-
1Academic Journal
المؤلفون: V. L. Chang, O. V. Kovaleva, A. N. Grachev, D. V. Rogozhin, E. S. Gershtein, N. E. Kushlinskii, I. S. Stilidi, В. Л. Чанг, О. В. Ковалева, А. Н. Грачев, Д. В. Рогожин, Е. С. Герштейн, Н. Е. Кушлинский, И. С. Стилиди
المصدر: Surgery and Oncology; Том 14, № 4 (2024); 86-92 ; Хирургия и онкология; Том 14, № 4 (2024); 86-92 ; 2949-5857
مصطلحات موضوعية: прогноз, sPD-1, sPD-L1, blood plasma, prognosis, плазма крови
وصف الملف: application/pdf
Relation: https://www.onco-surgery.info/jour/article/view/759/487; Sung H., Ferlay J., Siegel R.L. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–49. DOI:10.3322/caac.21660; Заридзе Д.Г., Каприн А.Д., Стилиди И.С. Динамика заболеваемости и смертности от злокачественных новообразований в России. Вопросы онкологии 2018;64(5):578–90.; Герштейн Е.С., Огнерубов Н.А., Чанг В.Л. и др. Растворимые формы PD-1 и PD-L1 в плазме крови больных раком желудка и их связь с клиническими и морфологическими характеристиками заболевания. Клиническая лабораторная диагностика 2020;65(6):347–52. DOI: http://dx.doi.org/10.18821m69-2084-2020-65-6-347-352; Guo Y., Walsh A.M., Canavan M. et al. Immune checkpoint inhibitor PD-1 pathway is down-regulated in synovium at various stages of rheumatoid arthritis disease progression. PLoS ONE 2018;13(2):e0192704. DOI:10.1371/journal.pone.0192704; Theodoraki M.N., Yerneni S.S., Hoffmann T.K. et al. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin Cancer Res 2018;24(4):896–905. DOI:10.1158/1078-0432.CCR-17-2664; Герштейн Е.С., Уткин Д.О., Горячева И.О. и др. Растворимые формы рецептора контрольной точки иммунитета PD-1 и его лиганда PD-L1 в плазме крови больных новообразованиями яичников. Альманах клинической медицины 2018;46(7):690–8. DOI:10.18786/2072-0505-2018-46-7-690-698; Ковалева О.В., Грачев А.Н., Макарова Э.И. и др. Прогностическая значимость sPD-1/sPD-L1 при раке о почки в зависимости от фенотипа опухолевых и стромальных клеток. Онкоурология 2022;18(2):17–28. DOI:10.17650/1726-9776-2022-18-2-17-28; Guo X., Wang J., Jin J. et al. High serum level of soluble programmed death ligand 1 is associated with a poor prognosis in Hodgkin lymphoma. Transl Oncol 2018;11(3):779–85. DOI:10.1016/j.tranon.2018.03.012; Kim H.J., Park S., Kim K.J., Seong J. Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular carcinoma patients treated with radiotherapy. Radiother Oncol 2018;129(1):130–5. DOI:10.1016/j.radonc.2017.11.027; Kabir T.F., Chauhan A., Anthony L., Hildebrandt G.C. Immune checkpoint inhibitors in pediatric solid tumors: Status in 2018. Ochsner J 2018;18(4):370–6. DOI:10.31486/toj.18.0055; Shigemori T., Toiyama Y., Okugawa Y. et al. Soluble PD-L1 expression in circulation as a predictive marker for recurrence and prognosis in gastric cancer: direct comparison of the clinical burden between tissue and serum PD-L1 expression. Ann Surg Oncol 2019;26(3):876–83. DOI:10.1245/s10434-018-07112-x; Choi Y.Y., Kim H., Shin S.J. et al. Microsatellite instability and programmed cell death-ligand 1 expression in stage II/III gastric cancer: post hoc analysis of the CLASSIC Randomized Controlled study. Ann Surg 2019;270(2):309–16. DOI:10.1097/SLA.0000000000002803; Niu M., Liu Y., Yi M. et al. Biological characteristics and clinical significance of soluble PD-1/PD-L1 and exosomal PD-L1 in cancer. Front Immunol 2022;13:827921. DOI:10.3389/fimmu.2022.827921; Chmielewska I., Grenda A., Krawczyk P. et al. The influence of plasma sPD-L1 concentration on the effectiveness of immunotherapy in advanced NSCLC patients. Cancer Immunol Immunother 2023;72(12):4169–77. DOI:10.1007/s00262-023-03552-x; Kovaleva O.V., Podlesnaya P.A., Chang V.L. et al. Comprehensive analysis of stromal and serum markers in gastric cancer. Acta Naturae 2022;14(4):75–83. DOI:10.32607/actanaturae.11753.; Shin K., Kim J., Park S.J. et al. Prognostic value of soluble PD-L1 and exosomal PD-L1 in advanced gastric cancer patients receiving systemic chemotherapy. Sci Rep 2023;13:6952. DOI:10.1038/s41598-023-33128-9; Kurosaki T., Chamoto K., Suzuki S. et al. The combination of soluble forms of PD-1 and PD-L1 as a predictive marker of PD-1 blockade in patients with advanced cancers: a multicenter retrospective study. Front Immunol 2023;14:1325462. DOI:10.3389/fimmu.2023.1325462; Kawakami H., Sunakawa Y., Inoue E. et al. Soluble programmed cell death ligand 1 predicts prognosis for gastric cancer patients treated with nivolumab: blood-based biomarker analysis for the DELIVER trial. Eur J Cancer 2023;184:10–20. DOI:10.1016/j.ejca.2023.02.003.
