YL, Kim L, Chang S, Kim WS, Roh MS et al. Molecular Testing of Lung Cancers. J Pathol Transl Med. 2017;51(3):242–254. https://doi.org/10.4132/jptm.2017.04.10.; Cooper AJ, Sequist LV, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol. 2022;19(8):499–514. https://doi.org/10.1038/s41571-022-00639-9.; Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–566. https://doi.org/10.1038/nature05945.; Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit Rev Oncol Hematol. 2021;157:103194. https://doi.org/10.1016/j.critrevonc.2020.103194.; Kim H, Chung JH. Overview of clinicopathologic features of ALK-rearranged lung adenocarcinoma and current diagnostic testing for ALK rearrangement. Transl Lung Cancer Res. 2015;4(2):149–155. https://doi.org/10.3978/j.issn.2218-6751.2014.12.02.; Shi W, Dicker AP. CNS Metastases in Patients With Non-Small-Cell Lung Cancer and ALK Gene Rearrangement. J Clin Oncol. 2016;34(2):107–109. https://doi.org/10.1200/JCO.2015.63.9682.; Drilon A, Lin JJ, Filleron T, Ni A, Milia J, Bergagnini I et al. Frequency of Brain Metastases and Multikinase Inhibitor Outcomes in Patients With RET-Rearranged Lung Cancers. J Thorac Oncol. 2018;13(10):1595–1601. https://doi.org/10.1016/j.jtho.2018.07.004.; Shaw AT, Varghese AM, Solomon BJ, Costa DB, Novello S, Mino-Kenudson M et al. Pemetrexed-based chemotherapy in patients with advanced, ALK-positive non-small cell lung cancer. Ann Oncol. 2013;24(1):59–66. https://doi.org/10.1093/annonc/mds242.; Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–2177. https://doi.org/10.1056/NEJMoa1408440.; Awad MM, Shaw AT. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin Adv Hematol Oncol. 2014;12(7):429–439. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215402/.; Soria JC, Tan DSW, Chiari R, Wu YL, Paz-Ares L, Wolf J et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-smallcell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet. 2017;389(10072):917–929. https://doi.org/10.1016/S0140-6736(17)30123-X.; Kim DW, Mehra R, Tan DSW, Felip E, Chow LQM, Camidge DR et al. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol. 2016;17(4):452–463. https://doi.org/10.1016/S1470-2045(15)00614-2.; Ceritinib Outperforms Chemo as Second-Line Treatment. Cancer Discov. 2016;6(12):OF5. https://doi.org/10.1158/2159-8290.CD-NB2016-135.; Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2017;377(9):829–838. https://doi.org/10.1056/NEJMoa1704795.; Mok T, Camidge DR, Gadgeel SM, Rosell R, Dziadziuszko R, Kim DW et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol. 2020;31(8):1056–1064. https://doi.org/10.1016/j.annonc.2020.04.478.; Tran PN, Klempner SJ. Focus on Alectinib and Competitor Compounds for Second-Line Therapy in ALK-Rearranged NSCLC. Front Med (Lausanne). 2016;3:65. https://doi.org/10.3389/fmed.2016.00065.; Beardslee T, Lawson J. Alectinib and Brigatinib: New Second-Generation ALK Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J Adv Pract Oncol. 2018;9(1):94–101. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296421/.; Riudavets M, Planchard D. An update on lorlatinib: a novel first line treatment for ALK-positive advanced lung cancer. Expert Opin Pharmacother. 2023;24(3):291–299. https://doi.org/10.1080/14656566.2022.2161880.; Solomon BJ, Liu G, Felip E, Mok TSK, Soo RA, Mazieres J et al. Lorlatinib Versus Crizotinib in Patients With Advanced ALK-Positive Non-Small Cell Lung Cancer: 5-Year Outcomes From the Phase III CROWN Study. J Clin Oncol. 2024:JCO2400581. https://doi.org/10.1200/JCO.24.00581.; Ou SI, Lee ATM, Nagasaka M. From preclinical efficacy to 2022 (36.7 months median follow-up) updated CROWN trial, lorlatinib is the preferred 1st-line treatment of advanced ALK+ NSCLC. Crit Rev Oncol Hematol. 2023;187:104019. https://doi.org/10.1016/j.critrevonc.2023.104019.; Wang L, Sheng Z, Zhang J, Song J, Teng L, Liu L et al. Comparison of lorlatinib, alectinib and brigatinib in ALK inhibitor-naive/untreated ALK-positive advanced non-small-cell lung cancer: a systematic review and network meta-analysis. J Chemother. 2022;34(2):87–96. https://doi.org/10.1080/1120009X.2021.1937782.; https://www.med-sovet.pro/jour/article/view/8367

  3. 3
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 22 (2023); 50-56 ; Медицинский Совет; № 22 (2023); 50-56 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7993/7081; Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. https://doi.org/10.3322/caac.21660.; Soutter WP, de Barros Lopes A, Fletcher A, Monaghan JM, Duncan ID, Paraskevaidis E, Kitchener HC. Invasive cervical cancer after conservative therapy for cervical intraepithelial neoplasia. Lancet. 1997;349(9057): 978–980. https://doi.org/10.1016/s0140-6736(96)08295-5.; Gustafsson L, Pontén J, Bergström R, Adami HO. International incidence rates of invasive cervical cancer before cytological screening. Int J Cancer. 1997;71(2):159–165. Available at: https://pubmed.ncbi.nlm.nih.gov/9139836.; Vaisy A, Lotfinejad S, Zhian F. Risk of cancer with combined oral contraceptive use among Iranian women. Asian Pac J Cancer Prev. 2014;15(14):5517–5522. https://doi.org/10.7314/apjcp.2014.15.14.5517.; Ferrall L, Lin KY, Roden RBS, Hung CF, Wu TC. Cervical Cancer Immuno-therapy: Facts and Hopes. Clin Cancer Res. 2021;27(18):4953–4973. https://doi.org/10.1158/1078-0432.CCR-20-2833.; Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.; Petignat P, Roy M. Diagnosis and management of cervical cancer. BMJ. 2007;335(7623):765–768. https://doi.org/10.1136/bmj.39337.615197.80.; Šarenac T, Mikov M. Cervical Cancer, Different Treatments and Importance of Bile Acids as Therapeutic Agents in This Disease. Front Pharmacol. 2019;10:484. https://doi.org/10.3389/fphar.2019.00484.; Mackay HJ, Wenzel L, Mileshkin L. Nonsurgical management of cervical cancer: locally advanced, recurrent, and metastatic disease, survivorship, and beyond. Am Soc Clin Oncol Educ Book. 2015:e299–309. https://doi.org/10.14694/EdBook_AM.2015.35.e299.; Serkies K, Jassem J. Systemic therapy for cervical carcinoma – current status. Chin J Cancer Res. 2018;30(2):209–221 https://doi.org/10.21147/j.issn.1000-9604.2018.02.04.; Callahan MK, Flaherty CR, Postow MA. Checkpoint Blockade for the Treatment of Advanced Melanoma. Cancer Treat Res. 2016;167:231–250. https://doi.org/10.1007/978-3-319-22539-5_9.; Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B et al. Evidence for a role of the PD-1: PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73(6):1733–1741. https://doi.org/10.1158/0008-5472.CAN-12-2384.; Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. J Clin Oncol. 2019;37(17):1470–1478. https://doi.org/10.1200/JCO.18.01265.; Woelber L, Mathey S, Prieske K, Kuerti S, Hillen C, Burandt E et al. Targeted Therapeutic Approaches in Vulvar Squamous Cell Cancer (VSCC): Case Series and Review of the Literature. Oncol Res. 2021;28(6):645–659. https://doi.org/10.3727/096504020X16076861118243.; Colombo N, Dubot C, Lorusso D, Caceres MV, Hasegawa K, Shapira- Frommer R et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N Engl J Med. 2021;385(20):1856–1867. https://doi.org/10.1056/NEJMoa2112435.; Monk BJ, Colombo N, Tewari KS, Dubot C, Caceres MV, Hasegawa K et al. First-Line Pembrolizumab + Chemotherapy Versus Placebo + Chemotherapy for Persistent, Recurrent, or Metastatic Cervical Cancer: Final Overall Survival Results of KEYNOTE-826. J Clin Oncol. 2023:JCO2300914. https://doi.org/10.1200/JCO.23.00914.; Friedman CF, Snyder Charen A, Zhou Q, Carducci MA, Buckley De Meritens A, Corr BR et al. Phase II study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer. J Immunother Cancer. 2020;8(2):e001126. https://doi.org/10.1136/jitc-2020-001126.; O’Malley DM, Oaknin A, Monk BJ, Selle F, Rojas C, Gladieff L et al. Phase II study of the safety and efficacy of the anti-PD-1 antibody balstilimab in patients with recurrent and/or metastatic cervical cancer. Gynecol Oncol. 2021;163(2):274–280. https://doi.org/10.1016/j.ygyno.2021.08.018.; Lan C, Shen J, Wang Y, Li J, Liu Z, He M et al. Camrelizumab Plus Apatinib in Patients With Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase II Trial. J Clin Oncol. 2020;38(34):4095–4106. https://doi.org/10.1200/JCO.20.01920.; Rischin D, Gil-Martin M, González-Martin A, Braña I, Hou JY, Cho D et al. PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer. Gynecol Oncol. 2020;159(2):322–328. https://doi.org/10.1016/j.ygyno.2020.08.026.; Tewari KS, Monk BJ, Vergote I, Miller A, de Melo AC, Kim HS et al. VP4-2021: EMPOWER-Cervical 1/GOG3016/ENGOT-cx9: interim analysis of phase III trial of cemiplimab vs. investigator’s choice (IC) chemotherapy (chemo) in recurrent/metastatic (R/M) cervical carcinoma. Ann Oncol. 2021;32(7):940–941. Available at: https://www.annalsofoncology.org/article/S0923-7534(21)01147-9/fulltext.; Naumann RW, Hollebecque A, Meyer T, Devlin MJ, Oaknin A, Kerger J et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase I/II CheckMate 358 Trial. J Clin Oncol. 2019;37(31):2825–2834. https://doi.org/10.1200/JCO.19.00739.; Naumann RW, Oaknin A, Meyer T, Lopez-Picazo JM, Lao C, Bang Y-J et al. Efficacy and safety of nivolumab (Nivo) plus ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: results from CheckMate 358. Ann Oncol. 2019;30(5):898–899. Available at: https://www.annalsofoncology.org/article/S0923-7534(19)60419-9/fulltext.; Tamura K, Hasegawa K, Katsumata N, Matsumoto K, Mukai H, Takahashi S et al. Efficacy and safety of nivolumab in Japanese patients with uterine cervical cancer, uterine corpus cancer, or soft tissue sarcoma: Multicenter, open-label phase 2 trial. Cancer Sci. 2019;10(9):2894–2904. https://doi.org/10.1111/cas.14148.; Santin AD, Deng W, Frumovitz M, Buza N, Bellone S, Huh W et al. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002). Gynecol Oncol. 2020;157(1):161–166. https://doi.org/10.1016/j.ygyno.2019.12.034.; Kumar L, Kaushal R, Nandy M, Biswal BM, Kumar S, Kriplani A et al. Chemotherapy followed by radiotherapy versus radiotherapy alone in locally advanced cervical cancer: a randomized study. Gynecol Oncol. 1994;54(3):307–315. https://doi.org/10.1006/gyno.1994.1215.; Tabata T, Takeshima N, Nishida H, Hirai Y, Hasumi K. A randomized study of primary bleomycin, vincristine, mitomycin and cisplatin (BOMP) chemotherapy followed by radiotherapy versus radiotherapy alone in stage IIIB and IVA squamous cell carcinoma of the cervix. Anticancer Res. 2003;23(3C):2885–2890. Available at: https://pubmed.ncbi.nlm.nih.gov/12926129.; Tattersall MH, Ramirez C, Coppleson M. A randomized trial of adjuvant chemotherapy after radical hysterectomy in stage Ib-IIa cervical cancer patients with pelvic lymph node metastases. Gynecol Oncol. 1992;46(2):176–181. https://doi.org/10.1016/0090-8258(92)90251-d.; Tattersall MH, Lorvidhaya V, Vootiprux V, Cheirsilpa A, Wong F, Azhar T et al. Randomized trial of epirubicin and cisplatin chemotherapy followed by pelvic radiation in locally advanced cervical cancer. Cervical Cancer Study Group of the Asian Oceanian Clinical Oncology Association. J Clin Oncol. 1995;13(2):444–451. https://doi.org/10.1200/JCO.1995.13.2.444.; Shrivastava S, Mahantshetty U, Engineer R, Chopra S, Hawaldar R, Hande V et al. Cisplatin Chemoradiotherapy vs Radiotherapy in FIGO Stage IIIB Squamous Cell Carcinoma of the Uterine Cervix: A Randomized Clinical Trial. JAMA Oncol. 2018;4(4):506–513. https://doi.org/10.1001/jamaoncol.2017.5179.; Zuliani AC, Esteves SC, Teixeira LC, Teixeira JC, de Souza GA, Sarian LO. Concomitant cisplatin plus radiotherapy and high-dose-rate brachytherapy versus radiotherapy alone for stage IIIB epidermoid cervical cancer: a randomized controlled trial. J Clin Oncol. 2014;32(6):542–547. https://doi.org/10.1200/JCO.2013.50.1205.; Lorvidhaya V, Chitapanarux I, Sangruchi S, Lertsanguansinchai P, Kongthanarat Y, Tangkaratt S, Visetsiri E. Concurrent mitomycin C, 5-fluorouracil, and radiotherapy in the treatment of locally advanced carcinoma of the cervix: a randomized trial. Int J Radiat Oncol Biol Phys. 2003;55(5):1226–1232. https://doi.org/10.1016/s0360-3016(02)04405-x.; Wang S, Zhang DS, Pan T, Liu S, Wang MK. Efficacy of concurrent chemoradiotherapy plus adjuvant chemotherapy on advanced cervical cancer. Chin J Cancer. 2010;29(11):959–963. https://doi.org/10.5732/cjc.010.10186.; Chiara S, Bruzzone M, Merlini L, Bruzzi P, Rosso R, Franzone P et al. Randomized study comparing chemotherapy plus radiotherapy versus radiotherapy alone in FIGO stage IIB-III cervical carcinoma. GONO (North-West Oncologic Cooperative Group). Am J Clin Oncol. 1994;17(4):294–297. https://doi.org/10.1097/00000421-199408000-00003.; Sardain H, Lavoué V, Foucher F, Levêque J. Curative pelvic exenteration for recurrent cervical carcinoma in the era of concurrent chemotherapy and radiation therapy. A systematic review. J Gynecol Obstet Biol Reprod (Paris). 2016;45(4):315–329. https://doi.org/10.1016/j.jgyn.2016.01.004.; Marnitz S, Köhler C, Müller M, Behrens K, Hasenbein K, Schneider A. Indications for primary and secondary exenterations in patients with cervical cancer. Gynecol Oncol. 2006;103(3):1023–1030. https://doi.org/10.1016/j.ygyno.2006.06.027.; Brunschwig A. Complete excision of pelvic viscera for advanced carcinoma; a one-stage abdominoperineal operation with end colostomy and bilateral ureteral implantation into the colon above the colostomy. Cancer. 1948;1(2):177–183. Available at: https://pubmed.ncbi.nlm.nih.gov/18875031.; Меньшиков КВ, Липатов ОН, Султанбаев АВ, Измайлов АА, Мусин ШИ, Ахметгареева КТ. Клинический случай иммунотерапии метастатического рака шейки матки. Медицинский вестник Башкортостана. 2020;15(6):93–97. Режим доступа: https://www.mvb-bsmu.ru/files/journals/6_2020.pdf.; https://www.med-sovet.pro/jour/article/view/7993

  4. 4
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 22 (2023); 130-138 ; Медицинский Совет; № 22 (2023); 130-138 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7982/7069; Каприн АД, Старинский ВВ, Шахзадова АО (ред.). Состояние онкологической помощи населению России в 2021 г. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2022. 239 с. Режим доступа: https://oncology-association.ru/wp-content/uploads/2022/05/sostoyanie-onkologicheskoj-pomoshhi-naseleniyu-rossii-v-2021-godu.pdf.; Parise CA, Caggiano V. Breast Cancer Survival Defined by the ER/PR/HER2 Subtypes and a Surrogate Classification according to Tumor Grade and Immunohistochemical Biomarkers. J Cancer Epidemiol. 2014:469251. https://doi.org/10.1155/2014/469251.; Hart CD, Migliaccio I, Malorni L, Guarducci C, Biganzoli L, Di Leo A. Challenges in the management of advanced, ER-positive, HER2-negative breast cancer. Nat Rev Clin Oncol. 2015;12(9):541–552. https://doi.org/10.1038/nrclinonc.2015.99.; Flaum LE, Gradishar WJ. Advances in Endocrine Therapy for Postmenopausal Metastatic Breast Cancer. In: Gradishar W (ed.). Optimizing Breast Cancer Management. Cancer Treatment and Research. Vol. 173. Springer, Cham; 2018, pp. 141–154. https://doi.org/10.1007/978-3-319-70197-4_9.; Hoffmann J, Bohlmann R, Heinrich N, Hofmeister H, Kroll J, Künzer H et al. Characterization of new estrogen receptor destabilizing compounds: effects on estrogen-sensitive and tamoxifen-resistant breast cancer. J Natl Cancer Inst. 2004;96(3):210–218. https://doi.org/10.1093/jnci/djh022.; Clark AS, Karasic TB, DeMichele A, Vaughn DJ, O’Hara M, Perini R et al. Palbociclib (PD0332991) – a Selective and Potent Cyclin-Dependent Kinase Inhibitor: A Review of Pharmacodynamics and Clinical Development. JAMA Oncol. 2016;2(2):253–260. https://doi.org/10.1001/jamaoncol.2015.4701.; Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev. 2016;45:129–138. https://doi.org/10.1016/j.ctrv.2016.03.002.; Corona SP, Generali D. Abemaciclib: a CDK4/6 inhibitor for the treatment of HR+/HER2-advanced breast cancer. Drug Des Devel Ther. 2018;12:321–330. https://doi.org/10.2147/DDDT.S137783.; Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K et al. Palbociclib and Letrozole in Advanced Breast Cancer. N Engl J Med. 2016;375(20):1925–1936. https://doi.org/10.1056/NEJMoa1607303.; Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N Engl J Med. 2016;375(18):1738–1748. https://doi.org/10.1056/NEJMoa1609709.; Goetz MP, Toi M, Campone M, Sohn J, Paluch-Shimon S, Huober J et al. MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. J Clin Oncol. 2017;35(32):3638–3646. https://doi.org/10.1200/JCO.2017.75.6155.; Tripathy D, Im SA, Colleoni M, Franke F, Bardia A, Harbeck N et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 2018;19(7):904–915. https://doi.org/10.1016/S1470-2045(18)30292-4.; Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X et al. MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2-Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J Clin Oncol. 2017;35(25):2875–2884. https://doi.org/10.1200/JCO.2017.73.7585.; Гольдина ТА, Колбин АС, Белоусов ДЮ, Боровская ВГ. Обзор исследований реальной клинической практики. Качественная клиническая практика. 2021;(1):56–63. https://doi.org/10.37489/2588-0519-2021-1-56-63.; Колядина ИВ. Рибоциклиб в лечении больных HR+ HER2-отрицательным распространенным раком молочной железы: обновленные результаты рандомизированных клинических исследований и их роль для клинической практики. Опухоли женской репродуктивной системы. 2021;17(2):58–67. https://doi.org/10.17650/1994-4098-2021-17-2-58-67.; Ганьшина ИП, Филоненко ДА, Гордеева ОО, Лубенникова ЕВ, Колядина ИВ, Мещеряков АА. Рибоциклиб в лечении гормонопозитивного HER2-негативного рака молочной железы. Медицинский совет. 2019;(10):72–80. https://doi.org/10.21518/2079-701X-2019-10-72-80.; Колядина ИВ. По следам SABCS 2022: TOP-12 исследований по распространенному раку молочной железы, которые могут изменить нашу клиническую практику. Современная онкология. 2023;25(1):46–54. https://doi.org/10.26442/18151434.2023.1.202102.; Da Silva SHK, de Oliveira LC, E Silva Lopes MSDM, Wiegert EVM, Motta RST, Ferreira Peres WA. The patient generated-subjective global assessment (PG-SGA) and ECOG performance status are associated with mortality in patients hospitalized with breast cancer. Clin Nutr ESPEN. 2023;53:87–92. https://doi.org/10.1016/j.clnesp.2022.11.019.; Llombart-Cussac A, Pérez-García JM, Bellet M, Dalenc F, Gil-Gil M, Ruíz- Borrego M et al. Fulvestrant-Palbociclib vs Letrozole-Palbociclib as Initial Therapy for Endocrine-Sensitive, Hormone Receptor-Positive, ERBB2-Negative Advanced Breast Cancer: A Randomized Clinical Trial. JAMA Oncol. 2021;7(12):1791–1799. https://doi.org/10.1001/jamaoncol.2021.4301.; Колядина ИВ, Поддубная ИВ. ESR1-мутация как потенциальный предсказательный маркер для выбора тактики лечения при гормонорезистентном HR+/HER2-негативном раке молочной железы. Медицинский алфавит. 2020;(29):68–73. https://doi.org/10.33667/2078-5631-2020-29-61-73.; Sanò MV, Martorana F, Lavenia G, Rossello R, Prestifilippo A, Sava S et al. Ribociclib efficacy in special populations and analysis of patient-reported out-comes in the MONALEESA trials. Expert Rev Anticancer Ther. 2022;22(4):343–351. https://doi.org/10.1080/14737140.2022.2052277.; Zhu K, Wu Y, He P, Fan Y, Zhong X, Zheng H, Luo T. PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer. Cells. 2022;11(16):2508. https://doi.org/10.3390/cells11162508.; China Anti-cancer Association Tumor Drug Clinical Research Committee; Breast Cancer Expert Committee, National Tumor Quality Control Center; Tumor Pathology Committee of China Anti-cancer Association; Boao Institute of Oncology Innovation. Expert consensus on the clinical application of PI3K/AKT/mTOR inhibitors in the treatment of advanced breast cancer. Zhonghua Zhong Liu Za Zhi. 2022;44(7):673–692. (In Chinese) https://doi.org/10.3760/cma.j.cn112152-20220412-00251.; Reinhardt K, Stückrath K, Hartung C, Kaufhold S, Uleer C, Hanf V et al. PIK3CA-mutations in breast cancer. Breast Cancer Res Treat. 2022;196(3):483–493. https://doi.org/10.1007/s10549-022-06637-w.; Kim JH, Lee ST. Polyamine Oxidase Expression Is Downregulated by 17β-Estradiol via Estrogen Receptor 2 in Human MCF-7 Breast Cancer Cells. Int J Mol Sci. 2022;23(14):7521. https://doi.org/10.3390/ijms23147521.; Nemati Shafaee M, Goutsouliak K, Lin H, Bevers TB, Gutierrez-Barrera A, Bondy M, Arun B. Aromatase inhibitors and contralateral breast cancer in BRCA mutation carriers. Breast Cancer Res Treat. 2022;196(1):143–152. https://doi.org/10.1007/s10549-022-06688-z.; Dustin D, Gu G, Fuqua SAW. ESR1 mutations in breast cancer. Cancer. 2019;125(21):3714–3728. https://doi.org/10.1002/cncr.32345.; Zhu W, Xu B. Overcoming resistance to endocrine therapy in hormone receptor-positive human epidermal growth factor receptor 2-negative (HR+/HER2-) advanced breast cancer: a meta-analysis and systemic review of randomized clinical trials. Front Med. 2021;15(2):208–220. https://doi.org/10.1007/s11684-020-0795-4.; Radhi S. Molecular Changes During Breast Cancer and Mechanisms of Endocrine Therapy Resistance. Prog Mol Biol Transl Sci. 2016;144:539–562. https://doi.org/10.1016/bs.pmbts.2016.09.009.; https://www.med-sovet.pro/jour/article/view/7982

