-
1Academic Journal
المؤلفون: S. V. Popov, R. G. Huseynov, D. A. Saydulaev, S. V. Sadovnikov, Yu. V. Kisil, K. V. Sivak, N. S. Bunenkov, V. V. Perepelitsa, A. S. Ulitina, T. A. Lelyavina, С. В. Попов, Р. Г. Гусейнов, Д. А. Сайдулаев, С. В. Садовников, Ю. В. Кисиль, К. В. Сивак, Н. С. Буненков, В. В. Перепелица, А. С. Улитина, Т. А. Лелявина
المصدر: Russian Journal of Transplantology and Artificial Organs; Том 25, № 2 (2023); 15-25 ; Вестник трансплантологии и искусственных органов; Том 25, № 2 (2023); 15-25 ; 2412-6160 ; 1995-1191
مصطلحات موضوعية: трансплантация почки, benign prostatic hyperplasia, kidney transplantation, доброкачественная гиперплазия предстательной железы
وصف الملف: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1603/1467; https://journal.transpl.ru/vtio/article/downloadSuppFile/1603/1265; Годовой отчет о трансплантологии в Европе за 2019 год. https://www.eurotransplant.org/wp-content/uploads/2020/06/AnnualReport-2019.pdf.; Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2018 году. XII сообщение Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2019; 21 (3): 7–32. https://doi.org/10.15825/1995-1191-2019.; Кабанова СА, Богопольский ПМ. Пересадка почки: история, итоги и перспективы. Трансплантология. 2015; (2): 49–58.; Султанов ПК, Хаджибаев ФА, Эргашев ДН, Исматов АА. Анализ осложнений после трансплантации почки. Вестник экстренной медицины. 2021; 14 (1): 55–63.; Dos Santos Mantovani M, Coelho de Carvalho N, Archangelo TE, Modelli de Andrade LG, Pires Ferreira Filho S, de Souza Cavalcante R et al. Frailty predicts surgical complications after kidney transplantation. A propensity score matched study. PLoS One. 2020 Feb 26; 15 (2): e0229531.; Bessede T, Hammoudi Y, Bedretdinova D, Parier B, Francois H, Durrbach A, Benoit G. Preoperative Risk Factors Associated With Urinary Complications After Kidney Transplantation. Transplant Proc. 2017 Nov; 49 (9): 2018–2024.; Hickman LA, Sawinski D, Guzzo T, Locke JE. Urologic malignancies in kidney transplantation. Am J Transplant. 2018 Jan; 18 (1): 13–22.; Shimizu T, Sugihara T, Kamei J, Takeshima S, Kinoshita Y, Kubo T et al. Predictive factors and management of urinary tract infections after kidney transplantation: a retrospective cohort study. Clin Exp Nephrol. 2021 Feb; 25 (2): 200–206.; Thuret R, Timsit MO, Kleinclauss F. Chronic kidney disease and kidney transplantation. Prog Urol. 2016 Nov; 26 (15): 882–908.; Billis A, Freitas LLL, Costa LBE, Barreto IS, Botega AAR, Pereira TA, D’Ancona CA. Lower Urinary Tract Symptoms Due to Xanthoma of the Prostate After Kidney Transplantation: A Case Report. Transplant Proc. 2020 Nov; 52 (9): 2736–2738.; Frascà GM, Brigante F, Volpe A, Cosmai L, Gallieni M, Porta C. Kidney transplantation in patients with previous renal cancer: a critical appraisal of current evidence and guidelines. J Nephrol. 2019 Feb; 32 (1): 57–64.; Tan JHS, Bhatia K, Sharma V, Swamy M, van Dellen D, Dhanda R, Khambalia H. Enhanced recovery after surgery recommendations for renal transplantation: guidelines. Br J Surg. 2022 Dec 13; 110 (1): 57–59.; Thuret R, Kleinclauss F, Terrier N, Karam G, Timsit MO. Challenges in renal transplantation. Prog Urol. 2016 Nov; 26 (15): 1001–1044. 14. Maggiore U, Abramowicz D, Budde K. Renal transplantation in the elderly. Transplant Rev (Orlando). 2015 Oct; 29 (4): 191–192.; Rodríguez Faba O, Boissier R, Budde K, Figueiredo A, Taylor CF, Hevia V et al. European Association of Urology Guidelines on Renal Transplantation: Update 2018. Eur Urol Focus. 2018 Mar; 4 (2): 208–215.; Cheung CY, Tang SCW. An update on cancer after kidney transplantation. Nephrol Dial Transplant. 2019 Jun 1; 34 (6): 914–920.; Egan KB. The epidemiology of benign prostatic hyperplasia associated with lower urinary tractsymptoms: prevalence and incident rates. Urol Clin North Am. 2016; 43: 289.; De Oliveira Marinho AC, TavaresdaSilva E, Bastos CA, Roseiro A, Parada B, Retroz E et al. Acute Urinary Retention After Kidney Transplant: Effect on Graft Function, Predictive Factors, and Treatment. Transplant Proc. 2021 Jul-Aug; 53 (6): 1933–1938.; Sarier M, Yayar O, Yavuz A, Turgut H, Kukul E. Update on the Management of Urological Problems Following Kidney Transplantation. Urol Int. 2021; 105 (7–8): 541–547.; Lerner LB, McVary KT, Barry MJ, Bixler BR, Dahm P, Das AK et al. Management of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: AUA GUIDELINE PART I – Initial Work-up and Medical Management. J Urol. 2021 Oct; 206 (4): 806–817.; Lerner LB, McVary KT, Barry MJ, Bixler BR, Dahm P, Das AK et al. Management of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: AUA GUIDELINE PART II – Surgical Evaluation and Treatment. J Urol. 2021 Oct; 206 (4): 818–826.; Касян ГР, Ходырева ЛА, Дударева АА и др. Комбинированное лечение симптомов нижних мочевых путей у мужчин. Медицинский совет. 2016; 5: 84–90.; Seo JH, Han JS, Lee Y, Myong JP, Ha US. Fall risk related to subtype-specific alpha-antagonists for benign prostatic hyperplasia: a nationwide Korean populationbased cohort study. World J Urol. 2022 Dec; 40 (12): 3043–3048.; Пушкарь ДЮ, Раснер ПИ, Харчилава РР. Российские клинические рекомендации с современными данными ведущих российских специалистов. Симптомы нижних мочевыводящих путей и доброкачественная гиперплазия предстательной железы. Урология. 2016; (2, прилож.): 4–19.; Раснер ПИ, Газимиев МА, Гаджиева ЗК и др. Расстройства мочеиспускания у мужчин: методические рекомендации, № 6. М.: АБВ-пресс, 2017; 35.; Павлов ВН, Галимзянов ВЗ, Казихинуров АА, Пушкарев АМ, Загитов АР, Казихинурова АА, Шарипов ИР. Симптомы нижних мочевыводящих путей и доброкачественная гиперплазия предстательной железы: учебное пособие. Уфа: БГМУ, 2018; 86.; Foster HE, Dahm P, Kohler TS et al. Surgical management of lower urinary tract symptom sattributed to benign prostatic hyperplasia: AUA Guideline amendment 2019. J Urol. 2019; 202: 592.; Marks LS, Gittelman MC, Hill LA, Volinn W, Hoel G. Rapid efficacy of the highly selective α1A-adrenoceptor antagonist silodosin in men with signs and symptoms of benign prostatic hyperplasia: pooled results of 2 phase 3 studies. J Urol. 2013; 189 (1 Suppl): S122–S128.; Homma Y, Kawabe K, Tsukamoto T et al. Estimate criteria for diagnosis and severity in benign prostatic hyperplasia. Int J Urol. 1996; 3: 261–266.; Debruyne F, Boyle P, Calais Da Silva F et al. Evaluation of the clinical benefit of permixon and tamsulosin in severe BPH patients – PERMAL study subset analysis. Eur Urol. 2004; 45: 773–779.; Razek M, Abolyosr A, Mhammed O, Fathi A, Talaat M, Hassan A. Prospective comparison of tadalafil 5 mg alone, silodosin 8 mg alone, and the combination of both in treatment of lower urinary tract symptoms related to benign prostatic hyperplasia. World J Urol. 2022. Aug; 40 (8): 2063–2070.; Lukacs B, Grange JC, Comet D. One-year follow-up of 2829 patients with moderate to severe lower urinarytract symptoms treated with alfuzosin in general practice according to IPSS and a health-related quality-of-life questionnaire. BPM Group in General Practice Urology. 2000; 55: 540–546.; Barendrecht MM, Abrams P, Schumacher H, de a Rosette JJ, Michel MC. Do α1-adrenoceptor antagonists improve lower urinary tract symptoms by reducing bladder outlet resistance? Neurourol Urodyn. 2008; 27: 226–230.; Fusco F, Creta M, De Nunzio C et al. Progressive bladder remodeling due to bladder outlet obstruction: a systematic review of morphological and molecular evidences in humans. BMC Urol. 2018; 18: 15.; Gul ZG, Kaplan SA. BPH: why do patients fail medical therapy? Curr Urol Rep. 2019; 20: 40.; La Vignera S, Aversa A, Cannarella R, Condorelli RA, Duca Y, Russo GI, Calogero AE. Pharmacological treatment of lower urinary tract symptoms in benign prostatic hyperplasia: consequences on sexual function and possible endocrine effects. Expert Opin Pharmacother. 2021 Feb; 22 (2): 179–189.; Alcaraz A, CastroDíaz D, Gacci M, Salonia A, Ficarra V, CarballidoRodríguez J et al. Efficacy and Tolerability of 6-Month Treatment with Tamsulosin Plus the Hexanic Extract of Serenoa repens versus Tamsulosin Plus 5-Alpha-Reductase Inhibitors for Moderate-toSevere LUTS-BPH Patients: Results of a Paired Matched Clinical Study. On Behalf Of The Qualiprost Study Group. J Clin Med. 2022 Jun 22; 11 (13): 3615.; Bauer SR, Walter LC, Ensrud KE, Suskind AM, Newman JC, Ricke WA et al. Assessment of Frailty and Association With Progression of Benign Prostatic Hyperplasia Symptoms and Serious Adverse Events Among Men Using Drug Therapy. JAMA Netw Open. 2021 Nov 1; 4 (11): e2134427.; Kuzmenko AV, Kuzmenko VV, Gyaurgiev TA. Comparative analysis of the effectiveness of early and delayed initiation of combined DRUG therapy for bph. Urologiia. 2021 May; (2): 27–30.; Gravas S, Cornu JN, Gacci M et al. EAU guidelines on management of non-neurogenic male LUTS. Presented at 2020 EAU Annual Congress, Amsterdam, Arnhem, The Netherlands. Available at http://uroweb.org/guidelines/compilations-of-all-guidelines/.; Anderson BB, Pariser JJ, Helfand BT. Comparison of Patients Undergoing PVP Versus TURP for LUTS/BPH. Curr Urol Rep. 2015 Aug; 16 (8): 55.; Drouin S, Defortescu G, Prudhomme T, Culty T, Verhoest G, Doerfler A et al. Lower urinary tract symptoms and urinary incontinence in renal transplant recipients and candidates: The French guidelines from CTAFU. Prog Urol. 2021 Jan; 31 (1): 45–49.; Checcucci E, Veccia A, De Cillis S, Piramide F, Volpi G, Amparore D et al. New Ultra-minimally Invasive Surgical Treatment for Benign Prostatic Hyperplasia: A Systematic Review and Analysis of Comparative Outcomes. Uro-technology and SoMe Working Group of the Young Academic Urologists Working Party of the European Association of Urology and of the Lower Tract and Research Group of the European Section of Uro-technology. Eur Urol Open Sci. 2021 Sep 22; 33: 28–41.; Righetto M, Mancini M, Modonutti D, Calpista A, Beltrami P, Dal Moro F. Patients with renal transplant and moderate-to-severe LUTS benefit from urodynamic evaluation and early transurethral resection of the prostate. World J Urol. 2021 Dec; 39 (12): 4397–4404.; Sarier M, Tekin S, Duman İ, Yuksel Y, Demir M, Alptekinkaya F et al. Results of transurethral resection of the prostate in renal transplant recipients: a single center experience. World J Urol. 2018 Jan; 36 (1): 99–103.; Rassweiler J, Teber D, Kuntz R et al. Complications of transurethral resection of the prostate (TURP) dincidence, management, and prevention. Eur Urol. 2006; 50: 969.; Liu Z, Li YW, Wu WR et al. Long-term clinicale fficacy and safety profile of transurethral resection of prostate versus plasma kinetic resection of the prostate for benign prostatic hyperplasia. Urology. 