يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"А. С. Кубасов"', وقت الاستعلام: 0.38s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (IGIC RAS). This research was performed using the equipment of the Research Sharing Center of Physical Methods for Studying Substances and Materials at IGIC RAS, Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках государственного задания Института общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН). Исследования проводились с использованием оборудования Центра коллективного пользования физическими методами исследования веществ и материалов ИОНХ РАН

    المصدر: Fine Chemical Technologies; Vol 19, No 1 (2024); 61-71 ; Тонкие химические технологии; Vol 19, No 1 (2024); 61-71 ; 2686-7575 ; 2410-6593

    وصف الملف: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2033/1998; https://www.finechem-mirea.ru/jour/article/view/2033/2000; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2033/1150; Yoon C.W., Carroll P.J., Sneddon L.G. Ammonia triborane: A new synthesis, structural determinations, and hydrolytic hydrogen-release properties. J. Am. Chem. Soc. 2009;131(2):855–864. https://doi.org/10.1021/ja808045p; Huang Z., Eagles M., Porter S., Sorte E.G., Billet B., Corey R.L., et al. Thermolysis and solid state NMR studies of NaB3H8, NH3B3H7, and NH4B3H8. Dalt. Trans. 2013;42(3):701–708. https://doi.org/10.1039/c2dt31365k; Jensen S.R.H., Paskevicius M., Hansen B.R.S., Jakobsen A.S., Møller K.T., White J.L., et al. Hydrogenation properties of lithium and sodium hydride – closo-borate, [B10H10]2− and [B12H12]2−, composites. Phys. Chem. Chem. Phys. 2018;20(23): 16266–16275. https://doi.org/10.1039/c7cp07776a; Kher S.S., Romero J.V., Caruso J.D., Spencer J.T. Chemical vapor deposition of metal borides: The formation of neodymium boride thin film materials from polyhedral boron clusters and metal halides by chemical vapor deposition. Appl. Organomet. Chem. 2008;22(6):300–307. https://doi.org/10.1002/aoc.1383; Chen H., Zou X. Intermetallic borides: structures, synthesis and applications in electrocatalysis. Inorg. Chem. Front. 2020;7(11):2248–2264. https://doi.org/10.1039/d0qi00146e; Goedde D.M., Girolami G.S. A new class of CVD precursors to metal borides: Cr(B3H8)2 and related octahydrotriborate complexes. J. Am. Chem. Soc. 2004;126(39):12230–12231. https://doi.org/10.1021/ja046906c; Bürchner M., Erle A.M.T., Scherer H., Krossing I. Synthesis and characterization of boranate ionic liquids (BILs). Chemistry. 2012;18(8):2254–2262. https://doi.org/10.1002/chem.201102460; Dodds A.R., Kodama G. Reactions of tetraborane(10) with mono- and dimethylamine. Inorg. Chem. 1977;16(11): 2900–2903. https://doi.org/10.1021/ic50177a046; Kodama G., Parry R.W. The Preparation and Structure of the Diammoniate of Tetraborane. J. Am. Chem. Soc. 1960;82(24):6250–6255. https://doi.org/10.1021/ja01509a012; Bykov A.Y., Razgonyaeva G.A., Mal’tseva N.N., Zhizhin K.Y., Kuznetsov N.T. A new method of synthesis of the B3H8− anion. Russ. J. Inorg. Chem. 2012;57(4):471–473. https://doi.org/10.1134/s0036023612040055; Chen X.M., Ma N., Zhang Q.F., Wang J., Feng X., Wei C., et al. Elucidation of the Formation Mechanisms of the Octahydrotriborate Anion (B3H8−) through the Nucleophilicity of the B–H Bond. J. Am. Chem. Soc. 2018;140(21): 6718–6726. https://doi.org/10.1021/jacs.8b03785; Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. Derivatives of closo-decaborate anion [B10H10]2− with exo-polyhedral substituents. Russ. J. Inorg. Chem. 2010;55(14):2089–2127. https://doi.org/10.1134/s0036023610140019; Кузнецов Н.Т., Жижин К.Ю., Кузнецов А.Н., Авдеева В.В. Химия полиэдрических бороводородных структур. М.: РАН; 2022. 676 с. ISBN 978-5-907366-88-6; Shulyak A.T., Bortnikov E.O., Selivanov N.A., Grigoriev M.S., Kubasov A.S., Zhdanov A.P., et al. Nucleophilic Substitution Reactions in the [B3H8]− Anion in the Presence of Lewis Acids. Molecules. 2022;27(3):746. https://doi.org/10.3390/molecules27030746; Matveev E.Y., Kubasov A.S., Razgonyaeva G.A., Polyakova I.N., Zhizhin K.Y., Kuznetsov N.T. Reactions of the [B10H10]2− anion with nucleophiles in the presence of halides of group IIIA and IVB elements. Russ. J. Inorg. Chem. 2015;60(7):776–785. https://doi.org/10.1134/S0036023615070104; Retivov V., Matveev E.Y., Lisovskiy M., Razgonyaeva G., Ochertyanova L., Zhizhin K.Y., et al. Nucleophilic substitution in closo-decaborate [B10H10]2− in the presence of carbocations. Russ. Chem. Bull. 2010;59(3):550–555. https://doi.org/10.1007/s11172-010-0123-2; Drummond A., Morris J.H. Reactions of the octahydrotriborate (−1) ion with mercury salts. Inorganica Chim. Acta. 1977;24(C): 191–194. https://doi.org/10.1016/s0020-1693(00)93871-4; Dolan P.J., Kindsvater J.H., Peters D.G. Electrochemical oxidation and protonation of octahydrotriborate anion. Inorg. Chem. 1976;15(9):2170–2173. https://doi.org/10.1021/ic50163a034; Das M.K., Bhaumik A. Synthesis and characterization of some amine-triborane(7) adducts. Indian J. Chem. Sect A. 1996;35A(9):790–792.; https://www.finechem-mirea.ru/jour/article/view/2033