-
2Academic Journal
المؤلفون: N. E. Kushlinskii, O. V. Kovaleva, E. S. Gershtein, A. A. Alferov, Yu. B. Kuzmin, S. D. Bezhanova, I. A. Klimanov, N. V. Lyubimova, A. N. Gratchev, N. N. Zybina, V. B. Matveev, I. S. Stilidi, Н. Е. Кушлинский, О. В. Ковалева, Е. С. Герштейн, А. А. Алферов, Ю. Б. Кузьмин, С. Д. Бежанова, И. А. Климанов, Н. В. Любимова, А. Н. Грачев, Н. Н. Зыбина, В. Б. Матвеев, И. С. Стилиди
المصدر: Cancer Urology; Том 19, № 4 (2023); 24-31 ; Онкоурология; Том 19, № 4 (2023); 24-31 ; 1996-1812 ; 1726-9776
مصطلحات موضوعية: сыворотка крови, KISS1, blood serum
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1724/1492; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1724/1408; Kushlinskii N.E., Gershtein E.S., Alferov A.A. et al. Prognostic role of matrix metalloproteinases 2, 7, 8, 9 and their type 1 tissue inhibitor in blood serum of patients with kidney cancer. Bull Exp Biol Med 2020;168(5):673–6. DOI:10.1007/s10517-020-04778-w; Steeg P.S., Ouatas T., Halverson D. et al. Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 2003;4(1):51–62. DOI:10.3816/cbc.2003.n.012; Ly T., Harihar S., Welch D.R. KISS1 in metastatic cancer research and treatment: potential and paradoxes. Cancer Metastasis Rev 2020;39(3):739–54. DOI:10.1007/s10555-020-09868-9; Harihar S., Welch D.R. KISS1 metastasis suppressor in tumor dormancy: a potential therapeutic target for metastatic cancers? Cancer Metastasis Rev 2023;42(1):183–96. DOI:10.1007/s10555-023-10090-6; Hu K.L., Chang H.M., Zhao H.C. et al. Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation. Hum Reprod Update 2019;25(3):326–43. DOI:10.1093/humupd/dmy046; Wang C.H., Qiao C., Wang R.C., Zhou W.P. KiSS-1-mediated suppression of the invasive ability of human pancreatic carcinoma cells is not dependent on the level of KiSS-1 receptor GPR54. Mol Med Rep 2016;13(1):123–9. DOI:10.3892/mmr.2015.4535; Wang W., Yang Z.L., Liu J.Q. et al. Overexpression of MTA1 and loss of KAI-1 and KiSS-1 expressions are associated with invasion, metastasis, and poor-prognosis of gallbladder adenocarcinoma. Tumori 2014;100(6):667–74. DOI:10.1700/1778.19276; Teng Y., Mei Y., Hawthorn L., Cowell J.K. WASF3 regulates miR-200 inactivation by ZEB1 through suppression of KISS1 leading to increased invasiveness in breast cancer cells. Oncogene 2014;33(2):203–11. DOI:10.1038/onc.2012.565; Zhu N., Zhao M., Song Y. et al. The KiSS-1/GPR54 system: Essential roles in physiological homeostasis and cancer biology. Genes Dis 2022;9(1):28–40. DOI:10.1016/j.gendis.2020.07.008; Ohtaki T., Shintani Y., Honda S. et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001;411(6837):613–7. DOI:10.1038/35079135; Kuohung W., Kaiser U.B. GPR54 and KiSS-1: role in the regulation of puberty and reproduction. Rev Endocr Metab Disord 2006;7(4):257–63. DOI:10.1007/s11154-006-9020-2; Francis V.A., Abera A.B., Matjila M. et al. Kisspeptin regulation of genes involved in cell invasion and angiogenesis in first trimester human trophoblast cells. PLoS One 2014;9(6):e99680. DOI:10.1371/journal.pone.0099680; Ciaramella V., Della Corte C.M., Ciardiello F., Morgillo F. Kisspeptin and cancer: molecular interaction, biological functions, and future perspectives. Front Endocrinol (Lausanne) 2018;9:115. DOI:10.3389/fendo.2018.00115; Loosen S.H., Luedde M., Lurje G. et al. Serum levels of kisspeptin are elevated in patients with pancreatic cancer. Dis Markers 2019;2019:5603474. DOI:10.1155/2019/5603474; Canbay E., Ergen A., Bugra D. et al. Kisspeptin-54 levels are increased in patients with colorectal cancer. World J Surg 2012;36(9):2218–24. DOI:10.1007/s00268-012-1636-7; Ergen A., Canbay E., Bugra D. et al. Plasma Kisspeptin-54 levels in gastric cancer patients. Int J Surg 2012;10(9):551–4. DOI:10.1016/j.ijsu.2012.08.014; Gatti L., Rolli L., Corno C. et al. Increased serum levels of KiSS1- derived peptides in non-small cell lung cancer patient liquid biopsies and biological relevance. Transl Lung Cancer Res 2022;11(7):1315–26. DOI:10.21037/tlcr-22-52; Harihar S., Ray S., Narayanan S. et al. Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clin Exp Metastasis 2020;37(2):209–23. DOI: 0.1007/s10585-020-10030-6; Zheng S., Chang Y., Hodges K.B. et al. Expression of KISS1 and MMP-9 in non-small cell lung cancer and their relations to metastasis and survival. Anticancer Res 2010;30(3):713–8.; https://oncourology.abvpress.ru/oncur/article/view/1724
-
3Academic Journal
المؤلفون: О. В. Ковалева, П. А. Подлесная, А. Н. Грачев
المساهمون: Исследование выполнено за счет гранта Российского научного фонда № 22-15-00291, https://rscf.ru/project/ 22-15-00291
المصدر: Malignant tumours; Том 13, № 3s1 (2023); 64-71 ; Злокачественные опухоли; Том 13, № 3s1 (2023); 64-71 ; 2587-6813 ; 2224-5057
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1186/823; Yu G, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC, Caporaso NE, Goedert JJ, Ravel J, and Landi MT. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features // Genome Biol. 2016. Vol. 17, N 1 : P. 163 doi:10.1186/s13059-016-1021-1.; Dong Q, Chen ES, Zhao C, and Jin C. Host-Microbiome Interaction in Lung Cancer // Front Immunol. 2021. Vol. 12, N : P. 679829 doi:10.3389/fimmu.2021.679829.; Beck JM, Young VB, and Huffnagle GB. The microbiome of the lung // Transl Res. 2012. Vol. 160, N 4 : P. 258–66 doi:10.1016/j.trsl.2012.02.005.; Kovaleva OV, Romashin D, Zborovskaya IB, Davydov MM, Shogenov MS, and Gratchev A. Human Lung Microbiome on the Way to Cancer // J Immunol Res. 2019. Vol. 2019, N : P. 1394191 doi:10.1155/2019/1394191.; Kovaleva O, Podlesnaya P, Rashidova M, Samoilova D, Petrenko A, Zborovskaya I, Mochalnikova V, Kataev V, Khlopko Y, Plotnikov A, and Gratchev A. Lung Microbiome Differentially Impacts Survival of Patients with Non-Small Cell Lung Cancer Depending on Tumor Stroma Phenotype // Biomedicines. 2020. Vol. 8, N 9 : P. doi:10.3390/biomedicines8090349.; Fox JG, and Wang TC. Inflammation, atrophy, and gastric cancer // J Clin Invest. 2007. Vol. 117, N 1 : P. 60–9 doi:10.1172/JCI30111.; Huang JQ, Zheng GF, Sumanac K, Irvine EJ, and Hunt RH. Meta-analysis of the relationship between cagA seropositivity and gastric cancer // Gastroenterology. 2003. Vol. 125, N 6 : P. 1636–44; Ye W, Held M, Lagergren J, Engstrand L, Blot WJ, McLaughlin JK, and Nyren O. Helicobacter pylori infection and gastric atrophy : risk of adenocarcinoma and squamous-cell carcinoma of the esophagus and adenocarcinoma of the gastric cardia // J Natl Cancer Inst. 2004. Vol. 96, N 5 : P. 388–96; Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, and Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin / beta-catenin signaling via its FadA adhesin // Cell Host Microbe. 