2017; 103: 198.; Friedl A, Schneeweiss J, Stangl K et al. The adjustable transobturator male system in stress urinary incontinence after transurethral resection of the prostate. Urology. 2017; 109: 184.; Boston Scientific Corporation: Intended use. Rezum Instruction for Use, 10-2019; 5.; Dixon CM, Rijo Cedano E, Mynderse LA et al. Transurethral convective water vapor as atreatment for lower urinary tract symptom-atology due to benign prostatic hyperplasiausing the Rezum(R) system: evaluation of acuteablative capabilities in the human prostate. Res Rep Urol. 2015; 7: 13.; Bouza C, Lopez T, Magro A et al. Systematic review and meta-analysis of transurethral needle ablation in symptomatic benign prostatic hyperplasia. BMC Urol. 2006; 6: 14.; McVary KT, Rogers T, Mahon J et al. Is sexual function better preserved after water vapor thermal therapy or medical therapy for lower urinary tract symptoms due to benign prostatic hyperplasia? J Sex Med. 2018; 15: 1728.; National Institute for Health and Care Excellence: Rezum for treating lower urinary tractsymptoms secondary to benign prostatic hyperplasia (24 June 2020). NICE Guideline No. MTG49.; Mynderse LA, Roehrborn CG, Partin AW et al. Results of a 5-year multicenter trial of a new generation cooled high energy transurethral microwave thermal therapy catheter for benign prostatic hyperplasia. J Urol. 2011; 185: 1804.; Gravas S, Cornu JN, Gacci M et al. EAU Guidelines on the Assessment of Non-neurogenic Male Lower Urinary Tract Symptoms including Benign Prostatic Obstruction. Arnhem, The Netherlands: EAU Guidelines Office. 2020.; McVary KT, Rogers T, Roehrborn CG. Rezum water vapor thermal therapy for lower urinarytract symptoms associated with benign prostatichyperplasia: 4-year results from randomized controlled study. Urology. 2019; 126: 171.; McVary KT, Roehrborn CG. Three-year out-comes of the prospective, randomized controlled Rezum System Study: convective radio frequency thermal therapy for treatment of lower urinarytract symptoms due to benign prostatic hyperplasia. Urology. 2018; 111: 1.; U.S. Food and Drug Administration: Select Up-dates for Guidance for the Non-Clinical and Clinical Investigation of Devices Used for the Treatment of Benign Prostatic Hyperplasia (BPH): Draft Guidance for Industry and Food and Drug Administration Staff (July 14, 2020).; Roehrborn CG, Wilson TH, Black LK. Quantifying the contribution of symptom improvement to satisfaction of men with moderate to severe benign prostatic hyperplasia: 4-year data from the CombAT trial. J Urol. 2012; 187: 1732.; Miller LE, Chughtai B, Dornbier RA et al. Surgical reintervention rate after prostatic urethral lift: systematic review and meta-analysis involving over 2,000 patients. J Urol. 2020; 204: 1019.; Roehrborn CG, Barkin J, Gange SN et al. Five year results of the prospective randomized controlled prostatic urethral L.I.F.T. study. Can J Urol. 2017; 24: 8802.; Zlotta AR, Giannakopoulos X, Maehlum O et al. Longterm evaluation of transurethral needle ablation of the prostate (TUNA) for treatment of symptomatic benign prostatic hyperplasia: clinical outcome up to five years from three centers. Eur Urol. 2003; 44: 89.; Rosario DJ, Phillips JT, Chapple CR. Durability and cost-effectiveness of transurethral needle ablation of the prostate as an alternative to transurethral resection of the prostate when alpha-adrenergic antagonist therapy fails. J Urol. 2007; 177: 1047.; Hill B, Belville W, Bruskewitz R et al. Transurethral needle ablation versus transurethral resection of the prostate for the treatment of symptomatic benign prostatic hyperplasia: 5-year results of a prospective, randomized, multicenter clinical trial. J Urol. 2004; 171: 2336.; Gupta N, Rogers T, Holland B et al. Three-year treatment outcomes of water vapor thermal therapy compared to doxazosin, finasteride and combination drug therapy in men with benign prostatic hyperplasia: cohort data from the MTOPS trial. J Urol. 200; 405: 2018.; Malde S, Rajagopalan A, Patel N et al. Potassium-titanyl-phosphate laser photoselective vaporization for benign prostatic hyperplasia: 5-year follow-up from a district general hospital. J Endourol. 2012; 26: 878.; Lee HE, Kim B, Yoon HS, Suh J, Oh SJ. Outcome of Patients With Elevated Prostate-Specific Antigen and Lower Urinary Tract Symptoms Receiving Holmium Laser Enucleation of the Prostate. Int Neurourol J. 2022 Sep; 26 (3): 248–257.; Takeuchi Y, Sawada Y, Watanabe S, NiItsu Y, Sekido N. Age-specific effect of transurethral holmium laser enucleation of the prostate on overactive bladder in men with benign prostatic hyperplasia: An investigation using an overactive bladder symptom score. Low Urin Tract Symptoms. 2022 Dec 11.; Nohara T, Matsuyama S, Shima T, Kawaguchi S, Seto C. Holmium Laser Enucleation of the Prostate With Percutaneous Nephrostomy Into the Transplanted Kidney in Patient With Severe Benign Prostatic Hyperplasia With Vesicoureteral Reflux – A Case Report. Urol Case Rep. 2015 Dec 10; 4: 33–35.; Prudhomme T, Marquette T, Péré M. Benign Prostatic Hyperplasia Endoscopic Surgical Procedures in Kidney Transplant Recipients: A Comparison Between Holmium Laser Enucleation of the Prostate, GreenLight Photoselective Vaporization of the Prostate, and Transurethral Resection of the Prostate. J Endourol. 2020 Feb; 34 (2): 184–191.; Baboudjian M, Fourmarier M, GondranTellier B, Pradere B, Userovici M, Alegorides C, Barry Delongchamps N. Head-to-head comparison of prostatic urethral lift and water vapor thermal therapy for the treatment of symptomatic benign prostatic hyperplasia: a real-life study. Int Urol Nephrol. 2021 Sep; 53 (9): 1757–1763.; Alexander CE, Scullion MM, Omar MI, Yuan Y, Mamoulakis C, N’Dow JM et al. Bipolar versus monopolar transurethral resection of the prostate for lower urinary tract symptoms secondary to benign prostatic obstruction. Cochrane Database Syst Rev. 2019 Dec 3; 12 (12): CD009629.; Mamoulakis C, Ubbink DT, de la Rosette JJ. Bipolar versus monopolar transurethral resection of the prostate: A systematic review and meta-analysis of randomized controlled trials. Eur Urol. 2009; 56: 798–809. doi:10.1016/j.eururo.2009.06.037.; Ahyai SA, Gilling P, Kaplan SA et al. Meta-analysis of functional outcomes and complications following transurethral procedures for lower urinary tract symptoms resulting from benign prostatic enlargement. Eur Urol. 2010; 58: 384–397.; Burke N, Whelan JP, Goeree L et al. Systematic review and meta-analysis of transurethral resection of the prostate vs. minimally invasive procedures for the treatment of benign prostatic obstruction. Urology. 2010; 75: 1015–1022.; Omar MI, Lam TBL, Cameron A et al. Systematic review and meta-analysis of the clinical effectiveness of bipolar compared to monopolar transurethral resection of the prostate. BJU Int. 2014; 113: 24–35.; Cornu JN, Ahyai S, Bachmann A et al. A systematic review and meta-analysis of functional outcomes and complications following transurethral procedures for lower urinary tract symptoms resulting from benign prostatic obstruction: An update. Eur Urol. 2015; 67: 1066–1096.; Mamoulakis C, Sofras F, de la Rosette J et al. Bipolar vs. monopolar transurethral resection of the prostate for lower urinary tract symptoms secondary to benign prostatic obstruction. Cochrane Database Syst Rev. 2014; 1: CD009629.; Taylor BL, Jaffe WI. Electrosurgical transurethral resection of the prostate and transurethral incision of the prostate (monopolar techniques). Can J Urol. 2015 Oct; 22 Suppl 1: 24–29.; Sarıer M, Duman İ, Demir M, Yüksel Y, Emek M, Kukul E. The outcomes of transurethral incision/resection of the prostate (TUIP/TURP) performed early afterrenal transplantation. Turk J Urol. 2018 Mar; 44 (2): 172–177.; Sarier M, Duman I, Kilic S, Yuksel Y, Demir M, Aslan M et al. Comparative Results of Transurethral Incision with Transurethral Resection of The Prostate in Renal Transplant Recipients with Benign Prostate Hyperplasia. Urol J. 2018 Jul 10; 15 (4): 209–213.; Duty BD, Conlin MJ, Fuchs EF, Barry JM. The current role of endourologic management of renal transplantation complications. Adv Urol. 2013; 2013: 246520.; Cardi A, Palleschi G, Patruno G, Tuffu G, D’Amico FE, De Vico A et al. Robot-assisted simple prostatectomy for treatment of large prostatic adenomas: surgical technique and outcomes from a high-volume robotic centre. World J Urol. 2022 Dec 25.; Law YXT, Chen WJK, Shen L, Chua WJ. Is transurethral needle ablation of prostate out of fashion? Outcomes of single session office-based transurethral needle ablation of prostate in patients with symptomatic benign prostatic hyperplasia. Investig Clin Urol. 2019 Sep; 60 (5): 351–358.; Powell T, Rahman S, Staib L, Bhatia S, Ayyagari R. Operator Learning Curve for Prostatic Artery Embolization and Its Impact on Outcomes in 296 Patients. Cardiovasc Intervent Radiol. 2022 Dec 1.; Goyal P, Salem R, Mouli SK. Controversies in Prostate Artery Embolization: Future Best Practice. Semin Intervent Radiol. 2022 Dec 20; 39 (6): 562–570.; GondranTellier B, McManus R, Sichez PC, Akiki A, Gaillet S, Toledano H et al. Efficacy and Safety of Surgery for Benign Prostatic Obstruction in Patients with Preoperative Urinary Catheter. J Endourol. 2021 Jan; 35 (1): 102–108.; Яремин БИ, Харитонов БИ, Миронов АА, Масликова УВ, Александрова ВЭ. Трансплантация почки – поиск оптимальной хирургической техники. Вестник медицинского института «РЕАВИЗ». 