  2. 2
    Academic Journal

    المساهمون: The study was performed using the equipment of the Center for Shared Use at the MIREA – Russian Technological University, the Research Equipment Sharing Center of Physical Methods for Studying Substances and Materials at the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, and the Center for Shared Use at the Kurchatov Institute National Research Center—IREA with the support of the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена с использованием оборудования ЦКП РТУ МИРЭА, ЦКП ФМИ ИОНХ РАН и ЦКП «ИРЕА-Курчатовский институт» при поддержке Министерства науки и высшего образования Российской Федерации.

    المصدر: Fine Chemical Technologies; Vol 18, No 6 (2023); 583-594 ; Тонкие химические технологии; Vol 18, No 6 (2023); 583-594 ; 2686-7575 ; 2410-6593

    وصف الملف: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2016/1986; https://www.finechem-mirea.ru/jour/article/view/2016/1987; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2016/1130; Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev. 2016,116(23):14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279; Stojanovic B.D., Dzunuzovic A.S., Ilic N.I. Review of methods for the preparation of magnetic metal oxides. In: Magnetic Ferroelectric, and Multiferroic Metal Oxides. 2018. P. 333–360. https://doi.org/10.1016/B978-0-12-811180-2.00017-7; Zhuravlev V.D., Bamburov V.G., Beketov A.R., Perelyaeva L.A., Baklanova I.V., Sivtsova O.V., Vasil’ev V.G., Vladimirova E.V., Shevchenko V.G., Grigorov I.G. Solution combustion synthesis of α-Al2O3 using urea. Ceram. Int. 2013;39(2):1379–1384. https://doi.org/10.1016/j.ceramint.2012.07.078; Abu-Zied B.M. Controlled synthesis of praseodymium oxide nanoparticles obtained by combustion route: Effect of calcination temperature and fuel to oxidizer ratio. Appl. Surf. Sci. 2019;471:246–255. https://doi.org/10.1016/j.apsusc.2018.12.007; Get’man E.I., Oleksii Yu.A., Radio S.V., Ardanova L.I. Determining the phase stability of luminescent materials based on the solid solutions of oxyorthosilicates (Lu1−xLnx)[(SiO4)0.5O0.5], where Ln = La−Yb. Fine Chem. Technol. 2020;15(5):54–62. https://doi.org/10.32362/2410-6593-2020-15-5-54-62; Lupin M.S., Peters G.E. Thermal decomposition of aluminum, iron and manganese complexes of urea. Thermochim. Acta. 1984;73(1–2):79–87. https://doi.org/10.1016/0040-6031(84)85178-3; Siekierski S., Salomon M., Mioduski T. (Eds.). Solubilities Data Series. V. 13. Scandium, Yttrium, Lanthanum and Lanthanide Nitrates. London: Pergamon; 1983. 514 p.; Худайбергенова Н., Сулайманкулов К. Системы нитрат гадолиния–карбамид–вода и нитрат иттербия–карбамид–вода при 30°С. Журн. неорган. химии. 1980;25(8):2254–2260.; Aitimbetov K., Sulaimankulov K.S., Batyuk A.G., Ismailov V. Systems erbium chloride–urea–water and erbium nitrate–urea–water at 30°C. Russ. J. Inorg. Chem. 1975;20(9):1391–1395.; Savinkina E.V., Karavaev I.A., Grigoriev M.S., Buzanov G.A., Davydova M.N. A series of urea complexes with rare-earth nitrates: Synthesis, structure and thermal decomposition. Inorg. Chim. Acta. 2022;532:120759. https://doi.org/10.1016/j.ica.2021.120759; Караваев И.А., Савинкина Е.В., Григорьев М.С., Бузанов Г.А., Козерожец И.В. Новые координационные соединения нитрата скандия с карбамидом – предшественники для получения наноразмерного оксида скандия. Журн. неорган. химии. 2022;67(8):1080–1086. https://doi.org/10.31857/S0044457X22080189; Savinkina E.V., Karavaev I.A., Grigoriev M.S. Crystal structures of praseodymium nitrate complexes with urea, precursors for solution combustion synthesis of nanoscale praseodymium oxides. Polyhedron. 2020;192:114875. https://doi.org/10.1016/j.poly.2020.114875; Sanctis S., Hoffmann R.C., Koslowski N., Foro S., Bruns M., Schneider J.J. Aqueous Solution Processing of Combustible Precursor Compounds into Amorphous Indium Gallium Zinc Oxide (IGZO) Semiconductors for Thin Film Transistor Applications. Chem. Asian J. 2018;13:3912. https://doi.org/10.1002/asia.201801371; Ullah S., Branquinho R., Mateus T., Martins R., Fortunato E., Rasheed T., Sher F. Solution Combustion Synthesis of Transparent Conducting Thin Films for Sustainable Photovoltaic Applications. Sustainability. 2020,12:10423. https://doi.org/10.3390/su122410423; https://www.finechem-mirea.ru/jour/article/view/2016

