يعرض 1 - 7 نتائج من 7 نتيجة بحث عن '"А. С. Горбунов"', وقت الاستعلام: 0.36s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The work was carried out with the financial support of the Ministry of Health of the Russian Federation (state task 056-00071-22-02)., Работа выполнена при финансовой поддержке Министерства здравоохранения Российской Федерации (государственное задание № 056-00071-22-02).

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 4 (2023); 243-249 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 4 (2023); 243-249 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2074/921; Бузлама А.В., Чернов Ю.Н. Анализ фармакологических свойств, механизмов действия и перспектив применения гуминовых веществ в медицине. Экспериментальная и клиническая фармакология. 2010;73(9):43–48. DOI:10.30906/0869-2092-2010-73-9-43-48.; Дымбрылова О.Н., Якимова Т.В., Венгеровский А.И. Влияние экстрактов растений на инсулинорезистентность при экспериментальном сахарном диабете. Сибирский журнал клинической и экспериментальной медицины. 2022;37(3):128–135. DOI:10.29001/2073-8552-2022-37-3-128-135.; Ласукова Т.В., Зыкова М.В., Белоусов М.В., Горбунов А.С., Логвинова Л.А., Дыгай А.М. Роль NO-синтазы в реализации кардиопротективного эффекта соединений гуминовой природы на модели ишемии и реперфузии изолированного сердца крыс. Бюллетень экспериментальной биологии и медицины. 2018;166(11):537541. DOI:10.1007/s10517-019-04399-y.; Hseu Y.C., Wang S.Y., Chen H.Y. Humic acid induces the generation of nutric oxide in human umbilical vein endothelial cells: stimulation of nutric oxide synthase during cell injuri. Free radical biology & medicine. 2002;32(7):619629. DOI:10.1016/s0891-5849(02)00752-9.; Трофимова Е.С., Зыкова М.В., Лигачёва А.А., Шерстобоев Е.Ю., Жданов В.В., Белоусов М.В. и др. Влияние гуминовых кислот торфа различного генеза на продукцию оксида азота in vitro. Бюллетень экспериментальной биологии и медицины. 2016;161(5):629638. DOI:10.1007/s10517-016-3486-z.; Zykova M.V., Schepetkin I.A., Belousov M.V., Krivoshchekov S.V., Logvinova L.A., Bratishko K.A. et al. Physicochemical characterization and antioxidant activity of humic acids isolated from peat of various origins. Molecules. 2018;23(4):753. DOI:10.3390/molecules23040753.; Зыкова М.В., Трофимова Е.С., Кривощеков С.В., Лигачёва А.А., Данилец М.Г., Логвинова Л.А. и др. Спектральные параметры и биологическая активность высокомолекулярных соединений гуминовой природы. Бюллетень сибирской медицины. 2017;16(1):36–49. DOI:10.20538/16820363-2017-1-36–49.; Zaccone C., Miano T.M., Shotyk W. Qualitative comparison between raw peat and related humic acids in an ombrotrophic bog profile. Organic Geochemistry. 2007;38(1):151–160. DOI:10.1016/J.ORGGEOCHEM.2006.06.023.; Орлов Д. С. Гумусовые кислоты почв и общая теория гумификации. Москва: МГУ; 1990:325.; Chen J.С., Gu B., LeBoeuf E.J. Pan H., Dai S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere. 2002;48(1):59–68. DOI:10.1016/s0045-6535(02)00041-3.; Kiprop A.K., J-Coumon M-C., Pourtier E., Kimutai S., Kirui S. Synthesis of humic and fulvic acids and their characterization using optical spectroscopy (ATR-FTIR and UV-Visible). Int. J. Appl. Sci. Technol. 2013;3(8):28–35.; Van Krevelen D.W. Graphical-statistical method for investigation of the structure of coal. Fuel. 1950;29:228–269.; Massion P.B., Feron O., Dessy C., Balligand J.-L. Role of nitric oxide in the cardiovascular and renal systems. Int. J. Mol. Sci. 2003;93:388–398. DOI:10.3390/ijms19092605.; Зарипова Р.И., Зиятдинова Н.И., Зефиров Т.Л. Влияние блокады NO-синтаз на сократимость миокарда гипокинезированных крыс при стимуляции β-адренорецепторов. Бюллетень экспериментальной биологии и медицины. 2016;161(2):169–172. DOI:10.1007/s10517016-3378-2.; Ziolo M.T., Kohr M.J., Wang H. Nitric oxide signaling and the regulation of myocardial function. J. Mol. Cel. Cardiol. 2008;45(5):625–632. DOI:10.1016/j.yjmcc.2008.07.015.; https://www.sibjcem.ru/jour/article/view/2074

  2. 2
    Academic Journal

    المساهمون: The work was supported by the Russian Science Foundation, Grant No. 22-15-00048. The section “Synthetic analogues of apelins” is supported by the state assignment 122020300042-4., Обзорная статья выполнена при поддержке Российского научного фонда, грант № 22-1500048. Раздел «Синтетические аналоги апелинов» поддержан государственным заданием 122020300042-4.