2017; (5): 94–104.; Chadban SJ, Ahn C, Axelrod DA, Foster BJ, Kasiske BL, Kher V et al. KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation. 2020 Apr; 104 (4S1 Suppl 1): S11–S103.; Choudhury S, Haldar B, Pal DK. Spectrum of lower urinary tract symptoms after renal transplant among adult non-urologic anuric patients and their management in a tertiary care center. Urologia. 2022 Feb 3: 3915603211048150. doi:10.1177/03915603211048150.; Клинические рекомендации Европейской ассоциации урологов [Электронный ресурс]. М.: Медконгресс, 2019; 1368.; Интегративная урология. Руководство для врачей / Под ред. П.В. Глыбочко, Ю.Г. Аляева. М.: Медфорум, 2014: 128–239, 314–326.; na P, Baboudjian M, Piana A, Girón I et al. New Generation Pulse Modulation in Holmium:YAG Lasers: A Systematic Review of the Literature and Meta-Analysis. J Clin Med. 2022 Jun 4; 11 (11): 3208.; Perri A, Izzo G, Lofaro D, La Vignera S, Brunetti A, Calogero AE, Aversa A. Erectile Dysfunction after Kidney Transplantation. J Clin Med. 2020 Jun 25; 9 (6): 1991.; Kleinclauss F, Thuret R, Murez T, Timsit MO. Urologic malignancies in renal transplant candidates and recipients. Prog Urol. 2016 Nov; 26 (15): 1094–1113.; Данович МГ. Трансплантация почки. Пер. с англ. под ред. Я.Г. Мойсюка. М.: ГЭОТАР Медиа, 2014; 848.; Latchamsetty KC, Mital D, Jensik S. Use of collagen injections for vesicoureteral reflux in transplanted kidney. Transplant Proc. 2003; 35: 1378.; Li Marzi V, Filocamo MT, Dattolo E. The treatment of fistulae and ureteral stenosis after kidney transplantation. Transplant Proc. 2005; 37: 2516.; Mokos I, Kastelan Z, BasićJukić N, Kes P, Pasini J. Transurethral incision/resection of the prostate (TUIP/ TURP) in operative treatment of repeated bladder outlet obstruction early after kidney transplantation. Acta Clin Croat. 2011 Sep; 50 (3): 381–384.; Védrine N, Nsabimbona B, Soares P, Deteix P, Boiteux JP, Guy L. Transurethral resection or incision of the prostate in the immediate postoperative follow-up of renal transplantation. Prog Urol. 2009 Dec; 19 (11): 845–849.; Gratzke C, Pahde A, Dickmann M, Reich O, Seitz M, Jauch K et al. Predictive factors for urinary retention following kidney transplantation in male patients. Scand J Urol Nephrol. 2012 Feb; 46 (1): 44–47.; Gill BC, Ulchaker JC. Costs of managing benign prostatic hyperplasia in the office and operating room. Curr Urol Rep. 2018; 19: 72.; https://journal.transpl.ru/vtio/article/view/1603
-
2Academic Journal
المؤلفون: S. V. Popov, R. G. Guseynov, Ye. V. Pomeshkin, K. V. Sivak, V. V. Perepelitsa, K. A. Nadein, N. S. Bunenkov, A. S. Ulitina, С. В. Попов, Р. Г. Гусейнов, Е. В. Помешкин, К. В. Сивак, В. В. Перепелица, К. А. Надеин, Н. С. Буненков, А. С. Улитина
المصدر: Research and Practical Medicine Journal; Том 10, № 2 (2023); 104-117 ; Research'n Practical Medicine Journal; Том 10, № 2 (2023); 104-117 ; 2410-1893 ; 10.17709/2410-1893-2023-10-2
مصطلحات موضوعية: биомаркеры, chronic kidney disease, acute kidney injury, ferroptosis, hyperkalemia, biomarkers, хроническая болезнь почек, острое почечное повреждение, ферроптоз, гиперкалиемия
وصف الملف: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/888/556; https://www.rpmj.ru/rpmj/article/view/888/568; https://www.rpmj.ru/rpmj/article/downloadSuppFile/888/751; https://www.rpmj.ru/rpmj/article/downloadSuppFile/888/752; Du Z, Chen W, Xia Q, Shi O, Chen Q. Trends and projections of kidney cancer incidence at the global and national levels, 1990-2030: a Bayesian age-period-cohort modeling study. Biomark Res. 2020 May 13;8:16. https://doi.org/10.1186/s40364-020-00195-3; Case J, Khan S, Khalid R, Khan A. Epidemiology of acute kidney injury in the intensive care unit. Crit Care Res Pract. 2013;2013:479730. https://doi.org/10.1155/2013/479730; Padala SA, Barsouk A, Thandra KC, Saginala K, Mohammed A, Vakiti A, et al. Epidemiology of Renal Cell Carcinoma. World J Oncol. 2020;11(3):79–87. https://doi.org/10.14740/wjon1279; Farooqi S, Dickhout JG. Major comorbid disease processes associated with increased incidence of acute kidney injury. World J Nephrol. 2016 Mar 6;5(2):139–146. https://doi.org/10.5527/wjn.v5.i2.139; Rosner MH, Perazella MA. Acute kidney injury in the patient with cancer. Kidney Res Clin Pract. 2019 Sep 30;38(3):295–308. https://doi.org/10.23876/j.krcp.19.042; Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52. https://doi.org/10.1038/s41572-021-00284-z; Sundström J, Bodegard J, Bollmann A, Vervloet MG, Mark PB, Karasik A, et al.; CaReMe CKD Investigators. Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2·4 million patients from 11 countries: The CaReMe CKD study. Lancet Reg Health Eur. 2022 Jun 30;20:100438. https://doi.org/10.1016/j.lanepe.2022.100438; Кульченко Н. Г. Лечение локализованного рака почки. Южно-Российский онкологический журнал. 2020;1(1):69–75. https://doi.org/10.37748/2687-0533-2020-1-1-6; Шевченко А. Н., Бреус А. А., Нескубина И. В., Дженкова Е. А., Филатова Е. В., Швырёв Д. А. Оценка прогностической значимости некоторых биологических факторов при локальном и генерализованном светлоклеточном раке почки. Южно-Российский онкологический журнал. 2020;1(1):6–22. https://doi.org/10.37748/2687-0533-2020-1-1-1; Димитриади С. Н., Ушакова Н. Д., Величко А. В., Франциянц Е. М. Оценка корригирующего влияния лечебного плазмафереза на состояние почечной функции у больных после хирургического лечения локализованного рака почки. Южно-Российский онкологический журнал. 2021;2(2):6–14. https://doi.org/10.37748/2686-9039-2021-2-2-1; Sokolov DV, Polushin YS. Acute renal injury in the peri-operative period. Messenger of Anesthesiology and Resuscitation. 2018;15(1):46–54; Burne-Taney MJ, Liu M, Ascon D, Molls RR, Racusen L, Rabb H. Transfer of lymphocytes from mice with renal ischemia can induce albuminuria in naive mice: a possible mechanism linking early injury and progressive renal disease? Am J Physiol Renal Physiol. 2006;291(5):F981-6. https://doi.org/10.1152/ajprenal.00229.2005; Попов С. В., Гусейнов Р. Г., Скрябин О. Н., Сивак К. В. Тепловая ишемия почки. М., 2021.; Митциев А. К. Изменение активности перекисного окисления липидов как механизм развития патологии почек при действии тяжелых металлов. Патологическая физиология и экспериментальная терапия. 2015;2:72–76.; Balzer MS, Doke T, Yang YW, Aldridge DL, Hu H, Mai H, et al. Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat Commun. 2022 Jul 11;13(1):4018. https://doi.org/10.1038/s41467-022-31772-9; Liu Y, Wang J. Ferroptosis, a Rising Force against Renal Fibrosis. Oxid Med Cell Longev. 2022 Oct 12;2022:7686956. https://doi.org/10.1155/2022/7686956; Zhou RP, Chen Y, Wei X, Yu B, Xiong ZG, Lu C, et al. Novel insights into ferroptosis: Implications for age-related diseases. Theranostics. 2020;10(26):11976–11997. https://doi.org/10.7150/thno.50663; Тимербулатов Ш. В., Тимербулатов М. В., Султанбаев А. У. Реперфузионный синдром в абдоминальной хирургии. Медицинский вестник Башкортостана. 2010;5(4):145–151.; Cho A, Lee JE, Kwon GY, Huh W, Lee HM, Kim YG, Kim DJ, Oh HY, Choi HY. Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Nephrol Dial Transplant. 2011 Nov;26(11):3496–3501. https://doi.org/10.1093/ndt/gfr094; Lameire N, Vanholder R, Van Biesen W, Benoit D. Acute kidney injury in critically ill cancer patients: an update. Crit Care. 2016 Aug 2;20(1):209. https://doi.org/10.1186/s13054-016-1382-6; Grams ME, Sang Y, Coresh J, Ballew S, Matsushita K, Molnar MZ, et al. Acute Kidney Injury After Major Surgery: A Retrospective Analysis of Veterans Health Administration Data. Am J Kidney Dis. 2016;67(6):872–880. https://doi.org/10.1053/j.ajkd.2015.07.022; Meersch M, Schmidt C, Zarbock A. Perioperative Acute Kidney Injury: An Under-Recognized Problem. Anesth Analg. 2017;125(4):1223–1232. https://doi.org/10.1213/ane.0000000000002369; Djordjevic A, Susak S, Velicki L, Antonic M. Acute Kidney Injury after Open-Heart Surgery Procedures. Acta Clin Croat. 2021;60(1):120–126. https://doi.org/10.20471/acc.2021.60.01.17; Antonelli A, Allinovi M, Cocci A, Russo GI, Schiavina R, Rocco B, et al. The Predictive Role of Biomarkers for the Detection of Acute Kidney Injury After Partial or Radical Nephrectomy: A Systematic Review of the Literature. Eur Urol Focus. 2020;6(2):344–353. https://doi.org/10.1016/j.euf.2018.09.020; Martini A, Sfakianos JP, Paulucci DJ, Abaza R, Eun DD, Bhandari A, et al. Predicting acute kidney injury after robot-assisted partial nephrectomy: Implications for patient selection and postoperative management. Urol Oncol. 2019 Jul;37(7):445–451. https://doi.org/10.1016/j.urolonc.2019.04.018; Wu Y, Chen J, Luo C, Chen L, Huang B. Predicting the risk of postoperative acute kidney injury: development and assessment of a novel predictive nomogram. J Int Med Res. 2021 Aug;49(8):3000605211032838. https://doi.org/10.1177/03000605211032838; Матвеев В. Б. Клиническая онкоурология. М., 2011.; Мосоян М., Румянцев А., Есаян А., Земченко А. Отдаленные результаты открытой, лапароскопической и робот-ассистированной резекции почки. Врач. 2017;28(11):79–82.; Смирнов А. В., Румянцев А. Ш. Острое повреждение почек. Часть I. Нефрология. 2020;24(1):67–95. https://doi.org/10.36485/1561-6274-2020-24-1-67-95; Arthur JM, Hill EG, Alge JL, Lewis EC, Neely BA, Janech MG, et al. Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney Int. 2014;85(2):431–438. https://doi.org/10.1038/ki.2013.333; Смирнова Н. Н., Галкина О. В., Новикова В. П., Прокопьева Н. Э. Современные биомаркеры повреждения почек в педиатрии. Нефрология. 2019;23(4):112–118. https://doi.org/10.24884/1561-6274-2019-23-4-112-118; Vijayan A, Faubel S, Askenazi DJ, Cerda J, Fissell WH, Heung M, et al. American Society of Nephrology Acute Kidney Injury Advisory G. Clinical Use of the Urine Biomarker [TIMP-2] x [IGFBP7] for Acute Kidney Injury Risk Assessment. Am J Kidney Dis. 2016;68(1):19–28. https://doi.org/10.1053/j.ajkd.2015.12.033; Димитриади С. Н., Франциянц Е. М., Ушакова Н. Д., Розенко Д. А., Величко А. В Биомаркеры в диагностике острого повреждения почек после органосохраняющего хирургического лечения локализованного рака почки. Медицинский вестник Юга России. 