  5. 5
    Academic Journal

    المساهمون: The research was carried out under the grant of the Russian Science Foundation No 23-25-00392. https://rscf.ru/project/23-25-00392/, Исследование выполнено за счет гранта Российского научного фонда No 23-25-00392. https://rscf.ru/project/23-25-00392/

    المصدر: Siberian journal of oncology; Том 22, № 4 (2023); 109-117 ; Сибирский онкологический журнал; Том 22, № 4 (2023); 109-117 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2686/1145; Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2022. 252 с.; Тимофеев И.В. Ниволумаб: 5 лет со дня международной регистрации иммунотерапии метастатического рака почки. Злокачественные опухоли. 2020; 10(4): 21–9. doi:10.18027/2224-5057-2020-10-4-21-29.; Кушлинский Н.Е., Фридман М.В., Морозов А.А., Герштейн Е.С., Кадагидзе З.Г., Матвеев В.Б. Cовременные подходы к иммунотерапии рака почки. Онкоурология. 2018; 14(2): 54–67. doi:10.17650/1726-9776-2018-14-2-54-67.; Матвеев В.Б., Волкова М.И., Ольшанская А.С. Изменение позиций иммунотерапии при распространенном раке почки: ниволумаб в комбинации с ипилимумабом в 1-й линии лечения. Онкоурология. 2019; 15(1): 125–30. doi:10.17650/1726-9776-2019-15-1-125-130.; Саяпина М.С., Савёлов Н.А., Любимова Н.В., Тимофеев Ю.С., Носов Д.А. Потенциальные биомаркеры эффективности терапии ниволумабом при метастатическом почечно-клеточном раке. Онкоурология. 2018; 14(1): 16–27. https://doi.org/10.17650/1726-9776-2018-14-1-16-27.; Motzer R.J., Escudier B., McDermott D.F., George S., Hammers H.J., Srinivas S., Tykodi S.S., Sosman J.A., Procopio G., Plimack E.R., Castellano D., Choueiri T.K., Gurney H., Donskov F., Bono P., Wagstaff J., Gauler T.C., Ueda T., Tomita Y., Schutz F.A., Kollmannsberger C., Larkin J., Ravaud A., Simon J.S., Xu L.A., Waxman I.M., Sharma P.; CheckMate 025 Investigators. Nivolumab versus Everolimus in Advanced RenalCell Carcinoma. N Engl J Med. 2015; 373(19): 1803–13. doi:10.1056/NEJMoa1510665.; Motzer R.J., Rini B.I., McDermott D.F., Arén Frontera O., Hammers H.J., Carducci M.A., Salman P., Escudier B., Beuselinck B., Amin A., Porta C., George S., Neiman V., Bracarda S., Tykodi S.S., Barthélémy P., Leibowitz-Amit R., Plimack E.R., Oosting S.F., Redman B., Melichar B., Powles T., Nathan P., Oudard S., Pook D., Choueiri T.K., Donskov F., Grimm M.O., Gurney H., Heng D.Y.C., Kollmannsberger C.K., Harrison M.R., Tomita Y., Duran I., Grünwald V., McHenry M.B., Mekan S., Tannir N.M.; CheckMate 214 investigators. Nivolumab plus ipilimumab versus sunitinib in frst-line treatment for advanced renal cell carcinoma: extended follow-up of efcacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019; 20(10): 1370–85. doi:10.1016/S1470-2045(19)30413-9. Erratum in: Lancet Oncol. 2019; Erratum in: Lancet Oncol. 2020; 21(6). Erratum in: Lancet Oncol. 2020; 21(11).; Rini B.I., Plimack E.R., Stus V., Gafanov R., Hawkins R., Nosov D., Pouliot F., Alekseev B., Soulières D., Melichar B., Vynnychenko I., Kryzhanivska A., Bondarenko I., Azevedo S.J., Borchiellini D., Szczylik C., Markus M., McDermott R.S., Bedke J., Tartas S., Chang Y.H., Tamada S., Shou Q., Perini R.F., Chen M., Atkins M.B., Powles T.; KEYNOTE-426 Investigators. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2019; 380(12): 1116–27. doi:10.1056/NEJMoa1816714.; Motzer R.J., Penkov K., Haanen J., Rini B., Albiges L., Campbell M.T., Venugopal B., Kollmannsberger C., Negrier S., Uemura M., Lee J.L., Vasiliev A., Miller W.H., Gurney H., Schmidinger M., Larkin J., Atkins M.B., Bedke J., Alekseev B., Wang J., Mariani M., Robbins P.B., Chudnovsky A., Fowst C., Hariharan S., Huang B., di Pietro A., Choueiri T.K. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2019; 380(12): 1103–15. doi:10.1056/NEJMoa1816047.; Khan K.A., Kerbel R.S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018; 15(5): 310–24. doi:10.1038/nrclinonc.2018.9.; Conforti F., Pala L., Bagnardi V., De Pas T., Martinetti M., Viale G., Gelber R.D., Goldhirsch A. Cancer immunotherapy efcacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 2018; 19(6): 737–46. doi:10.1016/S1470-2045(18)30261-4.; Polanczyk M.J., Hopke C., Vandenbark A.A., Offner H. Estrogenmediated immunomodulation involves reduced activation of efector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway. J Neurosci Res. 2006; 84(2): 370–8. doi:10.1002/jnr.20881.; Polanczyk M.J., Hopke C., Vandenbark A.A., Offner H. Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int Immunol. 2007; 19(3): 337–43. doi:10.1093/intimm/dxl151.; Chowell D., Krishna C., Pierini F., Makarov V., Rizvi N.A., Kuo F., Morris L.G.T., Riaz N., Lenz T.L., Chan T.A. Evolutionary divergence of HLA class I genotype impacts efcacy of cancer immunotherapy. Nat Med. 2019; 25(11): 1715–20. doi:10.1038/s41591-019-0639-4.; Chowell D., Morris L.G.T., Grigg C.M., Weber J.K., Samstein R.M., Makarov V., Kuo F., Kendall S.M., Requena D., Riaz N., Greenbaum B., Carroll J., Garon E., Hyman D.M., Zehir A., Solit D., Berger M., Zhou R., Rizvi N.A., Chan T.A. Patient HLA class I genotype infuences cancer response to checkpoint blockade immunotherapy. Science. 2018; 359(6375): 582–7. doi:10.1126/science.aao4572.; Jouinot A., Vazeille C., Goldwasser F. Resting energy metabolism and anticancer treatments. Curr Opin Clin Nutr Metab Care. 2018; 21(3): 145–51. doi:10.1097/MCO.0000000000000457.; Soldati L., Di Renzo L., Jirillo E., Ascierto P.A., Marincola F.M., De Lorenzo A. The infuence of diet on anti-cancer immune responsiveness. J Transl Med. 2018; 16(1): 75. doi:10.1186/s12967-018-1448-0.; Schmid D., Leitzmann M.F. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 2014; 25(7): 1293–311. doi:10.1093/annonc/mdu012.; Cortellini A., Bozzetti F., Palumbo P., Brocco D., Di Marino P., Tinari N., De Tursi M., Agostinelli V., Patruno L., Valdesi C., Mereu M., Verna L., Lanfuti Baldi P., Venditti O., Cannita K., Masciocchi C., Barile A., McQuade J.L., Ficorella C., Porzio G. Weighing the role of skeletal muscle mass and muscle density in cancer patients receiving PD-1/PD-L1 checkpoint inhibitors: a multicenter real-life study. Sci Rep. 2020; 10: 1456. doi:10.1038/s41598-020-58498-2.; Routy B., Le Chatelier E., Derosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P., Fidelle M., Flament C., Poirier-Colame V., Opolon P., Klein C., Iribarren K., Mondragón L., Jacquelot N., Qu B., Ferrere G., Clémenson C., Mezquita L., Masip J.R., Naltet C., Brosseau S., Kaderbhai C., Richard C., Rizvi H., Levenez F., Galleron N., Quinquis B., Pons N., Ryffel B., Minard-Colin V., Gonin P., Soria J.C., Deutsch E., Loriot Y., Ghiringhelli F., Zalcman G., Goldwasser F., Escudier B., Hellmann M.D., Eggermont A., Raoult D., Albiges L., Kroemer G., Zitvogel L. Gut microbiome infuences efcacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018; 359(6371): 91–7. doi:10.1126/science.aan3706.; Elkrief A., Derosa L., Kroemer G., Zitvogel L., Routy B. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor? Ann Oncol. 2019; 30(10): 1572–9. doi:10.1093/annonc/mdz206.; Routy B., Gopalakrishnan V., Daillère R., Zitvogel L., Wargo J.A., Kroemer G. The gut microbiota infuences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018; 15(6): 382–96. doi:10.1038/s41571-018-0006-2.; Derosa L., Hellmann M.D., Spaziano M., Halpenny D., Fidelle M., Rizvi H., Long N., Plodkowski A.J., Arbour K.C., Chaft J.E., Rouche J.A., Zitvogel L., Zalcman G., Albiges L., Escudier B., Routy B. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018; 29(6): 1437–44. doi:10.1093/annonc/mdy103.; Sanmamed M.F., Chen L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell. 2018; 175(2): 313–26. doi:10.1016/j.cell.2018.09.035. Erratum in: Cell. 2019; 176(3): 677.; Tinsley N., Zhou C., Tan G., Rack S., Lorigan P., Blackhall F., Krebs M., Carter L., Thistlethwaite F., Graham D., Cook N. Cumulative Antibiotic Use Signifcantly Decreases Efcacy of Checkpoint Inhibitors in Patients with Advanced Cancer. Oncologist. 2020; 25(1): 55–63. doi:10.1634/theoncologist.2019-0160.; Mahata B., Zhang X., Kolodziejczyk A.A., Proserpio V., HaimVilmovsky L., Taylor A.E., Hebenstreit D., Dingler F.A., Moignard V., Göttgens B., Arlt W., McKenzie A.N., Teichmann S.A. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014; 7(4): 1130–42. doi:10.1016/j.celrep.2014.04.011.; Arbour K.C., Mezquita L., Long N., Rizvi H., Auclin E., Ni A., Martínez-Bernal G., Ferrara R., Lai W.V., Hendriks L.E.L., Sabari J.K., Caramella C., Plodkowski A.J., Halpenny D., Chaft J.E., Planchard D., Riely G.J., Besse B., Hellmann M.D. Impact of Baseline Steroids on Effcacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer. J Clin Oncol. 2018; 36(28): 2872–8. doi:10.1200/JCO.2018.79.0006.; Fucà G., Galli G., Poggi M., Lo Russo G., Proto C., Imbimbo M., Ferrara R., Zilembo N., Ganzinelli M., Sica A., Torri V., Colombo M.P., Vernieri C., Balsari A., de Braud F., Garassino M.C., Signorelli D. Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors. ESMO Open. 2019; 4(1). doi:10.1136/esmoopen-2018-000457.; Gubin M.M., Zhang X., Schuster H., Caron E., Ward J.P., Noguchi T., Ivanova Y., Hundal J., Arthur C.D., Krebber W.J., Mulder G.E., Toebes M., Vesely M.D., Lam S.S., Korman A.J., Allison J.P., Freeman G.J., Sharpe A.H., Pearce E.L., Schumacher T.N., Aebersold R., Rammensee H.G., Melief C.J., Mardis E.R., Gillanders W.E., Artyomov M.N., Schreiber R.D. Checkpoint blockade cancer immunotherapy targets tumour-specifc mutant antigens. Nature. 2014; 515(7528): 577–81. doi:10.1038/nature13988.; Yarchoan M., Hopkins A., Jaffee E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017; 377(25): 2500–1. doi:10.1056/NEJMc1713444.; Labriola M.K., Zhu J., Gupta R.T., McCall S., Jackson J., Kong E.F., White J.R., Cerqueira G., Gerding K., Simmons J.K., George D., Zhang T. Characterization of tumor mutation burden, PD-L1 and DNA repair genes to assess relationship to immune checkpoint inhibitors response in metastatic renal cell carcinoma. J Immunother Cancer. 2020; 8(1). doi:10.1136/jitc2019-000319. Erratum in: J Immunother Cancer. 2020; 8(1).; Turajlic S., Litchfeld K., Xu H., Rosenthal R., McGranahan N., Reading J.L., Wong Y.N.S., Rowan A., Kanu N., Al Bakir M., Chambers T., Salgado R., Savas P., Loi S., Birkbak N.J., Sansregret L., Gore M., Larkin J., Quezada S.A., Swanton C. Insertion-and-deletion-derived tumour-specifc neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017; 18(8): 1009–21. doi:10.1016/S1470-2045(17)30516-8.; Voss M.H., Novik J.B., Hellmann M.D., Ball M., Hakimi A.A., Miao D., Margolis C., Horak C., Wind-Rotolo M., De Velasco G., Tannir N.M., Tamboli P., Appleman L.J., Rathmell K., Hsieh J.J., Allaf M., Choueiri T.K., VanAllen E., Snyder A., Motzer R.J. Correlation of degree of tumor immune infltration and insertion-and-deletion (indel) burden with outcome on programmed death 1 (PD1) therapy in advanced renal cell cancer (RCC). J Clin Oncol 2018; 36(15s): 4518. doi:10.1200/JCO.2018.36.15_suppl.4518.; Kalbasi A., Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020; 20(1): 25–39. doi:10.1038/s41577-019-0218-4.; Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005; 5(5): 375–86. doi:10.1038/nri1604.; Zaretsky J.M., Garcia-Diaz A., Shin D.S., Escuin-Ordinas H., Hugo W., Hu-Lieskovan S., Torrejon D.Y., Abril-Rodriguez G., Sandoval S., Barthly L., Saco J., Homet Moreno B., Mezzadra R., Chmielowski B., Ruchalski K., Shintaku I.P., Sanchez P.J., Puig-Saus C., Cherry G., Seja E., Kong X., Pang J., Berent-Maoz B., Comin-Anduix B., Graeber T.G., Tumeh P.C., Schumacher T.N., Lo R.S., Ribas A. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016; 375: 819–29. doi:10.1056/NEJMoa1604958.; Spranger S., Bao R., Gajewski T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015; 523(7559): 231–5. doi:10.1038/nature14404.; Sweis R.F., Spranger S., Bao R., Paner G.P., Stadler W.M., Steinberg G., Gajewski T.F. Molecular Drivers of the Non-T-cell-Infamed Tumor Microenvironment in Urothelial Bladder Cancer. Cancer Immunol Res. 2016; 4(7): 563–8. doi:10.1158/2326-6066.CIR-15-0274.; Seiwert T.Y., Zuo Z., Keck M.K., Khattri A., Pedamallu C.S., Stricker T., Brown C., Pugh T.J., Stojanov P., Cho J., Lawrence M.S., Getz G., Brägelmann J., DeBoer R., Weichselbaum R.R., Langerman A., Portugal L., Blair E., Stenson K., Lingen M.W., Cohen E.E., Vokes E.E., White K.P., Hammerman P.S. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015; 21(3): 632–41. doi:10.1158/1078-0432.CCR-13-3310.; Jiménez-Sánchez A., Memon D., Pourpe S., Veeraraghavan H., Li Y., Vargas H.A., Gill M.B., Park K.J., Zivanovic O., Konner J., Ricca J., Zamarin D., Walther T., Aghajanian C., Wolchok J.D., Sala E., Merghoub T., Snyder A., Miller M.L. Heterogeneous Tumor-Immune Microenvironments among Diferentially Growing Metastases in an Ovarian Cancer Patient. Cell. 2017; 170(5): 927–38. doi:10.1016/j.cell.2017.07.025.; Boni A., Cogdill A.P., Dang P., Udayakumar D., Njauw C.N., Sloss C.M., Ferrone C.R., Flaherty K.T., Lawrence D.P., Fisher D.E., Tsao H., Wargo J.A. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without afecting lymphocyte function. Cancer Res. 2010; 70(13): 5213–9. doi:10.1158/0008-5472.CAN-10-0118.; Goel S., DeCristo M.J., Watt A.C., BrinJones H., Sceneay J., Li B.B., Khan N., Ubellacker J.M., Xie S., Metzger-Filho O., Hoog J., Ellis M.J., Ma C.X., Ramm S., Krop I.E., Winer E.P., Roberts T.M., Kim H.J., McAllister S.S., Zhao J.J. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017; 548(7668): 471–5. doi:10.1038/nature23465.; Jerby-Arnon L., Shah P., Cuoco M.S., Rodman C., Su M.J., Melms J.C., Leeson R., Kanodia A., Mei S., Lin J.R., Wang S., Rabasha B., Liu D., Zhang G., Margolais C., Ashenberg O., Ott P.A., Buchbinder E.I., Haq R., Hodi F.S., Boland G.M., Sullivan R.J., Frederick D.T., Miao B., Moll T., Flaherty K.T., Herlyn M., Jenkins R.W., Thummalapalli R., Kowalczyk M.S., Cañadas I., Schilling B., Cartwright A.N.R., Luoma A.M., Malu S., Hwu P., Bernatchez C., Forget M.A., Barbie D.A., Shalek A.K., Tirosh I., Sorger P.K., Wucherpfennig K., Van Allen E.M., Schadendorf D., Johnson B.E., Rotem A., Rozenblatt-Rosen O., Garraway L.A., Yoon C.H., Izar B., Regev A. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell. 2018; 175(4): 984–97. doi:10.1016/j.cell.2018.09.006.; Wang X., Zhang H., Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019; 2(2): 141–60. doi:10.20517/cdr.2019.10.; Sade-Feldman M., Jiao Y.J., Chen J.H., Rooney M.S., BarzilyRokni M., Eliane J.P., Bjorgaard S.L., Hammond M.R., Vitzthum H., Blackmon S.M., Frederick D.T., Hazar-Rethinam M., Nadres B.A., Van Seventer E.E., Shukla S.A., Yizhak K., Ray J.P., Rosebrock D., Livitz D., Adalsteinsson V., Getz G., Duncan L.M., Li B., Corcoran R.B., Lawrence D.P., Stemmer-Rachamimov A., Boland G.M., Landau D.A., Flaherty K.T., Sullivan R.J., Hacohen N. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017; 8(1): 1136. doi:10.1038/s41467-017-01062-w.; Fridman W.H., Pagès F., Sautès-Fridman C., Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012; 12(4): 298–306. doi:10.1038/nrc3245.; Becht E., Giraldo N.A., Lacroix L., Buttard B., Elarouci N., Petitprez F., Selves J., Laurent-Puig P., Sautès-Fridman C., Fridman W.H., de Reyniès A. Estimating the population abundance of tissue-infltrating immune and stromal cell populations using gene expression. Genome Biol. 2016; 17(1): 218. doi:10.1186/s13059-016-1070-5. Erratum in: Genome Biol. 2016; 17(1): 249.; Giraldo N.A., Becht E., Pagès F., Skliris G., Verkarre V., Vano Y., Mejean A., Saint-Aubert N., Lacroix L., Natario I., Lupo A., Alifano M., Damotte D., Cazes A., Triebel F., Freeman G.J., Dieu-Nosjean M.C., Oudard S., Fridman W.H., Sautès-Fridman C. Orchestration and Prognostic Signifcance of Immune Checkpoints in the Microenvironment of Primary and Metastatic Renal Cell Cancer. Clin Cancer Res. 2015; 21(13): 3031–40. doi:10.1158/1078-0432.CCR-14-2926.; Helmink B.A., Reddy S.M., Gao J., et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020; 577(7791): 549–55. doi:10.1038/s41586-019-1922-8.; Petitprez F., de Reyniès A., Keung E.Z., Chen T.W., Sun C.M., Calderaro J., Jeng Y.M., Hsiao L.P., Lacroix L., Bougoüin A., Moreira M., Lacroix G., Natario I., Adam J., Lucchesi C., Laizet Y.H., Toulmonde M., Burgess M.A., Bolejack V., Reinke D., Wani K.M., Wang W.L., Lazar A.J., Roland C.L., Wargo J.A., Italiano A., Sautès-Fridman C., Tawbi H.A., Fridman W.H. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020; 577(7791): 556–60. doi:10.1038/s41586-019-1906-8.; Stubbs M., McSheehy P.M., Griffths J.R., Bashford C.L. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today. 2000; 6(1): 15–9. doi:10.1016/s1357-4310(99)01615-9.; Sormendi S., Wielockx B. Hypoxia Pathway Proteins As Central Mediators of Metabolism in the Tumor Cells and Their Microenvironment. Front Immunol. 2018; 9: 40. doi:10.3389/fmmu.2018.00040.; Garcia-Lora A., Algarra I., Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol. 2003; 195(3): 346–55. doi:10.1002/jcp.10290.; Tatli Dogan H., Kiran M., Bilgin B., Kiliçarslan A., Sendur M.A.N., Yalçin B., Ardiçoglu A., Atmaca A.F., Gumuskaya B. Prognostic signifcance of the programmed death ligand 1 expression in clear cell renal cell carcinoma and correlation with the tumor microenvironment and hypoxia-inducible factor expression. Diagn Pathol. 2018; 13(1): 60. doi:10.1186/s13000-018-0742-8.; Zhang J., Shi Z., Xu X., Yu Z., Mi J. The infuence of microenvironment on tumor immunotherapy. FEBS J. 2019; 286(21): 4160–75. doi:10.1111/febs.15028.; Pan D., Kobayashi A., Jiang P., Ferrari de Andrade L., Tay R.E., Luoma A.M., Tsoucas D., Qiu X., Lim K., Rao P., Long H.W., Yuan G.C., Doench J., Brown M., Liu X.S., Wucherpfennig K.W. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science. 2018; 359(6377): 770–5. doi:10.1126/science.aao1710.; Varela I., Tarpey P., Raine K., Huang D., Ong C.K., Stephens P., Davies H., Jones D., Lin M.L., Teague J., Bignell G., Butler A., Cho J., Dalgliesh G.L., Galappaththige D., Greenman C., Hardy C., Jia M., Latimer C., Lau K.W., Marshall J., McLaren S., Menzies A., Mudie L., Stebbings L., Largaespada D.A., Wessels L.F., Richard S., Kahnoski R.J., Anema J., Tuveson D.A., Perez-Mancera P.A., Mustonen V., Fischer A., Adams D.J., Rust A., Chan-on W., Subimerb C., Dykema K., Furge K., Campbell P.J., Teh B.T., Stratton M.R., Futreal P.A. Exome sequencing identifes frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011; 469(7331): 539–42. doi:10.1038/nature09639. Erratum in: Nature. 2012; 484(7392): 130.; Miao D., Margolis C.A., Gao W., Voss M.H., Li W., Martini D.J., Norton C., Bossé D., Wankowicz S.M., Cullen D., Horak C., Wind-Rotolo M., Tracy A., Giannakis M., Hodi F.S., Drake C.G., Ball M.W., Allaf M.E., Snyder A., Hellmann M.D., Ho T., Motzer R.J., Signoretti S., Kaelin W.G., Choueiri T.K., van Allen E.M. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 2018; 359(6377): 801–6. doi:10.1126/science.aan5951.; Braun D.A., Ishii Y., Walsh A.M., Van Allen E.M., Wu C.J., Shukla S.A., Choueiri T.K. Clinical Validation of PBRM1 Alterations as a Marker of Immune Checkpoint Inhibitor Response in Renal Cell Carcinoma. JAMA Oncol. 2019; 5(11): 1631–3. doi:10.1001/jamaoncol.2019.3158.; https://www.siboncoj.ru/jour/article/view/2686