2013. Vol. 14, N 2 : P. 195–206 doi:10.1016/j.chom.2013.07.012.; Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, and Fang JY. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy // Cell. 2017. Vol. 170, N 3 : P. 548–63 e16 doi:10.1016/j.cell.2017.07.008.; Gocyk W, Niklinski T, Olechnowicz H, Duda A, Bielanski W, Konturek PC, and Konturek SJ. Helicobacter pylori, gastrin and cyclooxygenase-2 in lung cancer // Med Sci Monit. 2000. Vol. 6, N 6 : P. 1085–92; Kanbay M, Kanbay A, and Boyacioglu S. Helicobacter pylori infection as a possible risk factor for respiratory system disease : a review of the literature // Respir Med. 2007. Vol. 101, N 2 : P. 203–9 doi:10.1016/j.rmed.2006.04.022.; Cheng M, Qian L, Shen G, Bian G, Xu T, Xu W, Shen G, and Hu S. Microbiota modulate tumoral immune surveillance in lung through a gammadeltaT17 immune cell-dependent mechanism // Cancer Res. 2014. Vol. 74, N 15 : P. 4030–41 doi:10.1158/0008-5472.CAN-13-2462.; Jungnickel C, Schmidt LH, Bittigkoffer L, Wolf L, Wolf A, Ritzmann F, Kamyschnikow A, Herr C, Menger MD, Spieker T, Wiewrodt R, Bals R, and Beisswenger C. IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth // Oncogene. 2017. Vol. 36, N 29 : P. 4182–90 doi:10.1038/onc.2017.28.; Travaglione S, Fabbri A, and Fiorentini C. The Rho-activating CNF1 toxin from pathogenic E. coli : a risk factor for human cancer development? // Infect Agent Cancer. 2008. Vol. 3, N : P. 4 doi:10.1186/1750-9378-3-4.; Nesic D, Hsu Y, and Stebbins CE. Assembly and function of a bacterial genotoxin // Nature. 2004. Vol. 429, N 6990 : P. 429–33 doi:10.1038/nature02532.; Yaghoobi H, Bandehpour M, and Kazemi B. Apoptotic Effects of the B Subunit of Bacterial Cytolethal Distending Toxin on the A549 Lung Cancer Cell Line // Asian Pac J Cancer Prev. 2016. Vol. 17, N S3 : P. 299–304; Apopa PL, Alley L, Penney RB, Arnaoutakis K, Steliga MA, Jeffus S, Bircan E, Gopalan B, Jin J, Patumcharoenpol P, Jenjaroenpun P, Wongsurawat T, Shah N, Boysen G, Ussery D, Nookaew I, Fagan P, Bebek G, and Orloff MS. PARP1 Is Up-Regulated in Non-small Cell Lung Cancer Tissues in the Presence of the Cyanobacterial Toxin Microcystin // Front Microbiol. 2018. Vol. 9, N : P. 1757 doi:10.3389/fmicb.2018.01757.; Chow SC, Gowing SD, Cools-Lartigue JJ, Chen CB, Berube J, Yoon HW, Chan CH, Rousseau MC, Bourdeau F, Giannias B, Roussel L, Qureshi ST, Rousseau S, and Ferri LE. Gram negative bacteria increase non-small cell lung cancer metastasis via Toll-like receptor 4 activation and mitogen-activated protein kinase phosphorylation // Int J Cancer. 2015. Vol. 136, N 6 : P. 1341–50 doi:10.1002/ijc.29111.; Greathouse KL, White JR, Vargas AJ, Bliskovsky VV, Beck JA, von Muhlinen N, Polley EC, Bowman ED, Khan MA, Robles AI, Cooks T, Ryan BM, Padgett N, Dzutsev AH, Trinchieri G, Pineda MA, Bilke S, Meltzer PS, Hokenstad AN, Stickrod TM, Walther-Antonio MR, Earl JP, Mell JC, Krol JE, Balashov SV, Bhat AS, Ehrlich GD, Valm A, Deming C, Conlan S, Oh J, Segre JA, and Harris CC. Interaction between the microbiome and TP53 in human lung cancer // Genome Biol. 2018. Vol. 19, N 1 : P. 123 doi:10.1186/s13059-018-1501-6.; Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ, Park KS, Lee JO, Kim YK, Kwon KH, Kim KP, and Gho YS. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli // Proteomics. 2007. Vol. 7, N 17 : P. 3143–53 doi:10.1002/pmic.200700196.; Kim JH, Lee J, Park J, and Gho YS. Gram-negative and Gram-positive bacterial extracellular vesicles // Semin Cell Dev Biol. 2015. Vol. 40, N:P. 97–104 doi:10.1016/j.semcdb.2015.02.006.; Choi Y, Park H, Park HS, and Kim YK. Extracellular Vesicles, a Key Mediator to Link Environmental Microbiota to Airway Immunity // Allergy Asthma Immunol Res. 2017. Vol. 9, N 2 : P. 101–6 doi:10.4168/aair.2017.9.2.101.; Brune B, Dehne N, Grossmann N, Jung M, Namgaladze D, Schmid T, von Knethen A, and Weigert A. Redox control of inflammation in macrophages // Antioxid Redox Signal. 2013. Vol. 19, N 6 : P. 595–637 doi:10.1089/ars.2012.4785.; Hibbs JB, Jr., Taintor RR, and Vavrin Z. Macrophage cytotoxicity : role for L-arginine deiminase and imino nitrogen oxidation to nitrite // Science. 1987. Vol. 235, N 4787 : P. 473–6 doi:10.1126/science.2432665.; Lambeth JD, Kawahara T, and Diebold B. Regulation of Nox and Duox enzymatic activity and expression // Free Radic Biol Med. 2007. Vol. 43, N 3 : P. 319–31 doi:10.1016/j.freeradbiomed.2007.03.028.; Leto TL, Morand S, Hurt D, and Ueyama T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases // Antioxid Redox Signal. 2009. Vol. 11, N 10 : P. 2607–19 doi:10.1089/ARS.2009.2637.; Li B, Bedard K, Sorce S, Hinz B, Dubois-Dauphin M, and Krause KH. NOX4 expression in human microglia leads to constitutive generation of reactive oxygen species and to constitutive IL-6 expression // J Innate Immun. 2009. Vol. 1, N 6 : P. 570–81 doi:10.1159/000235563.; Josephs DH, Nakamura M, Bax HJ, Dodev TS, Muirhead G, Saul L, Karagiannis P, Ilieva KM, Crescioli S, Gazinska P, Woodman N, Lombardelli C, Kareemaghay S, Selkirk C, Lentfer H, Barton C, Canevari S, Figini M, Downes N, Dombrowicz D, Corrigan CJ, Nestle FO, Jones PS, Gould HJ, Blower PJ, Tsoka S, Spicer JF, and Karagiannis SN. An immunologically relevant rodent model demonstrates safety of therapy using a tumour-specific IgE // Allergy. 2018. Vol. 73, N 12 : P. 2328–41 doi:10.1111/all.13455.; Weiskopf K, and Weissman IL. Macrophages are critical effectors of antibody therapies for cancer // MAbs. 2015. Vol. 7, N 2 : P. 303–10 doi:10.1080/19420862.2015.1011450.; Gao J, Wang D, Liu D, Liu M, Ge Y, Jiang M, Liu Y, and Zheng D. Tumor necrosis factor-related apoptosis-inducing ligand induces the expression of proinflammatory cytokines in macrophages and re-educates tumor-associated macrophages to an antitumor phenotype // Mol Biol Cell. 2015. Vol. 26, N 18 : P. 3178–89 doi:10.1091/mbc.E15-04-0209.; Taganov KD, Boldin MP, Chang KJ, and Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses // Proc Natl Acad Sci U S A. 2006. Vol. 103, N 33 : P. 12481–6 doi:10.1073/pnas.0605298103.; Wang D, Liu D, Gao J, Liu M, Liu S, Jiang M, Liu Y, and Zheng D. TRAIL-induced miR-146a expression suppresses CXCR4-mediated human breast cancer migration // FEBS J. 2013. Vol. 280, N 14 : P. 3340–53 doi:10.1111/febs.12323.; Zhou Z, Zhang C, Zhang J, and Tian Z. Macrophages help NK cells to attack tumor cells by stimulatory NKG2D ligand but protect themselves from NK killing by inhibitory ligand Qa-1 // PLoS One. 2012. Vol. 7, N 5:P. e36928 doi:10.1371/journal.pone.0036928.; Benimetskaya L, Loike JD, Khaled Z, Loike G, Silverstein SC, Cao L, el Khoury J, Cai TQ, and Stein CA. Mac-1 (CD11b / CD18) is an oligodeoxynucleotide-binding protein // Nat Med. 1997. Vol. 3, N 4 : P. 414–20 doi:10.1038/nm0497-414.; Canli O, Nicolas AM, Gupta J, Finkelmeier F, Goncharova O, Pesic M, Neumann T, Horst D, Lower M, Sahin U, and Greten FR. Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis // Cancer Cell. 2017. Vol. 32, N 6 : P. 869–83 e5 doi:10.1016/j.ccell.2017.11.004.; Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, Fatho M, Lennerz V, Wolfel T, Holzel M, and Tuting T. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation // Nature. 2012. Vol. 490, N 7420 : P. 412–6 doi:10.1038/nature11538.; Zhou X, Hao Q, Liao P, Luo S, Zhang M, Hu G, Liu H, Zhang Y, Cao B, Baddoo M, Flemington EK, Zeng SX, and Lu H. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator // Elife. 2016. Vol. 5, N : P. doi:10.7554/eLife.15099.; Ifrim DC, Quintin J, Joosten LA, Jacobs C, Jansen T, Jacobs L, Gow NA, Williams DL, van der Meer JW, and Netea MG. Trained immunity or tolerance : opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors // Clin Vaccine Immunol. 2014. Vol. 21, N 4 : P. 534–45 doi:10.1128/CVI.00688-13.; Dobrovolskaia MA, Medvedev AE, Thomas KE, Cuesta N, Toshchakov V, Ren T, Cody MJ, Michalek SM, Rice NR, and Vogel SN. Induction of in vitro reprogramming by Toll-like receptor (TLR) 2 and TLR4 agonists in murine macrophages : effects of TLR “homotolerance” versus “heterotolerance” on NF-kappa B signaling pathway components // J Immunol. 2003. Vol. 170, N 1 : P. 508–19 doi:10.4049/jimmunol.170.1.508.; Dobrovolskaia MA, and Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS // Microbes Infect. 2002. Vol. 4, N 9 : P. 903–14 doi:10.1016/s1286-4579(02)01613-1.; Medvedev AE, Sabroe I, Hasday JD, and Vogel SN. Tolerance to microbial TLR ligands : molecular mechanisms and relevance to disease // J Endotoxin Res. 2006. Vol. 12, N 3 : P. 133–50 doi:10.1179/096805106X102255.; Biswas SK, and Lopez-Collazo E. Endotoxin tolerance : new mechanisms, molecules and clinical significance // Trends Immunol. 2009. Vol. 30, N 10 : P. 475–87 doi:10.1016/j.it.2009.07.009.; Sly LM, Rauh MJ, Kalesnikoff J, Song CH, and Krystal G. LPS-induced upregulation of SHIP is essential for endotoxin tolerance // Immunity. 2004. Vol. 21, N 2 : P. 227–39 doi:10.1016/j.immuni.2004.07.010.; Piao W, Song C, Chen H, Diaz MA, Wahl LM, Fitzgerald KA, Li L, and Medvedev AE. Endotoxin tolerance dysregulates MyD88-and Toll / IL-1R domain-containing adapter inducing IFN-beta-dependent pathways and increases expression of negative regulators of TLR signaling // J Leukoc Biol. 2009. Vol. 86, N 4 : P. 863–75 doi:10.1189/jlb.0309189.; Kobayashi K, Hernandez LD, Galan JE, Janeway CA, Jr., Medzhitov R, and Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling // Cell. 2002. Vol. 110, N 2 : P. 191–202 doi:10.1016/s0092-8674(02)00827-9.; Nimah M, Zhao B, Denenberg AG, Bueno O, Molkentin J, Wong HR, and Shanley TP. Contribution of MKP-1 regulation of p38 to endotoxin tolerance // Shock. 2005. Vol. 23, N 1 : P. 80–7 doi:10.1097/01.shk.0000145206.28812.60.; Foster SL, Hargreaves DC, and Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications // Nature. 2007. Vol. 447, N 7147 : P. 972–8 doi:10.1038/nature05836.; Zwergal A, Quirling M, Saugel B, Huth KC, Sydlik C, Poli V, Neumeier D, Ziegler-Heitbrock HW, and Brand K. C / EBP beta blocks p65 phosphorylation and thereby NF-kappa B-mediated transcription in TNF-tolerant cells // J Immunol. 2006. Vol. 177, N 1 : P. 665–72 doi:10.4049/jimmunol.177.1.665.; Park SH, Park-Min KH, Chen J, Hu X, and Ivashkiv LB. Tumor necrosis factor induces GSK3 kinase-mediated cross-toleranceto endotoxin in macrophages // Nat Immunol. 2011. Vol. 12, N 7 : P. 607–15 http://doi.org/10.1038/ni.2043.; Chen J, and Ivashkiv LB. IFN-gamma abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling // Proc Natl Acad Sci U S A. 2010. Vol. 107, N 45 : P. 19438–43 doi:10.1073/pnas.1007816107.; Shi L, Song L, Maurer K, Sharp J, Zhang Z, and Sullivan KE. Endotoxin tolerance in monocytes can be mitigated by alpha2-interferon // J Leukoc Biol. 2015. Vol. 98, N 4 : P. 651–9 doi:10.1189/jlb.4A0914-450RR.; Shoji S, Nakano M, Sato H, Tang XY, Osamura YR, Terachi T, Uchida T, and Takeya K. The current status of tailor-made medicine with molecular biomarkers for patients with clear cell renal cell carcinoma // Clin Exp Metastasis. 2014. Vol. 31, N 1 : P. 111–34 doi:10.1007/s10585-013-9612-7.; Dizon DS, Krilov L, Cohen E, Gangadhar T, Ganz PA, Hensing TA, Hunger S, Krishnamurthi SS, Lassman AB, Markham MJ, Mayer E, Neuss M, Pal SK, Richardson LC, Schilsky R, Schwartz GK, Spriggs DR, Villalona-Calero MA, Villani G, and Masters G. Clinical Cancer Advances 2016 : Annual Report on Progress Against Cancer From the American Society of Clinical Oncology // J Clin Oncol. 2016. Vol. 34, N 9 : P. 987–1011 doi:10.1200/JCO.2015.65.8427.; Barata PC, and Rini BI. Treatment of renal cell carcinoma : Current status and future directions // CA Cancer J Clin. 2017. Vol. 67, N 6 : P. 507–24 doi:10.3322/caac.21411.; Liu KG, Gupta S, and Goel S. Immunotherapy : incorporation in the evolving paradigm of renal cancer management and future prospects // Oncotarget. 2017. Vol. 8, N 10 : P. 17313–27 doi:10.18632/oncotarget.14388.; Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, and Diaz LA, Jr. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency // N Engl J Med. 2015. Vol. 372, N 26 : P. 2509–20 doi:10.1056/NEJMoa1500596.; Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, and Goldszmid RS. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment // Science. 2013. Vol. 342, N 6161 : P. 967–70 doi:10.1126/science.1240527.; Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, Thaiss CA, Reuben A, Livny J, Avraham R, Frederick DT, Ligorio M, Chatman K, Johnston SE, Mosher CM, Brandis A, Fuks G, Gurbatri C, Gopalakrishnan V, Kim M, Hurd MW, Katz M, Fleming J, Maitra A, Smith DA, Skalak M, Bu J, Michaud M, Trauger SA, Barshack I, Golan T, Sandbank J, Flaherty KT, Mandinova A, Garrett WS, Thayer SP, Ferrone CR, Huttenhower C, Bhatia SN, Gevers D, Wargo JA, Golub TR, and Straussman R. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine // Science. 2017. Vol. 357, N 6356 : P. 1156–60 doi:10.1126/science.aah5043; https://www.malignanttumors.org/jour/article/view/1186
-
4Academic Journal
المؤلفون: O. V. Kovaleva, A. N. Gratchev, E. I. Makarova, S. D. Bezhanova, I. S. Stilidi, V. B. Matveev, N. E. Kushlinskii, О. В. Ковалева, А. Н. Грачев, Э. И. Макарова, С. Д. Бежанова, И. С. Стилиди, В. Б. Матвеев, Н. Е. Кушлинский