2018;9(3):77–83. https://doi.org/10.21886/2219-8075-2018-9-3-77-83.; Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, Group NM. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54(6):1012–1024. https://doi.org/10.1053/j.ajkd.2009.07.020; Prowle JR, Kirwan CJ, Bellomo R. Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol. 2014;10(1):37–47. https://doi.org/10.1038/nrneph.2013.232; Raimundo M, Crichton S, Martin JR, Syed Y, Varrier M, Wyncoll D, et al. Increased Fluid Administration After Early Acute Kidney Injury is Associated with Less Renal Recovery. Shock. 2015;44(5):431–437. https://doi.org/10.1097/shk.0000000000000453; Кит О. И., Франциянц Е. М., Димитриади С. Н., Каплиева И. В., Трепитаки Л. К., Черярина Н.Д. Роль маркеров острого повреждения почек в выборе тактики хирургического лечения больных раком почки. Онкоурология. 2015;11(3):34–39. https://doi.org/10.17650/1726-9776-2015-11-3-34-39; Eggener SE, Clark MA, Shikanov S, Smith B, Kaag M, Russo P, et al. Impact of warm versus cold ischemia on renal function following partial nephrectomy. World J Urol. 2015 Mar;33(3):351–357. https://doi.org/10.1007/s00345-014-1315-4; Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol. 2009 Sep;182(3):844–853. https://doi.org/10.1016/j.juro.2009.05.035; Motzer RJ, Jonasch E, Agarwal N, Beard C, Bhayani S, Bolger GB et al. National comprehensive cancer n. Kidney cancer, version 3. 2015. J Natl Compr Canc Netw. 2015;13(2):151–159. https://doi.org/10.6004/jnccn.2015.0022; https://www.rpmj.ru/rpmj/article/view/888
-
3Academic Journal
المؤلفون: O. V. Sirotkina, A. S. Ulitina, Y. I. Zhilenkova, E. A. Zolotova, M. A. Simakova, O. M. Moiseeva, T. V. Vavilova, О. В. Сироткина, А. С. Улитина, Ю. И. Жиленкова, Е. А. Золотова, М. А. Симакова, О. М. Моисеева, Т. В. Вавилова
المساهمون: The study was supported by state assignment No. 121031100305-9 «Development of a decision support system for predicting the development of long-term outcomes of venous thromboembolic complications», Исследование выполнено при поддержке ГЗ №121031100305-9 «Разработка системы поддержки принятия решений прогноза развития отдаленных исходов венозных тромбоэмболических осложнений».
المصدر: Pharmacogenetics and Pharmacogenomics; № 1 (2023); 20-32 ; Фармакогенетика и фармакогеномика; № 1 (2023); 20-32 ; 2588-0527 ; 2686-8849
مصطلحات موضوعية: посттромбоэмболический синдром, miR-144, miR-451, microvesicles, pulmonary embolism, post-thromboembolic syndrome, микровезикулы, ТЭЛА
وصف الملف: application/pdf
Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/272/262; Pastori D, Cormaci VM, Marucci S, et al. A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology. Int J Mol Sci. 2023 Feb 5;24(4):3169. DOI:10.3390/ijms24043169.; Валиева З.С., Мартынюк Т.В. Хроническая тромбоэмболическая легочная гипертензия: от патогенеза к выбору тактики лечения. Терапевтический архив. 2022;94(7):791–796. [Valieva ZS, Martynyuk TV. Chronic thromboembolic pulmonary hypertension: from pathogenesis to the choice of treatment tactics. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(7):791–796. (In Russ.)]. DOI:10.26442/00403660.2022.07.201741.; Антонова О.А., Якушкин В.В., Мазуров А.В. Коагуляционная активность мембранных микрочастиц. Биологические мембраны. 2019;36(3):155–175. [Antonova OA, Yakushkin VV, Mazurov AV. Coagulation activity of membrane microparticles. Biologicheskiye membrany = Biological membranes. 2019;36(3):155–175. (In Russ.)]. DOI:10.1134/S0233475519030034.; Золотова Е.А., Симакова М.А., Жиленкова Ю.И. и др. Роль микро-РНК в патогенезе венозных тромбоэмболических осложнений. Российский журнал персонализированной медицины. 2022;2(1):43–50. [Zolotova EA, Simakova MA, Zhilenkova YuI et al. The role of miRNAs in the pathogenesis of venous thromboembolic complications. Russian Journal for Personalized Medicine. 2022;2(1):43–50. (In Russ.)]. DOI:10.18705/2782-3806-2022-2-1-43-50.; Alberro A, Iparraguirre L, Fernandes A, Otaegui D. Extracellular vesicles in blood: sources, effects, and applications. Int J Mol Sci. 2021;22(15):8163. DOI:10.3390/ijms22158163.; He Y, Wucorresponding Q. The effect of extracellular vesicles on thrombosis. J Cardiovasc Transl Res. 2022 Nov 28:1–16. DOI:10.1007/s12265-022-10342-w.; Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int J Mol Sci. 2021;22(1):153. DOI:10.3390/ijms22010153.; Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. DOI:10.1038/35057062.; Xue Y, Chen R, Qu L, Cao X. Noncoding RNA: from dark matter to bright star. Sci China Life Sci. 2020;63(4):463–468. DOI:10.1007/s11427-020-1676-5.; Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–3364. DOI:10.1093/nar/gkz097.; Matsuyama H, Suzuki HI. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int J Mol Sci. 2019;21(1):132. DOI:10.3390/ijms21010132.; Saliminejad K, Khorram Khorshid HR, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–5465. DOI:10.1002/jcp.27486.; Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol. 2010;49(5): 841–50. DOI:10.1016/j.yjmcc.2010.08.007.; Rasmussen KD, Simmini S, Abreu-Goodger C, et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010 Jul 5; 207(7):1351–8. DOI:10.1084/jem.20100458.; Wang X, Hong Y, Wu L et al. Deletion of microRNA-144/451 cluster aggravated brain injury in intracerebral hemorrhage mice by targeting 14-3-3ζ. Front Neurol. 2021;11:551411. DOI:10.3389/fneur.2020.551411.; He Q, Wang F, Honda T, et al. Ablation of miR-144 increases vimentin expression and atherosclerotic plaque formation. Sci Rep. 2020;10(1):6127. DOI:10.1038/s41598-020-63335-7.; Wang X, Zhu H, Zhang X, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res. 2012;94(2):379–390. DOI:10.1093/cvr/cvs096.; Tao L, Yang L, Huang X, et al. Reconstruction and aof the lncRNAmiRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in dilated cardiomyopathy. Front Genet. 2019;10:1149. DOI:10.3389/fgene.2019.01149.; Turczyńska KM, Bhattachariya A, Säll J, et al. Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling. PLoS One. 2013;8(5): e65135. DOI:10.1371/journal.pone.0065135.; Сироткина О.В., Ермаков А.И., Гайковая Л.Б. и др. Микрочастицы клеток крови у больных COVID-19 как маркер активации системы гемостаза. Тромбоз, гемостаз и реология. 2020;(4):35–40. [Sirotkina OV, Ermakov AI, Gaykovaya LB, et al. Microparticles of blood cells in patients with COVID-19 as a marker of hemostasis activation. Tromboz, gemostazireologija = Thrombosis, hemostasis and rheology. 2020;(4):35–40. (In Russ.)]. DOI:10.25555/THR.2020.4.0943.; Kabanova S, Kleinbongard P, Volkmer J, et al. Gene expression analysis of human red blood cells. Int J Med Sci. 2009;6(4):156–159. DOI:10.7150/ijms.6.156.; Groen K, Maltby VE, Lea RA, et al. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. BMC Med Genomics. 2018;11(1):48. DOI:10.1186/s12920-018-0365-7.; Chen SY, Wang Y, Telen MJ, Chi JT. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One. 2008;3(6):e2360. DOI:10.1371/journal.pone.0002360.; Lamba V, Ghodke-Puranik Y, Guan W, Lamba JK. Identification of suitable reference genes for hepatic microRNA quantitation. BMC Res Notes. 2014;7:129. DOI:10.1186/1756-0500-7-129.; Shen J, Wang Q, Gurvich I, et al. Evaluating normalization approaches for the better identification of aberrant microRNAs associated with hepatocellular carcinoma. Hepatoma Res. 2016;2:305–315. DOI:10.20517/2394-5079.2016.28.; Wagner GM, Chiu DT, Yee MC, Lubin BH. Red cell vesiculation – a common membrane physiologic event. J Lab Clin Med. 1986;108(4):315–24.; Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost. 2012;10(7):1355–62. doi:10.1111/j.1538-7836.2012.04758.x.; Koshiar RL, Somajo S, Norström E, Dahlbäck B. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS One. 2014;9(8):e104200. DOI:10.1371/journal.pone.0104200.; Papapetrou EP, Korkola JE, Sadelain M. A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells. 2010;28(2):287–96. DOI:10.1002/stem.257.; Fang X, Shen F, Lechauve C, et al. miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia. Haematologica. 2018 Mar;103(3):406–416. DOI:10.3324/haematol.2017.177394.; Yu D, dos Santos CO, Zhao G, et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 2010; 24(15):1620–1633. DOI:10.1101/gad.1942110.; Feng L, Yang X, Liang S, et al. Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway. Part Fibre Toxicol. 2019;16(1):16. DOI:10.1186/s12989-019-0300-x.; Oto J, Plana E, Solmoirago MJ, et al. microRNAs and markers of neutrophil activation as predictors of early incidental post-surgical pulmonary embolism in patients with intracranial tumors. Cancers (Basel). 2020;12(6):1536. DOI:10.3390/cancers12061536.; Morelli VM, Brækkan SK, Hansen JB. Role of microRNAs in venous thromboembolism. Int J Mol Sci. 2020;21(7):2602. DOI:10.3390/ijms21072602.; He F, Ni N, Wang H et al. OUHP: an optimized universal hairpin primer system for cost-effective and high-throughput RT-qPCR-based quantification of microRNA (miRNA) expression. Nucleic Acids Res. 2022;50(4):e22. DOI:10.1093/nar/gkab1153.; Forero DA, González-Giraldo Y, Castro-Vega LJ, Barreto GE. qPCR-based methods for expression analysis of miRNAs. Biotechniques. 2019;67(4):192–199. DOI:10.2144/btn-2019-0065.; Busk PK. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics. 2014;15:29. DOI:10.1186/1471-2105-15-29.; D’Agata R, Spoto G. Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem. 2019;411(19):4425–4444. DOI:10.1007/s00216-019-01621-8.; Zárybnický T, Matoušková P, Ambrož M, et al. The selection and validation of reference genes for mRNA and microRNA expression studies in human liver slices using RT-qPCR. Genes (Basel). 2019;10(10):763. DOI:10.3390/genes10100763.; Tafrihi M, Hasheminasab E. MiRNAs: biology, biogenesis, their web-based tools, and databases. Microrna. 2019;8(1):4–27. DOI:10.2174/2211536607666180827111633.; Felekkis K, Papaneophytou C. Challenges in using circulating micro- RNAs as biomarkers for cardiovascular diseases. Int J Mol Sci. 2020;21(2):561. DOI:10.3390/ijms21020561.; Rogula S, Pomirski B, Czyżak N, et al. Biomarker-based approach to determine etiology and severity of pulmonary hypertension: Focus on microRNA. Front Cardiovasc Med. 2022;9:980718. DOI:10.3389/fcvm.2022.980718; https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/272