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 4 (2023); 29-39 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 4 (2023); 29-39 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2048/919; Hage A., Stevens L.M., Ouzounian M., Chung J., El-Hamamsy I., Chauvette V. et al. Impact of brain protection strategies on mortality and stroke in patients undergoing aortic arch repair with hypothermic circulatory arrest: evidence from the Canadian Thoracic Aortic Collaborative. Eur. J. Cardiothorac. Surg. 2020;58(1):95–103. DOI:10.1093/ ejcts/ezaa023.; Ya’qoub L., Gad M., Saad A.M., Elgendy I.Y., Mahmoud A.N. National trends of utilization and readmission rates with intravascular ultrasound use for ST-elevation myocardial infarction. Catheter Cardiovasc. Interv. 2021;98(1):1–9. DOI:10.1002/ccd.29524.; Lio K.U., O’Corragain O., Bashir R., Brosnahan S., Cohen G., Lakhter V. et al. Clinical outcomes and factors associated with pulmonary infarction following acute pulmonary embolism: a retrospective observational study at a US academic centre. BMJ Open. 2022;12(12):e067579. DOI:10.1136/bmjopen-2022-067579.; Swinarska J.T., Stratta R.J., Rogers J., Chang A., Farney A.C., Orlando G. et al. Early graft loss after deceased-donor kidney transplantation: What are the consequences? J. Am. Coll. Surg. 2021;232(4):493–502. DOI:10.1016/j.jamcollsurg.2020.12.005.; O’Dowd B.F., Heiber M., Chan A., Heng H.H., Tsui L.C., Kennedy J.L. et al. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 1993;136(1– 2):355–360. DOI:10.1016/0378-1119(93)90495-o.; Tatemoto K., Hosoya M., Habata Y., Fujii R., Kakegawa T., Zou M.X. et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 1998;251(2):471–476. DOI:10.1006/bbrc.1998.9489.; Hu G., Wang Z., Zhang R., Sun W., Chen X. The role of apelin/apelin receptor in energy metabolism and water homeostasis: A comprehensive narrative review. Front. Physiol. 2021;12:632886. DOI:10.3389/ fphys.2021.632886.; Chng S.C., Ho L., Tian J., Reversade B. ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev. Cell. 2013;27(6):672–680. DOI:10.1016/j.devcel.2013.11.002.; Perjés Á., Skoumal R., Tenhunen O., Kónyi A., Simon M., Horváth I.G. et al. Apelin increases cardiac contractility via protein kinase Cεand extracellular signal-regulated kinase-dependent mechanisms. PLoS One. 2014;9(4):e93473. DOI:10.1371/journal.pone.0093473.; Kawamata Y., Habata Y., Fukusumi S., Hosoya M., Fujii R., Hinuma S. et al. Molecular properties of apelin: tissue distribution and receptor binding. Biochim. Biophys. Acta. 2001;1538(2–3):162–171. DOI:10.1016/ s0167-4889(00)00143-9.; Than A., He H.L., Chua S.H., Xu D., Sun L., Leow M.K. et al. Apelin enhances brown adipogenesis and browning of white adipocytes. J. Biol. Chem. 2015;290(23):14679–14691. DOI:10.1074/jbc.M115. 643817.; Sekerci R., Acar N., Tepekoy F., Ustunel I., Keles-Celik N. Apelin/APJ expression in the heart and kidneys of hypertensive rats. Acta. Histochem. 2018;120(3):196–204. DOI:10.1016/j.acthis.2018.01.007.; Chen M.M., Ashley E.A., Deng D.X., Tsalenko A., Deng A., Tabibiazar R. et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation. 2003;108(12):1432–1439. DOI:10.1161/01.CIR.0000091235.94914.75.; Bircan B., Çakır M., Kırbağ S., Gül H.F. Effect of apelin hormone on renal ischemia/reperfusion induced oxidative damage in rats. Ren. Fail. 2016;38(7):1122–1128. DOI:10.1080/0886022X.2016.1184957.; Gholampour F., Bagheri A., Barati A., Masoudi R., Owji S.M. Remote ischemic perconditioning modulates apelin expression after renal ischemia-reperfusion injury. J. Surg. Res. 2020;247:429–437. DOI:10.1016/j.jss.2019.09.063.; Zhang X., Zhu Y., Zhou Y., Fei B. Activation of Nrf2 signaling by apelin attenuates renal ischemia reperfusion injury in diabetic rats. Diabetes Metab. Syndr. Obes. 2020;13:2169–2177. DOI:10.2147/DMSO. S246743.; Xu F., Wu M., Lu X., Zhang H., Shi L., Xi Y. et al. Effect of Fc-Elabela-21 on renal ischemia/reperfusion injury in mice: Mediation of anti-apoptotic effect via Akt phosphorylation. Peptides. 2022;147:170682. DOI:10.1016/j.peptides.2021.170682.; Fan X.F., Xue F., Zhang Y.Q., Xing X.P., Liu H., Mao S.Z. et al. The Apelin-APJ axis is an endogenous counterinjury mechanism in experimental acute lung injury. Chest. 2015;147(4):969–978. DOI:10.1378/chest.14-1426.; Xia F., Chen H., Jin Z., Fu Z. Apelin-13 protects the lungs from ischemia-reperfusion injury by attenuating inflammatory and oxidative stress. Hum. Exp. Toxicol. 2021;40(4):685–694. DOI:10.1177/0960327120961436.; Wu F., Qiu J., Fan Y., Zhang Q., Cheng B., Wu Y. et al. Apelin-13 attenuates ER stress-mediated neuronal apoptosis by activating Gα /Gαtions during twitches in isolated rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2008;294(6):H2540–H2546. DOI:10.1152/ajpheart.00046.2008.; Xin Q., Cheng B., Pan Y., Liu H., Yang C., Chen J. et al. Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides. 2015;63:55–62. DOI:10.1016/j. peptides.2014.09.016.; Duan J., Cui J., Yang Z., Guo C., Cao J., Xi M. et al. Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3β/Nrf2 signaling. J. Neuroinflammation. 2019;16(1):24. DOI:10.1186/s12974019-1406-7.; Liu D.R., Hu W., Chen G.Z. Apelin-12 exerts neuroprotective effect against ischemia-reperfusion injury by inhibiting JNK and P38MAPK signaling pathway in mouse. Eur. Rev. Med. Pharmacol. Sci. 2018;22(12):3888–3895. DOI:10.26355/eurrev_201806_15273.; Chu H., Yang X., Huang C., Gao Z., Tang Y., Dong Q. Apelin-13 protects against ischemic blood-brain barrier damage through the effects of Aquaporin-4. Cerebrovasc. Dis. 2017;44(1–2):10–25. DOI:10.1159/000460261.; Zhang R., Wu F., Cheng B., Wang C., Bai B., Chen J. Apelin-13 prevents the effects of oxygen-glucose deprivation/reperfusion on bEnd.3 cells by inhibiting AKT-mTOR signaling. Exp. Biol. Med. (Maywood). 2023;248(2):146–156. DOI:10.1177/15353702221139186; Mughal A., Sun C., O’Rourke S.T. Activation of large conductance, calcium-activated potassium channels by nitric oxide mediates apelin-induced relaxation of isolated rat coronary arteries. J. Pharmacol. Exp. Ther. 2018;366(2):265–273. DOI:10.1124/jpet.118.248682.; Dönmez Y., Acele A. Increased Elabela levels in the acute ST segment elevation myocardial infarction patients. Medicine (Baltimore). 2019;98(43):e17645. DOI:10.1097/MD.0000000000017645.; Sans-Roselló J., Casals G., Rossello X., González de la Presa B., Vila M., Duran-Cambra A. et al. Prognostic value of plasma apelin concentrations at admission in patients with ST-segment elevation acute myocardial infarction. Clin. Biochem. 2017;50(6):279–284. DOI:10.1016/j.clinbiochem.2016.11.018.; Wang C., Du J.F., Wu F., Wang H.C. Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+] transient and contrac contractions during twitches in isolated rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2008;294(6):H2540–H2546. DOI:10.1152/ajpheart.00046.2008.; Wang C., Liu N., Luan R., Li Y., Wang D., Zou W. et al. Apelin protects sarcoplasmic reticulum function and cardiac performance in ischaemia-reperfusion by attenuating oxidation of sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor. Cardiovasc. Res. 2013;100(1):114–124. DOI:10.1093/cvr/cvt160.; Rostamzadeh F., Najafipour H., Yeganeh-Hajahmadi M., Esmaeili-Mahani S., Joukar S., Iranpour M. Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: Role of pERK1/2 and PKC. Life Sci. 2017;191:24–33. DOI:10.1016/j.lfs.2017.09.044.; Simpkin J.C., Yellon D.M., Davidson S.M., Lim S.Y., Wynne A.M., Smith C.C. Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res. Cardiol. 2007;102(6):518–528. DOI:10.1007/s00395-007-0671-2.; Писаренко О.И., Шульженко В.С., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Беспалова Ж.Д. и др. Влияние экзогенного апелина-12 на функциональное и метаболическое восстановление изолированного сердца крысы после ишемии. Кардиология. 2010;50(10):44–49.; Писаренко О.И., Серебрякова Л.И., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Цкитишвили О.В. и др. Уменьшение реперфузионного повреждения сердца in vivo с помощью пептида апелина-12 у крыс. Бюллетень экспериментальной биологии и медицины. 2011;152(7):79–82.; Писаренко О.И., Серебрякова Л.И., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Цкитишвили О.В. и др. Участие NO-зависимых механизмов действия апелина в защите миокарда от ишемического/реперфузионного повреждения. Кардиология. 2012;52(2):52–58. Pisarenko O.I., Serebriakova L.I., Pelogeĭkina Iu.A., Studneva I.M., Kkhatri D.N., Tskitishvili O.V. et al. Involvement of NO-dependent mechanisms of apelin action in myocardial protection against ischemia/reperfusion damage. Kardiologiia. 2012;52(2):52–58. (In Russ.).; Abbasloo E., Najafipour H., Vakili A. Chronic treatment with apelin, losartan and their combination reduces myocardial infarct size and improves cardiac mechanical function. Clin. Exp. Pharmacol. Physiol. 2020;47(3):393–402. DOI:10.1111/1440-1681.13195.; Pisarenko O.I., Shulzhenko V.S., Pelogeykina Y.A., Studneva I.V. Enhancement of crystalloid cardioplegic protection by structural analogs of apelin-12. J. Surg. Res. 2015;194(1):18–24. DOI:10.1016/j. jss.2014.11.007.; Писаренко О.И., Беспалова О.И., Ланкин В.З., Тимошин А.А., Серебрякова Л.И., Шульженко В.С. и др. Антиоксидантные свойства апелина-12 и его структурного аналога при экспериментальной ишемии и реперфузии. Кардиология. 2013;53(5):61–67.; Pisarenko O., Shulzhenko V., Studneva I., Pelogeykina Y., Timoshin A., Anesia R. et al. Structural apelin analogues: mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischaemia reperfusion injury. Br. J. Pharmacol. 2015;172(12):2933–2945. DOI:10.1111/ bph.13038.; Tao J., Zhu W., Li Y., Xin P., Li J., Liu M. et al. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am. J. Physiol. Heart Circ. Physiol. 2011;301(4):H1471–H1486. DOI:10.1152/ ajpheart.00097.2011.; Yu P., Ma S., Dai X., Cao F. Elabela alleviates myocardial ischemia reperfusion-induced apoptosis, fibrosis and mitochondrial dysfunction through PI3K/AKT signaling. Am. J. Transl. Res. 2020;12(8):4467–4477.; Chen Y., Qiao X., Zhang L., Li X., Liu Q. Apelin-13 regulates angiotensin ii-induced Cx43 downregulation and autophagy via the AMPK/mTOR signaling pathway in HL-1 cells. Physiol. Res. 2020;69(5):813–822. DOI:10.33549/physiolres.934488.; Hou X., Zeng H., Tuo Q.H., Liao D.F., Chen J.X. Apelin gene therapy increases autophagy via activation of sirtuin 3 in diabetic heart. Diabetes Res. (Fairfax). 2015;1(4):84–91. DOI:10.17140/DROJ-1-115.; Wang W., McKinnie S.M., Patel V.B., Haddad G., Wang Z., Zhabyeyev P. et al. Loss of apelin exacerbates myocardial infarction adverse remodeling and ischemia-reperfusion injury: therapeutic potential of synthetic apelin analogues. J. Am. Heart Assoc. 2013;2(4):e000249. DOI:10.1161/JAHA.113.000249.; Masri B., Morin N., Pedebernade L., Knibiehler B., Audigier Y. The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J. Biol. Chem. 2006;281(27):18317–18326. DOI:10.1074/jbc.M600606200.; Bai B., Cai X., Jiang Y., Karteris E., Chen J. Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK(1/2) and cell proliferation via Gαq-mediated mechanism. J. Cell. Mol. Med. 2014;18(10):2071–2081. DOI:10.1111/jcmm.12404.; Chapman N.A., Dupré D.J., Rainey J.K. The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. Biochem. Cell. Biol. 2014;92(6):431–440. DOI:10.1139/bcb-2014-0072.; Moon M.J., Oh D.Y., Moon J.S., Kim D.K., Hwang J.I., Lee J.Y. et al. Cloning and activation of the bullfrog apelin receptor: Gi/o coupling and high affinity for [Pro1]apelin-13. Mol. Cell. Endocrinol. 2007;277(1–2):51– 60. DOI:10.1016/j.mce.2007.07.008.; Folino A., Accomasso L., Giachino C., Montarolo P.G., Losano G., Pagliaro P. et al. Apelin-induced cardioprotection against ischaemia/ reperfusion injury: roles of epidermal growth factor and Src. Acta Physiol. (Oxf.). 2018;222(2):e12924. DOI:10.1111/apha.12924.; Yang S., Li H., Tang L., Ge G., Ma J., Qiao Z. et al. Apelin-13 protects the heart against ischemia-reperfusion injury through the RISK-GSK-3βmPTP pathway. Arch. Med. Sci. 2015;11(5):1065–1073. DOI:10.5114/ aoms.2015.54863.; Pisarenko O.I., Shulzhenko V.S., Studneva I.M., Serebryakova L.I., Pelogeykina Y.A., Veselova O.M. Signaling pathways of a structural analogue of apelin-12 involved in myocardial protection against ischemia/reperfusion injury. Peptides. 2015;73:67–76. DOI:10.1016/j.peptides.2015.09.001.; Писаренко О.И., Пелогейкина Ю.А., Шульженко В.С., Студнева И.М., Беспалова З.Д., Азмуко А.А. и др. Влияние ингибирования новообразования на метаболическое восстановление ишемизи рованного сердца крысы апелином-12. Биомедицинская химия.2012;58(6):702–711; Rastaldo R., Cappello S., Folino A., Berta G.N., Sprio A.E., Losano G. et al. Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am. J. Physiol. Heart Circ. Physiol. 2011;300(6):H2308–H2315. DOI:10.1152/ ajpheart.01177.2010.; Pisarenko O.I., Lankin V.Z., Konovalova G.G., Serebryakova L.I., Shulzhenko V.S., Timoshin A.A. et al. Apelin-12 and its structural analog enhance antioxidant defense in experimental myocardial ischemia and reperfusion. Mol. Cell. Biochem. 2014;391(1–2):241–250. DOI:10.1007/ s11010-014-2008-4.; Reed A.B., Lanman B.A., Holder J.R., Yang B.H., Ma J., Humphreys S.C. et al. Half-life extension of peptidic APJ agonists by N-terminal lipid conjugation. Bioorg. Med. Chem. Lett. 2020;30(21):127499. DOI:10.1016/j.bmcl.2020.127499.; Trân K., Murza A., Sainsily X., Coquerel D., Côté J., Belleville K. et al. A systematic exploration of macrocyclization in apelin-13: impact on binding, signaling, stability, and cardiovascular effects. J. Med. Chem. 2018;61(6):2266–2277. DOI:10.1021/acs.jmedchem.7b01353.; Li L., Zeng H., Chen J.X. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2012;303(5):H605–H618. DOI:10.1152/ajpheart.00366.2012.; Azizi Y., Faghihi M., Imani A., Roghani M., Zekri A., Mobasheri M.B. et al. Post-infarct treatment with [Pyr1]apelin-13 improves myocardial function by increasing neovascularization and overexpression of angiogenic growth factors in rats. Eur. J. Pharmacol. 2015;761:101–108. DOI:10.1016/j.ejphar.2015.04.034.; O’Harte F.P.M., Parthsarathy V., Hogg C., Flatt P.R. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLoS One. 2018;13(8):e0202350. DOI:10.1371/journal.pone.0202350.; Tran K., Sainsily X., Côté J., Coquerel D., Couvineau P., Saibi S. et al. Size-Reduced Macrocyclic Analogues of [Pyr1]-apelin-13 Showing Neg Negative Gα12 Bias Still Produce Prolonged Cardiac Effects. J. Med. Chem. 2022;65(1):531–551.; https://www.sibjcem.ru/jour/article/view/2048