المساهمون: The study was performed with the support of Russian Science Foundation (grant No. 22-25-00082, https://rscf.ru/project/22-25-00082/), Исследование выполнено при финансовой поддержке Российского научного фонда (грант № 22-25-00082, https://rscf.ru/project/22-25-00082/)
المصدر: Cancer Urology; Том 18, № 2 (2022); 17-28 ; Онкоурология; Том 18, № 2 (2022); 17-28 ; 1996-1812 ; 1726-9776
مصطلحات موضوعية: прогноз, blood serum, renal cell carcinoma, stroma, immunosuppression, prognosis, сыворотка крови, почечно-клеточный рак, строма, иммуносупрессия
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1556/1364; Ковалева О.В., Рашидова М.А., Самойлова Д.В. и др. Иммуносупрессорные особенности фенотипа стромы опухолей почки различных гистологических типов. Онкоурология 2020;16(2):29–35. DOI:10.17650/1726-97762020-16-2-29-35; Кушлинский Н.Е., Герштейн Е.С., Горячева И.О. и др. Растворимые формы рецептора контрольной точки иммунитета PD-1 и его лиганда PD-L1 в сыворотке крови больных почечноклеточным раком: клинико-морфологические корреляции. Онкоурология 2019;15(1):15–22. DOI:10.17650/1726-9776-2019-15-1-15-22; Kumar B., Ghosh A., Datta C., Pal D.K. Role of PDL1 as a prognostic marker in renal cell carcinoma: a prospective observational study in eastern India. Ther Adv Urol 2019;11:1756287219868859. DOI:10.1177/1756287219868859; Leite K.R., Reis S.T., Junior J.P. et al. PD-L1 expression in renal cell carcinoma clear cell type is related to unfavorable prognosis. Diagn Pathol 2015;10:189. DOI:10.1186/s13000-015-0414-x; Li J., Wang P., Xu Y. Prognostic value of programmed cell death ligand 1 expression in patients with head and neck cancer: a systematic review and meta-analysis. PloS One 2017;12(6):e0179536. DOI:10.1371/journal.pone.0179536; Kovaleva O.V., Rashidova M.A., Samoilova D.V. et al. Immunosuppressive phenotype of esophagus tumors stroma. Anal Cell Pathol (Amst) 2020;2020:5424780. DOI:10.1155/2020/5424780; Minami K., Hiwatashi K., Ueno S. et al. Prognostic significance of CD68, CD163 and folate receptor-beta positive macrophages in hepatocellular carcinoma. Exp Ther Med 2018;15(5):4465–76. DOI:10.3892/etm.2018.5959; Zhang Y., Cheng S., Zhang M. et al. High-infiltration of tumor-associated macrophages predicts unfavorable clinical outcome for node-negative breast cancer. PloS One 2013;8(9):e76147. DOI:10.1371/journal.pone.0076147; Meshcheryakova A., Tamandl D., Bajna E. et al. B cells and ectopic follicular structures: novel players in anti-tumor programming with prognostic power for patients with metastatic colorectal cancer. PloS One 2014;9(6):e99008. DOI:10.1371/journal.pone.0099008; Ковалева О.В., Грачев А.Н., Подлесная П.А. и др. PU.1 – ядерный маркер иммунокомпетентных клеток опухолевой стромы при колоректальном раке. Клиническая и экспериментальная морфология 2021;10(2):32–9. DOI:10.31088/CEM2021.10.2.32-39; Sjoberg E., Frodin M., Lovrot J. et al. A minority-group of renal cell cancer patients with high infiltration of CD20+B-cells is associated with poor prognosis. Br J Cancer 2018;119(7):840–6. DOI:10.1038/s41416-018-0266-8; https://oncourology.abvpress.ru/oncur/article/view/1556
-
5Academic Journal
المؤلفون: О. В. Ковалева, П. А. Подлесная, А. А. Петренко, А. Н. Грачев
المساهمون: Исследование выполнено за счет гранта Российского научного фонда № 22-15-00291, https://rscf.ru/project/22-15-00291.
المصدر: Malignant tumours; Том 12, № 3s1 (2022); 3-8 ; Злокачественные опухоли; Том 12, № 3s1 (2022); 3-8 ; 2587-6813 ; 2224-5057
وصف الملف: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/994/691; Stout R. D., Suttles J. Functional plasticity [of] macrophages: reversible adaptation to changing microenvironments. JLeukocBiol. 2004; 76 (3) : 509–13.; Gratchev A., Kzhyshkowska J., Kothe K., Muller-Molinet I., Kannookadan S., Utikal J., Goerdt S. Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals. Immunobiology. 2006; 211 (6–8) : 473–86. https://doi.org/10.1016/j.imbio.2006.05.017.; Locati M., Mantovani A., Sica A. Macrophage activation and polarization as an adaptive component of innate immunity. Advances in immunology. 2013; 120 : 163–84. https://doi.org/10.1016/B978-0-12-417028-5.00006–5.; Gratchev A., Schledzewski K., Guillot P., Goerdt S. Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing. Skin pharmacology and applied skin physiology. 2001; 14 (5) : 272–9. https://doi.org/56357.; Goerdt S., Orfanos C. E. Other functions, other genes: alternative activation of antigen- presenting cells. Immunity. 1999; 10 (2) : 137–42.; Mei J., Xiao Z., Guo C., Pu Q., Ma L., Liu C., Lin F., Liao H., You Z., Liu L. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: A systemic review and meta-analysis. Oncotarget. 2016; 7 (23) : 34217–28. https://doi.org/10.18632/oncotarget.9079.; Holness C. L., Simmons D. L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 1993; 81 (6) : 1607–13.; Leek R. D., Lewis C. E., Whitehouse R., Greenall M., Clarke J., Harris A. L. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 1996; 56 (20) : 4625–9.; Yang L., Wang F., Wang L., Huang L., Wang J., Zhang B., Zhang Y. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget. 2015; 6 (12) : 10592–603. https://doi.org/10.18632/oncotarget.3547.; Gao J., Ren Y., Guo H., Mao R., Xie H., Su H., She Y., Deng J., Yang M., Han B., et al. A new method for predicting survival in stage I non-small cell lung cancer patients: nomogram based on macrophage immunoscore, TNM stage and lymphocyte-to-monocyte ratio. Ann Transl Med. 2020; 8 (7) : 470. https://doi.org/10.21037/atm.2020.03.113.; Sumitomo R., Hirai T., Fujita M., Murakami H., Otake Y., Huang C. L. M2 tumor-associated macrophages promote tumor progression in non-small-cell lung cancer. Experimental and therapeutic medicine. 2019; 18 (6) : 4490–8. https://doi.org/10.3892/etm.2019.8068.; Shen J., Sun X., Pan B., Cao S., Cao J., Che D., Liu F., Zhang S., Yu Y. IL-17 induces macrophages to M2-like phenotype via NF-kappaB. Cancer Manag Res. 2018; 10 : 4217–28. https://doi.org/10.2147/CMAR.S174899.; Jackute J., Zemaitis M., Pranys D., Sitkauskiene B., Miliauskas S., Vaitkiene S., Sakalauskas R. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer. BMC immunology. 2018; 19 (1) : 3. https://doi.org/10.1186/s12865-018-0241-4.; Antonia S. J., Extermann M., Flavell R. A. Immunologic nonresponsiveness to tumors. Crit Rev Oncog. 1998; 9 (1) : 35–41. https://doi.org/10.1615/critrevoncog.v9.i1.30.; He C., Qiao H., Jiang H., Sun X. The inhibitory role of b7-h4 in antitumor immunity: association with cancer progression and survival. Clinical & developmental immunology. 