-
4Academic Journal
المؤلفون: S. V. Popov, R. G. Guseynov, I. N. Orlov, V. V. Khizha, A. V. Yazenok, K. V. Sivak, V. V. Perepelitsa, N. S. Bunenkov, A. S. Ulitina, С. В. Попов, Р. Г. Гусейнов, И. Н. Орлов, В. В. Хижа, А. В. Язенок, К. В. Сивак, В. В. Перепелица, Н. С. Буненков, А. С. Улитина
المصدر: Cancer Urology; Том 19, № 3 (2023); 163-174 ; Онкоурология; Том 19, № 3 (2023); 163-174 ; 1996-1812 ; 1726-9776
مصطلحات موضوعية: статистика здравоохранения, morbidity, mortality, treatment, health statistics, заболеваемость, смертность, лечение
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1653/1489; Gray R.E., Harris G.T. Renal cell carcinoma: diagnosis and management. Am Fam Physician 2019;99(3):179–84.; Состояние онкологической помощи населению России в 2021 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022. 239 с.; Tahbaz R., Schmid M., Merseburger A.S. Prevention of kidney cancer incidence and recurrence: lifestyle, medication and nutrition. Curr Opin Urol 2018;28(1):62–79. DOI:10.1097/MOU.0000000000000454; Носов А.К., Лушина П.А. Анализ заболеваемости и смертности от рака почки в России и Санкт-Петербурге. Сибирский онкологический журнал 2017;16(5):95–103. DOI:10.21294/1814-4861-2017-16-5-95-103; Мерабишвили В.М. Злокачественные новообразования в Санкт-Петербурге. СПб., 2015. 295 c.; Capitanio U., Bensalah K., Bex A. et al. Epidemiology of renal cell carcinoma. Eur Urol 2019;75(1):74–84. DOI:10.1016/j.eururo.2018.08.036; Состояние онкологической помощи населению России в 2016 году. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2017. 236 с.; Состояние онкологической помощи населению России в 2017 году. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018. 236 с.; Состояние онкологической помощи населению России в 2018 году. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019. 236 с.; Состояние онкологической помощи населению России в 2019 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2020. 236 с.; Состояние онкологической помощи населению России в 2020 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 239 с.; Мерабишвили М.В. Онкологическая статистика (традиционные методы, новые информационные технологии). Руководство для врачей. 2-е изд., доп. Часть I. СПб., 2015. 223 с.; Harrison H., Thompson R.E., Lin Z. et al. Risk prediction models for kidney cancer: a systematic review. Eur Urol Focus 2021;7(6):1380–90. DOI:10.1016/j.euf.2020.06.024; Гаас М.Я., Каприн А.Д., Воробьев Н.В. и др. Предикторы местного рецидива рака почки. Наш опыт. Сибирский онкологический журнал 2022;21(4):16–24. DOI:10.21294/1814-4861-2022-21-4-16-24; Cheung D., Frankel J., Tut P. et al. Treatment on active surveillance of small renal masses: progression vs. preference. Can Urol Assoc J 2022;16(4):97–101. DOI:10.5489/cuaj.7451; Попов С.В., Гусейнов Р.Г., Орлов И.Н. и др. Оценка качества жизни пациентов после хирургического лечения рака почки. Онкоурология 2019;15(2):25–34. DOI:10.17650/1726-9776-2019-15-2-25-34; https://oncourology.abvpress.ru/oncur/article/view/1653
-
5Academic Journal
المؤلفون: O. V. Sirotkina, A. S. Ulitina, D. G. Kulabukhova, M. A. Nikolaev, A. D. Izyumchenko, L. A. Garaeva, I. V. Shlyk, E. G. Gavrilova, Yu. S. Polushin, S. N. Pchelina, О. В. Сироткина, А. С. Улитина, Д. Г. Кулабухова, М. А. Николаев, А. Д. Изюмченко, Л. А. Гараева, И. В. Шлык, Е. Г. Гаврилова, Ю. С. Полушин, С. Н. Пчелина
المساهمون: The study is supported by RFBR № 20-04-00257., Исследование выполнено при поддержке РФФИ № 2004-00257.
المصدر: The Scientific Notes of the Pavlov University; Том 29, № 1 (2022); 28-36 ; Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова; Том 29, № 1 (2022); 28-36 ; 2541-8807 ; 1607-4181 ; 10.24884/1607-4181-2022-29-1
وصف الملف: application/pdf
Relation: https://www.sci-notes.ru/jour/article/view/886/pdf_265; Kalluri R., LeBleu V. S. The biology, function, and biomedical applications of exosomes. Science. - 2020. -Vol. 367, № 6478. - P E6977. Doi:10.1126/science.aau6977.; The role of extracellular vesicles in COVID-19 virus infection / M. Hassanpour, J. Rezaie, M. Nouri, Y. Panahi // Infection, Genetics and Evolution. - 2020. - Vol. 85. -P. 104422. Doi:10.1016/j.meegid.2020.104422.; Nomura S., Taniura T., Ito T. Extracellular Vesicle-Related Thrombosis in Viral Infection // Int. J. Gen. Med. -2020. - Vol. 13. - P. 559-568. Doi:10.2147/IJGM.S265865.; Bari E., Ferrarotti I., Saracino L. et al. Mesenchymal Stromal Cell Secretome for Severe COVID-19 Infections: Premises for the Therapeutic Use // Cells. - 2020. - Vol. 9, № 4. - P. 924. Doi:10.3390/cells9040924.; Bulut O, GUrsel i. Mesenchymal stem cell derived extracellular vesicles: promising immunomodulators against autoimmune, autoinflammatory disorders and SARS-CoV-2 infection // Turk. J. Biol. - 2020. - Vol. 44, № 3. - P. 273-282. Doi:10.3906/biy-2002-79.; Sengupta V., Sengupta S., Lazo A. et al. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19 // Stem. Cells Dev. - 2020. -Vol. 29, № 12. - P. 747-754. Doi:10.1089/scd.2020.0080.; Сироткина О. В., Ермаков А. И., Гайковая Л. Б. и др. Микрочастицы клеток крови у больных COVID-19 как маркер активации системы гемостаза // Тромбоз, гемостаз и реология. - 2020. - Т. 4. - С. 35-40. Doi:10.25555/THR.2020.4.0943.; Сироткина О. В., Ермаков А. И., Жиленкова Ю. И. и др . Динамика образования микровезикул клеток крови у больных COVID-19 на разных стадиях заболевания // Профилактическая и клиническая медицина. - 2021. - Т. 4, № 81. - С. 68-74. Doi:10.47843/2074-9120_2021_4_68.; Colling M. E., Kanthi Y. COVID-19-associated coagulopathy: An exploration of mechanisms. Vascular Medicine. - 2020. - Vol. 25, № 5. - С. 471-478. Doi:10.1177/1358863X20932640.; Budaj M., Poljak Z., Duris I. et al. Microparticles: a component of various diseases. Pol. Arch. Med. Wewn. -2012. - Vol. 122, № 1. - P. 24-29. Doi:10.20452/pamw.1489; Stahl P. D., Raposo G. Extracellular Vesicles: Exosomes and Microvesicles, Integrators of Homeostasis // Physiology (Bethesda). - 2019. - Vol. 34, № 3. - P. 169-177. Doi:10.1152/physiol.00045.2018.; Jin X., Duan Y., Bao T. et al. The values of coagulation function in COVID-19 patients. PLoS One. - 2020. - Vol. 15, № 10. - P. E0241329. Doi:10.1371/journal.pone.0241329; Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids / C. Thery. S. Amigorena, G. Raposo, A. Clayton // Current protocols in cell biology. - 2006. - Vol. 3, № 3. - P. 22. Doi:10.1002/0471143030.cb0322s30; Karimi S. M., Niazkar H. R., Rad F. COVID-19 and hematology findings based on the current evidences: A puzzle with many missing pieces // Int. J. Lab. Hematol. - 2021. -Vol. 43, № 2. - P. 160-168. Doi:10.1111/ijlh.13412.; Gong J., Ou J., Qiu X. et al. A Tool to Early Predict Severe Corona Virus Disease 2019 (COVID-19): A Multicenter Study using the Risk Nomogram in Wuhan and Guangdong. China. Clin Infect Dis. - 2020. - Vol. 443. Doi:10.1093/cid/ciaa443.; Mo P., Xing Y., Xiao Y. et al. Clinical Characteristics of Refractory Coronavirus Disease 2019 in Wuhan, China // Clinical Infectious Diseases. - 2021. - Vol. 73, № 11. -P. E4208-E4213. Doi:10.1093/cid/ciaa270.; Henry B. M., Aggarwal G., Wong J. et al. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis // Am J Emerg Med. - 2020. - Vol. 38, № 9. - P. 1722-1726. Doi:10.1016/j.ajem.2020.05.073; Bartziokas K., Kostikas K. Lactate dehydrogenase, COVID-19 and mortality. Med Clin (Engl Ed). - 2021. -Vol. 156, № 1. - P. 37. Doi:10.1016/j.medcle.2020.07.017.; Lippi G., Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-anal-ysis // Clin Chim Acta. - 2020. - Vol. 505. - P. 190-191. Doi:10.1016/j.cca.2020.03.004.; Exosomes and COVID-19: challenges and opportunities / G. Babaei, N. Zare, A. Mihanfar, M. H. K. Ansari // Comp. Clin. Path. - 2022. - P. 1-8. Doi:10.1007/s00580-021-03311-3.; Krishnamachary B., Cook C., Spikes L. et al. The Potential Role of Extracellular Vesicles in COVID-19 Associated Endothelial injury and Pro-inflammation // medRx-iv. - 2020. - Vol. 08, № 27. - P. 20182808. Doi:10.1101/2020.08.27.20182808.; Sun B., Tang N., Peluso M. J. et al. Characterization and Biomarker Analyses of Post-COVID-19 Complications and Neurological Manifestations // Cells. - 2021. - Vol. 10, № 2. - P. 386. Doi:10.3390/cells10020386.; Barberis E., Vanella V. V., Falasca M. et al. Circulating Exosomes Are Strongly Involved in SARS-CoV-2 Infection // Front. Mol. Biosci. - 2021. - Vol. 8. - P. 632290. Doi:10.3389/fmolb.2021.632290. eCollection 2021.; Fujita Y., Hoshina T., Matsuzaki J. et al. Early prediction of COVID-19 severity using extracellular vesicle COPB2 // J. Extracell. Vesicles. - 2021. - Vol. 10, № 8. -P. E12092. Doi:10.1002/jev2.12092.; https://www.sci-notes.ru/jour/article/view/886
-
6Academic Journal
المؤلفون: A. A. Savchenko, I. M. Sukhanov, A. S. Ulitina, O. A. Dravolina, I. V. Belozertseva, A. K. Emelianov, E. E. Zvartau, А. А. Савченко, И. М. Суханов, А. С. Улитина, О. А. Драволина, И. В. Белозерцева, А. К. Емельянов, Э. Э. Звартау
المساهمون: The authors are grateful to R.R. Gainetdinov (the director of the Institute of Translational Biomedicine, St. Petersburg State University) for the kindly provided DAT-KO animals for the start of colony in Pavlov University as well as to the staff of the Department of Psychopharmacology of the Institute of Pharmacology: A.M. Gavrilova, A.V. Ivanov, S.V. Ivanov, M.G. Semina, M.A. Tur, Yu.I. Shevchuk for technical assistance and animal care., Авторы благодарны директору Института трансляционной биомедицины СПбГУ (Санкт-Петербург) Р.Р. Гайнетдинову за любезно предоставленных DAT-KO-животных для создания колонии в ПСПбГМУ им. И.П. Павлова, а также сотрудникам отдела психофармакологии Института фармакологии А.М. Гавриловой, А.В. Иванову, С.В. Иванову, М.Г. Семиной, М.А. Тур, Ю.И. Шевчук за техническую помощь и уход за животными.