  6. 6
    Academic Journal

    المصدر: Research and Practical Medicine Journal; Том 10, № 1 (2023); 134-142 ; Research'n Practical Medicine Journal; Том 10, № 1 (2023); 134-142 ; 2410-1893 ; 10.17709/2410-1893-2023-10-1

    وصف الملف: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/815/545; Злокачественные новообразования в России в 2019 году (заболеваемость и смертность). Под ред. А. Д. Каприна, В. В. Старинского, А. О. Шахзадовой. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2020, 252 с. Доступно по: https://glavonco.ru/cancer_register/Забол_2019_Электр.pdf, Дата обращения: 29.10.2022.; Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424. https://doi.org/10.3322/caac.21492. Erratum in: CA Cancer J Clin. 2020 Jul;70(4):313; Raoul JL, Gilabert M, Piana G. How to define transarterial chemoembolization failure or refractoriness: a European perspective. Liver Cancer. 2014 May;3(2):119–124. https://doi.org/10.1159/000343867; Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018 Mar 31;391(10127):1301–1314. https://doi.org/10.1016/s0140‑6736(18)30010‑2; Yau T, Tang VY, Yao TJ, Fan ST, Lo CM, Poon RT. Development of Hong Kong Liver Cancer staging system with treatment stratification for patients with hepatocellular carcinoma.Gastroenterology.2014 Jun;146(7):1691–700.e3.https://doi.org/10.1053/j.gastro.2014.02.032; Forner A, Gilabert M, Bruix J, Raoul JL. Treatment of intermediate‑stage hepatocellular carcinoma. Nat Rev Clin Oncol. 2014 Sep;11(9):525–535. https://doi.org/10.1038/nrclinonc.2014.122; Yamada R, Nakamura K. [Transcatheter arterial embolization therapy (author’s transl)]. Nihon Rinsho. 1982;40(1):183–190. Japanese.; Lencioni R, de Baere T, Soulen MC, Rilling WS, Geschwind JF. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: A systematic review of efficacy and safety data. Hepatology. 2016 Jul;64(1):106–116. https://doi.org/10.1002/hep.28453; Angle JF, Siddiqi NH, Wallace MJ, Kundu S, Stokes L, Wojak JC, Cardella JF; Society of Interventional Radiology Standards of Practice Committee. Quality improvement guidelines for percutaneous transcatheter embolization: Society of Interventional Radiology Standards of Practice Committee. J Vasc Interv Radiol. 2010 Oct;21(10):1479–1486. https://doi.org/10.1016/j.jvir.2010.06.014; Grover I, Ahmad N, Googe AB. Hepatogastric Fistula following Transcatheter Arterial Chemoembolization of Hepatocellular Carcinoma. Case Rep Gastroenterol. 2014 Oct 3;8(3):286–290. https://doi.org/10.1159/000368302; Chen LT, Chen CY, Jan CM, Wang WM, Lan TS, Hsieh MY, Liu GC. Gastrointestinal tract involvement in hepatocellular carcinoma: clinical, radiological and endoscopic studies. Endoscopy. 1990 May;22(3):118–123. https://doi.org/10.1055/s‑2007‑1012815; Hashimoto M, Watanabe G, Matsuda M, Yamamoto T, Tsutsumi K, Tsurumaru M: Case report: gastrointestinal bleeding from a hepatocellular carcinoma invading the transverse colon. J Gastroenterol Hepatol. 1996;11(8):765–767. https://doi.org/10.1111/j.1440‑1746.1996.tb00328.x; Park MS, Kim KW, Yu JS, Kim MJ, Yoon SW, Chung KW, et al. Radiologic findings of gastrointestinal tract involvement in hepatocellular carcinoma. J Comput Assist Tomogr. 2002 Jan‑Feb;26(1):95–101. https://doi.org/10.1097/00004728‑200201000‑00014; Sayana H, Yousef O, Clarkston WK. Massive upper gastrointestinal hemorrhage due to invasive hepatocellular carcinoma and hepato‑gastric fistula. World J Gastroenterol. 2013 Nov 14;19(42):7472–7475. https://doi.org/10.3748/wjg.v19.i42.7472; https://www.rpmj.ru/rpmj/article/view/815

  7. 7
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 11 (2023); 65-74 ; Медицинский Совет; № 11 (2023); 65-74 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7681/6815; Feyer P., Jordan K. Update and new trends in antiemetic therapy: the continuing need for novel therapies. Ann Oncol. 2011;22(1):30–38. https://doi.org/10.1093/annonc/mdq600.; Jordan K., Chan A., Gralla R.J., Jahn F., Rapoport B., Warr D., Hesketh P.J. 2016 Updated MASCC/ESMO consensus recommendations: Emetic risk classification and evaluation of the emetogenicity of antineoplastic agents. Support Care Cancer. 2017;25(1):271–275. https://doi.org/10.1007/s00520-016-3332-x.; Howlader N., Noone A.M., Krapcho M., Garshell J., Neyman N., Altekruse S.F. et al. (eds.). SEER Cancer Statistics Review, 1975–2010. Bethesda, MD: National Cancer Institute; 2013. Available at: https://seer.cancer.gov/archive/csr/1975_2010/.; Navari R.M., Aapro M. Antiemetic Prophylaxis for Chemotherapy-Induced Nausea and Vomiting. N Engl J Med. 2016;374(14):1356–1367. https://doi.org/10.1056/NEJMra1515442.; Tageja N., Groninger H. Chemotherapy-induced nausea and vomiting: an overview and comparison of three consensus guidelines. Postgrad Med J. 2016;92(1083):34–40. https://doi.org/10.1136/postgradmedj-2014-132969.; Di Mattei V.E., Carnelli L., Carrara L., Bernardi M., Crespi G., Rancoita P.M.V. et al. Chemotherapy-Induced Nausea and Vomiting in Women With Gynecological Cancer: A Preliminary Single-Center Study Investigating Medical and Psychosocial Risk Factors. Cancer Nurs. 2016;39(6):E52–E59. https://doi.org/10.1097/NCC.0000000000000342.; Dranitsaris G., Molassiotis A., Clemons M., Roeland E., Schwartzberg L., Dielenseger P. et al. The development of a prediction tool to identify cancer patients at high risk for chemotherapy-induced nausea and vomiting. Ann Oncol. 2017;28(6):1260–1267. https://doi.org/10.1093/annonc/mdx100.; Furukawa N., Akasaka J., Shigemitsu A., Sasaki Y., Nagai A., Kawaguchi R., Kobayashi H. Evaluation of the relation between patient characteristics and the state of chemotherapy-induced nausea and vomiting in patients with gynecologic cancer receiving paclitaxel and carboplatin. Arch Gynecol Obstet. 2014;289(4):859–864. https://doi.org/10.1007/s00404-013-3058-7.; Hu Z., Liang W., Yang Y., Keefe D., Ma Y., Zhao Y. et al. Personalized Estimate of Chemotherapy-Induced Nausea and Vomiting: Development and External Validation of a Nomogram in Cancer Patients Receiving Highly/ Moderately Emetogenic Chemotherapy. Medicine (Baltimore). 2016;95(2):e2476. https://doi.org/10.1097/MD.0000000000002476.; Warr D. Prognostic factors for chemotherapy induced nausea and vomiting. Eur J Pharmacol. 2014;722:192–196. https://doi.org/10.1016/j.ejphar.2013.10.015.; Hesketh P.J., Aapro M., Street J.C., Carides A.D. Evaluation of risk factors predictive of nausea and vomiting with current standard-of-care antiemetic treatment: analysis of two phase III trials of aprepitant in patients receiving cisplatin-based chemotherapy. Support Care Cancer. 2010;18(9):1171–1177. https://doi.org/10.1007/s00520-009-0737-9.; Viale P.H., Grande C., Moore S. Efficacy and cost: avoiding undertreatment of chemotherapy-induced nausea and vomiting. Clin J Oncol Nurs. 2012;16(4):E133–141. https://doi.org/10.1188/12.CJON.E133-E141.; Wozniak A.J., Crowley J.J., Balcerzak S.P., Weiss G.R., Spiridonidis C.H., Baker L.H. et al. Randomized trial comparing cisplatin with cisplatin plus vinorelbine in the treatment of advanced non-small-cell lung cancer: a Southwest Oncology Group study. J Clin Oncol. 1998;16(7):2459–2465. https://doi.org/10.1200/JCO.1998.16.7.2459.; Basch E., Prestrud A.A., Hesketh P.J., Kris M.G., Somerfield M.R., Lyman G.H. Antiemetic Use in Oncology: Updated Guideline Recommendations from ASCO. Am Soc Clin Oncol Educ Book. 2012:32:532–540. https://doi.org/10.14694/EdBook_AM.2012.32.230.; Roila F., Molassiotis A., Herrstedt J., Aapro M., Gralla R.J., Bruera E. et al. 2016 MASCC and ESMO guideline update for the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting and of nausea and vomiting in advanced cancer patients. Ann Oncol. 2016;27(Suppl. 5): v119–v133. https://doi.org/10.1093/annonc/mdw270.; Hesketh P.J., Bohlke K., Lyman G.H., Basch E., Chesney M., Clark-Snow R.A. et al. Antiemetics: American Society of Clinical Oncology Focused Guideline Update. J Clin Oncol. 2016;34(4):381–386. https://doi.org/10.1200/JCO.2015.64.3635.; Shimokawa M., Haratake N., Takada K., Toyokawa G., Takamori S., Mizuki F. et al. Combination Antiemetic Therapy for Chemotherapy-Induced Nausea and Vomiting in Patients with NSCLC Receiving Carboplatin-Based Chemotherapy. Cancer Manag Res. 2022;14:2673–2680. https://doi.org/10.2147/CMAR.S370961.; Siddiqui M.A., Scott L.J. Palonosetron. Drugs. 2004;64(10):1125–1132. https://doi.org/10.2165/00003495-200464100-00006.; Yang L.P., Scott L.J. Palonosetron: in the prevention of nausea and vomiting. Drugs. 2009;69(16):2257–2278. https://doi.org/10.2165/11200980-000000000-00000.; Popovic M., Warr D.G., Deangelis C., Tsao M., Chan K.K., Poon M. et al. Efficacy and safety of palonosetron for the prophylaxis of chemotherapy-induced nausea and vomiting (CINV): a systematic review and meta-analysis of randomized controlled trials. Support Care Cancer. 2014;22(6):1685–1697. https://doi.org/10.1007/s00520-014-2175-6.; Hashimoto H., Yamanaka T., Shimada Y., Arata K., Matsui R., Goto K. et al. Palonosetron (PALO) versus granisetron (GRA) in the triplet regimen with dexamethasone (DEX) and aprepitant (APR) for preventing chemotherapyinduced nausea and vomiting (CINV) in patients (pts) receiving highly emetogenic chemotherapy (HEC) with cisplatin (CDDP): A randomized, double-blind, phase III trial. J Clin Oncol. 2013;31(Suppl. 15):9621–9621. https://doi.org/10.1200/jco.2013.31.15_suppl.9621.; Navari R.M., Gray S.E., Kerr A.C. Olanzapine versus aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a randomized phase III trial. J Support Oncol. 2011;9(5):188–195. https://doi.org/10.1016/j.suponc.2011.05.002.; Hesketh P.J., Rossi G., Rizzi G., Palmas M., Alyasova A., Bondarenko I. et al. Efficacy and safety of NEPA, an oral combination of netupitant and palonosetron, for prevention of chemotherapy-induced nausea and vomiting following highly emetogenic chemotherapy: a randomized dose-ranging pivotal study. Ann Oncol. 2014;25(7):1340–1346. https://doi.org/10.1093/annonc/mdu110.; Roila F., Ruggeri B., Ballatori E., Fatigoni S., Caserta C., Licitra L. et al. Aprepitant versus metoclopramide, both combined with dexamethasone, for the prevention of cisplatin-induced delayed emesis: a randomized, double-blind study. Ann Oncol. 2015;26(6):1248–1253. https://doi.org/10.1093/annonc/mdv132.; Aapro M., Rugo H., Rossi G., Rizzi G., Borroni M.E., Bondarenko I. et al. A randomized phase III study evaluating the efficacy and safety of NEPA, a fixed-dose combination of netupitant and palonosetron, for prevention of chemotherapyinduced nausea and vomiting following moderately emetogenic chemotherapy. Ann Oncol. 2014;25(7):1328–1333. https://doi.org/10.1093/annonc/mdu101.; Roila F., Ruggeri B., Ballatori E., Del Favero A., Tonato M. Aprepitant versus dexamethasone for preventing chemotherapy-induced delayed emesis in patients with breast cancer: a randomized double-blind study. J Clin Oncol. 2014;32(2):101–106. https://doi.org/10.1200/JCO.2013.51.4547.; Matsumoto K., Takahashi M., Sato K., Osaki A., Takano T., Naito Y. et al. A doubleblind, randomized, multicenter phase 3 study of palonosetron vs granisetron combined with dexamethasone and fosaprepitant to prevent chemotherapyinduced nausea and vomiting in patients with breast cancer receiving anthracycline and cyclophosphamide. Cancer Med. 2020;9(10):3319–3327. https://doi.org/10.1002/cam4.2979.; Aapro M., Fabi A., Nolè F., Medici M., Steger G., Bachmann C. et al. Doubleblind, randomised, controlled study of the efficacy and tolerability of palonosetron plus dexamethasone for 1 day with or without dexamethasone on days 2 and 3 in the prevention of nausea and vomiting induced by moderately emetogenic chemotherapy. Ann Oncol. 2010;21(5):1083–1088. https://doi.org/10.1093/annonc/mdp584.; Celio L., Frustaci S., Denaro A., Buonadonna A., Ardizzoia A., Piazza E. et al. Palonosetron in combination with 1-day versus 3-day dexamethasone for prevention of nausea and vomiting following moderately emetogenic chemotherapy: a randomized, multicenter, phase III trial. Support Care Cancer. 2011;19(8):1217–1225. https://doi.org/10.1007/s00520-010-0941-7.; Komatsu Y., Okita K., Yuki S., Furuhata T., Fukushima H., Masuko H. et al. Openlabel, randomized, comparative, phase III study on effects of reducing steroid use in combination with Palonosetron. Cancer Sci. 2015;106(7):891–895. https://doi.org/10.1111/cas.12675.; Celio L., Niger M., Ricchini F., Agustoni F. Palonosetron in the prevention of chemotherapy-induced nausea and vomiting: an evidence-based review of safety, efficacy, and place in therapy. Core Evid. 2015;10:75–87. https://doi.org/10.2147/CE.S65555.; Wenzell C.M., Berger M.J., Blazer M.A., Crawford B.S., Griffith N.L., Wesolowski R. et al. Pilot study on the efficacy of an ondansetron- versus palonosetron-containing antiemetic regimen prior to highly emetogenic chemotherapy. Support Care Cancer. 2013;21(10):2845–2851. https://doi.org/10.1007/s00520-013-1865-9.; Roila F., Herrstedt J., Aapro M., Gralla R.J., Einhorn L.H., Ballatori E. et al. Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: results of the Perugia consensus conference. Ann Oncol. 2010;21(Suppl. 5):v232–243. https://doi.org/10.1093/annonc/mdq194.; Hesketh P.J., Kris M.G., Basch E., Bohlke K., Barbour S.Y., Clark-Snow R.A. et al. Antiemetics: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol. 2017;35(28):3240–3261. https://doi.org/10.1200/JCO.2017.74.4789.; Navari R.M. Management of chemotherapy-induced nausea and vomiting: focus on newer agents and new uses for older agents. Drugs. 2013;73(3):249–262. https://doi.org/10.1007/s40265-013-0019-1.; Saito M., Aogi K., Sekine I., Yoshizawa H., Yanagita Y., Sakai H. et al. Palonosetron plus dexamethasone versus granisetron plus dexamethasone for prevention of nausea and vomiting during chemotherapy: a doubleblind, double-dummy, randomised, comparative phase III trial. Lancet Oncol. 2009;10(2):115–124. https://doi.org/10.1016/S1470-2045(08)70313-9.; Rojas C., Stathis M., Thomas A.G., Massuda E.B., Alt J., Zhang J. et al. Palonosetron exhibits unique molecular interactions with the 5-HT3 receptor. Anesth Analg. 2008;107(2):469–478. https://doi.org/10.1213/ane.0b013e318172fa74.; Rojas C., Thomas A.G., Alt J., Stathis M., Zhang J., Rubenstein E.B. et al. Palonosetron triggers 5-HT(3) receptor internalization and causes prolonged inhibition of receptor function. Eur J Pharmacol. 2010;626(2-3):193–199. https://doi.org/10.1016/j.ejphar.2009.10.002.; Rojas C., Li Y., Zhang J., Stathis M., Alt J., Thomas A.G. et al. The antiemetic 5-HT3 receptor antagonist Palonosetron inhibits substance P-mediated responses in vitro and in vivo. J Pharmacol Exp Ther. 2010;335(2):362–368. https://doi.org/10.1124/jpet.110.166181.; Schwartzberg L. Addressing the value of novel therapies in chemotherapyinduced nausea and vomiting. Expert Rev Pharmacoecon Outcomes Res. 2014;14(6):825–834. https://doi.org/10.1586/14737167.2014.957683.; Curigliano G., Burstein H.J., Winer E.P., Gnant M., Dubsky P., Loibl S. et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. 2017;28(8):1700–1712. https://doi.org/10.1093/annonc/mdx308.; Allevi G., Strina C., Andreis D., Zanoni V., Bazzola L., Bonardi S. et al. Increased pathological complete response rate after a long-term neoadjuvant letrozole treatment in postmenopausal oestrogen and/or progesterone receptor-positive breast cancer. Br J Cancer. 2013;108(8):1587–1592. https://doi.org/10.1038/bjc.2013.151.; Schneeweiss A., Chia S., Hickish T., Harvey V., Eniu A., Hegg R. et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol. 2013;24(9):2278–2284. https://doi.org/10.1093/annonc/mdt182.; Hussain N., Said A.S.A., Khan Z. Safety Assessment of Neoadjuvant Pertuzumab Combined with Trastuzumab in Nonmetastatic HER2-Positive Breast Cancer in Postmenopausal Elderly Women of South Asia. Int J Breast Cancer. 2018:6106041. https://doi.org/10.1155/2018/6106041.; Lorusso D., Bria E., Costantini A., Di Maio M., Rosti G., Mancuso A. Patients’ perception of chemotherapy side effects: Expectations, doctor-patient communication and impact on quality of life – An Italian survey. Eur J Cancer Care (Engl). 2017;26(2). https://doi.org/10.1111/ecc.12618.; Grunberg S.M., Deuson R.R., Mavros P., Geling O., Hansen M., Cruciani G. et al. Incidence of chemotherapy-induced nausea and emesis after modern antiemetics. Cancer. 2004;100(10):2261–2268. https://doi.org/10.1002/cncr.20230.; Aapro M., Ruffo P., Panteri R., Costa S., Piovesana V. Oncologist perspectives on chemotherapy-induced nausea and vomiting (CINV) management and outcomes: A quantitative market research-based survey. Cancer Rep (Hoboken). 2018;1(4):e1127. https://doi.org/10.1002/cnr2.1127.; https://www.med-sovet.pro/jour/article/view/7681