  3. 3
    Academic Journal

    المساهمون: Тhe article was prepared with the financial support of the Russian Science Foundation, grant MMP (23-65-10017). The introduction to the article was prepared with the support of the state assignment 122020300042-4, Статья подготовлена при финансовой поддержке Российского Научного Фонда (грант 23-65-10017). Введение к статье подготовлено при поддержке государственного задания 122020300042-4

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 39, № 1 (2024); 11-17 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 1 (2024); 11-17 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1853/927; Megaly M., Pershad A., Glogoza M., Elbadawi A., Omer M., Saad M. et al. Use of intravascular imaging in patients with ST-segment elevation acute myocardial infarction. Cardiovasc. Revasc. Med. 2021;30:59–64. DOI:10.1016/j.carrev.2020.09.032.; Ya’qoub L., Gad M., Saad A.M., Elgendy I.Y., Mahmoud A.N. National trends of utilization and readmission rates with intravascular ultrasound use for ST-elevation myocardial infarction. Catheter. Cardiovasc. Interv. 2021;98(1):1–9. DOI:10.1002/ccd.29524.; Garcia S., Schmidt C.W., Garberich R., Henry T.D., Bradley S.M., Brilakis E.S. et al. Temporal changes in patient characteristics and outcomes in ST-segment elevation myocardial infarction 2003–2018. Catheter. Cardiovasc. Interv. 2021;97(6):1109–1117. DOI:10.1002/ccd.28901.; Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V. et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Curr. Cardiol. Rev. 2022;18(5):63–79. DOI:10.2174/1573403X18666220413121730.; Acharya D. Predictors of outcomes in myocardial infarction and cardiogenic shock. Cardiol. Rev. 2018;26(5):255–266. DOI:10.1097/CRD.0000000000000190.; Sambola A., Elola F.J., Buera I., Fernández C., Bernal J.L., Ariza A. et al. Sex bias in admission to tertiary-care centres for acute myocardial infarction and cardiogenic shock. Eur. J. Clin. Invest. 2021;51(7):e13526. DOI:10.1111/eci.13526.; Gross E.R., Hsu A.K., Gross G.J. Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circ. Res. 2004;94(7):960–966. DOI:10.1161/01.RES.0000122392.33172.09.; Gross E.R., Hsu A.K., Gross G.J. Acute methadone treatment reduces myocardial infarct size via the delta-opioid receptor in rats during reperfusion. Anesth. Analg. 2009;109(5):1395–1402. DOI:10.1213/ANE.0b013e3181b92201.; Метелица В.И. Справочник по клинической фармакологии сердечно-сосудистых лекарственных средств. М.: Медпрактика; 1996:784.; Маслов Л.Н., Лишманов Ю.Б. Проницаемость гематоэнцефалического барьера для опиоидных пептидов. Экспериментальная и клиническая фармакология. 2017;80(6):39–44. DOI:10.30906/0869-2092-2017-80-6-39-44.; Jiang L., Hu J., He S., Zhang L., Zhang Y. Spinal neuronal NOS signaling contributes to morphine cardioprotection in ischemia reperfusion injury in rats. J. Pharmacol. Exp. Ther. 2016;358(3):450–456. DOI:10.1124/jpet.116.234021.; Lu Y., Hu J., Zhang Y., Dong C.S., Wong G.T. Remote intrathecal morphine preconditioning confers cardioprotection via spinal cord nitric oxide/cyclic guanosine monophosphate/protein kinase G pathway. J. Surg. Res. 2015;193(1):43–51. DOI:10.1016/j.jss.2014.08.014.; Lishmanov Yu.B., Ugdyzhekova D.S., Maslov L.N. Prevention of experimental epinephrine-induced arrhythmias with agonists of δ1 - and δ2 -opiate receptors. Bull. Exp. Biol. Med. 1997;124(3):873–875. DOI:10.1007/BF02446988.; Patel H.H., Hsu A., Moore J., Gross G.J. BW373U86, a delta opioid agonist, partially mediates delayed cardioprotection via a free radical mechanism that is independent of opioid receptor stimulation. J. Mol. Cell. Cardiol. 2001;33(8):1455–1465. DOI:10.1006/jmcc.2001.1408.; Maslov L.N., Khaliulin I., Oeltgen P.R., Naryzhnaya N.V., Pei J.-M., Brown S.A. et al. Prospects of creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists. Med. Res. Rev. 2016;36(5):871–923. DOI:10.1002/med.21395.; Maslov L.N., Lishmanov Yu.B., Oeltgen P.R., Barzakh E.I., Krylatov A.V., Govindaswami M. Activation of peripheral δ2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury: Involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sci. 2009;84(19–20):657–663. DOI:10.1016/j.lfs.2009.02.016.; Peart J.N., Patel H.H., Gross G.J. Delta-opioid receptor activation mimics ischemic preconditioning in the canine heart. J. Cardiovasc. Pharmacol. 2003;42(1):78–81. DOI:10.1097/00005344-200307000-00012.; Fryer R.M., Wang Y., Hsu A.K., Nagase H., Gross G.J. Dependence of δ1 -opioid receptor-induced cardioprotection on a tyrosine kinase-dependent but not a Src-dependent pathway. J. Pharmacol. Exp. Ther. 2001;299(2):477–482.; Maslov L.N., Mukhomedzyanov A.V., Tsibulnikov S.Y., Suleiman M.S., Khaliulin I., Oeltgen P.R. Activation of peripheral δ2-opioid receptor prevents reperfusion heart injury. Eur. J. Pharmacol. 2021;907:174302. DOI:10.1016/j.ejphar.2021.174302.; Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 2015;116(4):674–699. DOI:10.1161/CIRCRESAHA.116.305348.; de Miranda D.C., de Oliveira Faria G., Hermidorff M.M., Dos Santos Silva F.C., de Assis LVM, Isoldi M.C. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr. Vasc. Pharmacol. 2021;19(5):499–524. DOI:10.2174/1570161119666201120160619.; Gross E.R., Hsu A.K., Gross G.J. The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3β. Am. J. Physiol. Heart Circ. Physiol. 2006;291(2):H827–H834. DOI:10.1152/ajpheart.00003.2006.; Dorsch M., Behmenburg F., Raible M., Blase D., Grievink H., Hollmann M.W. et al. Morphine-induced preconditioning: involvement of protein kinase A and mitochondrial permeability transition pore. PLoS One. 2016;11(3):e0151025. DOI:10.1371/journal.pone.0151025.; Li L., Zhang H., Li T., Zhang B. Involvement of adenosine monophosphate-activated protein kinase in morphine-induced cardioprotection. J. Surg. Res. 2011;169(2):179–187. DOI:10.1016/j.jss.2009.11.007.; Kim J.H., Jang Y.H., Chun K.J., Kim J., Park Y.H., Kim J.S. et al. Kappa-opioid receptor activation during reperfusion limits myocardial infarction via ERK1/2 activation in isolated rat hearts. Korean J. Anesthesiol. 2011;60(5):351–356. DOI:10.4097/kjae.2011.60.5.351.; Wu X., Zhang B., Fan R., Zhao L., Wang Y., Zhang S. et al. U50,488H inhibits neutrophil accumulation and TNF-α induction induced by ischemia-reperfusion in rat heart. Cytokine. 2011;56(2):503–507. DOI:10.1016/j.cyto.2011.07.015.; Gross G.J., Hsu A., Nithipatikom K., Pfeiffer A.W., Bobrova I., Bissessar E. Acute and chronic cardioprotection by the enkephalin analogue, Eribis peptide 94, is mediated via activation of nitric oxide synthase and adenosine triphosphate-regulated potassium channels. Pharmacology. 2012;90(1–2):110–116. DOI:10.1111/j.1745-7254.2005.00100.x.; Zhang Y., Chen Z.W., Girwin M., Wong T.M. Remifentanil mimics cardioprotective effect of ischemic preconditioning via protein kinase C activation in open chest of rats. Acta Pharmacol. Sin. 2005;26(5):546–550. DOI:10.1111/j.1745-7254.2005.00100.x.; Popov S.V., Mukhomedzyanov A.V., Maslov L.N., Naryzhnaya N.V., Kurbatov B.K., Prasad N.R. et al. The infarct-reducing effect of the δ2 opioid receptor agonist deltorphin II: The molecular mechanism. Membranes (Basel). 2023;13(1):63. DOI:10.3390/membranes13010063.; Maslov L.N., Lishmanov Y.B. The anti-arrhythmic effect of D-Ala2, Leu5, Arg6-enkephalin and its possible mechanism. Int. J. Cardiol. 1993;40(2):89–94. DOI:10.1016/0167-5273(93)90269-m.; Li D.Y., Gao S.J., Sun J., Zhang L.Q., Wu J.Y., Song F.H. et al. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural. Regen Res. 2023; 18(5):996–1003. DOI:10.4103/1673-5374.355748.; Krylatov A.V., Tsibulnikov S.Y., Mukhomedzyanov A.V., Boshchenko A.A., Goldberg V.E., Jaggi A.S. et al. The role of natriuretic peptides in the regulation of cardiac tolerance to ischemia/reperfusion and postinfarction heart remodeling. J. Cardiovasc. Pharmacol. Ther. 2021;26(2):131–148. DOI:10.1177/1074248420952243.; Wu G., Sharina I., Martin E. Soluble guanylyl cyclase: Molecular basis for ligand selectivity and action in vitro and in vivo. Front. Mol. Biosci. 2022;9:1007768. DOI:10.3389/fmolb.2022.1007768.; Xu J., Zhu K., Wang Y., Chen J. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection. J. Cancer Res. Clin. Oncol. 2023;149(1):483–501. DOI:10.1007/s00432-022-04447-7.; Castany S., Carcolé M., Leánez S., Pol O. The antinociceptive effects of a δ-opioid receptor agonist in mice with painful diabetic neuropathy: Involvement of heme oxygenase 1. Neurosci. Lett. 2016;614:49–54. DOI:10.1016/j.neulet.2015.12.059.; Stagni E., Bucolo C., Motterlini R., Drago F. Morphine-induced ocular hypotension is modulated by nitric oxide and carbon monoxide: role of mu3 receptors. J. Ocul. Pharmacol. Ther. 2010;26(1):31–35. DOI:10.1089/jop.2009.0081.; Krylatov A.V., Maslov L.N., Voronkov N.S., Boshchenko A.A., Popov S.V., Gomez L. et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev. 2018;14(4):290–300. DOI:10.2174/1573403X14666180702152436.; Tsutsumi Y.M., Yokoyama T., Horikawa Y., Roth D.M., Patel H.H. Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci. 2007;81(15):1223– 1227. DOI:10.1016/j.lfs.2007.08.031.; Rong F., Peng Z., Ye M.X., Zhang Q.Y., Zhao Y., Zhang S.M., et al. Myocardial apoptosis and infarction after ischemia/reperfusion are attenuated by κ-opioid receptor agonist. Arch. Med. Res. 2009;40(4):227–234. DOI:10.1016/j.arcmed.2009.04.009.; Peart J.N., Gross E.R., Reichelt M.E., Hsu A., Headrick J.P., Gross G.J. Activation of kappa-opioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts. Basic Res. Cardiol. 2008;103(5):454– 463. DOI:10.1007/s00395-008-0726-z.; Jang Y., Xi J., Wang H., Mueller R.A., Norfleet E.A., Xu Z. Postconditioning prevents reperfusion injury by activating δ-opioid receptors. Anesthesiology. 2008;108(2):243–250. DOI:10.1097/01.anes.0000299437.93898.4a.; Kim J.H., Chun K.J., Park Y.H., Kim J., Kim J.S., Jang Y.H. et al. Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts. Korean J. Anesthesiol. 2011;61(1):69–74. DOI:10.4097/kjae.2011.61.1.69.; https://www.sibjcem.ru/jour/article/view/1853