  3. 3
    Academic Journal

    المصدر: Fine Chemical Technologies; Vol 14, No 1 (2019); 59-65 ; Тонкие химические технологии; Vol 14, No 1 (2019); 59-65 ; 2686-7575 ; 2410-6593 ; 10.32362/2410-6593-2019-14-1

    وصف الملف: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/188/189; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/188/7; Barth R.F., Vicente M.H., Harling O.K., Kiger W.S. 3rd, Riley K.J., Binns P.J., Wagner F.M., Suzuki M., Aihara T., Kato I., Kawabata S. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiation Oncology. 2012; 7: 146-167.; Soloway A.H., Tjarks W., Barnum B.A., Rong F.-G., Barth R.F., Codogni I.M., Wilson J.G. The chemistry of neutron capture therapy. Chem. Rev. 1998; 98(4): 1515-1562.; Sjoberg S., Carlsson J., Ghaneolhosseini H., Gedda L., Hartmann T., Malmquist J., Naesland C., Olsson P., Tjarks W. Chemistry and biology of some low molecular weight boron compounds for boron neutron capture therapy. J. Neuro-Oncology. 1997; 33(1-2): 41-52.; Voloshin Ya.Z., Varsatskii O.A., Bubnov Yu.N. Cage complexes of transition metals in biochemistry and medicine. Russ. Chem. Bull. 2007; 56(4): 577-605.; Goswami L.N., Ma L., Chakravarty S., Cai Q., Jalisatgi S.S., Hawthorne M.F. Discrete nanomolecular polyhedral borane scaffold supporting multiple gadolinium(III) complexes as a high performance MRI contrast agent. Inorg. Chem. 2013; 52(4): 1694-1700.; Matveev E.Yu., Retivov V.M., Razgonyaeva G.A., Zhizhin K.Yu., Kuznetsov N.T. Cleavage of the cyclic substituent in the [B10H9O2C4H8]?, [B10H9OC4H8]?, and [B10H9OC5H10]? anions upon the interaction with negatively charged N-nucleophiles. Rus. J. Inorg. Chem. 2011; 56(10): 1549-1554.; Prikaznov A.V., Shmal’ko A.V., Sivaev I.B., Petrovskii P.V., Bragin V.I., Kisin A.V., Bregadze V.V. Synthesis of carboxylic acids based on the closodecaborate anion. Polyhedron. 2011; 30(9): 1494-1501.; Semioshkin A.S., Sivaev I.B., Bregadze V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008; 8: 977-992.; Orlova A.V., Kondakov N.N., Kimel B.G., Kononov L.O., Kononova E.G., Sivaev I.B., Bregadze V.I. Synthesis of novel derivatives of closo?dodecaborate anion with azido group at the terminal position of the spacer. Appl. Organomet. Chem. 2007; 21(2): 98-100.; Matveev E.Yu., Akimov S.S., Kubasov A.S., Nichugovskiy A.I., Nartov A.S., Retivov V.M., Zhizhin K.Yu., Kuznetsov N.T. Reaction of the [B10H9O2C4H8]- anion with C-nucleophiles. Rus. J. Inorg. Chem. 2017: 62(6): 808-813.; Matveev E.Yu., Razgonyaeva G.A., Mustyatsa V.N., Votinova N.A., Zhizhin K.Yu., Kuznetsov N.T. Oxonium derivatives of closo-decaborate in reactions with sulfur-containing nucleophiles. Russ. Chem. Bull. 2010; 59(3): 556-559.; Laskova J., Kozlova A., Bialek-Pietras M., Studzinska M., Paradowska