  8. 8
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 11 (2023); 178-182 ; Медицинский Совет; № 11 (2023); 178-182 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7703/6835; Mickisch G.H. Chemoresistance of renal cell carcinoma: 1986–1994. World J Urol. 1994;12(4):214–223. https://doi.org/10.1007/BF00185677.; Fosså S.D., Droz J.P., Pavone-Macaluso M.M., Debruyne F.J., Vermeylen K., Sylvester R. Vinblastine in metastatic renal cell carcinoma: EORTC phase II trial 30882. The EORTC Genitourinary Group. Eur J Cancer. 1992;28(4–5):878–880. https://doi.org/10.1016/0959-8049(92)90139-s; Stadler W.M., Huo D., George C., Yang X., Ryan C.W., Karrison T. et al. Prognostic factors for survival with gemcitabine plus 5-fluorouracil based regimens for metastatic renal cancer. J Urol. 2003;170(4):1141–1145. https://doi.org/10.1097/01.ju.0000086829.74971.4a.; Bennouna J., Delva R., Gomez F., Lesimple T., Geoffrois L., Linassier C. et al. A phase II study with 5-fluorouracil, folinic acid and oxaliplatin (FOLFOX-4 regimen) in patients with metastatic renal cell carcinoma. Oncology. 2003;64(1):25–27. https://doi.org/10.1159/000066518.; Oevermann K., Buer J., Hoffmann R., Franzke A., Schrader A., Patzelt T. et al. Capecitabine in the treatment of metastatic renal cell carcinoma. Br J Сancer. 2000;83(5):583–587. https://doi.org/10.1054/bjoc.2000.1340.; Dickerson E.C., Davenport M.S., Liu P.S. Spontaneous regression of primary renal cell carcinoma following image-guided percutaneous biopsy. Clin Imaging. 2015;39(3):520–524. https://doi.org/10.1016/j.clinimag.2014.08.002.; Makhov P., Joshi S., Ghatalia P., Kutikov A., Uzzo R.G., Kolenko V.M. Resistance to Systemic Therapies in Clear Cell Renal Cell Carcinoma: Mechanisms and Management Strategies. Mol Сancer Тher. 2018;17(7):1355–1364. https://doi.org/10.1158/1535-7163.MCT-17-1299.; Doehn C., Kausch I., Melz S., Behm A., Jocham D. Cytokine and vaccine therapy of kidney cancer. Expert Rev Anticancer Тher. 2004;4(6):1097–1111. https://doi.org/10.1586/14737140.4.6.1097.; Mendel D.B., Laird A.D., Xin X., Louie S.G., Christensen J.G., Li G. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Сancer Res. 2003;9(1):327–337. Available at: https://pubmed.ncbi.nlm.nih.gov/12538485.; Gnarra J.R., Tory K., Weng Y., Schmidt L., Wei M.H., Li H. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7(1):85–90. https://doi.org/10.1038/ng0594-85.; Меньшиков К.В., Султанбаев А.В., Мусин Ш.И., Измайлов А.А., Чалов В.С., Меньшикова И.А. и др. Метастатический почечно-клеточный рак, возможности таргетной терапии. Медицинский совет. 2021;(20):138–144. https://doi.org/10.21518/2079-701X-2021-20-138-144.; Jonasch E., Walker C.L., Rathmell W.K. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021;17(4):245–261. https://doi.org/10.1038/s41581-020-00359-2.; Choueiri T.K., Kaelin W.G.Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med. 2020;26(10):1519–1530. https://doi.org/10.1038/s41591-020-1093-z.; Калпинский А.С., Алексеев Б.Я. Эффективность сунитиниба в таргетной терапии метастатического рака почки. Онкоурология. 2009;5(3):63–67. Режим доступа: https://oncourology.abvpress.ru/oncur/article/view/272.; Motzer R.J., Hutson T.E., Tomczak P., Michaelson M.D., Bukowski R.M., Rixe O. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. New Engl J Med. 2007;356(2):115–124. https://doi.org/10.1056/NEJMoa065044.; Motzer R.J., Hutson T.E., Cella D., Reeves J., Hawkins R., Guo J. et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. New Engl J Med. 2013;369(8):722–731. https://doi.org/10.1056/NEJMoa1303989.; Knox J.J., Barrios C.H., Kim T.M., Cosgriff T., Srimuninnimit V., Pittman K. et al. Final overall survival analysis for the phase II RECORD-3 study of first-line everolimus followed by sunitinib versus first-line sunitinib followed by everolimus in metastatic RCC. Ann Oncol. 2017;28(6):1339–1345. https://doi.org/10.1093/annonc/mdx075.; Heng D.Y., Xie W., Regan M.M., Warren M.A., Golshayan A.R., Sahi C. et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol. 2009;27(34):5794–5799. https://doi.org/10.1200/JCO.2008.21.4809.; Алексеев Б.Я., Шевчук И.М. Новая комбинация ленватиниба с пембролизумабом при метастатическом почечно-клеточном раке в 1-й линии лекарственного лечения: сравнительная эффективность и безопасность. Онкоурология. 2022;18(3):51–59. https://doi.org/10.17650/1726-9776-2022-18-3-51-59.; Rini B.I., Plimack E.R., Stus V., Gafanov R., Hawkins R., Nosov D. et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. New Engl J Med. 2019;380(12):1116–1127. https://doi.org/10.1056/NEJMoa1816714.; Powles T., Plimack E.R., Soulières D., Waddell T., Stus V., Gafanov R. et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020;21(12):1563–1573. https://doi.org/10.1016/S1470-2045(20)30436-8.; George D.J., Lee C.H., Heng D. New approaches to first-line treatment of advanced renal cell carcinoma. Ther Adv Med Oncol. 2021;13:17588359211034708. https://doi.org/10.1177/17588359211034708.; Motzer R.J., Tannir N.M., McDermott D.F., Arén Frontera O., Melichar B., Choueiri T.K. et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. New Engl J Med. 2018;378(14):1277–1290. https://doi.org/10.1056/NEJMoa1712126.; Меньшиков К.В., Султанбаев А.В., Мусин Ш.И., Измайлов А.А., Меньшикова И.А., Насретдинов А.Ф. и др. Опыт применения тирозинкиназного ингибитора кабозантиниба в Республике Башкортостан. Поволжский онкологический вестник. 2022;13(2):7–20. Режим доступа: http://oncovestnik.ru/archive/zhurnaly-za-2022-god/tom-13-nomer-2-2022-g/opyt-primeneniyatirozinkinaznogo-ingibitora-kabozantiniba-v-respublike-bashkortostan.; https://www.med-sovet.pro/jour/article/view/7703

  9. 9
    Academic Journal

    المصدر: Malignant tumours; Том 13, № 4 (2023); 84-92 ; Злокачественные опухоли; Том 13, № 4 (2023); 84-92 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/1142/798; https://www.malignanttumors.org/jour/article/view/1142/910; Lord, C. J.; Ashworth, A. The DNA damage response and cancer therapy. Nature 2012, 481, 287–294.; Valerie, K.; Povirk, L. F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 2003, 22, 5792–5812.; Jaco, I.; Muñoz, P.; Goytisolo, F.; Wesoly, J.; Bailey, S.; Taccioli, G.; Blasco, M. A. Role of mammalian Rad54 in telomere length maintenance. Mol. Cell Biol. 2003, 23, 5572–5580.; Salzano, A.; Kochiashvili, N.; Nergadze, S. G.; Khoriauli, L.; Smirnova, A.; Ruiz-Herrera, A.; Mondello, C.; Giulotto, E. Enhanced gene amplification in human cells knocked down for DNA-Kcs. DNA Repair 2009, 8, 19–28.; Khouriauli, L.; Giulotto, E. Gene amplification in human cells knocked down for RAD54. Genome Integr. 2011, 2, doi:10.1186/2041-9414-2-5.; Keeney, S.; Giroux, C. N.; Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 1997, 88, 375–384.; Roeder, G. S. Meiotic chromosomes : It takes two to tango. Genes Dev. 1997, 11, 2600–2621.; Moens, P. B.; Kolas, N. K.; Tarsounas, M.; Marcon, E.; Cohen, P. E.; Spyropoulos, B. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J. Cell Sci. 2002, 115, 1611–1622.; Baker, S. M.; Plug, A. W.; Prolla, T. A.; Bronner, C. E.; Harris, A. C.; Yao, X.; Christie, D. M.; Monell, C.; Arnheim, N.; Bradley, A.; et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat. Genet. 1996, 13, 336–342.; Turner, J. M.; Aprelikova, O.; Xu, X.; Wang, R.; Kim, S.; Chandramouli, G. V.; Barrett, J. C.; Burgoyne, P. S.; Deng, C. X. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr. Biol. 2004, 14, 2135–2142.; Wallace, W. H.; Thomson, A. B.; Kelsey, T. W. The radiosensitivity of the human oocyte. Hum. Reprod. 2003, 18, 117–121.; Saran, F.; Kelsey, T. W. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 738–744.; Hodgson DC : Late effects in the era of modern therapy for Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program 2011, 2011 : 323–329.; Ng AK : Review of the cardiac long-term effects of therapy for Hodgkin lymphoma. Br J Haematol 2011, 154 (1) : 23–31.; Elkin EB, Klem ML, Gonzales AM, et al : Characteristics and outcomes of breast cancer in women with and without a history of radiation for Hodgkin’s lymphoma : a multi-institutional, matched cohort study. J Clin Oncol 2011, 29 (18) : 2466–2473.; Baker, T. G. Comparative aspects of the effects of radiation during oogenesis. Mutat. Res. 1971, 11, 9±22.; Donin N, Filson C, Drakaski A, et al. Risk of second primary malignancies among cancer survivors in the United States, 1992 through 2008. Cancer 2016; 122 : 3075–3086.; Saletta F, Seng M and Lau L. Advances in pediatric cancer treatment. Transl Pediatr 3 (2) : 156–82. 4. Ward E, DeSantis C, Robbins A, et al. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 2014; 64 : 83–103.; Institute NC. Childhood Cancer by site incidence, survival and mortality 2019, April, https://seer.cancer.gov/csr/1975_2016/results_merged/sect_28_childhood_cancer.pdf.; Armstrong GT, Liu Q, Yasui Y, et al. Late mortality among 5-year survivors of childhood cancer : a summary from the childhood cancer survivor study. J Clin Oncol 2009; 27 : 2328–2338.; Lee JS, Dubois SG, Coccia PF, et al. Increased risk of second malignant neoplasms in adolescents and young adults with cancer. Cancer 2016; 122 : 116–123.; Howlader N, Noone AM, Krapcho M, et al, eds. SEER Cancer Statistics Review, 1975–2012. Bethesda, MD : National Cancer Institute; 2015.; Travis LB, Gospodarowicz M, Curtis RE, et al. Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst. 2002; 94 : 182–192.; Travis LB, Curtis RE, Boice JD Jr, Hankey BF, Fraumeni JF Jr. Second cancers following non-Hodgkin’s lymphoma. Cancer. 1991; 67 : 2002–2009.; Curtis RE, Freedman DM, Ron E, et al. New Malignancies Among Cancer Survivors : SEER Cancer Registries, 1973–2000. Bethesda, MD : National Cancer Institute; 2006. NIH Pub. No. 05–5302.; Важенин А. В., Шаназаров Н. А., Шунько Е. Л. Некоторые закономерности развития радиоиндуцированных метахронных опухолей. Вестник рентгенологии и радиологии № 6, 2015. С 30–35.; Bertin F, Deluche E, Tricard J, Piccardo A, Denes E. First case of sternum replacement with a bioceramic prosthesis after radio-induced sarcoma. Curr Oncol. 2018 Aug; 25 (4) : e351-e353. doi:10.3747/co.25.4020. Epub 2018 Aug 14. PMID : 30111981; PMCID : PMC6092061.; Majdoubi A, Serji B, Harroudi TE. Angiosarcome mammaire radio-induit : à propos d’un cas [Radiation-induced breast angiosarcoma : about a case]. Pan Afr Med J. 2020 May 21; 36 : 29. French. doi:10.11604/pamj.2020.36.29.21599. PMID : 32774606; PMCID : PMC7388625.; Меньшиков К. В., Пушкарев А. В., Султанбаев А. В., Пушкарев В. А., Шарифгалиев И. А. Радиоиндуцированная ангиосаркома влагалища : клинический случай. Креативная хирургия и онкология. 2020; 10 (2) : 143–148. https://doi.org/10.24060/2076-3093-2020-10-2-143-148.; Dores GM, Metayer C, Curtis RE, et al. Second malignant neoplasms among long-term survivors of Hodgkin’s disease : a population-based evaluation over 25 years. J Clin Oncol. 2002; 20 : 3484–94. DOI:10.1200/JCO. 2002.09.038.; Огнерубов Н. А., Антипова Т. С. Радиационно-индуцированная саркома мягких тканей шеи после лучевой терапии лимфомы Ходжкина. Клиническое наблюдение. Современная Онкология. 2022; 24 (3) : 325–330. DOI:10.26442/18151434.2022.3.201904.; van Eggermond AM, Schaapveld M, Lugtenburg PJ. Risk of multiple primary malignancies following treatment of Hodgkin lymphoma. Blood. 2014; 124 (3) : 319–27. DOI:10.1182/blood-2013-10-532184.; Ng AK, Mauch PM. Late effects of Hodgkin’s disease and its treatment. Cancer J. 2009; 15 : 164–8. DOI:10.1097/PPO.0b013e31819e30d7.; Carde P, Burgers JM, Henry-Amar M, et al. Clinical stages I and II Hodgkin’s disease : a specifically tailored therapy according to prognostic factors. J Clin Oncol. 1988; 6 (2) : 239–252.; Eghbali H, Raemaekers J, Carde P; EORTC Lymphoma Group. The EORTC strategy in the treatment of Hodgkin’s lymphoma. Eur J Haematol Suppl. 2005; (66) : 135–140.; Raemaekers J, Kluin-Nelemans H, Teodorovic I, et al; European Organisation for Research and Treatment of Cancer. The achievements of the EORTC Lymphoma Group. Eur J Cancer. 2002; 38 (suppl 4) : S107-S113.; Somers R, Tubiana M, Henry-Amar M. EORTC Lymphoma Cooperative Group studies in clinical stage I–II Hodgkin’s disease 1963–1987. Recent Results Cancer Res. 1989; 117 : 175–181.; Tubiana M, Henry-Amar M, Carde P, et al. Toward comprehensive management tailored to prognostic factors of patients with clinical stages I and II in Hodgkin’s disease. The EORTC Lymphoma Group controlled clinical trials : 1964–1987. Blood. 1989; 73 (1) : 47–56.; van Eggermond AM, Schaapveld M, Lugtenburg PJ, Krol AD, de Boer JP, Zijlstra JM, Raemaekers JM, Kremer LC, Roesink JM, Louwman MW, Aleman BM, van Leeuwen FE. Risk of multiple primary malignancies following treatment of Hodgkin lymphoma. Blood. 2014 Jul 17; 124 (3) : 319–27; quiz 466. doi:10.1182/blood-2013-10-532184. Epub 2014 Apr 16. PMID : 24740811.; Cahan WG, Woodard HQ, Higinbotham NL, et al. Sarcoma in irradiated bone. Report of eleven cases. Cancer. 1948 : 3–29. DOI:10.1002/1097-0142(194805) 1 : 13.0. CO; 2–7.; Hall EJ, Wuu CS. Radiation-induced second cancers : the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys. 2003; 56 : 83–8. DOI:10.1016/S0360–3016 (03) 00073–7.; https://www.malignanttumors.org/jour/article/view/1142

  10. 10
    Academic Journal

    المصدر: Malignant tumours; Том 13, № 3s1 (2023); 97-99 ; Злокачественные опухоли; Том 13, № 3s1 (2023); 97-99 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/1191/828; Агафонова Ю.А., Федяев Д.В., Снеговой А. В., Омельяновский В. В. Организация лекарственного обеспечения пациентов с онкологическими заболеваниями // Материалы VIII Петербургского Международного онкологического форума «Белые ночи 2022». С. 291–292.; Тельнова Е.А. О государственном регулировании на российском фармацевтическом рынке и проблемах лекарственного обеспечения / Е.А. Тельнова, А.А. Загоруйченко // Современная организация лекарственного обеспечения. – 2020. – No 3. – С. 11–20. Doi:10.25742/NRIPH.2021.02.009.; Денисова М.Н., Утемова А.С. Лекарственное обеспечение онкологических больных в Российской Федерации. Перспективы внедрения инновационных технологий в медицине и фармации // Сборник материалов VI Всероссийской научно-практической конференции с международным участием – 2019 – Т. 2. – С. 65–68.; Чернобровкина А.Е. Особенности и преимущества организации кабинета централизованного разведения цитостатиков в многопрофильном стационаре // medline.ru – 2018 - Т. 19. - С. 1245–1253.; Сагындыков Г.А. Особенности и преимущества централизованного разведения цитостатиков // Онкология и радиология Казахстана – 2013. – 30 (4) - C. 44–45.; Каримова А.А., Чусовитина А.О., Петкау В.В. Возможности оптимизации затрат на лекарственное обеспечение пациентов за счет централизованного разведения противоопухолевых лекарственных препаратов // Медико-фармацевтический журнал Пульс. 2023. Т. 25. № 7. С. 26–32. URL: https://cyberleninka.ru/article/n/vozmozhnosti-optimizatsii-zatrat-na-lekarstvennoe-obespechenie-patsientov-za-schet-tsentralizovannogo-razvedeniya-protivoopuholevyh?ysclid=lpckxidvba792173141.; Д.В. Литвинов, Н.В. Мякова, Ю.А. Шифрин, О.В. Пименова. Техника разведения и применения противоопухолевых или иммунобиологических препаратов // Российский журнал детской гематологии и онкологии-2019 - Т. 3 .– Vol. 6 - С. 83–84. doi:10.21682/2311-1267-2019-6-3-83-84.; Федеральный закон от 10. 01. 2002 N 7-ФЗ (ред. от 26. 03. 2022) “Об охране окружающей среды” (с изм. и доп., вступ. в силу с 01. 09. 2022).; СанПиН 2.1.3684–21 “Санитарно-эпидемиологические требования к содержанию территорий городских и сельских поселений, к водным объектам, питьевой воде и питьевому водоснабжению, атмосферному воздуху, почвам, жилым помещениям, эксплуатации производственных, общественных помещений, организации и проведению санитарно-противоэпидемических (профилактических) мероприятий”.; Cost variation and savings opportunities in the Oncology Care Model . – J.Baumgarddner, A.Shahabi, C.Zacker et al. // Am J Manag Care . – 2018 . – Vol. 24. – P. 618–623.; Poppe LB, Savage SW, Eckel SF : Assessment of final product dosing accuracy when using volumetric technique in the preparation of chemotherapy // J Oncol Pharm Pract. – 2016. - Vol. 22 .– P. 3–9. doi:10.1177/1078155214549489.; https://www.malignanttumors.org/jour/article/view/1191