2011; 2011 : 695834. https://doi.org/10.1155/2011/695834.; Hurkmans D. P., Kuipers M. E., Smit J., van Marion R., Mathijssen R. H. J., Postmus P. E., Hiemstra P. S., Aerts J., von der Thusen J. H., van der Burg S. H. Tumor mutational load, CD8 (+) T cells, expression of PD-L1 and HLA class I to guide immunotherapy decisions in NSCLC patients. Cancer immunology, immunotherapy : CII. 2020; 69 (5) : 771–7. https://doi.org/10.1007/s00262-020-02506-x.; Emens L. A., Cruz C., Eder J. P., Braiteh F., Chung C., Tolaney S. M., Kuter I., Nanda R., Cassier P. A., Delord J. P., et al. Long-term Clinical Outcomes and Biomarker Analyses of Atezolizumab Therapy for Patients With Metastatic Triple-Negative Breast Cancer: A Phase 1 Study. JAMA Oncol. 2019; 5 (1) : 74–82. https://doi.org/10.1001/jamaoncol.2018.4224.; Schubert L. A., Jeffery E., Zhang Y., Ramsdell F., Ziegler S. F. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem. 2001; 276 (40) : 37672–9. https://doi.org/10.1074/jbc.M104521200.; Fontenot J. D., Gavin M. A., Rudensky A. Y. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nature immunology. 2003; 4 (4) : 330–6. https://doi.org/10.1038/ni904.; Hori S., Nomura T., Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299 (5609) : 1057–61. https://doi.org/10.1126/science.1079490.; Sakaguchi S., Mikami N., Wing J. B., Tanaka A., Ichiyama K., Ohkura N. Regulatory T Cells and Human Disease. Annu Rev Immunol. 2020; 38 : 541–66. https://doi.org/10.1146/annurev-immunol-042718–041717.; Sakaguchi S . Naturally arising Foxp3- expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. NatImmunol. 2005; 6 (4) : 345–52.; Scotta C., Soligo M., Camperio C., Piccolella E. FOXP3 induced by CD28 / B7 interaction regulates CD25 and anergic phenotype in human CD4+ CD25- T lymphocytes. Journal of immunology. 2008; 181 (2) : 1025–33. https://doi.org/10.4049/jimmunol.181.2.1025.; Facciabene A., Peng X., Hagemann I. S., Balint K., Barchetti A., Wang L. P., Gimotty P. A., Gilks C. B., Lal P., Zhang L., et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T (reg) cells. Nature. 2011; 475 (7355) : 226–30. https://doi.org/10.1038/nature10169.; Tao H., Mimura Y., Aoe K., Kobayashi S., Yamamoto H., Matsuda E., Okabe K., Matsumoto T., Sugi K., Ueoka H. Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer. 2012; 75 (1) : 95–101. https://doi.org/10.1016/j.lungcan.2011.06.002.; Shimizu K., Nakata M., Hirami Y., Yukawa T., Maeda A., Tanemoto K. Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thorac Oncol. 2010; 5 (5) : 585–90. https://doi.org/10.1097/JTO.0b013e3181d60fd7.; Shang B., Liu Y., Jiang S. J., Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Scientific reports. 2015; 5 : 15179. https://doi.org/10.1038/srep15179.; Marsigliante S., Biscozzo L., Marra A., Nicolardi G., Leo G., Lobreglio G. B., Storelli C. Computerised counting of tumour infiltrating lymphocytes in 90 breast cancer specimens. Cancer letters. 1999; 139 (1) : 33–41. https://doi.org/10.1016/s0304–3835(98)00379–6.; Petitprez F., de Reynies A., Keung E. Z., Chen T. W., Sun C. M., Calderaro J., Jeng Y. M., Hsiao L. P., Lacroix L., Bougouin A., et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020; 577 (7791) : 556–60. https:// doi.org/10.1038/s41586-019-1906-8.; Mahmoud S. M., Lee A. H., Paish E. C., Macmillan R. D., Ellis I. O., Green A. R. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat. 2012; 132 (2) : 545–53. https://doi.org/10.1007/s10549-011-1620-1.; Edin S., Kaprio T., Hagstrom J., Larsson P., Mustonen H., Bockelman C., Strigard K., Gunnarsson U., Haglund C., Palmqvist R. The Prognostic Importance of CD20 (+) B lymphocytes in Colorectal Cancer and the Relation to Other Immune Cell subsets. Scientific reports. 2019; 9 (1) : 19997. https://doi.org/10.1038/s41598-019-56441-8.; Germain C., Gnjatic S., Tamzalit F., Knockaert S., Remark R., Goc J., Lepelley A., Becht E., Katsahian S., Bizouard G., et al. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. American journal of respiratory and critical care medicine. 2014; 189 (7) : 832–44. https://doi.org/10.1164/rccm.201309–1611OC.; Santoiemma P. P., Reyes C., Wang L. P., McLane M. W., Feldman M. D., Tanyi J. L., Powell D. J., Jr. Systematic evaluation of multiple immune markers reveals prognostic factors in ovarian cancer. Gynecol Oncol. 2016; 143 (1) : 120–7. https://doi.org/10.1016/j.ygyno.2016.07.105.; Garg K., Maurer M., Griss J., Bruggen M. C., Wolf I. H., Wagner C., Willi N., Mertz K. D., Wagner S. N. Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome. Human pathology. 2016; 54 : 157–64. https://doi.org/10.1016/j.humpath.2016.03.022.; Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994; 78 (6) : 915–8. https://doi.org/10.1016/0092–8674(94)90266–6.; Garrido P., Shalaby A., Walsh E. M., Keane N., Webber M., Keane M. M., Sullivan F. J., Kerin M. J., Callagy G., Ryan A. E., et al. Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways. Oncotarget. 2017; 8 (46) : 80568–88. https://doi.org/10.18632/oncotarget.19631.; Chen C. N., Hsieh F. J., Cheng Y. M., Chang K. J., Lee P. H. Expression of inducible nitric oxide synthase and cyclooxygenase-2 in angiogenesis and clinical outcome of human gastric cancer. Journal of surgical oncology. 2006; 94 (3) : 226–33. https://doi.org/10.1002/jso.20372.; Raspollini M. R., Amunni G., Villanucci A., Boddi V., Baroni G., Taddei A., Taddei G. L. Expression of inducible nitric oxide synthase and cyclooxygenase-2 in ovarian cancer: correlation with clinical outcome. Gynecol Oncol. 2004; 92 (3) : 806–12. https://doi.org/10.1016/j.ygyno.2003.12.023.; Puhakka A., Kinnula V., Napankangas U., Saily M., Koistinen P., Paakko P., Soini Y. High expression of nitric oxide synthases is a favorable prognostic sign in non-small cell lung carcinoma. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica. 2003; 111 (12) : 1137–46. https://doi.org/10.1111/j.1600–0463.2003.apm1111210.x.; Kovaleva O. V., Rashidova M. A., Samoilova D. V., Podlesnaya P. A., Tabiev R. M., Mochalnikova V. V., Gratchev A. CHID1 Is a Novel Prognostic Marker of Non-Small Cell Lung Cancer. International journal of molecular sciences. 2021; 22 (1). https://doi.org/10.3390/ijms22010450.; Dong Q., Chen E. S., Zhao C., Jin C. Host-Microbiome Interaction in Lung Cancer. Front Immunol. 