E., BregadzeV., Lesnikowski Z.J., Semioshkin A. Reactions of closo-dodecaborate amines. Towards novel bis-(closo-dodecaborates) and closo-dodecaborate conjugates with lipids and non-natural nucleosides. J. Organomet. Chem. 2016; 807: 29-35.; Kikuchi S., Kanoh D., Sato S., Sakurai Y., Suzuki M., Nakamura H. Maleimide-functionalized closo-dodecaborate albumin conjugates (MID-AC): Unique ligation at cysteine and lysine residues enables efficient boron delivery to tumor for neutron capture therapy. J. Contr. Release. 2016; 237: 160-167.; Laskova J., Kozlova A., Ananyev I., Bregadze V., Semioshkin A. 2-Hydroxyethoxy-closoundecahydrododecaborate(12) ([B12H11CH2CH2OH]2?) as a new prospective reagent for the preparation of closo-dodecaborate building blocks and thymidine and 2-deoxyuridine conjugates linked via short spacer. J. Organomet. Chem. 2017; 834: 64-72.; Kubasov A.S., Matveev E.Yu., Retivov V.M., Akimov S.S., Razgonyaeva G.A., Polyakova I.N., Votinova N.A., Zhizhin K.Yu., Kuznetsov N.T. Nickel(II) complexes with nitrogen-containing derivatives of the closo-decaborate anion. Russ. Chem. Bull. 2011; 63(1): 187-193.; Grin M.A., Semioshkin A.A., Titeev R.A., Nizhnik E.A., Grebenyuk J.N., Mironov A.F., Bregadze V.I. Synthesis of a cycloimide bacteriochlorin p conjugate with the closo-dodecaborate anion. Mendeleev Commun. 2007; 17(1): 14-15.; Inoue M.B., Inoue M., Fernando Q. Binuclear structure in the ammonium salt of gadolinium(III) diethylenetriaminepentaacetate, (NH4)4[Gd2(DTPA)2]·6H2O. Inorganica Chimica Acta. 1995; 232(1-2): 203-206.; Akimov S.S., Matveev E.Yu., Kubasov A.S., Razgonyaeva G.A., Zhizhin K.Yu., Kuznetsov N.T. Polydentate ligands based on closo-decaborate anion for the synthesis of gadolinium(III) complexes. Russ. Chem. Bull. 2013; 62(6): 1417-1421.; Nemoto H., Cai J., Nakamura H., Fujiwara M., Yamamoto Y. The synthesis of a carborane gadolinium-DTPA complex for boron neutron capture therapy. J. Organomet. Chem. 1999; 581(1-2): 170-175.; Toppino A., Bova M.E., Crich S.G., Alberti D., Diana E., Barge A., Aime S., Venturello P., Deagostino A.A. Carborane?derivative “click” reaction under heterogeneous conditions for the synthesis of a promising lipophilic MRI/GdBNCT agent. Chem. Eur. J. 2013: 19(2): 721-728.; Goswami L.N., Ma L., Chakravarty Sh., Cai Q., Jalisatgi S.S., Hawthorne M.F. Discrete nanomolecular polyhedral borane scaffold supporting multiple gadolinium(III) complexes as a high performance MRI contrast agent. Inorg. Chem. 2013; 52(4):1694-1700.; Becker H., Domshke G., Fanghanel E. Organikum. Berlin: VEB Deutscher Verlag der Wissenschaften, 1990. 487 p.; Miller H.C., Miller N.E., Muetteries E.L. Synthesis of polyhedral boranes. J. Am. Chem. Soc. 1963; 85(23): 3885-3886.; https://www.finechem-mirea.ru/jour/article/view/188