  4. 4
    Academic Journal

    المساهمون: this article was prepared with the support of a grant from the Russian Foundation of Basic Research 18-415-700004. The section on a role of kinases in the cardioprotective effects of erythropoietin is prepared within the framework of the state tasks AAAA-A15-115120910024-0., Статья подготовлена при поддержке гранта РФФИ 18-415-700004. Раздел, посвященный роли киназ в кардиопротекторных эффектах эритропоэтина, оформлен в рамках гос. задания АААА-А15-115120910024-0.

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 2 (2023); 51-56 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 2 (2023); 51-56 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1786/812; Menees D.S., Peterson E.D., Wang Y., Curtis J.P., Messenger J.C., Rumsfeld J.S. et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N. Engl. J. Med. 2013;369(10):901–909. DOI:10.1056/NEJMoa1208200.; Zhou Y., Chen S., Zhu X., Gui J., Abusaada K. Prior beta blockers use is independently associated with increased inpatient mortality in patients presenting with acute myocardial infarction. Int. J. Cardiol. 2017;243:81–85. DOI:10.1016/j.ijcard.2017.03.004.; Vaidya S.R., Devarapally S.R., Arora S. Infarct related artery only versus complete revascularization in ST-segment elevation myocardial infarction and multi vessel disease: a meta-analysis. Cardiovasc. Diagn. Ther. 2017;7(1):16–26. DOI:10.21037/cdt.2016.08.06.; Bunn H.F. Erythropoietin. Cold. Spring. Harb. Perspect. Med. 2013;3(3):a011619. DOI:10.1101/cshperspect.a011619.; Carnot P., Deflandre C. Sur l’activite hemopoietique des differents organeau au cours de la regeneration du sang. CR Searces. Acad. Sci. 1906;143:432–435.; Krumdieck N. Erythropoietic substance in the serum of anemic animals. Exp. Biol. Med. 1943;54(1):14–17. DOI:10.3181/00379727-54-14283.; Jacobson L.O., Marks E., Gaston E., Goldwasser E. Role of the kidney in erythropoiesis. Nature. 1957;179(4560):633–634. DOI:10.1038/179633a0.; Baker J.E. Erythropoietin mimics ischemic preconditioning. Vascul. Pharmacol. 2005;42(5–6):233–241. DOI:10.1016/j.vph.2005.02.004.; Calvillo L., Latini R., Kajstura J., Leri A., Anversa P., Ghezzi P. et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc. Natl. Acad. Sci. 2003;100(8):4802–4806. DOI:10.1073/pnas.0630444100.; Beleslin-Cokic B.B., Cokic V.P., Yu X., Weksler B.B., Schechter A.N., Noguchi C.T. Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood. 2004;104(7):2073–2080. DOI:10.1182/blood-2004-02-0744.; Miyake T., Kung C.K.H., Goldwasser E. Purification of human erythropoietin. J. Biol. Chem. 1977;252(15):5558–5564.; Jacobs K., Shoemaker C., Rudersdorf R., Neill S.D., Kaufman R.J., Mufson A. et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 1985;313(6005):806–810. DOI:10.1038/313806a0.; Collino M., Thiemermann C., Cerami A., Brines M. Flipping the molecular switch for innate protection and repair of tissues: Long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin. Pharmacol. Ther. 2015;151:32–40. DOI:10.1016/j.pharmthera.2015.02.005.; Ridley D.M., Dawkins F., Perlin E. Erythropoietin: a review. J. Natl. Med. Assoc. 1994;86(2):129–135.; Held M.A., Greenfest-Allen E., Su S., Stoeckert C.J., Stokes M.P., Wojchowski D.M. Phospho-PTM proteomic discovery of novel EPO-modulated kinases and phosphatases, including PTPN18 as a positive regulator of EPOR/JAK2 signaling. Cell. Signal. 2020;69:109554. DOI:10.1016/j.cellsig.2020.109554.; Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 2015;116(4):674–699. DOI:10.1161/CIRCRESAHA.116.305348.; Yamaji R., Okada T., Moriya M., Naito M., Tsuruo T., Miyatake K. et al. Brain capillary endothelial cells express two forms of erythropoietin receptor mRNA. Eur. J. Biochem. 1996;239(2):494–500. DOI:10.1111/j.1432-1033.1996.0494u.x.; van der Meer P., Lipsic E., Henning R.H., de Boer R.A., Suurmeijer A.J., van Veldhuisen D.J. et al. Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia-reperfusion injury. Eur. J. Heart. Fail. 2004;6(7):853–859. DOI:10.1016/j.ejheart.2004.03.012.; Zafeiriou M.P. The Erythropoietin system protects the heart upon injury by cardiac progenitor cell activation. Vitam. Horm. 2017;105:233–248. DOI:10.1016/bs.vh.2017.04.001.; Brines M., Cerami A. Discovering erythropoietin’s extra-hematopoietic functions: biology and clinical promise. Kidney Int. 2006;70(2):246–250. DOI:10.1038/sj.ki.5001546.; van der Kooij M.A., Groenendaal F., Kavelaars A., Heijnen C.J., van Bel F. Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia. Brain Res. Rev. 2008;59(1):22–33. DOI:10.1016/j.brainresrev.2008.04.007.; Schödel J., Ratcliffe P.J. Mechanisms of hypoxia signalling: new implications for nephrology. Nat. Rev. Nephrol. 2019;15(10):641–659. DOI:10.1038/s41581-019-0182-z.; Villa P., Bigini P., Mennini T., Agnello D., Laragione T., Cagnotto A. et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J. Exp. Med. 2003;198(6):971–975. DOI:10.1084/jem.20021067.; Kittur F.S., Lin Y., Arthur E., Hung C.Y., Li P.A., Sane D.C. et al. Recombinant asialoerythropoetin protects HL-1 cardiomyocytes from injury via suppression of Mst1 activation. Biochem. Biophys. Rep. 2019;17:157–168. DOI:10.1016/j.bbrep.2019.01.004.; Li R., Zhang L.M., Sun W.B. Erythropoietin rescues primary rat cortical neurons from pyroptosis and apoptosis via Erk1/2-Nrf2/Bach1 signal pathway. Brain Res. Bull. 2017;130:236–244. DOI:10.1016/j.brainresbull.2017.01.016.; Cohen M.V., Downey J.M. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br. J. Pharmacol. 2015;172(8):1913–1932. DOI:10.1111/bph.12903.; Bullard A.J., Govewalla P., Yellon D.M. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic. Res. Cardiol. 2005;100(5):397–403. DOI:10.1007/s00395-005-0537-4.; Garg K., Sharma P., Yadav H., Singh M. Mechanism of cardioprotective effect of erythropoietin-induced preconditioning in rat heart. Indian J. Pharmacol. 2010;42(4):219. DOI:10.4103/0253-7613.68421.; Tsibulnikov S.Y., Maslov L.N., Gorbunov A.S., Voronkov N.S., Boshchenko A.A., Popov S.V. et al. A Review of humoral factors in remote preconditioning of the heart. J. Cardiovasc. Pharmacol. Ther. 2019;24(5):403–421. DOI:10.1177/1074248419841632.; Suarez-Mendez S., Tovilla-Zárate C.A., Juárez-Rojop I.E., Bermú-dez-Ocaña D.Y. Erythropoietin: A potential drug in the management of diabetic neuropathy. Biomed. Pharmacother. 