  11. 11
    Academic Journal

    المصدر: Creative surgery and oncology; Том 13, № 3 (2023); 221-228 ; Креативная хирургия и онкология; Том 13, № 3 (2023); 221-228 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/831/559; Султанбаев А.В., Насретдинов А.Ф., Султанбаева Н.И., Меньшиков К.В., Мусин Ш.И., Измайлов А.А. и др. Последовательное назначение противоопухолевой лекарственной терапии у пациентки с первично-множественным метахронным раком тела матки и раком молочной железы. Злокачественные опухоли. 2020;10(4):38–46. DOI:10.18027/2224-5057-2020-10-3; Чиссов В.И., Старинский В.В., Петрова Г.В. (ред.) Состояние онкологической помощи населению России в 2011 году. М.: МНИОИ им. П.А. Герцена; 2012.; Доможирова А.С., Бехтерева С.А., Аксенова И.А. Анализ выживаемости больных первично-множественными опухолями репродуктивной системы у женщин в Челябинской области на популяционном уровне. Вестник Российского научного центра рентгенорадиологии. 2020;20(4):39–61.; Бехтерева С.А., Важенин А.В., Доможирова А.С. Эпидемиологические аспекты первично-множественного рака молочной железы на основе анализа выживаемости. Онкология. Журнал им. П.А. Герцена. 2020;9(2):48–52.; Пушкарев А.В., Пушкарев В.А., Галеев М.Г., Измайлов А.А., Султанбаева Н.И., Мусин Ш.И. и др. Первично-множественный метахронный рак, ассоциированный с мутацией в гене BRCA-1 (случай в клинической практике). Поволжский онкологический вестник. 2021;12(1):43–49.; Sultanbaev A.V., Menshikov K., Musin Sh., Nasretdinov A., Sultanbaeva N., Menshikova I., et al. Territorial manifestation features of multiple primary malignant neoplasms in carriers of germline mutations in the BRCA 1 gene in Republic of Bashkortostan. J Clin Oncol. 2022;40(16_suppl):e22523. DOI:10.1200/JCO.2022.40.16_suppl.e22523; Hawkins M., Bhatia S., Henderson T.O., Nathan P.C., Yan A., Teepen J.C., et al. Subsequent primary neoplasms: risks, risk factors, surveillance, and future research. Pediatr Clin North Am. 2020;67(6):1135–54. DOI:10.1016/j.pcl.2020.07.006; Kong Y., Li J., Lin H., Liang X., Zhou X. Landscapes of synchronous multiple primary cancers detected by next-generation sequencing. FEBS Open Bio. 2022;12(11):1996–2005. DOI:10.1002/2211-5463.13491; Fraumeni J.F., Curtis R.E., Edwards B.K., Tucker M.A. Introduction. In: Curtis R.E., Freedman D.M., Ron E., et al. (eds) New malignancies among cancer survivors: SEER Cancer Registries, 1973–2000. Bethesda: National Cancer Institute; 2006, pp. 1–8.; Рыков М.Ю., Поляков В.Г. Анализ основных показателей онкологической помощи населению России. Вопросы онкологии. 2015;61(5):750–2.; Шунько Е.Л., Важенин А.В., Шаназаров Н.А. Современное состояние проблемы развития первично-множественных злокачественных опухолей (обзор литературы). Международный журнал прикладных и фундаментальных исследований. 2015;(10-3):503–6.; Каприн А.Д., Старинский В.В., Шахзадава А.О. (ред.) Состояние онкологической помощи населению России в 2021 году. М.: МНИОИ им. П.А. Герцена филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2022.; Adjei Boakye E., Wang M., Sharma A., Jenkins W.D., Osazuwa-Peters N., Chen B., et al. Risk of second primary cancers in individuals diagnosed with index smoking- and non-smoking- related cancers. J Cancer Res Clin Oncol. 2020;146(7):1765–79. DOI:10.1007/s00432-020-03232-8; Schuller H.M. The impact of smoking and the influence of other factors on lung cancer. Expert Rev Respir Med. 2019;13(8):761–9. DOI:10.1080/17476348.2019.1645010; Maomao C., He L., Dianqin S., Siyi H., Xinxin Y., Fan Y., et al. Current cancer burden in China: epidemiology, etiology, and prevention. Cancer Biol Med. 2022;19(8):1121–38. DOI:10.20892/j.issn.2095-3941.2022.0231; Larsson S.C., Carter P., Kar S., Vithayathil M., Mason A.M., Michaëlsson K., et al. Smoking, alcohol consumption, and cancer: A mendelian randomisation study in UK Biobank and international genetic consortia participants. PLoS Med. 2020;17(7):e1003178. DOI:10.1371/journal.pmed.1003178; Recalde M., Davila-Batista V., Díaz Y., Leitzmann M., Romieu I., Freisling H., et al. Body mass index and waist circumference in relation to the risk of 26 types of cancer: a prospective cohort study of 3.5 million adults in Spain. BMC Med. 2021;19(1):10. DOI:10.1186/s12916-020-01877-3; Vaidya R., Till C., Greenlee H., Hershman D.L., Unger J.M. Trends in obesity prevalence among patients enrolled in Clinical Trials for obesity-related cancers, 1986 to 2016. JAMA Netw Open. 2022;5(10):e2234445. DOI:10.1001/jamanetworkopen.2022.34445; Copur M.S., Manapuram S. Multiple primary tumors over a lifetime. Oncology (Williston Park). 2019;33(7):629384. PMID: 31365752.; Katirachi S.K., Grønlund M.P., Jakobsen K.K., Gronhoj C., von Buchwald C. The prevalence of HPV in oral cavity squamous cell carcinoma. Viruses. 2023;15(2):451. DOI:10.3390/v15020451; Cavers D., Duff R., Bikker A., Barnett K., Kanguru L., Weller D., et al. Patient and GP experiences of pathways to diagnosis of a second primary cancer: a qualitative study. BMC Cancer. 2021;21(1):496. DOI:10.1186/s12885-021-08238-0; Turcotte L.M., Liu Q., Yasui Y., Henderson T.O., Gibson T.M., Leisenring W., et al. Chemotherapy and risk of subsequent malignant neoplasms in the childhood cancer survivor study cohort. J Clin Oncol. 2019;37(34):3310–9. DOI:10.1200/JCO.19.00129; Berrington de Gonzalez A., Curtis R.E., Gilbert E., Berg C.D., Smith S.A., Stovall M., et al. Second solid cancers after radiotherapy for breast cancer in SEER cancer registries. Br J Cancer. 2010;102(1):220–6. DOI:10.1038/sj.bjc.6605435; Dracham C.B., Shankar A., Madan R. Radiation induced secondary malignancies: a review article. Radiat Oncol J. 2018;36(2):85–94. DOI:10.3857/roj.2018.00290; Leone G., Pagano L., Ben-Yehuda D., Voso M.T. Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica. 2007;92(10):1389–98. DOI:10.3324/haematol.11034; Azarova A.M., Lyu Y.L., Lin C.P., Tsai Y.C., Lau J.Y., Wang J.C., et al. Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc Natl Acad Sci USA. 2007;104(26):11014–9. DOI:10.1073/pnas.0704002104; Groot H.J., van Leeuwen F.E., Lubberts S., Horenblas S., de Wit R., Witjes J.A., et al. Platinum exposure and cause-specific mortality among patients with testicular cancer. Cancer. 2020;126(3):628–39. DOI:10.1002/cncr.32538; Меньшиков К.В., Пушкарев А.В., Султанбаев А.В., Пушкарев В.А., Шарифгалиев И.А. Радиоиндуцированная ангиосаркома влагалища: клинический случай. Креативная хирургия и онкология. 2020;10(2):143–8. DOI:10.24060/2076-3093-2020-10-2-143-148; Inskip P.D., Ries L.A., Cohen R.J., Curtis R.E. New malignancies following childhood cancer. In: Curtis R.E., Freedman D.M., Ron E., et al. (eds) New malignancies among cancer survivors: SEER Cancer Registries, 1973–2000. Bethesda, MD: National Cancer Institute; 2006, pp. 465–482.; Колядина И.В., Кометова В.В., Бикеев Ю.В., Хохлова С.В., Родионов В.В. Радиоиндуцированная ангиосаркома молочной железы: особенности диагностики и лечения (описание клинического случая и данные литературы). Опухоли женской репродуктивной системы. 2020;16(2):38–43. DOI:10.17650/1994-4098-2020-16-2-38-43; Blok J.M., Groot H.J., Huele E.H., de Wit R., Horenblas S., Nuver J., et al. Dose-dependent effect of platinum-based chemotherapy on the risk of metachronous contralateral testicular cancer. J Clin Oncol. 2021;39(4):319–27. DOI:10.1200/JCO.20.02352; Tibana T.K., Santos R.F.T., Arão Filho A., Bacelar B., Martins L.A., de Souza R.O., et al. Detection of additional primary malignancies: the role of CT and PET/CT combined with multiple percutaneous biopsy. Radiol Bras. 2019;52(3):166–71. DOI:10.1590/0100-3984.2018.0024; Tie J., Kinde I., Wang Y., Wong H.L., Roebert J., Christie M., et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26(8):1715–22. DOI:10.1093/annonc/mdv177; Tie J., Cohen J.D., Lahouel K., Lo S.N., Wang Y., Kosmider S., et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N Engl J Med. 2022;386(24):2261–72. DOI:10.1056/NEJMoa2200075; Tie J., Wang Y., Tomasetti C., Li L., Springer S., Kinde I., et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8(346):346ra92. DOI:10.1126/scitranslmed.aaf6219; Tanjak P., Suktitipat B., Vorasan N., Juengwiwattanakitti P., Thiengtrong B., Songjang C., et al. Risks and cancer associations of metachronous and synchronous multiple primary cancers: a 25-year retrospective study. BMC Cancer. 2021;21(1):1045. DOI:10.1186/s12885-021-08766-9; Cybulski C., Nazarali S., Narod S.A. Multiple primary cancers as a guide to heritability. Int J Cancer. 2014;135(8):1756–63. DOI:10.1002/ijc.28988; Phillips K.A., Milne R.L., Rookus M.A., Daly M.B., Antoniou A.C., Peock S., et al. Tamoxifen and risk of contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2013;31(25):3091–9. DOI:10.1200/JCO.2012.47.8313; Malla M., Loree J.M., Kasi P.M., Parikh A.R. Using circulating tumor DNA in colorectal cancer: current and evolving practices. J Clin Oncol. 2022;40(24):2846–57. DOI:10.1200/JCO.21.02615; Vogelstein B., Kinzler K.W. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99. DOI:10.1038/nm1087. PMID: 15286780.; Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505(7483):302–8. DOI:10.1038/nature12981; Ghose A., Bolina A., Mahajan I., Raza S.A., Clarke M., Pal A., et al. Hereditary ovarian cancer: towards a cost-effective prevention strategy. Int J Environ Res Public Health. 2022;19(19):12057. DOI:10.3390/ijerph191912057; Neven P., Punie K., Wildiers H., Willers N., Van Ongeval C., Van Buggenhout G., et al. Risk-reducing mastectomy in BRCA carriers: survival is not the issue. Breast Cancer Res Treat. 2020 Jan;179(1):251–2. DOI:10.1007/s10549-019-05440-4; Jeffers L., Reid J., Fitzsimons D., Morrison P.J., Dempster M. Interventions to improve psychosocial well-being in female BRCA-mutation carriers following risk-reducing surgery. Cochrane Database Syst Rev. 2019;10(10):CD012894. DOI:10.1002/14651858.CD012894.pub2; King M.C., Marks J.H., Mandell J.B. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6. DOI:10.1126/science.1088759; Michaelson-Cohen R., Cohen M.J., Cohen C., Greenberg D., Shmueli A., Lieberman S., et al. Real world cost-effectiveness analysis of population screening for BRCA variants among Ashkenazi jews compared with family history-based strategies. Cancers (Basel). 2022;14(24):6113. DOI:10.3390/cancers14246113; Li J., Zhao B., Huang T., Qin Z., Wang S.M. Human BRCA pathogenic variants were originated during recent human history. Life Sci Alliance. 2022 Feb 14;5(5):e202101263. DOI:10.26508/lsa.202101263; Ormond K.E., Cho M.K. Translating personalized medicine using new genetic technologies in clinical practice: the ethical issues. Per Med. 2014;11(2):211–22. DOI:10.2217/pme.13.104; Marshall E. Intellectual property. In a flurry of metaphors, justices debate a limit on gene patents. Science. 2013;340(6131):421. DOI:10.1126/science.340.6131.421; Jung K.Y., Kim S.M., Kim M.J., Cho S.W., Kim B.W., Lee Y.S., et al. Genotypic characteristics and their association with phenotypic characteristics of hereditary medullary thyroid carcinoma in Korea. Surgery. 2018;164(2):312–8. DOI:10.1016/j.surg.2018.03.018; Melmon K.L., Rosen S.W. Lindau's disease. Review of the literature and study of a large kindred. Am J Med. 1964;36:595–617. DOI:10.1016/0002-9343(64)90107-x; Ranola J.M.O., Tsai G.J., Shirts B.H. Exploring the effect of ascertainment bias on genetic studies that use clinical pedigrees. Eur J Hum Genet. 2019;27(12):1800–7. DOI:10.1038/s41431-019-0467-5; Lynch P.M., Pande M. Refining risk estimates in hereditary nonpolyposis colorectal cancer: are we there yet? JNCI Cancer Spectr. 2020;4(5):pkaa030. DOI:10.1093/jncics/pkaa030; Pilarski R., Burt R., Kohlman W., Pho L., Shannon K.M., Swisher E. Cowden Syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105(21):1607–16. DOI:10.1093/jnci/djt277; Sutcliffe E.G., Stettner A.R., Miller S.A., Solomon S.R., Marshall M.L., Roberts M.E., et al. Differences in cancer prevalence among CHEK2 carriers identified via multi-gene panel testing. Cancer Genet. 2020;246–247:12–7. DOI:10.1016/j.cancergen.2020.07.001; Choe J.H., Kawase T., Xu A., Guzman A., Obradovic A.Z., Low-Calle A.M., et al. Li-Fraumeni syndrome-associated dimer-forming mutant p53 promotes transactivation-independent mitochondrial cell death. Cancer Discov. 2023 Apr 17:OF1–24. DOI:10.1158/2159-8290.CD-22-0882; Kimura H., Klein A.P., Hruban R.H., Roberts N.J. The role of inherited pathogenic CDKN2A variants in susceptibility to pancreatic cancer. Pancreas. 2021;50(8):1123–30. DOI:10.1097/MPA.0000000000001888; Arslan Ates E., Alavanda C., Demir S., Keklikkıran C., Attaallah W., Özdoğan O.C., et al. Mutation spectrum of familial adenomatous polyposis patients in turkish population: identification of 3 novel APC mutations. Turk J Gastroenterol. 2022;33(2):81–7. DOI:10.5152/tjg.2021.201068; Campos F.G., Martinez C.A.R., Sulbaran M., Bustamante-Lopez L.A., Safatle-Ribeiro A.V. Upper gastrointestinal neoplasia in familial adenomatous polyposis: prevalence, endoscopic features and management. J Gastrointest Oncol. 2019;10(4):734–44. DOI:10.21037/jgo.2019.03.06; Soons E., Siersema P.D., van Lierop L.M.A., Bisseling T.M., van Kouwen M.C.A., Nagtegaal I.D., et al. Laboratory variation in the grading of dysplasia of duodenal adenomas in familial adenomatous polyposis patients. Fam Cancer. 2023;22(2):177–86. DOI:10.1007/s10689-022-00320-1; Stanich P.P., Pearlman R., Hinton A., Gutierrez S., LaDuca H., Hampel H., et al. Prevalence of germline mutations in polyposis and colorectal cancer-associated genes in patients with multiple colorectal polyps. Clin Gastroenterol Hepatol. 2019;17(10):2008–15.e3. DOI:10.1016/j.cgh.2018.12.008; Murphy A., Solomons J., Risby P., Gabriel J., Bedenham T., Johnson M., et al. Germline variant testing in serrated polyposis syndrome. J Gastroenterol Hepatol. 2022;37(5):861–9. DOI:10.1111/jgh.15791; Volkov N.M., Yanus G.A., Ivantsov A.O., Moiseenko F.V., Matorina O.G., Bizin I.V., et al. Efficacy of immune checkpoint blockade in MUTYH-associated hereditary colorectal cancer. Invest New Drugs. 2020;38(3):894–8. DOI:10.1007/s10637-019-00842-z; Abdelmaksoud-Dammak R., Miladi-Abdennadher I., Amouri A., Tahri N., Ayadi L., Khabir A., et al. High prevalence of the c.1227_1228dup (p.Glu410GlyfsX43) mutation in Tunisian families affected with MUTYH-associated-polyposis. Fam Cancer. 2012;11(3):503–8. DOI:10.1007/s10689-012-9543-5; Lubbe S.J., Di Bernardo M.C., Chandler I.P., Houlston R.S. Clinical implications of the colorectal cancer risk associated with MUTYH mutation. J Clin Oncol. 2009;27(24):3975–80. DOI:10.1200/JCO.2008.21.6853; Kaurah P., MacMillan A., Boyd N., Senz J., De Luca A., Chun N., et al. Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. JAMA. 2007;297(21):2360–72. DOI:10.1001/jama.297.21.2360; Xicola R.M., Li S., Rodriguez N., Reinecke P., Karam R., Speare V., et al. Clinical features and cancer risk in families with pathogenic CDH1 variants irrespective of clinical criteria. J Med Genet. 2019;56(12):838–43. DOI:10.1136/jmedgenet-2019-105991; https://www.surgonco.ru/jour/article/view/831

  12. 12
    Academic Journal

    المساهمون: This work is not funded, Данная работа не финансировалась

    المصدر: Creative surgery and oncology; Том 13, № 2 (2023); 165-170 ; Креативная хирургия и онкология; Том 13, № 2 (2023); 165-170 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/814/551; Global Burden of Disease Study Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392 (10159): 1736–88. DOI:10.1016/S0140-6736(18)32203-7; GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396 (10258): 1204–22. DOI:10.1016/S0140-6736(20)30925-9; Santucci C., Carioli G., Bertuccio P., Malvezzi M., Pastorino U., Boffetta P., et al. Progress in cancer mortality, incidence, and survival: a global overview. Eur J Cancer Prev. 2020;29 (5): 367–81. DOI:10.1097/CEJ.0000000000000594; Xie X., Li F., Xie L., Yu Y., Ou S., He R. Meta-analysis of cancer risk among end stage renal disease undergoing maintenance dialysis. Open Life Sci. 2023; 18 (1): 20220553. DOI:10.1515/biol-2022-0553; Miyamoto Y., Iwagami M., Aso S., Uda K., Fushimi K., Hamasaki Y., et al. Postoperative outcomes of cancer surgery in patients with and without kidney failure with dialysis therapy: a matched-pair cohort study. Clin Kidney J. 2022; 15 (6): 1137–43. DOI:10.1093/ckj/sfac005; Wong G., Staplin N., Emberson J., Baigent C., Turner R., Chalmers J., et al. Chronic kidney disease and the risk of cancer: an individual patient data meta-analysis of 32,057 participants from six prospective studies. BMC Cancer. 2016;16:488. DOI:10.1186/s12885-016-2532-6; Хайбуллина Р. Р., Данилко К. В., Шангина О. Р., Валеева Г. А., Лопатина Н. В., Герасимова Л. П. Способ лечения пародонтита с помощью мультипотентных мезенхимальных стволовых клеток пульпы зуба человека и препарата стимулятора остеогенеза : патент Российской Федерации № 2785009 от 01. 12. 2022.; Хайбуллина Р. Р., Данилко К. В., Шангина О. Р., Валеева Г. А., Лопатина Н. В., Галиахметова И. А., Герасимова Л. П., Кабирова М. Ф. Способ лечения пародонтита с использованием смеси микса мягких и твердых частиц элитных семян крамбе сорта санмо и фитоконцентрата санмо : патент Российской Федерации № 2785008 от 01. 12. 2022.; Хайбуллина Р. Р., Данилко К. В., Шангина О. Р., Лопатина Н. В., Валеева Г. А., Галиахметова И. А., Герасимова Л. П., Кабирова М. Ф. Способ лечения рецессии десны с использованием мультипотентных мезенхимальных стволовых клеток : патент Российской Федерации № 2785189 от 05. 12. 2022.; Хайбуллина Р. Р., Данилко К. В., Лопатина Н. В., Галиахметова И. А., Герасимова Л. П., Кабирова М. Ф. Способ лечения рецессии десны с использованием масла SANS MOTS : патент Российской Федерации № 2787679 от 11. 01. 2023.; Хайбуллина Р. Р., Данилко К. В., Лопатина Н. В., Герасимова Л. П. Способ моделирования рецессии десны : патент Российской Федераци № 2791563 от 10. 03. 2023.; Jorgensen L., Heuch I., Jenssen T., Jacobsen B. K. Association of albuminuria and cancer incidence. J Am Soc Nephrol. 2008; 19 (5): 992–8. DOI:10.1681/ASN.2007060712; Habas E., Akbar R., Farfar K., Arrayes N., Habas A., Rayani A., et al. Malignancy diseases and kidneys: A nephrologist prospect and updated review. Medicine (Baltimore). 2023; 102 (15): e33505. DOI:10.1097/MD.0000000000033505; Lowrance W. T., Ordonez J., Udaltsova N., Russo P., Go A. S. CKD and the risk of incident cancer. J Am Soc Nephrol. 2014; 25 (10): 2327–34. DOI:10.1681/ASN.2013060604; Chinnadurai R., Flanagan E., Jayson G. C., Kalra P. A. Cancer patterns and association with mortality and renal outcomes in non-dialysis dependent chronic kidney disease: a matched cohort study. BMC Nephrol. 2019; 20 (1): 380. DOI:10.1186/s12882-019-1578-5; Swier N., Versteeg H. H. Reciprocal links between venous thromboembolism, coagulation factors and ovarian cancer progression. Th rombosis Research. 2017; 150: 8–18. DOI:10.1016/j.thromres.2016.12.002; Brandenburger T., Dimski T., Slowinski T., Kindgen-Milles D. Renal replacement therapy and anticoagulation. Best Pract Res Clin Anaesthesiol. 2017; 31 (3): 387–401. DOI:10.1016/j.bpa.2017.08.005; Fisher R., Moore G. W., Mitchell M. J., Dai L., Crichton S., Lumlertgul N., et al. Effects of regional citrate anticoagulation on thrombin generation, fibrinolysis and platelet function in critically ill patients receiving continuous renal replacement therapy for acute kidney injury: a prospective study. Ann Intensive Care. 2022; 12 (1): 29. DOI:10.1186/s13613-022-01004-w; Wang Z. Y., Feng S. H., Fan B. L., Ma W., Jia X. C., Geng H. Effects of regional citrate anticoagulation in continuous veno-venous hemofi ltration of severe burn patients. Zhonghua Shao Shang Za Zhi. 2021; 37 (12): 1137–42. Chinese. DOI:10.3760/cma.j.cn501120-20200816-00381; Zhang C., Lin T., Zhang J., Liang H., Di Y., Li N., et al. Safety and efficacy of regional citrate anticoagulation in continuous renal replacement therapy in the presence of acute kidney injury aft er hepatectomy. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018; 30 (8): 777–82. Chinese. DOI:10.3760/cma.j.issn.2095-4352.2018.08.013; https://www.surgonco.ru/jour/article/view/814

  13. 13
    Academic Journal

    المصدر: Creative surgery and oncology; Том 12, № 4 (2022); 309-319 ; Креативная хирургия и онкология; Том 12, № 4 (2022); 309-319 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/738/523; Сote M.L., Ruterbusch J.J., Olson S.H., Lu K., Ali-Fehmi R. The growing burden of endometrial cancer: a major racial disparity affecting black women. Cancer Epidemiol Biomarkers Prev. 2015;24(9):1407–15. DOI:10.1158/1055-9965.EPI-15-0316; Constantine G.D., Kessler G., Graham S., Goldstein S.R. Increased incidence of endometrial cancer following the women’s health initiative: an assessment of risk factors. J Womens Health (Larchmt). 2019;28(2):237–43. DOI:10.1089/jwh.2018.6956; Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21. DOI:10.1158/0008-5472. CAN-14-0155; Key statistics for endometrial cancer. American Cancer Society: [cited 2022 Oct 21]. Available from: https://www.cancer.org/cancer/endometrial-cancer/about/key-statistics.html.; Endometrial cancer survival rates, by stage. American Cancer Society: [cited 2022 Oct 21]. Available from: https://www.cancer.org/cancer/endometrial-cancer/detection-diagnosis-staging/survival-rates.html.; National Comprehensive Cancer Network: Clinical Practice Guidelines in Oncology: Uterine Neoplasms. Version 3.2019. Available from: https://www.nccn.org/professionals/physician_gls/pdf/uterine.pdf.; Miller D.S., Filiaci V.L., Mannel R.S., Cohn D.E., Matsumoto T., Tewari K.S., et al. Carboplatin and paclitaxel for advanced endometrial cancer: final overall survival and adverse event analysis of a Phase III Trial (NRG Oncology/GOG0209). J Clin Oncol. 2020;38(33):3841–50. DOI:10.1200/JCO.20.01076; Меньшиков К.В., Султанбаев А.В., Мусин Ш.И., Меньшикова И.А., Липатов Д.О., Султанбаева Н.И. и др. Системная терапия распространенного рака эндометрия. Обзор литературы. Поволжский онкологический вестник. 2021;12(1):31–43.; Makker V., Green A.K., Wenham R.M., Mutch D., Davidson B., Miller D.S. New therapies for advanced, recurrent, and metastatic endometrial cancers. Gynecol Oncol Res Pract. 2017;4:19. DOI:10.1186/s40661-017-0056-7; Lentz S.S., Brady M.F., Major F.J., Reid G.C., Soper J.T. High-dose megestrol acetate in advanced or recurrent endometrial carcinoma: a Gynecologic Oncology Group Study. J Clin Oncol. 1996;14(2):357–61. DOI:10.1200/JCO.1996.14.2.357; Keytruda (pembrolizumab). Whitehouse Station, NJ: Merck Sharp & Dohme; 2018.; Arora E., Masab M., Mittar P., Jindal V., Gupta S., Dourado C. Role of immune checkpoint inhibitors in advanced or recurrent endometrial cancer. Cureus. 2018;10(4):e2521. DOI:10.7759/cureus.2521; Bell D.W., Ellenson L.H. Molecular genetics of endometrial carcinoma. Annu Rev Pathol. 2019;14:339–67. DOI:10.1146/annurevpathol-020117-043609; O’Malley D.M., Bariani G.M., Cassier P.A., Marabelle A., Hansen A.R., De Jesus Acosta A., et al. Pembrolizumab in patients with microsatellite instability-high advanced endometrial cancer: results from the KEYNOTE-158 study. J Clin Oncol. 2022;40(7):752–61. DOI:10.1200/JCO.21.01874; Marabelle A., Le D.T., Ascierto P.A., Di Giacomo A.M., De JesusAcosta A., Delord J.P., et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10. DOI:10.1200/JCO.19.02105; Soumerai T.E., Donoghue M.T.A., Bandlamudi C., Srinivasan P., Chang M.T., Zamarin D., et al. Clinical utility of prospective molecular characterization in advanced endometrial cancer. Clin Cancer Res. 2018;24(23):5939–47. DOI:10.1158/1078-0432.CCR-18-0412; Ott P.A., Bang Y.J., Berton-Rigaud D., Elez E., Pishvaian M.J., Rugo H.S., et al. Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1-positive endometrial cancer: results from the KEYNOTE-028 study. J Clin Oncol. 2017;35(22):2535–41. DOI:10.1200/JCO.2017.72.5952; Suyama K., Iwase H. Lenvatinib: a promising molecular targeted agent for multiple cancers. Cancer Control. 2018;25(1):1073274818789361. DOI:10.1177/1073274818789361; Okamoto K., Kodama K., Takase K., Sugi N.H., Yamamoto Y., Iwata M., et al. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 2013;340(1):97–103. DOI:10.1016/j.canlet.2013.07.007; Ferrari S.M., Ruffilli I., Centanni M., Virili C., Materazzi G., Alexopoulou M., et al. Lenvatinib in the therapy of aggressive thyroid cancer: state of the art and new perspectives with patents recently applied. Recent Pat Anticancer Drug Discov. 2018;13(2):201–8. DOI:10.2174/1574892813666180220110729; Eisenhauer E.A., Therasse P., Bogaerts J., Schwartz L.H., Sargent D., Ford R., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. DOI:10.1016/j.ejca.2008.10.026; Vergote I., Powell M.A., Teneriello M.G., Miller D.S., Garcia A.A., Mikheeva O.N., et al. Second-line lenvatinib in patients with recurrent endometrial cancer. Gynecol Oncol. 2020;156(3):575–82. DOI:10.1016/j.ygyno.2019.12.039; Kato Y., Tabata K., Kimura T., Yachie-Kinoshita A., Ozawa Y., Yamada K., et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One. 2019;14(2):e0212513. DOI:10.1371/journal.pone.0212513; Kato Y., Bao X., Macgrath S., Tabata K., Hori Y., Tachino S., et al. Lenvatinib mesilate (LEN) enhanced antitumor activity of a PD-1 blockade agent by potentiating Th1 immune response. Ann Oncol. 2016;27(suppl 6): abstr 2PD. DOI:10.1093/annonc/mdw362.02; Kimura T., Kato Y., Ozawa Y., Kodama K., Ito J., Ichikawa K., et al. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. Cancer Sci. 2018;109(12):3993–4002. DOI:10.1111/cas.13806; Taylor M., Dutcus C.E., Schmidt E., Bagulho T., Li D., Shumaker R., et al. A phase 1b trial of lenvatinib (LEN) plus pembrolizumab (PEM) in patients with selected solid tumors. Ann Oncol. 2016;27(suppl 6): abstr 776PD. DOI:10.1093/annonc/mdw373.04; Makker V., Rasco D., Vogelzang N.J., Brose M.S., Cohn A.L., Mier J., et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019;20(5):711–8. DOI:10.1016/S1470-2045(19)30020-8; Makker V., Taylor M.H., Aghajanian C., Oaknin A., Mier J., Cohn A.L., et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer. J Clin Oncol. 2020;38(26):2981–92. DOI:10.1200/JCO.19.02627; Oaknin A., Duska L.R., Sullivan R.J., Pothuri B., Ellard S.L., Leath C.A. III, et al. Preliminary safety, efficacy, and pharmacokinetic/pharmacodynamic characterization from GARNET, a phase I/II clinical trial of the anti–PD-1 monoclonal antibody, TSR-042, in patients with recurrent or advanced MSI-h and MSS endometrial cancer. Gynecol Oncol. 2019;154(suppl 1): abstr 33. DOI:10.1016/j.ygyno.2019.04.044; Konstantinopoulos P.A., Luo W., Liu J.F., Gulhan D.C., Krasner C., Ishizuka J.J., et al. Phase II study of avelumab in patients with mismatch repair deficient and mismatch repair proficient recurrent/persistent endometrial cancer. J Clin Oncol. 2019;37(30):2786–94. DOI:10.1200/JCO.19.01021; Antill Y., Kok P.S., Robledo K., Yip S., Cummins M., Smith D., et al. Clinical activity of durvalumab for patients with advanced mismatch repair-deficient and repair-proficient endometrial cancer. A nonrandomized phase 2 clinical trial. J Immunother Cancer. 2021;9(6):e002255. DOI:10.1136/jitc-2020-002255; Aghajanian C., Sill M.W., Darcy K.M., Greer B., McMeekin D.S., Rose P.G., et al. Phase II trial of bevacizumab in recurrent or persistent endometrial cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2011;29(16):2259–65. DOI:10.1200/JCO.2010.32.6397; Spirtos N.M., Enserro D., Homesley H.D., Gibbons S.K., Cella D., Morris R.T., et al. The addition of paclitaxel to doxorubicin and cisplatin and volume-directed radiation does not improve overall survival (OS) or long-term recurrence-free survival (RFS) in advanced endometrial cancer (EC): A randomized phase III NRG/Gynecologic Oncology Group (GOG) study. Gynecol Oncol. 2019 Jul;154(1):13–21. doi:10.1016/j.ygyno.2019.03.240; Motzer R.J., Hutson T.E., Glen H., Michaelson M.D., Molina A., Eisen T., et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015;16(15):1473–82. DOI:10.1016/S1470-2045(15)00290-9; Robert C., Schachter J., Long G.V., Arance A., Grob J.J., Mortier L., et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32. DOI:10.1056/NEJMoa1503093; Schlumberger M., Tahara M., Wirth L.J., Robinson B., Brose M.S., Elisei R., et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30. DOI:10.1056/NEJMoa1406470; Marcus L., Lemery S.J., Keegan P., Pazdur R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 2019;25(13):3753–8. DOI:10.1158/1078-0432.CCR-18-4070; Marth C., Tarnawski R., Tyulyandina A., Pignata S., Gilbert L., Kaen D., et al. Phase 3, randomized, open-label study of pembrolizumab plus lenvatinib versus chemotherapy for first-line treatment of advanced or recurrent endometrial cancer: ENGOT-en9/LEAP-001. Int J Gynecol Cancer. 2022;32(1):93–100. DOI:10.1136/ijgc-2021-003017; Makker V., Colombo N., Casado Herráez A., Santin A.D., Colomba E., Miller D.S., et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med. 2022;386(5):437–48. DOI:10.1056/NEJMoa2108330; McMeekin S., Dizon D., Barter J., Scambia G., Manzyuk L., Lisyanskaya A., et al. Phase III randomized trial of second-line ixabepilone versus paclitaxel or doxorubicin in women with advanced endometrial cancer. Gynecol Oncol. 2015;138(1):18–23. DOI:10.1016/j.ygyno.2015.04.026; Miller D.S., Scambia G., Bondarenko I., Westermann A.M., Oaknin A., Oza A.M., et al. ZoptEC: phase III randomized controlled study comparing zoptarelin with doxorubicin as second line therapy for locally advanced, recurrent, or metastatic endometrial cancer. J Clin Oncol. 2018;36(Suppl 15):5503. DOI:10.1200/JCO.2018.36.15_suppl.5503; Fala L. Lenvima (Lenvatinib), a multireceptor tyrosine kinase inhibitor, approved by the FDA for the treatment of patients with differentiated thyroid cancer. Am Health Drug Benefits. 2015;8(Spec Feature):176–9. PMID: 26629286; Robert C., Ribas A., Schachter J., Arance A., Grob J.J., Mortier L., et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019;20(9):1239–51. DOI:10.1016/S1470-2045(19)30388-2; How J.A., Patel S., Fellman B., Lu K.H., Hwu P., Ramondetta L.M., et al. Toxicity and efficacy of the combination of pembrolizumab with recommended or reduced starting doses of lenvatinib for treatment of recurrent endometrial cancer. Gynecol Oncol. 2021;162(1):24–31. DOI:10.1016/j.ygyno.2021.04.034; Pal S.K., Puente J., Chin Heng D.Y., Glen H., Koralewski P., Stroyakovskiy D., et al. Phase 2 trial of lenvatinib at 2 starting doses + everolimus in renal cell carcinoma (RCC). Kidney Cancer J. 2020;18(Suppl 4):34–5. DOI:10.1200/JCO.2021.39.6_suppl.307; Brose M.S., Panaseykin Y., Konda B., de la Fouchardiere C., Hughes B.G.M., Gianoukakis A.G., et al. A randomized study of lenvatinib 18 mg vs 24 mg in patients with radioiodine-refractory differentiated thyroid cancer. J Clin Endocrinol Metab. 2022;107(3):776–87. DOI:10.1210/clinem/dgab731; https://www.surgonco.ru/jour/article/view/738