2021; 12 : 679829. https://doi.org/10.3389/fimmu.2021.679829.; Erb-Downward J. R., Thompson D. L., Han M. K., Freeman C. M., McCloskey L., Schmidt L. A., Young V. B., Toews G. B., Curtis J. L., Sundaram B., et al. Analysis of the lung microbiome in the «healthy» smoker and in COPD. PloS one. 2011; 6 (2) : e16384. https://doi.org/10.1371/journal.pone.0016384.; Hilty M., Burke C., Pedro H., Cardenas P., Bush A., Bossley C., Davies J., Ervine A., Poulter L., Pachter L., et al. Disordered microbial communities in asthmatic airways. PloS one. 2010; 5 (1) : e8578. https://doi.org/10.1371/journal.pone.0008578.; Beck J. M., Young V. B., Huffnagle G. B. The microbiome of the lung. Translational research: the journal of laboratory and clinical medicine. 2012; 160 (4) : 258–66. https://doi.org/10.1016/j.trsl.2012.02.005.; Laroumagne S., Salinas-Pineda A., Hermant C., Murris M., Gourraud P. A., Do C., Segonds C., Didier A., Mazieres J. [Incidence and characteristics of bronchial colonisation in patient with lung cancer: a retrospective study of 388 cases]. Rev Mal Respir. 2011; 28 (3) : 328–35. https://doi.org/10.1016/j.rmr.2010.05.020.; Hosgood H. D., 3rd, Sapkota A. R., Rothman N., Rohan T., Hu W., Xu J., Vermeulen R., He X., White J. R., Wu G., et al. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ Mol Mutagen. 2014; 55 (8) : 643–51. https://doi.org/10.1002/em.21878.; Yu G., Gail M. H., Consonni D., Carugno M., Humphrys M., Pesatori A. C., Caporaso N. E., Goedert J. J., Ravel J., Landi M. T. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome biology. 2016; 17 (1) : 163. https://doi.org/10.1186/s13059-016-1021-1.; Wong J. L., Evans S. E. Bacterial Pneumonia in Patients with Cancer: Novel Risk Factors and Management. Clin Chest Med. 2017; 38 (2) : 263–77. https://doi.org/10.1016/j.ccm.2016.12.005.; Liu H. X., Tao L. L., Zhang J., Zhu Y. G., Zheng Y., Liu D., Zhou M., Ke H., Shi M. M., Qu J. M. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. International journal of cancer Journal international du cancer. 2018; 142 (4) : 769–78. https://doi.org/10.1002/ijc.31098.; Greathouse K. L., White J. R., Vargas A. J., Bliskovsky V. V., Beck J. A., von Muhlinen N., Polley E. C., Bowman E. D., Khan M. A., Robles A. I., et al. Interaction between the microbiome and TP53 in human lung cancer. Genome biology. 2018; 19 (1) : 123. https://doi.org/10.1186/s13059-018-1501-6.; Yan X., Yang M., Liu J., Gao R., Hu J., Li J., Zhang L., Shi Y., Guo H., Cheng J., et al. Discovery and validation of potential bacterial biomarkers for lung cancer. American journal of cancer research. 2015; 5 (10) : 3111–22.; Liu Y., O’Brien J. L., Ajami N. J., Scheurer M. E., Amirian E. S., Armstrong G., Tsavachidis S., Thrift A. P., Jiao L., Wong M. C., et al. Lung tissue microbial profile in lung cancer is distinct from emphysema. American journal of cancer research. 2018; 8 (9) : 1775–87.; Riquelme E., Zhang Y., Zhang L., Montiel M., Zoltan M., Dong W., Quesada P., Sahin I., Chandra V., San Lucas A., et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell. 2019; 178 (4) : 795–806 e12. https://doi.org/10.1016/j.cell.2019.07.008.; Kovaleva O., Podlesnaya P., Rashidova M., Samoilova D., Petrenko A., Zborovskaya I., Mochalnikova V., Kataev V., Khlopko Y., Plotnikov A., et al. Lung Microbiome Differentially Impacts Survival of Patients with Non-Small Cell Lung Cancer Depending on Tumor Stroma Phenotype. Biomedicines. 2020; 8 (9). https://doi.org/10.3390/biomedicines8090349.; Kovaleva O. V., Podlesnaya P., Sorokin M., Mochalnikova V., Kataev V., Khlopko Y. A., Plotnikov A. O., Stilidi I. S., Kushlinskii N. E., Gratchev A. Macrophage Phenotype in Combination with Tumor Microbiome Composition Predicts RCC Patients’ Survival: A Pilot Study. Biomedicines. 2022; 10 (7). https://doi.org/10.3390/biomedicines10071516.; Kovaleva O., Podlesnaya P., Rashidova M., Samoilova D., Petrenko A., Mochalnikova V., Kataev V., Khlopko Y., Plotnikov A., Gratchev A. Prognostic Significance of the Microbiome and Stromal Cells Phenotype in Esophagus Squamous Cell Carcinoma. Biomedicines. 2021; 9 (7). https://doi.org/10.3390/biomedicines9070743.; Jain T., Sharma P., Are A. C., Vickers S. M., Dudeja V. New Insights Into the Cancer-Microbiome-Immune Axis: Decrypting a Decade of Discoveries. Front Immunol. 2021; 12 : 622064. https://doi.org/10.3389/fimmu.2021.622064.; https://www.malignanttumors.org/jour/article/view/994
-
6Academic Journal
المؤلفون: I. S. Stilidi, O. V. Kovaleva, A. N. Gratchev, E. M. Tchevkina, P. A. Podlesnaya, P. V. Tsarapaev, E. A. Suleymanov, N. E. Kushlinskii, И. С. Стилиди, О. В. Ковалева, А. Н. Грачев, Е. М. Чевкина, П. А. Подлесная, П. В. Царапаев, Э. А. Сулейманов, Н. Е. Кушлинский
المساهمون: The study was supported by the RFBR grant (project No. 20-015-004790), Работа выполнена при финансовой поддержке гранта РФФИ (проект № 20015-004790)
المصدر: Bulletin of Siberian Medicine; Том 21, № 3 (2022); 96-104 ; Бюллетень сибирской медицины; Том 21, № 3 (2022); 96-104 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-3
مصطلحات موضوعية: прогноз, sPD-L1, immunotherapy, non-small cell lung cancer, esophageal cancer, prognosis, иммунотерапия, немелкоклеточный рак легкого, рак пищевода
وصف الملف: application/pdf
Relation: https://bulletin.tomsk.ru/jour/article/view/4912/3259; Orme J.J., Enninga E.A.L., Lucien-Matteoni F., Dale H., Burgstaler E., Harrington S.M. et al. Therapeutic plasma exchange clears circulating soluble PD-L1 and PD-L1-positive extracellular vesicles. J. Immunother Cancer. 2020;8(2):e001113. DOI:10.1136/jitc-2020-001113.; Chen Y., Wang Q., Shi B., Xu P., Hu Z., Bai L. et al. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine. 2011;56(2):23–28. DOI:10.1016/j.cyto.2011.06.004.; Daassi D., Mahoney K.M., Freeman G.J. The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol. 2020;20(4):209–215. DOI:10.1038/s41577-019-0264-y.; Zhou J., Mahoney K.M., Giobbie-Hurder A., Zhao F., Lee S., Liao X. et al. Soluble PD-L1 as a Biomarker in Malignant Melanoma Treated with Checkpoint Blockade. Cancer Immunol. Res. 2017;5(6):480–492. DOI:10.1158/2326-6066.CIR-160329.; Hofman P., Heeke S., Alix-Panabieres C., Pantel K. Liquid biopsy in the era of immuno-oncology: is it ready for prime-time use for cancer patients? Ann. Oncol. 2019;30(9):1448–1459. DOI:10.1093/annonc/mdz196.; Кушлинский Н.Е., Герштейн Е.С., Горячева И.О. и др. Растворимые формы рецептора контрольной точки иммунитета PD-1 и его лиганда PD-L1 в сыворотке крови больных почечно-клеточным раком: клинико-морфологические корреляции. Онкоурология. 2019;15(1):15–22. DOI:10.17650/1726-9776-2019-15-1-15-22.; Ковалева О.В., Рашидова М.А., Грачев А.Н., Масленников В.В., Булычева И.В., Герштейн Е.С. и др. Факторы иммуносупрессии PD-1, PD-L1, IDO1 и колоректальный рак. Доклады Российской академии наук. Науки о жизни. 