2018;105:956–961. DOI:10.1016/j.biopha.2018.06.068.; Ghaboura N., Tamareille S., Ducluzeau P.-H., Grimaud L., Loufrani L., Croué A. et al. Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3β signaling. Basic. Res. Cardiol. 2011;106(1):147–162. DOI:10.1007/s00395-010-0130-3.; Tan R., Tian H., Yang B., Zhang B., Dai C., Han Z. et al. Autophagy and Akt in the protective effect of erythropoietin helix B surface peptide against hepatic ischaemia/reperfusion injury in mice. Sci. Rep. 2018;8(1):14703. DOI:10.1038/s41598-018-33028-3.; Yu J., Shi Z., Su X., Zhou Y., Li B., Wang S. et al. Expression of Bcl-2 and Bad in hippocampus of status epileptic rats and molecular mechanism of intervened recombinant human erythropoietin. Exp. Ther. Med. 2018;16(2):847–855. DOI:10.3892/etm.2018.6250.; Xie Y., Shi X., Sheng K., Han G., Li W., Zhao Q. et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol. Med. Rep. 2019;19(2):783–791. DOI:10.3892/mmr.2018.9713.; Si W., Wang J., Li M., Qu H., Gu R., Liu R. et al. Erythropoietin protects neurons from apoptosis via activating PI3K/AKT and inhibiting Erk1/2 signaling pathway. 3 Biotech. 2019;9(4):131. DOI:10.1007/s13205-019-1667-y.; Kreisman N.R., Wooliscroft L.B., Campbell C.F., Dotiwala A.K., Cox M.L., Denson A.C. et al. Preconditioning hippocampal slices with hypothermia promotes rapid tolerance to hypoxic depolarization and swelling: Mediation by erythropoietin. Brain Res. 2020;1726:146517. DOI:10.1016/j.brainres.2019.146517.; Liu F., Wen Y., Kang J., Wei C., Wang M., Zheng Z. et al. Regulation of TLR4 expression mediates the attenuating effect of erythropoietin on inflammation and myocardial fibrosis in rat heart. Int. J. Mol. Med. 2018;42(3):1436–1444. DOI:10.3892/ijmm.2018.3707.; Parsa C.J., Matsumoto A., Kim J., Riel R.U., Pascal L.S., Walton G.B. et al. A novel protective effect of erythropoietin in the infarcted heart. J. Clin. Invest. 2003;112(7):999–1007. DOI:10.1172/JCI18200.; Lipsic E., van der Meer P., Henning R.H., Suurmeijer A.J., Boddeus K.M., van Veldhuisen D.J. et al. Timing of erythropoietin treatment for cardioprotection in ischemia/reperfusion. J. Cardiovasc. Pharmacol. 2004;44(4):473–479. DOI:10.1097/01.fjc.0000140209.04675.c3.; Moon C., Krawczyk M., Ahn D., Ahmet I., Paik D., Lakatta E.G. et al. Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc. Natl. Acad. Sci. USA. 2003;100(20):11612–11617. DOI:10.1073/pnas.1930406100.; Hale S.L., Sesti C., Kloner R.A. Administration of erythropoietin fails to improve long-term healing or cardiac function after myocardial infarction in the rat. J. Cardiovasc. Pharmacol. 2005;46(2):211–215. DOI:10.1097/01.fjc.0000171751.05446.c5.; Prunier F., Pfister O., Hadri L., Liang L., Del Monte F., Liao R. et al. Delayed erythropoietin therapy reduces post-MI cardiac remodeling only at a dose that mobilizes endothelial progenitor cells. Am. J. Physiol. Circ. Physiol. 2007;292(1):H522–H529. DOI:10.1152/ajpheart.00357.2006.; van der Meer P., Lipsic E., Henning R.H., Boddeus K., van der Velden J., Voors A.A. et al. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J. Am. Coll. Cardiol. 2005;46(1):125–133. DOI:10.1016/j.jacc.2005.03.044.; Hirata A., Minamino T., Asanuma H., Fujita M., Wakeno M., Myoishi M. et al. Erythropoietin enhances neovascularization of ischemic myocardium and improves left ventricular dysfunction after myocardial infarction in dogs. J. Am. Coll. Cardiol. 2006;48(1):176–184. DOI:10.1016/j.jacc.2006.04.008.; Ott I., Schulz S., Mehilli J., Fichtner S., Hadamitzky M., Hoppe K. et al. Erythropoietin in patients with acute ST-Segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Circ. Cardiovasc. Interv. 2010;3(5):408–413. DOI:10.1161/CIRCINTERVENTIONS.109.904425.; Voors A.A., Belonje A.M.S., Zijlstra F., Hillege H.L., Anker S.D., Slart R.H. et al. A single dose of erythropoietin in ST-elevation myocardial infarction. Eur. Heart J. 2010;31(21):2593–2600. DOI:10.1093/eurheartj/ehq304.; Najjar S.S., Rao S.V., Melloni C., Raman S.V., Povsic T.J., Melton L. et al. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. JAMA. 2011;305(18):1863–1872. DOI:10.1001/jama.2011.592.; Prunier F., Bière L., Gilard M., Boschat J., Mouquet F., Bauchart J.J. et al. Single high-dose erythropoietin administration immediately after reperfusion in patients with ST-segment elevation myocardial infarction: results of the erythropoietin in myocardial infarction trial. Am. Heart J. 2012;163(2):200–207. DOI:10.1016/j.ahj.2011.11.005.; Gholamzadeh A., Amini S., Mohammadpour A.H., Vahabzadeh M., Fazelifar A.F., Fazlinezhad A. et al. Erythropoietin reduces PostPCI arrhythmias in patients with ST-elevation myocardial infarction. J. Cardiovasc. Pharmacol. 2015;65(6):555–561. DOI:10.1097/FJC.0000000000000223.; Orii M., Hirata K., Takemoto K., Akasaka T. Effect of erythropoietin administration on myocardial viability and coronary microvascular dysfunction in anterior acute myocardial infarction: Randomized controlled trial in the Japanese Population. Cardiol. Ther. 2018;7(2):151–162. DOI:10.1007/s40119-018-0122-1.; Seo W.-W., Suh J.-W., Oh I.-Y., Yoon C.H., Cho Y.S., Youn T.J. et al. Efficacy of intracoronary erythropoietin delivery before reperfusion-gauging infarct size in patients with acute ST-segment elevation myocardial infarction (ICEBERG). Int. Heart J. 2019;60(2):255–263. DOI:10.1536/ihj.18-035.; Minamino T., Higo S., Araki R., Hikoso S., Nakatani D., Suzuki H. et al. EPO-AMI-II investigators. Low-dose erythropoietin in patients with ST-segment elevation myocardial infarction (EPO-AMI-II) – A randomized controlled clinical trial. Circ. J. 2018;82(4):1083–1091. DOI:10.1253/circj.CJ-17-0889.; Маслов Л.Н., Нарыжная Н.В., Цибульников С.Ю., Воронков Н.С., Бушов Ю.В. Роль натрийуретических пептидов и эритропоэтина в регуляции толерантности сердца к действию ишемии и реперфузии. Анализ экспериментальных и клинических данных. Рос. физиол. журн. им. И.М. Сеченова. 2019;105(1):24–35. DOI:10.1134/S0869813919010060.; https://www.sibjcem.ru/jour/article/view/1786