  14. 14
    Academic Journal

    المصدر: Cancer Urology; Том 17, № 4 (2021); 157-164 ; Онкоурология; Том 17, № 4 (2021); 157-164 ; 1996-1812 ; 1726-9776

    وصف الملف: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1402/1341; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1402/960; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1402/961; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1402/962; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1402/963; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1402/964; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1402/965; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1402/966; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1402/1083; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1402/1084; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1402/1085; Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017;67(1):7-30. DOI:10.3322/caac.21387.; Ferlay J., Soerjomataram I., Dikshit R. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136(5):E359-86. DOI:10.1002/ijc.29210.; Arnold M., Karim-Kos H.E., Coebergh J.W. et al. Recent trends in incidence of five common cancers in 26 European countries since 1988: analysis of the european cancer observatory. Eur J Cancer 2015;51(9):1164-87. DOI:10.1016/j.ejca.2013.09.002.; Аксель Е.М., Матвеев В.Б. Статистика злокачественных новообразований мочевых и мужских половых органов в России и странах бывшего СССР. Онкоурология 2019;15(2):15-24. DOI:10.17650/1726-9776-2019-15-2-15-24.; Состояние онкологической помощи населению России в 2019 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2020. 239 с.; Benafif S., Kote-Jarai Z., Eeles R.A., PRACTICAL Consortium. A review of prostate cancer genome-wide association studies (GWAS). Cancer Epidemiol Biomarkers Prev 2018;27(8):845-57. DOI:10.1158/1055-9965.EPI-16-1046.; Schumacher F.R., Al Olama A.A., Berndt S.I. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 2018;50(7):928-36. DOI:10.1038/s41588-018-0142-8.; Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 2015;163(4):1011—25. DOI:10.1016/j.cell.2015.10.025.; Kumar A., Coleman I., Morrissey C. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med 2016;22(4):369-78. DOI:10.1038/nm.4053.; Sultanbaev A., Menshikov K., Sultanbaeva N. et al. Organization of screening for prostate cancer in carriers of germinal mutations in the BRCA1/2 genes. European Urology Open Science 2020;21(Suppl 2):S59. Available at: https://doi.org/10.1016/S2666-1683(20)36064-X.; Sultanbaev A., Nasretdinov A., Sultanbaeva N. et al. Hereditary prostate cancer screening. European Urology Open Science 2020;21(Suppl 3):S155. Available at: https://doi.org/10.1016/S2666-1683(20)36212-1.; Киричек А.А., Любченко Л.Н., Матвеев В.Б. Риск-адаптированный подход к скринингу рака предстательной железы. Онкоурология 2018;14(2): 109-21. DOI:10.17650/1726-97762018-14-2-109-121.; Matveev V., Lyubchenko L., Kirichek A. Impact of germline DNA-repair gene BRCA2 and CHEK2 mutations on time to castration resistance in patients with metastatic hormone-naive prostate cancer: a single center analysis. J Clin Oncol 2019;37:15_suppl:5056.; Матвеев В.Б., Киричек А.А., Филиппова М.Г. и др. Влияние герминальных мутаций в генах BRCA2 и CHEK2 на время до развития кастрационной резистентности у больных метастатическим гормоночувствительным раком предстательной железы. Урология 2019;(5):79-85.; Na R., Zheng S.L., Han M. et al. Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol 2017;71(5):740-7. DOI:10.1016/j.eururo.2016.11.033.; Farmer H., Cabe N., Lord C.J. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005;434(7035):917-21. DOI:10.1038/nature03445.; Robson M., Im S.A., Senkus E. et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 2017;377(6):523-33. DOI:10.1056/NEJMoa1706450.; Turk A.A., Wisinski K.B. PARP inhibitors in breast cancer: bringing synthetic lethality to the bedside. Cancer 2018;124(12):2498-506. DOI:10.1002/cncr.31307.; Пушкарев А.В., Султанбаева Н.И., Пушкарев В.А. и др. Спектр и частота мутаций в генах BRCA1, BRCA2, CHEK2, PALB2 и RAD50 у пациенток с раком молочной железы в Республике Башкортостан. Казанский медицинский журнал 2020;101(5):691-7.; Бочкова Н.П., Гинтер Е.К., Пузырева Е.П. Наследственные болезни. Национальное руководство. М.: ГЭОТАР-Медиа. 2013. 936 с.; Онкология. Под ред. Д. Касчиато. М.: Практика, 2008. 1039 с.; Никитин А.Г., Бровкина О.И., Ходырев Д.С. и др. Опыт создания публичной базы данных мутаций oncoBRCA: биоинформационные проблемы и решения. Клиническая практика 2020;11(1):21-9. DOI:10.17816/clinpract25860.; Greer J.B., Whitcomb D.C. Role of BRCA1 and BRCA2 mutations in pancreatic cancer. Gut 2007;56(5):601-5. DOI:10.1136/gut.2006.101220.; Lynch H.T., Deters C.A., Lynch J.F., Brand R.E. Familial pancreatic carcinoma in Jews. Fam Cancer 2004; 3(3-4):233-40. DOI:10.1007/s10689-004-9549-8.; Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 1999;91(15):1310-6. DOI:10.1093/jnci/91.15.1310.; Thiessen E.U. Concerning a familial association between breast cancer and both prostatic and uterine malignancies. Cancer 1974;34(4):1102-7. DOI:10.1002/1097-0142(197410)34: 43.0.co;2-5.; Brose M.S., Rebbeck T.R., Calzone K.A. et al. Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program. J Natl Cancer Inst 2002;94(18):1365-72. DOI:10.1093/jnci/94.18.1365.; Agalliu I., Gern R., Leanza S., Burk R.D. Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res 2009;15(3):1112-20. DOI:10.1158/1078-0432.CCR-08-1822.; Agalliu I., Kwon E.M., Zadory D. et al. Germline mutations in the BRCA2 gene and susceptibility to hereditary prostate cancer. Clin Cancer Res 2007;13(3):839-43. DOI:10.1158/1078-0432.CCR-06-2164.; https://oncourology.abvpress.ru/oncur/article/view/1402

  15. 15
    Academic Journal

    المصدر: Head and Neck Tumors (HNT); Том 12, № 3 (2022); 141-148 ; Опухоли головы и шеи; Том 12, № 3 (2022); 141-148 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2022-12-3

    وصف الملف: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/823/551; Состояние онкологической помощи населению России в 2020 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021.; Рак кожи базальноклеточный и плоскоклеточный. Клинические рекомендации Минздрава России. 2020. Доступно по: https://oncology-association.ru/wp-content/uploads/2020/09/rakkozhi-bazalnokletochnyj-i-ploskokletochnyj.pdf.; Skoda A.M., Simovic D., Karin V. et al. The role of the Hedgehog signaling pathway in cancer: a comprehensive review. Bosn J Basic Med Sci 2018;18(1):8–20. DOI:10.17305/bjbms.2018.2756; Снарская Е.С., Полубояров А.А. Молекулярные механизмы развития базальноклеточной карциномы, ассоциированной с наследственными синдромами. Российский журнал кожных и венерических болезней 2014;3:4–8.; Walling H.W., Fosko S.W., Geraminejad P.A. et al. Aggressive basal cell carcinoma: presentation, pathogenesis, and management. Cancer Metastasis Rev 2004;23(3–4):389–402. DOI:10.1023/B:CANC.0000031775.04618.30; Мусин Ш.И., Шарафутдинова Н.А., Султанбаев А.В. и др. Применение Hedgehog-ингибитора при базальноклеточном раке кожи: клинический случай. Опухоли головы и шеи 2021;11(1):109–14. DOI:10.17650/2222-1468-2021-11-1-109-114; Tanese K. Diagnosis and management of basal cell carcinoma. Curr Treat Options Oncol 2019;20(2):13. DOI:10.1007/s11864-019-0610-0; Решетов И.В., Маторин О.В., Бабаскина Н.В. Клинические характеристики и возможности лекарственной терапии неоперабельного местно-распространенного и метастатического базальноклеточного рака кожи. Онкология. Журнал им. П.А. Герцена 2014;3(2):44–8.; Бройнингер X., Белова И.А. Микроскопически контролируемая хирургия с трехмерным гистологическим контролем, тумесцентная локальная анестезия и внутрикожная шовная техника под натяжением в лечении злокачественных новообразований кожи. Опухоли головы и шеи 2018;8(3):21–36. DOI:10.17650/2222-1468-2018-8-3-21-36; Niazi Z.B., Lamberti B.G. Perineural infiltration in basal cell carcinoma. Br J Plast Surg 1993;46(2):156–7. DOI:10.1016/0007-1226(93)90150-a; Brown C.I., Perry A.E. Incidence of perineural invasion in histologically aggressive types of basal cell carcinoma. Am J Dermatopathol 2000;22(2):123–5. DOI:10.1097/00000372-200004000-00006; Leibovitch I., McNab A., Sullivan T. et al. Orbital invasion by periocular basal cell carcinoma. Ophthalmology 2005;112(4):717– 23. DOI:10.1016/j.ophtha.2004.11.036; Ratner D., Bagiella E. The efficacy of curettage in delineating margins of basal cell carcinoma before Mohs micrographiс surgery. Dermatol Surg 2004;30(5):821–2. DOI:10.1046/j.1524-4725.2003.29272.x; Von Domarus H., Stevens P.J. Metastatic basal cell carcinoma. Report of five cases and review of 170 cases in the literature. J Am Acad Dermatol 1984;10(6):1043–60. DOI:10.1016/s01909622(84)80334-5; https://ogsh.abvpress.ru/jour/article/view/823

  16. 16
    Academic Journal

    المصدر: Medical Genetics; Том 21, № 7 (2022); 11-14 ; Медицинская генетика; Том 21, № 7 (2022); 11-14 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2097/1564; Havel J.J., Chowell D., Chan T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nature Reviews Cancer. 2019;19(3):133-150.; Chen Q., Li T., Yue W. Drug response to PD-1/PD-L1 blockade: based on biomarkers. OncoTargets and Therapy. 2018;11:4673-4683.; Ding H., Lv Z., Yuan Y. et al. MiRNA Polymorphisms and Cancer Prognosis: A Systematic Review and Meta-Analysis. Front. Oncol. 2018;8(596):1-14.; Yi M., Xu L., Jiao Y. et al.The role of cancer-derived microRNAs in cancer immune escape. Journal of Hematology & Oncology. 2020;13(25):1-14.; Huber V., Vallacchi V., Fleming V. et al. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J Clin Invest. 2018;128:5505-5516.; Huang Z., Lu Z., Tian J. et al. Effect of a functional polymorphism in the pre-miR-146a gene on the risk and prognosis of renal cell carcinoma. Molecular Medicine Reports. 2015;12(5):6997-7004.; Yang L., Zhao G., Wang F. et al. Hypoxia-Regulated miR-146a Targets Cell Adhesion Molecule 2 to Promote Proliferation, Migration, and Invasion of Clear Cell Renal Cell Carcinoma. Cell Physiol Biochem. 2018;49(3):920-931.; El-Akhrasa B.A., Ali Y.B.M., El-Masry S.A et al. Mir-146a genetic polymorphisms in systemic lupus erythematosus patients:Correlation with disease manifestations. Non-coding RNA Research 2022;7(3):142-149.; He B., Pan Y., Cho W.C. The Association between Four Genetic Variants in MicroRNAs (rs11614913, rs2910164, rs3746444, rs2292832) and Cancer Risk: Evidence from Published Studies. PLoS One. 2012;7(11):e49032; Lin J., Horikawa Y., Tamboli P. et al. Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis. 2010;(10):1805-1812.; https://www.medgen-journal.ru/jour/article/view/2097

  17. 17
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2022); 85-92 ; Медицинский Совет; № 9 (2022); 85-92 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6921/6218; Abrams T.J., Lee L.B., Murray L.J., Pryer N.K., Cherrington J.M. SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther. 2003;2(5):471-478. Available at: https://pubmed.ncbi.nlm.nih.gov/12748309/.; Mendel D.B., Laird A.D., Xin X., Louie S.G., Christensen J.G., Li G. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9(1):327-337. Available at: https://pubmed.ncbi.nlm.nih.gov/12538485/.; O'Farrell A.M., Abrams T.J., Yuen H.A., Ngai T.J., Louie S.G., Yee K.W. et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood. 2003;101(9):3597-3605. https://doi.org/10.1182/blood-2002-07-2307.; Motzer R.J., Michaelson M.D., Redman B.G., Hudes G.R., Wilding G., Figlin R.A. et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24(1):16-24. https://doi.org/10.1200/JCO.2005.02.2574.; Motzer R.J., Rini B.I., Bukowski R.M., Curti B.D., George D.J., Hudes G.R. et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA. 2006;295(21):2516-2524. https://doi.org/10.1001/jama.295.21.2516.; Калпинский А.С., Алексеев Б.Я. Эффективность Сунитиниба в таргетной терапии метастатического рака почки. Онкоурология. 2009;(3):63-67. Режим доступа: https://oncourology.abvpress.ru/oncur/article/view/272.; Najjar Y.G., Mittal K., Elson P., Wood L., Garcia J.A., Dreicer R., Rini B.I. A 2 weeks on and 1 week off schedule of sunitinib is associated with decreased toxicity in metastatic renal cell carcinoma. Eur J Cancer. 2014;50(6):1084-1089. https://doi.org/10.1016/j.ejca.2014.01.025.; Jonasch E., Slack R.S., Geynisman D.M., Hasanov E., Milowsky M.I., Rathmell W.K. et al. Phase II Study of Two Weeks on, One Week off Sunitinib Scheduling in Patients With Metastatic Renal Cell Carcinoma. J Clin Oncol. 2018;36(16):1588-1593. https://doi.org/10.1200/JCO.2017.77.1485.; Bjarnason G.A., Knox J.J., Kollmannsberger C.K., Soulieres D., Ernst D.S., Zalewski P. et al. The efficacy and safety of sunitinib given on an individualised schedule as first-line therapy for metastatic renal cell carcinoma: A phase 2 clinical trial. J Clin Oncol. 2019;108:69-77. https://doi.org/10.1016/j.ejca.2018.12.006.; Lee J.L., Kim M.K., Park I., Ahn J.-H., Lee D.H., Ryoo H.M. et al. Randomized phase II trial of Sunitinib four weeks on and two weeks off versus Two weeks on and One week off in metastatic clear-cell type REnal cell carcinoma: RESTORE trial. Ann Oncol. 2015;26(11):2300-2305. https://doi.org/10.1093/annonc/mdv357.; Bracarda S., Iacovelli R., Boni L., Rizzo M., Derosa L., Rossi M. et al. Sunitinib administered on 2/1 schedule in patients with metastatic renal cell carcinoma: the RAINBOW analysis. Ann Oncol. 2015;26(10):2107-2713. https://doi.org/10.1093/annonc/mdv315.; Kalra S., Rini B.I., Jonasch E. Alternate sunitinib schedules in patients with metastatic renal cell carcinoma. Ann Oncol. 2015;26(7):1300-1304. https://doi.org/10.1093/annonc/mdv030.; Kondo T., Takagi T., Kobayashi H., Iizuka J., Nozaki T., Hashimoto Y. et al. Superior tolerability of altered dosing schedule of sunitinib with 2-weeks-on and 1-week-off in patients with metastatic renal cell carcinoma - comparison to standard dosing schedule of 4-weeks-on and 2-weeks-off. Jpn J Clin Oncol. 2014;44(3):270-277. https://doi.org/10.1093/jjco/hyt232.; Atkinson B.J., Kalra S., Wang X., Bathala T., Corn P., Tannir N.M., Jonasch E. Clinical outcomes for patients with metastatic renal cell carcinoma treated with alternative sunitinib schedules. J Urol. 2014;191(3):611-618. https://doi.org/10.1016/j.juro.2013.08.090.; Neri B., Vannini A., Brugia M., Muto A., Rangan S., Rediti M. et al. Biweekly sunitinib regimen reduces toxicity and retains efficacy in metastatic renal cell carcinoma: a single-center experience with 31 patients. Int J Urol. 2013;20(5):478-483. https://doi.org/10.1111/j.1442-2042.2012.03204.x.; Bjarnason G.A., Khalil B., Hudson J.M., Williams R., Milot L.M., Atri M. et al. Outcomes in patients with metastatic renal cell cancer treated with individ-ualized sunitinib therapy: correlation with dynamic microbubble ultrasound data and review of the literature. Urol Oncol. 2014;32(4):480-487. https//doi.org/10.1016/j.urolonc.2013.10.004.; Bracarda S., Sisani M., Marrocolo F., Hamzaj A., del Buono S., De Simone V. GOAL: an inverse toxicity-related algorithm for daily clinical practice decision making in advanced kidney cancer. Crit Rev Oncol Hematol. 2014;89(3):386-393. https://doi.org/10.1016Zj.critrevonc.2013.09.002.; Ravaud A. Treatment-associated adverse event management in the advanced renal cell carcinoma patient treated with targeted therapies. Oncologist. 2011;16(Suppl. 2):32-44. https://doi.org/10.1634/theoncologist.2011-S2-32.; Mouillet G., Paillard M.-J., Maurina T., Vernerey D., Hon T.N.T., Almotlak H. et. al. Open-label, randomized multicentre phase II study to assess the efficacy and tolerability of sunitinib by dose administration regimen (dose modification or dose interruptions) in patients with advanced or metastatic renal cell carcinoma: study protocol of the SURF trial. Trials. 2018;19(1):221. https://doi.org/10.1186/s13063-018-2613-8.; Волкова М.И., Калинин С.А. Осталось ли место сунитинибу в современных рекомендациях по системному лечению распространенного почечноклеточного рака? Медицинский совет. 2021;(9):89-94. https//doi.org/10.21518/2079-701X-2021-9-89-94.; Ravaud A., Motzer R.J., Pandha H.S., George D.J., Pantuck A.J., Patel A. et al. Adjuvant sunitinib in high-risk renal-cell carcinoma after nephrectomy. N Engl J Med. 2016;375(23):2246-2254. https://doi.org/10.1056/NEJMoa1611406.; Mejean A., Ravaud A., Thezenas S., Colas S., Beauval J.-B., Bensalah K. et al. Sunitinib Alone or after Nephrectomy in Metastatic Renal-Cell Carcinoma. N Engl J Med. 2018;379(5):417-427. https://doi.org/10.1056/NEJMoa1803675.; Матвеев В.Б., Маркова А.С. Рак почки: что нового в 2018 году. Онкоурология. 2018;14(4):48-52. https//doi.org/10.17650/1726-9776-2018-14-4-48-52.; Ljungberg B., Albiges L., Abu-Ghanem Y., Bensalah K., Dabestani S., Fernandez-Pello S. et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. Eur Urol. 2019;75(5):799-810. https://doi.org/10.1016/j.eururo.2019.02.011.; Antonelli A., Minervini A., Sandri M., Bertini R., Bertolo R., Carini M. et al. Below Safety Limits, Every Unit of Glomerular Filtration Rate Counts: Assessing the Relationship Between Renal Function and Cancer-specific Mortality in Renal Cell Carcinoma. Eur Urol. 2018;74(5):661-667. https//doi.org/10.1016/j.eururo.2018.07.029.; Меньшиков К.В., Измайлов А.А., Султанбаев А.В., Мусин Ш.И., Чалов В.С., Меньшикова И.А. и др. Метастатический почечно-клеточный рак, возможности таргетной терапии. Медицинский совет. 2021;(20):138-144. https://doi.org/10.21518/2079-701X-2021-20-138-144.; Bracarda S., Negrier S., Casper J., Porta C., Schmidinger M., Larkin J. et al. How clinical practice is changing the rules: the sunitinib 2/1 schedule in metastatic renal cell carcinoma. Expert Rev Anticancer Ther. 2017;17(3):227-233. https://doi.org/10.1080/14737140.2017.1276830.; https://www.med-sovet.pro/jour/article/view/6921