المصدر: The Scientific Notes of the Pavlov University; Том 29, № 1 (2022); 18-27 ; Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова; Том 29, № 1 (2022); 18-27 ; 2541-8807 ; 1607-4181 ; 10.24884/1607-4181-2022-29-1
وصف الملف: application/pdf
Relation: https://www.sci-notes.ru/jour/article/view/869/pdf_264; Hegarty S. V., Sullivan A. M., O’Keeffe G. W. Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development // Dev Biol. - 2013. -Vol. 379. - P 123-138. Doi:10.1016/j.ydbio.2013.04.014.; German D. C., Schlusselberg D. S., Woodward D. J. Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: From mouse to man // J Neural Transm. - 1983. - Vol. 57. - P. 243-254. Doi:10.1007/BF01248996.; Pakkenberg B., Moller A., Gundersen H. J. G. et al. The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method // J. Neurol. Neuro-surg. Psychiatry. - 1991. - № 54. - Р. 30-33. Doi:10.1136/jnnp.54.1.30.; Beaulieu J. M., Gainetdinov R. R. The physiology, signaling, and pharmacology of dopamine receptors // Pharmacol Rev. - 2011. - Vol. 63. - P. 182-217. Doi:10.1124/pr.110.002642.; Klein M. O., Battagello D. S., Cardoso A. R. et al. Dopamine: Functions, Signaling, and Association with Neurological Diseases // Cell. Mol. Neurobiol. - 2019. - Vol. 39. -P. 31-59. Doi:10.1007/s10571-018-0632-3.; Featherstone R. E., McDonald R. J. Dorsal striatum and stimulus-response learning: Lesions of the dorsolateral, but not dorsomedial, striatum impair acquisition of a simple discrimination task // Behav. Brain Res. - 2004. - Vol. 150. -P. 15-23. Doi:10.1016/S0166-4328(03)00218-3.; Sarinana J., Tonegawa S. Differentiation of forebrain and hippocampal dopamine 1-class receptors, D1R and D5R, in spatial learning and memory // Hippocampus. - 2016. -Vol. 26. - P. 76-86. Doi:10.1002/hipo.22492.; Gutierrez A., Regan S. L., Hoover C. S. et al. Effects of intrastriatal dopamine D1 or D2 antagonists on methamphetamine-induced egocentric and allocentric learning and memory deficits in Sprague - Dawley rats // Psychopharmacology (Berl). - 2019. - № 236. - P. 2243-2258. Doi:10.1007/s00213-019-05221-3.; Deficit in working memory and abnormal behavioral tactics in dopamine transporter knockout rats during training in the 8-arm maze / N. P. Kurzina, I. Y. Aristova, A. B. Volnova, R. R. Gainetdinov // Behav. Brain Res. - 2020. - P. 390. Doi:10.1016/j.bbr.2020.112642.; Roffman J. L., Tanner A. S., Eryilmaz H. et al. Dopamine D1 signaling organizes network dynamics underlying working memory // Sci Adv. - 2016. - P. 2. Doi:10.1126/sciadv.1501672.; Stefani M. R., Moghaddam B. Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum // J. Neurosci. 2006;(26):8810-8818. Doi:10.1523/JNEUROSCI.1656-06.2006.; Bach M. E., Simpson E. H., Kahn L. et al. Transient and selective overexpression of D2 receptors in the striatum causes persistent deficits in conditional associative learning // Proc Natl Acad Sci USA. - 2008. - Vol. 105. - P. 16027-16032. Doi:10.1073/pnas.0807746105.; Circuit Mechanisms of Sensorimotor Learning / H. Makino, E. J. Hwang, N. G. Hedrick, Komiyama T // Neuron. - 2016. - Vol. 92. - P. 705-721. Doi:10.1016/j.neuron.2016.10.029.; Schultz W. Reward functions of the basal ganglia // J/ Neural/ Transm. - 2016. - Vol. 123. - P. 679-693. Doi:10.1007/s00702-016-1510-0.; Bu M., Farrer M. J., Khoshbouei H. Dynamic control of the dopamine transporter in neurotransmission and homeostasis // Npj Park Dis. - 2021. - P. 7. Doi:10.1038/s41531-021-00161-2.; Purves-Tyson T. D., Owens S. J., Rothmond D. A. et al. Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain // Transl Psychiatry. - 2017. - P. 7. Doi:10.1038/tp.2016.257.; Dresel S., Krause J., Krause K. H. et al. Attention deficit hyperactivity disorder: Binding of 99mTc.TRODAT-1 to the dopamine transporter before and after methylphenidate treatment // Eur. J. Nucl. Med. - 2000. - № 27. - Р. 15181524. Doi:10.1007/s002590000330.; Palermo G., Ceravolo R. Molecular Imaging of the Dopamine Transporter // Cells. - 2019. - P. 8. Doi:10.3390/cells8080872.; Leo D., Sukhanov I., Zoratto F. et al. Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregu-lation in dopamine transporter knock-out rats // J Neurosci. -2018. - Vol. 38. - P. 1959-1972. Doi:10.1523/JNEUROS-CI.1931-17.2018.; Jones S. R., Gainetdinov R. R., Jaber M. et al. Profound neuronal plasticity in response to inactivation of the dopamine transporter // Proc. Natl. Acad. Sci USA. - 1998. -Vol. 95. - P. 4029-4034. Doi:10.1073/pnas.95.7.4029.; Giros B., Jaber M., Jones S. R. et al. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter // Nature. - 1996. - № 379. -Р. 606-612. Doi:10.1038/379606a0.; Rats lacking dopamine transporter display increased vulnerability and aberrant autonomic response to acute stress / P. Illiano, G. E. Bigford, R. R. Gainetdinov, M. Pardo // Biomolecules. - 2020. - P. 10. Doi:10.3390/biom10060842.; A New Paradigm for Training Hyperactive Dopamine Transporter Knockout Rats: Influence of Novel Stimuli on Object Recognition / N. P. Kurzina, A. B. Volnova, I. Y. Aristova, R. R. Gainetdinov // Front Behav. Neurosci. - 2021. -P. 15. Doi:10.3389/fnbeh.2021.654469.; Белозерцева И. В., Драволина О. А., Тур М. А. Руководство по использованию лабораторных животных для научных и учебных целей в ПСПбГМУ им. И. П. Павлова / под ред. Э. Э. Звартау. - СПб.: Изд-во СПбГМУ, 2014. - С. 79.; Choi W. Y., Balsam P. D., Horvitz J. C. Extended habit training reduces dopamine mediation of appetitive response expression // J Neurosci. - 2005. - Vol. 25. - P. 6729-6733. Doi:10.1523/JNEUROSCI.1498-05.2005.; Bespalov A. Y., Harich S., Jongen-Relo A. L. et al. AMPA receptor antagonists reverse effects of extended habit training on signaled food approach responding in rats // Psychopharmacology (Berl). - 2007. - Vol. 195. - P. 11-18. Doi:10.1007/s00213-007-0875-z.; Effects of nimodipine on learning in normotensive and spontaneously hypertensive rats / A. Meneses, J. A. Terron, M. Ibarra, E. Hong // Behav. Brain Res. - 1997. - Vol. 85. -P. 121-5. Doi:10.1016/S0166-4328(97)87580-8.; Olausson P., Jentsch J. D., Taylor J. R. Repeated nicotine exposure enhances responding with conditioned reinforcement // Psychopharmacology (Berl). - 2004. -Vol. 173. - P. 98-104. Doi:10.1007/s00213-003-1702-9.; Yin H. H., Zhuang X., Balleine B. W. Instrumental learning in hyperdopaminergic mice // Neurobiol Learn Mem. - 2006. - Vol. 85. - P. 283-288. Doi:10.1016/j.nlm.2005.12.001.; Phillips G. D., Setzu E., Hitchcott P. K. Facilitation of appetitive pavlovian conditioning by d-amphetamine in the shell, but not the core, of the nucleus accumbens // Behav. Neurosci. - 2003. - Vol. 117. - P. 675-684. Doi:10.1037/0735-7044.117.4.675.; Meneses A. A pharmacological analysis of an associative learning task: 5-HT 1 to 5-HT7 receptor subtypes function on a Pavlovian/instrumental autoshaped memory // Learn Mem. - 2003. - Vol. 10. - P. 363-372. Doi:10.1101/lm.60503.; Flagel S. B., Clark J. J., Robinson T. E. et al. A selective role for dopamine in stimulus-reward learning // Nature. -2011. - Vol. 469. - P. 53-59. Doi:10.1038/nature09588.; Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors / K. M. Fraser, J. L. Haight, E. L. Gardner, S. B. Flagel // Behav. Brain Res. -2016. - Vol. 305. - P. 87-99. Doi:10.1016/j.bbr.2016.02.022.; https://www.sci-notes.ru/jour/article/view/869
-
7Academic Journal
المؤلفون: O. V. Sirotkina, A. S. Ulitina, Yu. I. Zhilenkova, E. A. Zolotova, M. A. Simakova, O. M. Moiseeva, T. V. Vavilova, О. В. Сироткина, А. С. Улитина, Ю. И. Жиленкова, Е. А. Золотова, М. А. Симакова, О. М. Моисеева, Т. В. Вавилова
المصدر: Medical Genetics; Том 21, № 8 (2022); 47-50 ; Медицинская генетика; Том 21, № 8 (2022); 47-50 ; 2073-7998
مصطلحات موضوعية: посттромбоэмболический синдром, miR-223, microRNA, microvesicles, PE, post-thromboembolic syndrome, микроРНК, микровезикулы, ТЭЛА