  5. 5
    Academic Journal

    المساهمون: The study of myocardial changes in young rats with induced metabolic syndrome was supported by the Russian Science Foundation Grant https://rscf.ru/project /22-25-20001/ and funds from the Administration of the Tomsk Region. Studies of myocardial changes in old rats with induced metabolic syndrome were carried out within the framework of the state task 122020300042-4. The work was performed using the Center for Collective Use “Medical Genomics”., Исследование изменений миокарда у молодых крыс при индуцированном метаболическом синдроме проводилось при поддержке Российского научного фонда Грант https://rscf.ru/project /22-25-20001/ и средств Администрации Томской области. Исследование изменений миокарда у старых крыс при индуцированном метаболическом синдроме осуществлялось в рамках государственного задания 122020300042-4. Работа выполнена с использованием Центра коллективного пользования «Медицинская геномика».

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 1 (2023); 90-98 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 1 (2023); 90-98 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1716/790; Sun M., Tan Y., Rexiati M., Dong M., Guo W. Obesity is a common soil for premature cardiac aging and heart diseases – Role of autophagy. Biochim. Biophys. Acta-Mol. Basis Dis. 2019;1865(7):1898–1904. DOI:10.1016/j.bbadis.2018.09.004.; De Castro U.G.M., dos Santos R.A.S.A.S., Silva M.E., de Lima W.G., Campagnole-Santos M.J., Alzamora A.C. Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats. Lipids Health Dis. 2013;(12–136). DOI:10.1186/1476-511X-12-136.; Martinelli I., Tomassoni D., Moruzzi M., Roy P., Cifani C., Amenta F. et al. Cardiovascular Changes Related to Metabolic Syndrome: Evidence in Obese Zucker Rats. Int. J. Mol. Sci. 2020;21(6):2035. DOI:10.3390/ijms21062035.; Boyle A.J., Shih H., Hwang J., Ye J., Lee B., Zhang Y. et al. Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy. Exp. Gerontol. 2011;46(7):549–559. DOI:10.1016/j.exger.2011.02.010.; Piek A., de Boer R.A., Silljé H.H.W. The fibrosis-cell death axis in heart failure. Heart Fail. Rev. 2016;21(2):199-211. DOI:10.1007/s10741-016-9536-9.; Klausner S.C., Schwartz A.B. The aging heart. Clin. Geriatr. Med. 1985;1(1):119-141. URL: https://pubmed.ncbi.nlm.nih.gov/3913496/; Tracy E., Rowe G., LeBlanc A.J. Cardiac tissue remodeling in healthy aging: the road to pathology. Am. J. Physiol. Cell Physiol. 2020;319(1):C166–C182. DOI:10.1152/ajpcell.00021.2020.; Nakou E.S., Parthenakis F.I., Kallergis E.M., Marketou M.E., Nakos K.S., Vardas P.E. Healthy aging and myocardium: A complicated process with various effects in cardiac structure and physiology. Int. J. Cardiol. 2016;209:167–175. DOI:10.1016/j.ijcard.2016.02.039.; Logvinov S.V., Naryzhnaya N.V., Kurbatov B.K., Gorbunov A.S., Birulina Y.G., Maslov L.L. et al. High carbohydrate high fat diet causes arterial hypertension and histological changes in the aortic wall in aged rats: The involvement of connective tissue growth factors and fibronectin. Exp. Gerontol. 2021;154:111543. DOI:10.1016/j.exger.2021.111543.; Непомнящих Л.М., Лушникова Е.Л., Семенов Д.Е. Регенераторно-1пластическая недостаточность сердца: Морфологические основы и молекулярные механизмы. М.: Изд-во РАМН; 2003:255.; Kurbatov B.K., Prokudina E.S., Maslov L.N., Naryzhnaya N.V., Logvinov S.V., Gorbunov A.S. et al. The role of adrenergic and muscarinic receptors in stress-induced cardiac injury. Pflugers Arch. 2021; 473(10):1641–1655. DOI:10.1007/s00424-021-02602-6.; Sahraoui A., Dewachter C., de Medina G., Naeije R., Bouguerra S.A., Dewachter L. Myocardial Structural and Biological Anomalies Induced by High Fat Diet in Psammomys obesus Gerbils. PLoS One. 2016;11(2):e0148117. DOI:10.1371/journal.pone.0148117.; Poudyal H., Panchal S.K., Ward L.C., Waanders J., Brown L. Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes. Am. J. Physiol. Endocrinol. Metab. 2012;302(12): E1472–1482. DOI:10.1152/ajpendo.00102.2012.; Bhandarkar N.S., Brown L., Panchal S.K. Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats. Nutr. Res. 2019;62:78–88. DOI:10.1016/j.nutres.2018.11.002.; Elrashidy R. Dysregulation of nuclear factor erythroid 2-related factor 2 signaling and activation of fibrogenic pathways in hearts of high fat diet-fed rats. Mol. Biol. Rep. 2020;47(4):2821–2834. DOI:10.1007/s11033-020-05360-3.; Comunoglu C., Comunoglu N., Eren B., Tanrlöver O., Türkmen N., Gündogmuş U.N. et al. Age-related histopathological changes in the cardiac conducting system in the Turkish population: an evaluation of 202 autopsy cases. Folia Morphol. 2012;71(3):178–182. URL: https://journals.viamedica.pl/folia_morphologica/article/view/18756.; Pudil R. Age-related myocardial remodeling: myth or reality? Vnitr. Lek. 2020;66(8):507–511. URL: https://pubmed.ncbi.nlm.nih.gov/33740851/; https://www.sibjcem.ru/jour/article/view/1716

  6. 6
    Academic Journal

    المصدر: Complex Issues of Cardiovascular Diseases; Том 11, № 4S (2022): приложение; 146-152 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 4S (2022): приложение; 146-152 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1280/742; Макаров С.А., Максимов С.А., Шаповалова Э.Б., Стряпчев Д.В., Артамонова Г.В. Смертность от болезней системы кровообращения в Кемеровской области и Российской Федерации в 2000–2016 годах. Комплексные проблемы сердечно-сосудистых заболеваний. 2019; 8 (2): 6-11. doI:10.17802/2306-1278-2019-8-2-6-11; Поляков Д.С., Фомин И.В., Беленков Ю.Н., Мареев В.Ю., Агеев Ф.Т., Артемьева Е.Г., Бадин Ю.В., Бакулина Е.В., Виноградова Н.Г., Галявич А.С., Ионова Т.С., Камалов Г.М., Кечеджиева С.Г., Козиолова Н.А., Маленкова В.Ю., Мальчикова С.В., Мареев Ю.В., Смирнова Е.А., Тарловская Е.И., Щербинина Е.В., Якушин С.С. Хроническая сердечная недостаточность в Российской Федерации: что изменилось за 20 лет наблюдения? Результаты исследования ЭПО-ХА-ХСН. Кардиология. 2021;61(4):4-14. doi.org/10.18087/cardio.2021.4.n1628; Choi H., Park M., Youn J. Update on heart failure management and future directions. Korean J Intern Med. 2019; 34 (1): 11-43. doi:10.3904/kjim.2018.428; Barasa A., Schaufelberger M., Lappas G., Swedberg K., Dellborg M., Rosengren A. Heart failure in young adults: 20-year trends in hospitalization, aetiology, and case fatality in Sweden. Eur Heart J. 2014; 35 (1): 25–32. doi:10.1093/eurheartj/eht278; Christiansen M.N., Køber L., Weeke P., Vasan R.S., Jeppesen J.L., Smith J.G., Gislason G.H., Torp-Pedersen C., Andersson C. Age-Specific Trends in Incidence, Mortality, an.d Comorbidities of Heart Failure in Denmark, 1995 to 2012. Circulation. 2017; 135 (13): 1214-1223. doi:10.1161/CIRCULATIONAHA.116.025941; Sheeran F.L., Pepe S. Mitochondrial Bioenergetics and Dysfunction in Failing Heart. Advances in Experimental Medicine and Biology. 2017; 982: 65-80. doi:10.1007/978-3-319-55330-6_4.; Teerlink J., Pfeffer J., Pfeffer M. Progressive Ventricular Remodeling in Response to Diffuse Isoproterenol-induced Myocardial Necrosis in Rats. Circulation Research. 1994; 75 (1): 105-113. doi:10.1161/01.res.75.1.105; Rebrova, T.Y., Korepanov V.A., Afanasiev S.A. Age Peculiarities of Respiratory Activity and Membrane Microviscosity of Mitochondria from Rat Cardiomyocytes. Bulletin of Experimental Biology and Medicine. 2021; 170 (3): 368-370. doi:10.1007/s10517-021-05069-8; Добрецов. Г.Е. Флуоресцентные зонды в исследовании клеток, мембран и липопротеинов. М.: Наука, 1989:277; Еремеев С.А., Ягужинский Л.С. О локальном сопряжении систем электронного транспорта и синтеза АТФ в митохондриях. Биохимия. 2015; 80 (5): 682-688. doi:10.1134/S0006297915050089]; Neubauer S. The failing heart--an engine out of fuel. N Engl J Med. 2007; 356 (11): 1140-51. doi:10.1056/NEJMra063052.; Bisaccia G., Ricci F., Gallina S., Di Baldassarre A., Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. International Journal of Molecular Sciences. 2021; 22 (2): 614. doi:10.3390/ijms22020614.; Roach C., Feller S.E., Ward J.A., Shaikh S.R., Zerouga M., Stillwell W. Comparison of cis and trans fatty acid containing phosphatidylcholines on membrane properties. Biochemistry. 2004; 43 (20): 6344–6351. doi:10.1021/bi049917r.; Rebrova T.Y., Afanasiev S.A. State of the Antioxidant System and the Severity of Lipid-Peroxidation Processes in the Myocardium and Blood Plasma of Rats of Different Ages with Postinfarction Cardiosclerosis. Advances in Gerontology. 2021; 11 (2): 152–157. doi:10.1134/S2079057021020132; Yi S., Yi J., Ohrr H. Total cholesterol and all-cause mortality by sex and age: a prospective cohort study among 12.8 million adults. Scientific Reports. 2019; 9: 1596. doi:10.1038/s41598-018-38461-y; Афанасьев С.А., Кондратьева Д.С., Путрова О.Д., Перчаткин В.А., Репин А.Н. Возрастные особенности внутриклеточного гомеостаза кальция в кардиомиоцитах крыс при постинфарктном ремоделировании сердца. Успехи геронтологии. 2010. 23 (1): 59–63.; https://www.nii-kpssz.com/jour/article/view/1280

  7. 7