  18. 18
    Academic Journal

    المصدر: Malignant tumours; Том 12, № 2 (2022); 45-51 ; Злокачественные опухоли; Том 12, № 2 (2022); 45-51 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/962/682; Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68 (6):394–424. doi:10.3322/caac.21492. Epub 2018 Sep 12.; Измайлов А. А., Аюпов Р. Т., Сулатнбаев А. В., Мусин Ш. И., Меньшиков К. В., Забелин М. В. Организация работы онкологической службы в Республике Башкортостан в условиях пандемии COVID-19. Современные проблемы здравоохранения и медицинской статистики 2020 г., № 3. C. 195-208. DOI:10.24411/2312-2935-2020-00067.; Состояние онкологической помощи населению России в 2021 году. Под редакцией Каприна А. Д., Старинского В. В., Шахазадовой А. О.: МНИОИ им. П. А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 239 с. ISBN 978-5-85502-262-9.; Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med 2017;376:354-66.; McKay RR, Bosse D, Choueiri TK. Evolving systemic treatment landscape for patients with advanced renal cell carcinoma. J Clin Oncol 2018 October 29 (Epub ahead of print).; Heidegger I, Pircher A, Pichler R. Targeting the tumor microenvironment in renal cell cancer biology and therapy. Front Oncol 2019;9:490.; Apolo AB, Nadal R, Girardi DM, et al. Phase I study of cabozantinib and nivolumab alone or with ipilimumab for advanced or metastatic urothelial carcinoma and other genitourinary tumors. J Clin Oncol 2020;38:3672-84.; Amin A, Plimack ER, Ernstoff MS, et al. Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study. J Immunother Cancer 2018;6:109.; Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380:1116-27.; Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380:1103-15.; Agarwal N, Vaishampayan U, Green M, et al. Phase Ib study (COSMIC-021) of cabozantinib in combination with atezolizumab: results of the dose escalation stage in patients (pts) with treatmentnaive advanced renal cell carcinoma (RCC). J Clin Oncol 2020;29: Suppl 8:872P. abstract.; Pal S, Tsao C-K, Suarez C, et al. Cabozantinib (C) in combination with atezolizumab (A) as first-line therapy for advanced clear cell renal cell carcinoma (ccRCC): Results from the COSMIC-021 study. Ann Oncol 2020;31: Suppl 4: S554. abstract.; Меньшиков К. В., Султанбаев А. В., Мусин Ш. И., Измайлов А. А., Меньшикова И. А., Хамматова Л. А., Попова Е. В., Султанбаева Н. И., Липатов Д. О. Вторая линия терапии метастатического почечноклеточного рака. Обзор литературы. Поволжский онкологический вестник. Том 12, № 4. 2021 С. 39-52.; Меньшиков К. В., Измайлов А. А., Султанбаев А. В., Мусин Ш. И., Чалов В. С., Меньшикова И. А., Султанбаева Н. И., Липатов Д. О. Метастатический почечно-клеточный рак, возможности таргетной терапии. Медицинский Совет. 2021; (20):138-144. https://doi.org/10.21518/2079-701X-2021-20-138-144.; Меньшиков К. В., Султанбаев А. В., Мусин Ш. И., Рахматуллина И. Р., Меньшикова И. А., Хамматова Л. А., Попова Е. В., Султанбаева Н. И., Липатов Д. О. Возможности комбинированной иммунотаргетной терапии метастатического почечно-клеточного рака. Обзор литературы. Поволжский онкологический вестник. Том 13, № 1. 2022. С. 46-61.; Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015;373:1803-13.; Schmidt E, Lister J, Neumann M, et al. Cabozantinib versus standard-of-care comparators in the treatment of advanced/ metastatic renal cell carcinoma in treatment-naive patients: a systematic review and network meta-analysis. Target Oncol 2018;13:205-16.; Choueiri TK, Halabi S, Sanford BL, et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the Alliance A031203 CABOSUN trial. J Clin Oncol 2017;35:591-7.; Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, openlabel, phase 3 trial. Lancet Oncol 2016;17: 917-27.; Меньшиков К. В., Султанбаев А. В., Мусин Ш. И., Измай лов А. A., Мугинов Р. Р., Меньшикова И. А., Шарифгалеев И. А., Липатов Д. О., Султанбаева Н. И. Почечно-клеточный рак с метастазами в наружных половых органах. Обзор литературы и клинический случай. Онкоурология. 2021;17 (2):174-181. https://doi.org/10.17650/1726-9776-2021-17-2-174-181.; Saeed A, Phadnis M, Park R, et al. Cabozantinib (cabo) combined with durvalumab (durva) in gastroesophageal (GE) cancer and other gastrointestinal (GI) malignancies: Preliminary phase Ib CAMILLA study results. J Clin Oncol 2020; 38: Suppl:4563. abstract.; Bergerot P, Lamb P, Wang E, Pal SK. Cabozantinib in combination with immunotherapy for advanced renal cell carcinoma and urothelial carcinoma: rationale and clinical evidence. Mol Cancer Ther 2019;18:2185-93.; Lu X, Horner JW, Paul E, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 2017;543:728-32.; Apolo AB, Nadal R, Tomita Y, et al. Cabozantinib in patients with platinumrefractory metastatic urothelial carcinoma: an open-label, single-centre, phase 2 trial. Lancet Oncol 2020;21:1099-109.; Heng DY, Xie W, Regan MM, et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol 2009;27:5794-9.; Heng DYC, Xie W, Regan MM, et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a populationbased study. Lancet Oncol 2013;14:141-8.; Choueiri TK, Powles T, Burotto M, Escudier B, Bourlon MT, Zurawski B, Oyervides Juarez VM, Hsieh JJ, Basso U, Shah AY, Suarez C, Hamzaj A, Goh JC, Barrios C, Richardet M, Porta C, Kowalyszyn R, Feregrino JP, Zolnierek J, Pook D, Kessler ER, Tomita Y, Mizuno R, Bedke J, Zhang J, Maurer MA, Simsek B, Ejzykowicz F, Schwab GM, Apolo AB, Motzer RJ; CheckMate 9ER Investigators. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2021 Mar 4;384 (9):829-841. doi:10.1056/NEJMoa2026982. PMID: 33657295; PMCID: PMC8436591.; Носов Д. А., Б. Я. Алексеев, Гладков О. А., Волкова М. И., Попов А. М., Харкевич Г. Ю. Практические рекомендации по лекарственному лечению почечноклеточного рака. Злокачественные опухоли: Практические рекомендации RUSSCO #3s2, 2021 (том 11). 31. 10.18027/2224-5057-2021-11-3s2-31.; Aeppli S, Schmaus M, Eisen T, Escudier B, Grunwald V, Larkin J, McDermott D, Oldenburg J, Porta C, Rini BI, Schmidinger M, Sternberg CN, Rothermundt C, Putora PM. First-line treatment of metastatic clear cell renal cell carcinoma: a decision-making analysis among experts. ESMO Open. 2021 Feb;6 (1):100030. doi:10.1016/j.esmoop.2020.100030. Epub 2021 Jan 15. PMID: 33460963; PMCID: PMC7815472.; McKay RR, Lin X, Perkins JJ, Heng DY, Simantov R, Choueiri TK. Prognostic significance of bone metastases and bisphosphonate therapy in patients with renal cell carcinoma. Eur Urol 2014;66 (3):502e9.; Hanna N, Sun M, Meyer CP, Nguyen PL, Pal SK, Chang SL, et al. Survival analyses of patients with metastatic renal cancer treated with targeted therapy with or without cytoreductive nephrectomy: a national cancer data base study. J Clin Oncol 2016; 34 (27):3267e75; https://www.malignanttumors.org/jour/article/view/962

  19. 19
    Academic Journal

    المصدر: Creative surgery and oncology; Том 12, № 3 (2022); 205-216 ; Креативная хирургия и онкология; Том 12, № 3 (2022); 205-216 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/715/507; Antoni S., Ferlay J., Soerjomataram I., Znaor A., Jemal A., Bray F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur Urol. 2017;71(1):96–108. DOI:10.1016/j.eururo.2016.06.010; Polo S.H., Gonzalez del Alba A., Perez-Valderrama B., Villa Guzman J.C., Climent M.A., Lainez N., et al. Vinflunine maintenance therapy versus best supportive care after platinum combination in advanced bladder cancer: A phase II, randomized, open label, study (MAJA study, SOGUG 2011-02)—Interim analysis on safety. J Clin Oncol. 2014;32(4):359. DOI:10.1200/jco.2014.32.4_suppl.359; Bellmunt J., Théodore C., Demkov T., Komyakov B., Sengelov L., Daugaard G., et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J Clin Oncol. 2009;27(27):4454–61. DOI:10.1200/JCO.2008.20.5534; Oing C., Rink M., Oechsle K., Seidel C., von Amsberg G., Bokemeyer C. Second line chemotherapy for advanced and metastatic urothelial carcinoma: vinflunine and beyond-A comprehensive review of the current literature. J Urol. 2016;195(2):254–63. DOI:10.1016/j.juro.2015.06.115; Bellmunt J., Powles T., Vogelzang N.J. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: The future is now. Cancer Treat Rev. 2017;54:58–67. DOI:10.1016/j.ctrv.2017.01.007; Reck M., Rodríguez-Abreu D., Robinson A.G., Hui R., Csőszi T., Fülöp A., et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33. DOI:10.1056/NEJMoa1606774; Bellmunt J., Mullane S.A., Werner L., Fay A.P., Callea M., Leow J.J., et al. Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Ann Oncol. 2015;26(4):812–7. DOI:10.1093/annonc/mdv009; Ferris R.L., Blumenschein G. Jr, Fayette J., Guigay J., Colevas A.D., Licitra L., et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67. DOI:10.1056/NEJMoa1602252; Zibelman M., Ramamurthy C., Plimack E.R. Emerging role of immunotherapy in urothelial carcinoma-advanced disease. Urol Oncol. 2016;34(12):538–47. DOI:10.1016/j.urolonc.2016.10.017; Pierantoni F., Maruzzo M., Gardi M., Bezzon E., Gardiman M.P., Porreca A., et al. Immunotherapy and urothelial carcinoma: An overview and future prospectives. Crit Rev Oncol Hematol. 2019;143:46–55. DOI:10.1016/j.critrevonc.2019.08.005; Nakanishi J., Wada Y., Matsumoto K., Azuma M., Kikuchi K., Ueda S. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother. 2007;56(8):1173–82. DOI:10.1007/s00262-006-0266-z; Inman B.A., Sebo T.J., Frigola X., Dong H., Bergstralh E.J., Frank I., et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer. 2007;109(8):1499–505. DOI:10.1002/cncr.22588; Lopez-Beltran A., Cimadamore A., Blanca A., Massari F., Vau N., Scarpelli M., et al. Immune checkpoint inhibitors for the treatment of bladder cancer. Cancers (Basel). 2021;13(1):131. DOI:10.3390/cancers13010131; Mahmoud A.M., Frank I., Orme J.J., Lavoie R.R., Thapa P., Costello B.A., et al. Evaluation of PD-L1 and B7-H3 expression as a predictor of response to adjuvant chemotherapy in bladder cancer. BMC Urol. 2022;22(1):90. DOI:10.1186/s12894-022-01044-1; Samstein R.M., Lee C.H., Shoushtari A.N., Hellmann M.D., Shen R., Janjigian Y.Y., et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202–6. DOI:10.1038/s41588-018-0312-8; Aggen D.H., Drake C.G. Biomarkers for immunotherapy in bladder cancer: a moving target. J Immunother Cancer. 2017;5(1):94. DOI:10.1186/s40425-017-0299-1; Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A., Behjati S., Biankin A.V., et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. DOI:10.1038/nature12477; Rosenberg J.E., Hoffman-Censits J., Powles T., van der Heijden M.S., Balar A.V., Necchi A., et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20. DOI:10.1016/S0140-6736(16)00561-4; Balar A.V., Galsky M.D., Rosenberg J.E., Powles T., Petrylak D.P., Bellmunt J., et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76. DOI:10.1016/S0140-6736(16)32455-2; Powles T., Durán I., van der Heijden M.S., Loriot Y., Vogelzang N.J., De Giorgi U., et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–57. DOI:10.1016/S0140-6736(17)33297-X; Sharma P., Callahan M.K., Bono P., Kim J., Spiliopoulou P., Calvo E., et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 2016;17(11):1590–8. DOI:10.1016/S1470-2045(16)30496-X; Sharma P., Retz M., Siefker-Radtke A., Baron A., Necchi A., Bedke J., et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22. DOI:10.1016/S1470-2045(17)30065-7; Ciccarese C., Iacovelli R., Bria E., Mosillo C., Bimbatti D., Fantinel E., et al. Second-line therapy for metastatic urothelial carcinoma: Defining the best treatment option among immunotherapy, chemotherapy, and antiangiogenic targeted therapies. A systematic review and meta-analysis. Semin Oncol. 2019;46(1):65–72. DOI:10.1053/j.seminoncol.2019.01.001; Balar A.V., Castellano D., O’Donnell P.H., Grivas P., Vuky J., Powles T., et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(11):1483–92. DOI:10.1016/S1470-2045(17)30616-2; Plimack E.R., Bellmunt J., Gupta S., Berger R., Chow L.Q., Juco J., et al. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study. Lancet Oncol. 2017;18(2):212–20. DOI:10.1016/S1470-2045(17)30007-4; Massard C., Gordon M.S., Sharma S., Rafii S., Wainberg Z.A., Luke J., et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016;34(26):3119–25. DOI:10.1200/JCO.2016.67.9761; Apolo A.B., Infante J.R., Balmanoukian A., Patel M.R., Wang D., Kelly K., et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J Clin Oncol. 2017;35(19):2117–24. DOI:10.1200/JCO.2016.71.6795; Bellmunt J., de Wit R., Vaughn D.J., Fradet Y., Lee J.L., Fong L., et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26. DOI:10.1056/NEJMoa1613683; Gaule P., Smithy J.W., Toki M., Rehman J., Patell-Socha F., Cougot D., et al. A quantitative comparison of antibodies to programmed cell death 1 ligand 1. JAMA Oncol. 2017;3(2):256–9. DOI:10.1001/jamaoncol.2016.3015; Rijnders M., van der Veldt A.A.M., Zuiverloon T.C.M., Grünberg K., Thunnissen E., de Wit R., et al. PD-L1 antibody comparison in urothelial carcinoma. Eur Urol. 2019;75(3):538–40. DOI:10.1016/j.eururo.2018.11.002; Hodgson A., Slodkowska E., Jungbluth A., Liu S.K., Vesprini D., Enepekides D., et al. PD-L1 immunohistochemistry assay concordance in urothelial carcinoma of the bladder and hypopharyngeal squamous cell carcinoma. Am J Surg Pathol. 2018;42(8):1059–66. DOI:10.1097/PAS.0000000000001084; Gevaert T., Cimadamore A., Eckstein M., Scarpelli M., Lopez-Beltran A., Cheng L., et al. Predictive biomarkers for immunotherapy in the treatment of advanced urothelial carcinoma: where we stand and where we go. Future Oncol. 2019;15(19):2199–202. DOI:10.2217/fon-2019-0217; Eckstein M., Cimadamore A., Hartmann A., Lopez-Beltran A., Cheng L., Scarpelli M., et al. PD-L1 assessment in urothelial carcinoma: a practical approach. Ann Transl Med. 2019;7(22):690. DOI:10.21037/atm.2019.10.24; Eckstein M., Erben P., Kriegmair M.C., Worst T.S., Weiß C.A., Wirtz R.M., et al. Performance of the Food and Drug Administration/EMA-approved programmed cell death ligand-1 assays in urothelial carcinoma with emphasis on therapy stratification for first-line use of atezolizumab and pembrolizumab. Eur J Cancer. 2019;106:234–43. DOI:10.1016/j.ejca.2018.11.007; Powles T., Walker J., Andrew Williams J., Bellmunt J. The evolving role of PD-L1 testing in patients with metastatic urothelial carcinoma. Cancer Treat Rev. 2020;82:101925. DOI:10.1016/j.ctrv.2019.101925; Patel M.R., Ellerton J., Infante J.R., Agrawal M., Gordon M., Aljumaily R., et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol. 2018;19(1):51–64. DOI:10.1016/S1470-2045(17)30900-2; Powles T., Park S.H., Voog E., Caserta C., Valderrama B.P., Gurney H., et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med. 2020;383:1218–30. DOI:10.1056/NEJMoa2002788; Bednova O., Leyton J.V. Targeted molecular therapeutics for bladder cancer-a new option beyond the mixed fortunes of immune checkpoint inhibitors? Int J Mol Sci. 2020;21(19):7268. DOI:10.3390/ijms21197268; Galsky M.D., Arija J.Á.A., Bamias A., Davis I.D., De Santis M., Kikuchi E., et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395(10236):1547–57. DOI:10.1016/S0140-6736(20)30230-0; Powles T., van der Heijden M.S., Castellano D., Galsky M.D., Loriot Y., Petrylak D.P., et al. Durvalumab alone and durvalumab plus tremelimumab versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2020;21(12):1574–88. DOI:10.1016/S1470-2045(20)30541-6; Yu S.S., Ballas L.K., Skinner E.C., Dorff T.B., Sadeghi S., Quinn D.I. Immunotherapy in urothelial cancer, part 2: adjuvant, neoadjuvant, and adjunctive treatment. Clin Adv Hematol Oncol. 2017;15(7):543–51. PMID: 28749918; Massari F., Santoni M., di Nunno V., Cheng L., Lopez-Beltran A., Cimadamore A., et al. Adjuvant and neoadjuvant approaches for urothelial cancer: Updated indications and controversies. Cancer Treat Rev. 2018;68:80–85. DOI:10.1016/j.ctrv.2018.06.002; Eggermont A.M.M., Blank C.U., Mandalà M., Long G.V., Atkinson V.G., Dalle S., et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22(5):643–54. DOI:10.1016/S1470-2045(21)00065-6; Massari F., Di Nunno V., Cubelli M., Santoni M., Fiorentino M., Montironi R., et al. Immune checkpoint inhibitors for metastatic bladder cancer. Cancer Treat Rev. 2018;64:11–20. DOI:10.1016/j.ctrv.2017.12.007; Rouanne M., Bajorin D.F., Hannan R., Galsky M.D., Williams S.B., Necchi A. et al. Rationale and outcomes for neoadjuvant immunotherapy in urothelial carcinoma of the bladder. Eur Urol Oncol. 2020;3(6):728–38. DOI:10.1016/j.euo.2020.06.009; Powles T., Rodriguez-Vida A., Duran I., Crabb S.J., Van Der Heijden M.S., Font Pous A., et al. A phase II study investigating the safety and efficacy of neoadjuvant Atezolizumab in muscle invasive bladder cancer (ABACUS). J Clin Oncol. 2018;36:4506. DOI:10.1200/JCO.2018.36.15_suppl.4506; Necchi A., Anichini A., Raggi D., Briganti A., Massa S., Lucianò R., et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): An open-label, single-arm, phase II study. J Clin Oncol. 2018;36:3353–60. DOI:10.1200/JCO.18.01148; Powles T., Gschwend J.E., Loriot Y., Bellmunt J., Geczi L., Vulsteke C., et al. Phase 3 KEYNOTE-361 trial: Pembrolizumab (pembro) with or without chemotherapy versus chemotherapy alone in advanced urothelial cancer. J Clin Oncol. 2017;35:TPS4590. DOI:10.1200/JCO.2017.35.15_suppl.TPS4590; Kamat A.M., Bellmunt J., Choueiri T.K., Nam K., De Santis M., Dreicer R., et al. KEYNOTE-057: Phase 2 study of Pembrolizumab for patients (pts) with Bacillus Calmette Guerin (BCG)-unresponsive, high-risk non-muscle-invasive bladder cancer (NMIBC). J Clin Oncol. 2016;34:TPS4576. DOI:10.1200/JCO.2019.37.7_suppl.350; Apolo A.B., Nadal R., Girardi D.M., Niglio S.A., Ley L., Cordes L.M., et al. Phase I study of cabozantinib and nivolumab alone or with ipilimumab for advanced or metastatic urothelial carcinoma and other genitourinary tumors. J Clin Oncol. 2020;38(31):3672–84. DOI:10.1200/JCO.20.01652; Rebola J., Aguiar P., Blanca A., Montironi R., Cimadamore A., Cheng L., et al. Predicting outcomes in non-muscle invasive (Ta/T1) bladder cancer: the role of molecular grade based on luminal/basal phenotype. Virchows Arch. 2019;475(4):445–55. DOI:10.1007/s00428-019-02593-x; Black P.C., Catherine T., Lerner S.P., McConkey D.J., Lucia M.S., Woods M., et al. Phase II trial of Atezolizumab in BCG-unresponsive nonmuscle invasive bladder cancer. J Clin Oncol. 2018;36:TPS527. DOI:10.1200/JCO.2018.36.6_suppl.TPS527; Emens L.A., Middleton G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res. 2015;3(5):436–43. DOI:10.1158/2326-6066.CIR-15-0064; Correale P., Del Vecchio M.T., La Placa M., Montagnani F., Di Genova G., Savellini G.G., et al. Chemotherapeutic drugs may be used to enhance the killing efficacy of human tumor antigen peptide-specific CTLs. J Immunother. 2008;31(2):132–47. DOI:10.1097/CJI.0b013e31815b69c8; Gómez de Liaño Lista A., van Dijk N., de Velasco Oria de Rueda G., Necchi A., Lavaud P., Morales-Barrera R., et al. Clinical outcome after progressing to frontline and second-line Anti-PD-1/PD-L1 in advanced urothelial cancer. Eur Urol. 2020;77(2):269–76. DOI:10.1016/j.eururo.2019.10.004; Kato R., Hayashi H., Chiba Y., Miyawaki E., Shimizu J., Ozaki T., et al. Propensity score-weighted analysis of chemotherapy after PD-1 inhibitors versus chemotherapy alone in patients with non-small cell lung cancer (WJOG10217L). J Immunother Cancer. 2020;8(1):e000350. DOI:10.1136/jitc-2019-000350; Narits J., Tamm H., Jaal J. PD-L1 induction in tumor tissue after hypofractionated thoracic radiotherapy for non-small cell lung cancer. Clin Transl Radiat Oncol. 2020;22:83–7. DOI:10.1016/j.ctro.2020.04.003; Jamal S., Hudson M., Fifi-Mah A., Ye C. Immune-related adverse events associated with cancer immunotherapy: a review for the practicing rheumatologist. J Rheumatol. 2020;47(2):166–75. DOI:10.3899/jrheum.190084; Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. DOI:10.1038/nrc3239; Sweis R.F., Spranger S., Bao R., Paner G.P., Stadler W.M., Steinberg G., et al. Molecular drivers of the non-T-cell-inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunol Res. 2016;4(7):563–8. DOI:10.1158/2326-6066.CIR-15-0274; Sharma P., Siefker-Radtke A., de Braud F., Basso U., Calvo E., Bono P., et al. Nivolumab alone and with ipilimumab in previously treated metastatic urothelial carcinoma: CheckMate 032 nivolumab 1 mg/kg plus ipilimumab 3 mg/kg expansion cohort results. J Clin Oncol. 2019;37(19):1608–16. DOI:10.1200/JCO.19.00538; Galsky M.D., Wang H., Hahn N.M., Twardowski P., Pal S.K., Albany C., et al. Phase 2 Trial of gemcitabine, cisplatin, plus ipilimumab in patients with metastatic urothelial cancer and impact of DNA damage response gene mutations on outcomes. Eur Urol. 2018;73(5):751–9. DOI:10.1016/j.eururo.2017.12.001; Allard D., Chrobak P., Allard B., Messaoudi N., Stagg J. Targeting the CD73-adenosine axis in immuno-oncology. Immunol Lett. 2019;205:31–9. DOI:10.1016/j.imlet.2018.05.001; Botticelli A., Onesti C.E., Zizzari I., Cerbelli B., Sciattella P., Occhipinti M., et al. The sexist behaviour of immune checkpoint inhibitors in cancer therapy? Oncotarget. 2017;8(59):99336–46. DOI:10.18632/oncotarget.22242; Faraj S.F., Munari E., Guner G., Taube J., Anders R., Hicks J., et al. Assessment of tumoral PD-L1 expression and intratumoral CD8+ T cells in urothelial carcinoma. Urology. 2015;85(3):703.e1–6. DOI:10.1016/j.urology.2014.10.020; Cimadamore A., Scarpelli M., Santoni M., Massari F., Tartari F., Cerqueti R., et al. Genitourinary tumors: update on molecular biomarkers for diagnosis, prognosis and prediction of response to therapy. Curr Drug Metab. 2019;20(4):305–12. DOI:10.2174/1389200220666190225124352; Reis H., Serrette R., Posada J., Lu V., Chen Y.B., Gopalan A., et al. PD-L1 Expression in urothelial carcinoma with predominant or pure variant histology: concordance among 3 commonly used and commercially available antibodies. Am J Surg Pathol. 2019;43(7):920–7. DOI:10.1097/PAS.0000000000001264; Gevaert T., Montironi R., Lopez-Beltran A., Van Leenders G., Allory Y., De Ridder D., et al. Genito-urinary genomics and emerging biomarkers for immunomodulatory cancer treatment. Semin Cancer Biol. 2018;52(Pt 2):216–27. DOI:10.1016/j.semcancer.2017.10.004; Lopez-Beltran A., Santoni M., Massari F., Ciccarese C., Tortora G., Cheng L., et al. Bladder cancer: molecular determinants of personalized therapy. Curr Drug Targets. 2015;16(2):115–24. DOI:10.2174/1389450116666150204115756; Robertson A.G., Kim J., Al-Ahmadie H., Bellmunt J., Guo G., Cherniack A.D., et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2017;171(3):540–56.e25. DOI:10.1016/j.cell.2017.09.007; Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315–22. DOI:10.1038/nature12965; Roviello G., Catalano M., Nobili S., Santi R., Mini E., Nesi G. Focus on biochemical and clinical predictors of response to immune checkpoint inhibitors in metastatic urothelial carcinoma: where do we stand? Int J Mol Sci. 2020;21(21):7935. DOI:10.3390/ijms21217935; Lemery S., Keegan P., Pazdur R. First FDA approval agnostic of cancer site — when a biomarker defines the indication. N Engl J Med. 2017;377(15):1409–12. DOI:10.1056/NEJMp1709968; Sharma P., Shen Y., Wen S., Yamada S., Jungbluth A.A., Gnjatic S., et al. CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci U S A. 2007;104(10):3967–72. DOI:10.1073/pnas.0611618104; Vidotto T., Nersesian S., Graham C., Siemens D.R., Koti M. DNA damage repair gene mutations and their association with tumor immune regulatory gene expression in muscle invasive bladder cancer subtypes. J Immunother Cancer. 2019;7(1):148. DOI:10.1186/s40425-019-0619-8; Mariathasan S., Turley S.J., Nickles D., Castiglioni A., Yuen K., Wang Y., et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8. DOI:10.1038/nature25501; Blanca A., Cheng L., Montironi R., Moch H., Massari F., Fiorentino M., et al. Mirna expression in bladder cancer and their potential role in clinical practice. Curr Drug Metab. 2017;18(8):712–22. DOI:10.2174/1389200218666170518164507; Ciccarese C., Massari F., Blanca A., Tortora G., Montironi R., Cheng L., et al. Tp53 and its potential therapeutic role as a target in bladder cancer. Expert Opin Ther Targets. 2017;21(4):401–14. DOI:10.1080/14728222.2017.1297798; https://www.surgonco.ru/jour/article/view/715