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2132/1599; Сироткина О.В., Улитина А.С., Масленников А.Б., Вавилова Т.В. Генетические факторы риска развития тромбозов: накопленный опыт и новые горизонты. Молекулярно-биологические технологии в медицинской практике. Под ред. чл.-корр. РАЕН А.Б. Масленникова. Вып. 31. Новосибирск: Академиздат, 2020. C. 48-62.; Золотова Е.А., Жиленкова Ю.И., Сироткина О.В. и др. Повышение уровня внеклеточных везикул тромбоцитарного и эндотелиального происхождения у пациентов с перенесенной тромбоэмболией легочной артерии. Современные достижения химико-биологических наук в профилакической и клинической медицине: сборник научных трудов 2-й Всероссийской научно-практической конференции с международным участием. 2-3 декабря 2021 года. Под. ред. А.В. Силина, Л.Б. Гайковой. СПб.: Изд-во СЗГМУ им. И.И. Мечникова, 2021. С. 243-246.; Zarà M., Guidetti G.F., Camera M. et al. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis.International Journal of Molecular Sciences. 2019;20(11):2840.; Jiang Z., Ma J., Wang Q., Wu F., Ping J., Ming L.Combination of Circulating miRNA-320a/b and D-Dimer Improves Diagnostic Accuracy in Deep Vein Thrombosis Patients. Med Sci Monit. 2018;24:2031-2037.; Золотова Е.А., Симакова М.А., Жиленкова Ю.И. и др. Роль микро-РНК в патогенезе венозных тромбоэмболических осложнений. Российский журнал персонализированной медицины. 2022;2(1):43-50.; Di Martino M.T., Arbitrio M., Caracciolo D. et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. Molecular Therapy: Nucleic Acids. 2022;27:1191-1224.; Liu T., Kang.J, Liu F. Plasma Levels of microRNA-221 (miR-221) are Increased in Patients with Acute Pulmonary Embolism. Medical Science Monitor. 2018;24:8621-8626.; Zhang W., Tao Z., Xu F., Diao Q., Li J., Zhou L., Miao Y., Xie S., Wan J., Xu R. An Overview of miRNAs Involved in PASMC Phenotypic Switching in Pulmonary Hypertension. BioMed Research International. 2021, Article ID 5765029.; Sobrero M., Montecucco F., Carbone F. Circulating MicroRNAs for Diagnosis of Acute Pulmonary Embolism: Still a Long Way to Go. Biomed Res Int. 2022; 2022: 4180215.; Кишенко В.В., Кондратов К.А., Михайловский В.Ю. и др. Выделение тромбоцитами мембранных везикул, несущих зрелую микроРНК-221 и активированную каспазу-3, в процессе хранения тромбоцитного концентрата. Цитология. 2018;60(7): 563-566.; Merkerova M., Belickova M., Bruchova H. Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol. 2008;81(4):304-310.; Shen N.N., Zhang C., Li Z., Kong L.C., Wang X.H., Gu Z.C., Wang J.L. MicroRNA expression signatures of atrial fibrillation: The critical systematic review and bioinformatics analysis. Experimental Biology and Medicine. 2020; 245: 42-53.; Duan X., Zhan Q., Song B. et al. Detection of platelet microRNA expression in patients with diabetes mellitus with or without ischemic stroke. J. Diabetes.Complications. 2014;28(5):705-710.; Sun L.L., Lei F.R., Jiang X.D., Du X.L., Xiao L., Li W.D., Li X.Q. LncRNA GUSBP5-AS promotes EPC migration and angiogenesis and deep vein thrombosis resolution by regulating FGF2 and MMP2/9 through the miR-223-3p/FOXO1/Akt pathway. AGING. 2020;12(5):4506-526.; Sirotkina O., Kishenko V., Melnishnikova O. et al. Platelet microparticles containing microRNA as a marker of the antiplatelet therapy’s effectiveness. Res. Pract. Thromb. Haemost. 2019;3(Suppl. 1): 36.; https://www.medgen-journal.ru/jour/article/view/2132
-
8Academic Journal
المؤلفون: S. N. Pchelina, A. S. Ulitina, I. . Ma, V. A. Ionin, A. A. Panteleeva, E. L. Zaslavskaya, E. A. Bazhenova, E. I. Baranova, С. Н. Пчелина, А. С. Улитина, И. . Ма, В. А. Ионин, А. А. Пантелеева, Е. Л. Заславская, Е. А. Баженова, Е. И. Баранова
المصدر: Medical Genetics; Том 17, № 4 (2018); 31-36 ; Медицинская генетика; Том 17, № 4 (2018); 31-36 ; 2073-7998
مصطلحات موضوعية: single nucleotide polymorphism, фибрилляция предсердий, альдостерон, альдостеронсинтаза, CYP11B2, однонуклеотидный полиморфизм, metabolic syndrome, atrial fibrillation, aldosterone, aldosterone synthase
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/430/307; Kirchhof P, Benussi S, Kotecha D et al. Рекомендации ESC по лечению пациентов с фибрилляцией предсердий, разработанные совместно с EACTS. Российский кардиологический журнал 2017; 7(147):7-86.; Munoz-Durango N, Vecchiola A, Gonzalez-Gomez LM et al. Modulation of immunity and inflammation by the mineralocorticoid receptor and aldosterone. Biomed Res Int. 2015;2015:652738.; Zhang XL, Wu LQ, Liu X et al. Association of angiotensin-converting enzyme gene I/D and CYP11B2 gene -344T/C polymorphisms with lone atrial fibrillation and its recurrence after catheter ablation. Exp Ther Med. 2012;4(4):741-747.; Fu X, Ma X, Zhong L, Song Z. Relationship between CYP11B2 -344T>C polymorphsim and atrial fibrillation: a meta-analysis. J Renin Angiotensin Aldosterone Syst. 2015;16(1):185-8.; Lu WH, Bayike M, Liu JW et al. Association between aldosterone synthase (CYP11B2) -344C/T polymorphism and atrial fibrillation among Han and Kazak residents of the Xinjiang region. Int J Clin Exp Med. 2015;8(4):5513-9.; Ионин ВА, Соболева АВ, Листопад ОВ и др. Галектин 3 и альдостерон у пациентов с фибрилляцией предсердий и метаболическим синдромом. Российский кардиологический журнал 2015;120(4):79-83.; Rajan S, Ramu P, Umamaheswaran G, Adithan C. Association of aldosterone synthase (CYP11B2 C-344T) gene polymorphism & susceptibility to essential hypertension in a south Indian Tamil population. Indian J Med Res. 2010;132:379-85.; Bellili NM, Foucan L, Fumeron F et al. Associations of the -344 T>C and the 3097 G>A polymorphisms of CYP11B2 gene with hypertension, type 2 diabetes, and metabolic syndrome in a French population. Am J Hypertens. 2010;23(6):660-7.; Kim YR, Kim SH, Kang SH et al. Association of CYP11B2 polymorphisms with metabolic syndrome patients. Biomed Rep. 2014;2(5):749-754.; Huang H, Darbar D. Genetic heterogeneity of atrial fibrillation susceptibility loci across racial or ethnic groups. Eur Heart J. 2017;38(34):2595-2598.; Кускаева АВ, Никулина СЮ, Чернова АА, Аксютина НВ. Генетические предикторы фибрилляции предсердий. Рациональная фармакотерапия в кардиологии 2016;12(3):331-336.; Christophersen IE, Ellinor PT. Genetics of atrial fibrillation: from families to genomes. J Hum Genet. 2016;61(1):61-70.; Christophersen IE, Rienstra M, Roselli C et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat Genet. 2017;49(6):946-952.; Pereira PF, Priore SE, Bressan J. Aldosterone: a cardiometabolic risk hormone? Nutr Hosp. 2014;30:1191-1202.; Ingelsson E, Pencina MJ, Tofler GH et al. Multimarker approach to evaluate the incidence of the metabolic syndrome and longitudinal changes in metabolic risk factors: the Framingham Offspring Study. Circulation. 2007;116:984-992.; Bassett MH, Zhang Y, Clyne C et al. Differential regulation of aldosterone synthase and 11beta-hydroxylase transcription by steroidogenic factor-1. J Mol Endocrinol. 2002;28(2):125-35.; White PC, Rainey WE. Editorial: polymorphisms in CYP11B genes and 11-hydroxylase activity. J Clin Endocrinol Metab. 2005;90(2):1252-5.; https://www.medgen-journal.ru/jour/article/view/430
-
9Academic Journal
المؤلفون: Anna S. Ulitina, Lubov’ N. Novikova, Yuliya M. Il'kovich, Olga P. Baranova, Tat'yana V. Makarova, Evgeniya V. Volkova, Sofiya N. Pchelina, Mikhail M. Il'kovich, Mikhail V. Dubina, А. С. Улитина, Л. Н. Новикова, Ю. М. Илькович, О. П. Баранова, Т. В. Макарова, Е. В. Волкова, С. Н. Пчелина, М. М. Илькович, М. В. Дубина
المصدر: PULMONOLOGIYA; Том 27, № 3 (2017); 346-356 ; Пульмонология; Том 27, № 3 (2017); 346-356 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2017-27-3
مصطلحات موضوعية: однонуклеотидный полиморфизм, idiopathic interstitial pneumonias, sarcoidosis, genes, single nucleotide polymorphism, идиопатическая интерстициальная пневмония, саркоидоз, гены
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/876/741; Илькович М.М., ред. Интерстициальные и орфанные заболевания легких. М.: ГЭОТАР-Медиа; 2016.; Kreuter M., Herth F.J., Wacker M. et al. Exploring Clinical and Epidemiological Characteristics of Interstitial Lung Diseases: Rationale, Aims, and Design of a Nationwide Prospective Registry –The EXCITING-ILD Registry. Biomed. Res. Int. 2015; 2015: 123876. DOI:10.1155/2015/123876.; Bajwa A., Osmanzada D., Osmanzada S. et al. Epidemiology of uveitis in the mid-Atlantic United States. Clin. Ophthalmol. 2015; (9): 889–901. DOI:10.2147/OPTH.S80972.; Mirsaeidi M., Machado R.F., Schraufnagel D. et al. Racial difference in sarcoidosis mortality in the United States. Chest. 2015; 147 (2): 438–449. DOI:10.1378/chest.14-1120.; Илькович М.М., Новикова Л.Н., Сперанская А.А. Идиопатический фиброзирующий альвеолит: современные представления. Consilium Medicum. 2009; (11): 24–29.; Чучалин А.Г., Визель А.А, Илькович М.М. и др. Диагностика и лечение саркоидоза: резюме федеральных согласительных клинических рекомендаций. Часть I. Классификация, этиопатогенез, клиника. Вестник современной клинической медицины. 2014; 7 (4): 62–70.; Inoue I., Nakajima T., Williams C.S. et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J. Clin. Invest. 1997; 99 (7): 1786–1797. DOI:10.1172/JCI119343.; Shu X.O., Gao Y.T., Cai Q. et al. Genetic polymorphisms in the TGF-beta 1 gene and breast cancer survival: a report from the Shanghai Breast Cancer Study. Cancer Res. 2004; 64 (3): 836–839.; van Meurs J.B., Schuit S.C., Weel A.E. et al. Association of 5' estrogen receptor alpha gene polymorphisms with bone mineral density, vertebral bone area and fracture risk. Hum. Mol. Genet. 2003; 12 (14): 1745–1754.; Horst-Sikorska W., Kalak R., Wawrzyniak A. et al. Association analysis of the polymorphisms of the VDR gene with bone mineral density and the occurrence of fractures. J. Bone Miner. Metab. 2007; 25 (5): 310–319. DOI:10.1007/s00774-007-0769-5.; Hofmann S., Fischer A., Nothnagel M. et al. Genome-wide association analysis reveals 12q13.3-q14.1 as new risk locus for sarcoidosis. Eur. Respir. J. 2013; 41 (4): 888–900. DOI:10.1183/09031936.00033812.; Fingerlin T.E., Zhang W., Yang I.V. et al. Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia. BMC Genet. 2016; 17 (1): 74. DOI:10.1186/s12863-016-0377-2.; Fischer A., Grunewald J., Spagnolo P. et al. Genetics of sarcoidosis. Semin. Respir. Crit. Care Med. 2014; 35 (3): 296–306. DOI:10.1055/s-0034-1376860.; Zhou W., Wang Y. Candidate genes of idiopathic pulmonary fibrosis: current evidence and research. Appl. Clin. Genet. 2016; (9): 5–13. DOI:10.2147/TACG.S61999.; Molina-Molina M., Xaubet A., Li X. et al. Angiotensinogen gene G-6A polymorphism influences idiopathic pulmonary fibrosis disease progression. Eur. Respir. J. 2008; 32 (4): 1004–1008. DOI:10.1183/09031936.00015808.; Arja C., Ravuri R.R., Pulamaghatta V.N. et al. Genetic determinants of chronic obstructive pulmonary disease in South Indian male smokers. PLoS One. 2014; 9 (2): e89957. DOI:10.1371/journal.pone.0089957.; Yang Y.C., Zhang N., Van Crombruggen K. et al. Transforming growth factor-beta1 in inflammatory airway disease: a key for understanding inflammation and remodeling. Allergy. 2012; 67 (10): 1193–1202. DOI:10.1111/j.1398-9995.2012.02880.x.; Shah R., Hurley C.K., Posch P.E. A molecular mechanism for the differential regulation of TGF-beta1 expression due to the common SNP -509C-T (c. -1347C > T). Hum. Genet. 2006; 120 (4): 461–469. DOI:10.1007/s00439-006-0194-1.; Jakimiuk A., Nowicka M., Bogusiewicz M. et al. Prevalence of estrogen receptor alpha PvuII and XbaI polymorphism in population of Polish postmenopausal women. Folia. Histochem. Cytobiol. 2007; 45 (4): 331–338.; Koppelman G.H., Sayers I. Evidence of a genetic contribution to lung function decline in asthma. J. Allergy Clin. Immunol. 2011; 128 (3): 479–484. DOI:10.1016/j.jaci.2011.05.036.; Uhal B.D., Kim J.K., Li X., Molina-Molina M. Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Curr. Pharm. Des. 2007; 13 (12): 1247–1256.; Daing A., Singh S.V., Saimbi C.S. et al. Single nucleotide polymorphisms at interleukin (IL)-1 b + 3954 and vitamin D receptor (VDR) TaqI in chronic periodontitis patients: A pilot study in North Indian population. J. Int. Clin. Dent. Res. Organ. 2015; 7: 18–23. DOI:10.4103/2231-0754.153490.; Perna L., Butterbach K., Haug U. et al. Vitamin D receptor genotype rs731236 (Taq1) and breast cancer prognosis. Cancer Epidemiol. Biomarkers Prev. 2013; 22 (3): 437–442. DOI:10.1158/1055-9965.EPI-12-0970-T.; Barna B.P., Culver D.A., Kanchwala A. et al. Alveolar macrophage cathelicidin deficiency in severe sarcoidosis. J. Innate Immun. 2012; 4 (5–6): 569–578. DOI:10.1159/000339149.; Hewison M. Vitamin D and the intracrinology of innate immunity. Mol. Cell Endocrinol. 2010; 321 (2): 103–111. DOI:10.1016/j.mce.2010.02.013.; Rivera N.V., Ronninger M., Shchetynsky K. et al. High-density genetic mapping identifies new susceptibility variants in sarcoidosis phenotypes and shows genomic-driven phenotypic differences. Am. J. Respir. Crit. Care Med. 2016; 193 (9): 1008–1022. DOI:10.1164/rccm.201507-1372OC.; https://journal.pulmonology.ru/pulm/article/view/876
-
10Academic Journal
المؤلفون: Zh. A. Mironova, E. I. Vsevolodskaya, V. I. Trofimov, A. S. Ulitina, S. N. Pchelina, M. V. Dubina, S. D. Gorbunkov, A. L. Akopov, Ж. А. Миронова, Е. И. Всеволодская, В. И. Трофимов, А. С. Улитина, С. Ф. Пчелина, М. В. Дубина, С. Д. Горбунков, А. Л. Акопов
المصدر: PULMONOLOGIYA; Том 27, № 1 (2017); 7-11 ; Пульмонология; Том 27, № 1 (2017); 7-11 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2017-27-1
مصطلحات موضوعية: эпигенетика, chronic obstructive pulmonary disease, overlap syndrome, pharmacogenetics, epigenetics, хроническая обструктивная болезнь легких, синдром перекреста, фармакогенетика
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/812/687; Pleasants R.A., Ohar J.A., Croft J.B. et al. Chronic obstructive pulmonary disease and asthma: patient characteristics and health impairment. COPD. 2014; 11 (3): 256–266. DOI:10.3109/15412555.2013.840571.; Xu Q., Leung D.Y., Kisich K.O. Serine-arginine-rich protein p30 directs alternative splicing of glucocorticoid receptor pre-mRNA to glucocorticoid receptor beta in neutrophils. J. Biol. Chem. 2003; 278 (29): 27112–27118. DOI:10.1074/jbc.M300824200.; Li L.B., Leung D.Y., Hall C.F., Goleva E. Divergent expression and function of glucocorticoid receptor β in human monocytes and T cells. J. Leukoc. Biol. 2006; 79 (4): 818–827. DOI:10.1189/jlb.0805466.; Kelly A., Bowen H., Jee Y.K. et al. The glucocorticoid receptor beta isoform can mediate transcriptional repression by recruiting histone deacetylases. J. Allergy Clin. Immunol. 2008; 121 (1): 203–208. DOI:10.1016/j.jaci.2007.09.010.; Barnes P.J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2013; 131 (3): 636–645. DOI:10.1016/j.jaci.2012.12.1564.; Ito K., Caramori G., Adcock I.M. Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease. J. Pharmacol. Exp. Ther. 2007; 321 (1): 1–8. DOI:10.1124/jpet.106.111674.; Strickland I., Kisich K., Hauk P.J. et al. High constitutive glucocorticoid receptor beta in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J. Exp. Med. 2001; 193 (5): 585–593.; Mercado N., To Y., Ito K., Barnes P.J. Nortriptyline reverses corticosteroid insensitivity by inhibition of phosphoinositide-3-kinase δ. J. Pharmacol. Exp. Ther. 2011; 337 (2): 465–470. DOI:10.1124/jpet.110.175950.; Butler C.A., McQuaid S., Taggart C.C. et al. Glucocorticoid receptor b and histone deacetylase 1 and 2 expression in the airways of severe asthma. Thorax. 2012; 67 (5): 392–398. DOI:10.1136/thoraxjnl-2011-200760.; Welte T., Miravitlles M., Hernandez P. et al. Efficacy and tolerability of budesonide/formoterol added to tiotropium in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2009; 180 (8): 741–750. DOI:10.1164/rccm.200904-0492OC.; Magnussen H., Bugnas B., van Noord J. et al. Improvements with tiotropium in COPD patients with concomitant asthma. Respir. Med. 2008; 102 (1): 50–56. DOI:10.1016/j.rmed.2007.08.003.; To Y., Ito K., Kizawa Y. et al. Targeting phosphoinositide-3-kinase-δ with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010; 182 (7): 897–904. DOI:10.1164/rccm.200906-0937OC.; https://journal.pulmonology.ru/pulm/article/view/812; undefined
-
11Academic Journal
المؤلفون: Zh. A. Mironova, N. A. D'yachenko, A. S. Ulitina, V. I. Trofimov, S. N. Pchelina, M. V. Dubina, Ж. А. Миронова, Н. А. Дьяченко, А. С. Улитина, В. И. Трофимов, С. Н. Пчелина, М. В. Дубина
المصدر: PULMONOLOGIYA; Том 26, № 1 (2016); 5-12 ; Пульмонология; Том 26, № 1 (2016); 5-12 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2016-26-1
مصطلحات موضوعية: иммунный ответ, microRNAs, asthma, chronic obstructive pulmonary disease, cigarette smoke, environment, immune response, микроРНК, бронхиальная астма, хроническая обструктивная болезнь легких, сигаретный дым, окружающая среда
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/667/589; Durham A.L., Adcock I.M. Basic science: Epigenetic programming and the respiratory system. Breathe. 2013; 9 (4): 279–288.; Горбунова В.Н., Пчелина С.Н., Шварцман А.Л. Введение в молекулярную медицину: учебное пособие. СПб: Издательство Политехнического университета; 2011: 214.; Pinney S.E. Mammalian Non-CpG Methylation: Stem Cells and Beyond. Biology (Basel). 2014; 3 (4): 739–751.; Tsicopoulos A., de Nadai P., Glineur C. Environmental and genetic contribution in airway epithelial barrier in asthma pathogenesis. Curr. Opin. Allergy Clin. Immunol. 2013; 13 (5): 495–499.; Barnes P.J., Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2013; 131 (3): 636–645.; Lu T.X., Rothenberg M.E. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J. Allergy Clin. Immunol. 2013; 132 (1): 3–13.; Chen Y., Verfaillie C.M. MicroRNAs: the fine modulators of liver development and function. Liver Int. 2014; 34 (7): 976–990.; Hata A., Kang H. Functions of the bone morphogenetic protein signaling pathway through microRNAs (review). Int. J. Mol. Med. 2015; 35 (3): 563–568.; Oglesby I.K., McElvaney N.G., Greene C.M. MicroRNAs in inflammatory lung disease-master regulators or target practice? Respir. Res. 2010; 11: 148.; Rupani H., Sanchez-Elsner T., Howarth P. MicroRNAs and respiratory diseases. Eur. Respir. J. 2013; 41 (3): 695–705.; Pritchard C.C., Cheng H.H., Tewari M. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 2012; 13 (5): 358–369.; Кочетов А.Г., Жиров И.В., Масенко В.П. и др. Перспективы применения микроРНК в диагностике и терапии сердечной недостаточности. Кардиологический вестник. 2014; 10 (2): 62–67.; Sinha A., Yadav A.K., Chakraborty S. et al. Exosome-enclosed microRNAs in exhaled breath hold potential for biomarker discovery in patients with pulmonary diseases. J. Allergy Clin. Immunol. 2013; 132 (1): 219–222.; Sessa R., Hata A. Role of microRNAs in lung development and pulmonary diseases. Pulm. Circ. 2013; 3 (2): 315–328.; https://journal.pulmonology.ru/pulm/article/view/667