  20. 20
    Academic Journal

    المصدر: Creative surgery and oncology; Том 12, № 1 (2022); 48-55 ; Креативная хирургия и онкология; Том 12, № 1 (2022); 48-55 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    Relation: https://www.surgonco.ru/jour/article/view/674/484; Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21. DOI:10.1158/0008-5472. CAN-14-0155; Cancer Stat Facts: Pancreatic Cancer. National Cancer Institute: SEER [cited 2022 Feb 28]. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html.; Ansari D., Friess H., Bauden M., Samnegård J., Andersson R. Pancreatic cancer: disease dynamics, tumor biology and the role of the microenvironment. Oncotarget. 2018;9(5):6644–51. DOI:10.18632/oncotarget.24019; Azar I., Virk G., Esfandiarifard S., Wazir A., Mehdi S. Treatment and survival rates of stage IV pancreatic cancer at VA hospitals: a nationwide study. J Gastrointest Oncol. 2019;10(4):703–11. DOI:10.21037/jgo.2018.07.08; Sultanbaev A., Minniakhmetov I., Menshikov K., Sultanbaeva N., Nasretdinov A., Musin S. Identification of gene mutations in patients with breast cancer in a region located in the southeast of the European part of Russia. Ann Oncol. 2020;31(6):S1241–54. DOI:10.1016/annonc/annonc351; Ben-David U., Beroukhim R., Golub T.R. Genomic evolution of cancer models: perils and opportunities. Nat Rev Cancer. 2019;19(2):97–109. DOI:10.1038/s41568-018-0095-3; Birrer N., Chinchilla C., Del Carmen M., Dizon D.S. Is hormone replacement therapy safe in women with a BRCA mutation?: a systematic review of the contemporary literature. Am J Clin Oncol. 2018;41(3):313–5. DOI:10.1097/COC.0000000000000269; Bartsch D.K., Matthäi E., Mintziras I., Bauer C., Figiel J., Sina-Boemers M., et al. The German national case collection for familial pancreatic carcinoma (FaPaCa)—knowledge gained in 20 years. Dtsch Arztebl Int. 2021;118(Forthcoming):163–8. DOI:10.3238/arztebl.m2021.0004; Miki Y., Swensen J., Shattuck-Eidens D., Futreal P.A., Harshman K., Tavtigian S., et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71. DOI:10.1126/science.7545954; Wooster R., Bignell G., Lancaster J., Swift S., Seal S., Mangion J., et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–92. DOI:10.1038/378789a0; Choi M., Kipps T., Kurzrock R. ATM mutations in cancer: therapeutic implications. Mol Cancer Ther. 2016;15(8):1781–91. DOI:10.1158/1535-7163.MCT-15-0945; Chartron E., Theillet C., Guiu S., Jacot W. Targeting homologous repair deficiency in breast and ovarian cancers: biological pathways, preclinical and clinical data. Crit Rev Oncol Hematol. 2019;133:58–73. DOI:10.1016/j.critrevonc.2018.10.012; Lowery M.A., Wong W., Jordan E.J., Lee J.W., Kemel Y., Vijai J., et al. Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. J Natl Cancer Inst. 2018;110(10):1067–74. DOI:10.1093/jnci/djy024; Elta G.H., Enestvedt B.K., Sauer B.G., Lennon A.M. ACG clinical guideline: diagnosis and management of pancreatic cysts. Am J Gastroenterol. 2018;113(4):464–79. DOI:10.1038/ajg.2018.14; Sekine M., Nishino K., Enomoto T. Differences in ovarian and other cancers risks by population and BRCA mutation location. Genes (Basel). 2021;12(7):1050. DOI:10.3390/genes12071050; European Study Group on Cystic Tumours of the Pancreas. European evidence-based guidelines on pancreatic cystic neoplasms. Gut. 2018;67(5):789–804. DOI:10.1136/gutjnl-2018-316027; Faraoni I., Graziani G. Role of BRCA mutations in cancer treatment with Poly (ADP-ribose) polymerase (PARP) inhibitors. Cancers (Basel). 2018;10(12):487. DOI:10.3390/cancers10120487; Hu C., Hart S.N., Polley E.C., Gnanaolivu R., Shimelis H., Lee K.Y., et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA. 2018;319(23):2401–9. DOI:10.1001/jama.2018.6228; Hu C., Hart S.N., Bamlet W.R., Moore R.M., Nandakumar K., Eckloff B.W., et al. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients. Cancer Epidemiol Biomarkers Prev. 2016;25(1):207–11. DOI:10.1158/1055-9965.EPI-15-0455; Salo-Mullen E.E., O’Reilly E.M., Kelsen D.P., Ashraf A.M., Lowery M.A., Yu K.H., et al. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer. 2015;121(24):4382–8. DOI:10.1002/cncr.29664; Shindo K., Yu J., Suenaga M., Fesharakizadeh S., Cho C., MacgregorDas A., et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol. 2017;35(30):3382–90. DOI:10.1200/JCO.2017.72.3502; Murphy K.M., Brune K.A., Griffin C., Sollenberger J.E., Petersen G.M., Bansal R., et al. Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17 %. Cancer Res. 2002;62(13):3789–93. PMID: 12097290; George A., Kaye S., Banerjee S. Delivering widespread BRCA testing and PARP inhibition to pa tients with ovarian cancer. Nat Rev Clin Oncol. 2017;14(5):284–96. DOI:10.1038/nrclinonc.2016.191; Golan T., Hammel P., Reni M., Van Cutsem E., Macarulla T., Hall M.J., et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27. DOI:10.1056/NEJMoa1903387; Sultanbaev A., Sultanbaeva N., Nasretdinov A., Menshikov K., Minniakhmetov I., Musin S., et al. Organization of screening for prostate cancer in carriers of germinal mutations in the BRCA1/2 genes. Eur Urol Open Sci. 2020;21(Suppl. 2):S59. DOI:10.1016/S2666-1683(20)36064-X; Gröschel S., Hübschmann D., Raimondi F., Horak P., Warsow G., Fröhlich M., et al. Defective homologous recombination DNA repair as therapeutic target in advanced chordoma. Nat Commun. 2019;10(1):1635. DOI:10.1038/s41467-019-09633-9; Gorodetska I., Kozeretska I., Dubrovska A. BRCA genes: the role in genome stability, cancer stemness and therapy resistance. J Cancer. 2019;10(9):2109–27. DOI:10.7150/jca.30410; Godet I., Gilkes D.M. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017;4(1):10.15761/ICST.1000228. DOI:10.15761/ICST.1000228; Roberts N.J., Jiao Y., Yu J., Kopelovich L., Petersen G.M., Bondy M.L., et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2(1):41–6. DOI:10.1158/2159-8290.CD-11-0194; Sultanbaev A., Nasretdinov A., Sultanbaeva N., Menshikov K., Musin S., Izmailov A., et al. Hereditary prostate cancer screening. Eur Urol Open Sci. 2020;21(Suppl. 3):S155. DOI:10.1016/S2666-1683(20)36212-1; van Os N.J., Roeleveld N., Weemaes C.M., Jongmans M.C., Janssens G.O., Taylor A.M., et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet. 2016;90(2):105–17. DOI:10.1111/cge.12710; Zhen D.B., Rabe K.G., Gallinger S., Syngal S., Schwartz A.G., Goggins M.G., et al. BRCA1, BRCA2, PALB2, and CDKN2A muta tions in familial pancreatic cancer: a PACGENE study. Genet Med. 2014;17(7):569–77. DOI:10.1038/gim.2014.153; Matsubayashi H., Takaori K., Morizane C., Kiyozumi Y. Familial pancreatic cancer and surveillance of high-risk individuals. Gut Liver. 2019;13(5):498–505. DOI:10.5009/gnl18449; Konings I.C.A.W., Harinck F., Poley J-W., Aalfs C.M., van Rens A., Krak N.C., et al. Prevalence and progression of pancreatic cystic precursor lesions differ between groups at high risk of developing pancreatic cancer. Pancreas. 2017;46(1):28–34. DOI:10.1097/MPA.0000000000000725; Chaffee K.G., Oberg A.L., McWilliams R.R., Majithia N., Allen B.A., Kidd J., et al. Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet Med. 2018;20(1):119–27. DOI:10.1038/gim.2017.85; Borecka M., Zemankova P., Vocka M., Soucek P., Soukupova J., Kleiblova P., et al. Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic. Cancer Genet. 2016;209(5):199–204. DOI:10.1016/j.cancergen.2016.03.003; Wong W., Raufi A.G., Safyan R.A., Bates S.E., Manji G.A. BRCA Muta - tions in pancreas cancer: spectrum, current management, challenges and future prospects. Cancer Manag Res. 2020:12 2731–42. DOI:10.2147/CMAR.S211151; Masamune A., Kikuta K., Hamada S., Nakano E., Kume K., Inui A., et al. Nationwide survey of hereditary pancreatitis in Japan. J Gastroen - terol. 2018;53(1):152–60. DOI:10.1007/s00535-017-1388-0; Rebours V., Boutron-Ruault M.C., Schnee M., Férec C., Maire F., Hammel P., et al. Risk of pancreatic adenocarcinoma in patients with hereditary pancreatitis: a national exhaustive series. Am J Gastroen - terol. 2008;103(1):111–9. DOI:10.1111/j.1572-0241.2007.01597.x; Shelton C.A., Umapathy C., Stello K., Yadav D., Whitcomb D.C. Hereditary pancreatitis in the United States: survival and rates of pan - creatic cancer. Am J Gastroenterol. 2018;113(9):1376. DOI:10.1038/s41395-018-0194-5; Keihanian T., Barkin J.A., Souto E.O. Early detection of pancreatic cancer: risk factors and the current state of screening modalities. Gas - troenterol Hepatol (NY). 2021;17(6):254–62. PMID: 34776799; Syngal S., Brand R.E., Church J.M., Giardiello F.M., Hampel H.L., Burt R.W., et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110(2):223–62. DOI:10.1038/ajg.2014.435; Tattersall A., Ryan N., Wiggans A.J., Rogozińska E., Morrison J. Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database Syst Rev. 2022;2(2):CD007929. DOI:10.1002/14651858.CD007929.pub4; Tutt A., Robson M., Garber J.E., Domchek S.M., Audeh M.W., Weitzel J.N., et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–44. DOI:10.1016/S0140-6736(10)60892-6; Lowery M.A., Lee A, Tobias E., Sung P., Bhanot U., Shakya R., et al. Evaluation of PARP inhibition as a platinum sparing strategy in Brca2-deficient pancreatic tumors. J Clin Oncol. 2014;32:e15237. DOI:10.1200/jco.2014.32.15_suppl.e15237; McCabe N., Lord C.J., Tutt A.N., Martin N.M., Smith G.C., Ashworth A. BRCA2-deficient CAPAN-1 cells are extremely sensitive to the in - hibition of Poly (ADP-Ribose) polymerase: an issue of potency. Cancer Biol Ther. 2005;4(9):934–6. DOI:10.4161/cbt.4.9.2141; Lowery M.A., Kelsen D.P., Stadler Z.K., Yu K.H., Janjigian Y.Y., Ludwig E., et al. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implica - tions, and future directions. Oncologist. 2011;16(10):1397–402. DOI:10.1634/theoncologist.2011-0185; Kaufman B., Shapira-Frommer R., Schmutzler R.K., Audeh M.W., Friedlander M., Balmaña J., et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50. DOI: 10. 1200/JCO.2014.56.2728; Lowery M.A., Kelsen D.P., Capanu M., Smith S.C., Lee J.W., Stadler Z.K., et al. Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. Eur J Cancer. 2017;89:19–26. DOI:10.1016/j.ejca.2017.11.004; Kunzmann V., Algül N., Goekkurt E., Siegler G.M., Martens U.M., Waldschmidt D., et al. 671OConversion rate in locally advanced pancreatic cancer (LAPC) after nab-paclitaxel/gemcitabine- or FOLFIRINOX-based induction chemotherapy (NEOLAP): Final results of a multicenter randomised phase II AIO trial. Ann Oncol. 2019;30(5):247. DOI:10.1093/annonc/mdz247; Dahan L., Williet N., Le Malicot K., Phelip J.M., Desrame J., Bouché O., et al. Randomized phase II trial evaluating two sequential treatments in first line of metastatic pancreatic cancer: results of the PANOPTIMOXPRODIGE 35 Trial. J Clin Oncol. 2021;39(29):3242–50. DOI:10.1200/JCO.20.03329; Golan T., Hammel P., Reni M., Cutsem E.V., Macarulla T., Hall M.J., et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381:317–27. DOI:10.1056/NEJMoa1903387; O’Reilly E.M., Lee J.W., Lowery M.A., Capanu M., Stadler Z.K., Moore M.J., et al. Phase 1 trial evaluating cisplatin, gemcitabine, and veliparib in 2 patient cohorts: Germline BRCA mutation carriers and wild-type BRCA pancreatic ductal adenocarcinoma. Cancer. 2018;124(7):1374– 82. DOI:10.1002/cncr.31218; O’Reilly E.M., Lee J.W., Zalupski M., Capanu M., Park J., Golan T., et al. Randomized, multicenter, phase ii trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adeno - carcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol. 2020;38(13):1378–88. DOI:10.1200/JCO.19.02931; Murai J., Zhang Y., Morris J., Ji J., Takeda S., Doroshow J.H., et al. Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition. J Pharmacol Exp Ther. 2014;349(3):408–16. DOI:10.1124/jpet.113.210146; Yap T.A., Plummer R., Azad N.S., Helleday T. The DNA damaging revolution: PARP inhibitors and beyond. Am Soc Clin Oncol Edu. 2019;39:185–95. DOI:10.1200/EDBK_238473; McCann K.E. Advances in the use of PARP inhibitors for RCA1/2associated breast cancer: talazoparib. Future Oncol. 2019;15(15):1707–15. DOI:10.2217/fon-2018-0751; Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014;20(3):764–75. DOI:10.1158/1078-0432.CCR-13-2287; Golmard L., Castéra L., Krieger S., Moncoutier V., Abidallah K., Tenreiro H., et al. Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur J Hum Genet. 2017;25(12):1345–53. DOI:10.1038/s41431-017-0021-2; Villarroel M.C., Rajeshkumar N.V., Garrido-Laguna I., De Jesus-Acosta A., Jones S., Maitra A., et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol Cancer Ther. 2011;10(1):3–8. DOI:10.1158/1535-7163.MCT-10-0893; Chan D., Clarke S., Gill A.J., Chantrill L., Samra J., Li B.T., et al. Patho - genic PALB2 mutation in metastatic pancreatic adenocarcinoma and neuroendocrine tumour: a case report. Mol Clin Oncol. 2015;3(4):817– 9. DOI:10.3892/mco.2015.533; Shroff R.T., Hendifar A., McWilliams R.R., Geva R., Epelbaum R., Rolfe L., et al. Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. JCO Precis Oncol. 2018;2018:PO.17.00316. DOI:10.1200/PO.17.00316; Lowery M.A., Jordan E.J., Basturk O., Ptashkin R.N., Zehir A., Berger M.F., et al. Real-time genomic profiling of pancreatic ductal adenocar - cinoma: potential actionability and correlation with clinical phenotype. Clin Cancer Res. 2017;23 (20):6094–100. DOI:10.1158/1078-0432.CCR-17-0899; Mirza M.R., Monk B.J., Herrstedt J., Sc D.M., Oza A.M., Mahner S., et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375(22):2154–64. DOI:10.1056/NEJMoa1611310; Swisher E.M., Lin K.K., Oza A.M., Scott C.L., Giordano H., Sun J., et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017;18(1):75–87. DOI:10.1016/S1470-2045(16)30559-9; Clarke N., Wiechno P., Alekseev B., Sala N., Jones R., Kocak I., et al. Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2018;19(7):975–86. DOI:10.1016/S1470-2045(18)30365-6; Hussain M., Mateo J., Fizazi K., Saad F., Shore N.D., Sandhu S., et al. LBA12_PR — PROfound: Phase III study of olaparib versus enzaluta - mide or abiraterone for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) gene altera - tions. Ann Oncol. 2019;30(suppl.5):v881–2. DOI:10.1093/annonc/mdz394.039; https://www.surgonco.ru/jour/article/view/674