2021;497(1):160–164. DOI:10.31857/S2686738921020153.; Ji S., Chen H., Yang K., Zhang G., Mao B., Hu Y. et al. Peripheral cytokine levels as predictive biomarkers of bene fit from immune checkpoint inhibitors in cancer therapy. Biomed. Рharmacother. 2020;129:110457. DOI:10.1016/j.biopha.2020.110457.; Assi H.I., Kamphorst A.O., Moukalled N.M., Ramalingam S.S. Immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer. 2018;124(2):248–261. DOI:10.1002/cncr.31105; Costantini A., Julie C., Dumenil C., Helias-Rodzewicz Z., Tisserand J., Dumoulin J. et al. Predictive role of plasmatic biomarkers in advanced non-small cell lung cancer treated by nivolumab. Oncoimmunology. 2018;7(8):e1452581. DOI:10.1080/2162402X.2018.1452581.; Okuma Y., Hosomi Y., Nakahara Y., Watanabe K., Sagawa Y., Homma S. High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer. Lung Cancer. 2017;104:1–6. DOI:10.1016/j.lungcan.2016.11.023.; Castello A., Rossi S., Toschi L., Mansi L., Lopci E. Soluble PD-L1 in NSCLC Patients Treated with Checkpoint Inhibitors and Its Correlation with Metabolic Parameters. Cancers (Basel). 2020;12(6):1373. DOI:10.3390/cancers12061373; Jovanovic D., Roksandic-Milenkovic M., Kotur-Stevulje vic J., Ceriman V., Vukanic I., Samardzic N. et al. Soluble sPD-L1 and serum amyloid A1 as potential biomarkers for lung cancer. J. Med. Biochem. 2019;38(3):332–341. DOI:10.2478/jomb-2018-0036.; Jia Y., Li X., Zhao C., Ren S., Su C., Gao G. et al. Soluble PDL1 as a predictor of the response to EGFR-TKIs in non-small cell lung cancer patients with EGFR mutations. Front. Oncol. 2020;10:1455. DOI:10.3389/fonc.2020.01455.; Sorensen S.F., Demuth C., Weber B., Sorensen B.S., Meldgaard P. Increase in soluble PD-1 is associated with prolonged survival in patients with advanced EGFR-mutated non-small cell lung cancer treated with erlotinib. Lung Cancer. 2016;100:77–84. DOI:10.1016/j.lungcan.2016.08.001.; Shiraishi T., Toyozumi T., Sakata H., Murakami K., Kano M., Matsumoto Y. et al. Soluble PD-L1 concentration is proportional to the expression of PD-L1 in tissue and is associated with a poor prognosis in esophageal squamous cell carcinoma. Oncology. 2022;100(1):39–47. DOI:10.1159/000518740.; Fu R., Jing C.Q., Li X.R., Tan Z.F., Li H.J. Prognostic significance of serum PD-L1 level in patients with locally advanced or metastatic esophageal squamous cell carcinoma treated with combination cytotoxic chemotherapy. Cancer Manag. Res. 2021;13:4935–4946. DOI:10.2147/CMAR.S312690.; https://bulletin.tomsk.ru/jour/article/view/4912
-
7Academic Journal
المؤلفون: O. V. Kovaleva, O. R. Nazarova, V. B. Matveev, A. N. Gratchev, О. В. Ковалева, О. Р. Назарова, В. Б. Матвеев, А. Н. Грачев
المصدر: Advances in Molecular Oncology; Том 1, № 2 (2014); 36-43 ; Успехи молекулярной онкологии; Том 1, № 2 (2014); 36-43 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X.2014.1.2
مصطلحات موضوعية: ангиогенез, diagnostic and prognostic markers, target therapy, HIF-1α, VHL, VEGF, TGF-α, PDGF, Bcl-2, angiogenesis, диагностические и прогностические маркеры, таргетная терапия
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/26/28; Статистика злокачественных новообразований в России и странах СНГ в 2012 г. Под ред. М. И. Давыдова, Е. М. Аксель. М.: Издательская группа РОНЦ им. Н. Н. Блохина, 2014. [Statistics of malignant neoplasms in russia and the CIS countries in 2012. M. I. avydov, E. M. Axel (eds.). Moscow, 2014. 226 p. (In Russ.)]; Злокачественные новообразования в России в 2008 г. Под ред. В. И. Чиссова, В. В. Старинского, Г. В. Петровой. М.: МНИОИ им. П. А. Герцена, 2010. [Malignant neoplasms in Russia in 2008. V. I. Chissov, V. V. Starinskiy, G. V. Petrova (eds.). Moscow, 2010. (In Russ.)]; Chow W. H., Devesa S. S. Contemporary epidemiology of renal cell cancer. Cancer J 2008;14(5):288–301.; Gupta K., Miller J. D., Li J. Z. et al. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev 2008;34(3):193–205.; Motzer R. J., Bacik J., Murphy B. A. et al. Interferon-alpha as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 2002;20(8):289–95.; Chow W. H., Dong L. M., Devesa S. S. Epidemiology and risk factors for kidney cancer. Nat Rev Urol 2010;7(5):245–57.; Lipworth L., Tarone R. E., McLaughlin J. K. The epidemiology of renal cell carcinoma. J Urol 2006;176(6 Pt 1):2353–8.; Hunt J. D., van der Hel O. L., McMillan G. P. et al. Renal cell carcinoma in relation to cigarette smoking: meta-analysis of 24 studies. Int J Cancer 2005;114(1):101–8.; Renehan A. G., Tyson M., Egger M. et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008;371(9612):569–78.; Pischon T., Lahmann P. H., Boeing H. et al. Body size and risk of renal cell carcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC). Int J Cancer 2006;118(3):728–38.; Weikert S., Boeing H., Pischon T. et al. Blood pressure and risk of renal cell carcinoma in the European prospective investigation into cancer and nutrition. Am J Epidemiol 2008;167(4):438–46.; Delahunt B., Thornton A. Renal cell carcinoma. A historical perspective. J Urol Pathol 1996;4:31–49.; Carson W. J. Solitary cysts of the kidney. Ann Surg 1928;87(2):250–6.; Клиническая онкоурология. Под ред. проф. Б. П. Матвеева. М., 2011. С. 31–41. [Clinical oncourology. B. P. Matveyev (ed.). Moscow, 2011. Pp. 31–41. (In Russ.)]; Bodmer D., Hurk W., Groningen J. et al. Understanding familial and non-familial renal cell cancer. Hum Mol Genet 2002;11(20):2489–98.; Banks R. E., Tirukonda P., Taylor C. et al. Genetic and epigenetic analysis of von Hippel–Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res 2006;66(4):2000–11.; Delahunt B., Eble J. N. History of the evelopment of the classification of renal cell neoplasia. Clin Lab Med 2005;25(2):231–46.; Storkel S., Eble J. N., Adlakha K. et al. Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer(AJCC). Cancer 1997;80(5):987–9.; Foster K., Prowse A., van den Berg A. et al. Somatic mutations of the von Hippel– Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum Mol Genet 1994;3(12):2169–73.; Gnarra J. R., Tory K., Weng Y. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 1994;7(1):85–90.; Shuin T., Kondo K., Torigoe S. et al. Frequent somatic mutations and loss of eterozygosity of the von Hippel–Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res 1994;54(11):2852–5.; Nickerson M. L., Jaeger E., Shi Y. et al. Improved identification of von Hippel–Lindau gene alterations in clear cell renal tumors. Clin Cancer Res 2008;14(15):4726–34.; Maynard M. A., Ohh M. Von Hippel–Lindau tumor suppressor protein and hypoxia- nducible factor in kidney cancer. Am J Nephrol 2004;24(1):1–13.; Linehan W. M., Walther M. M., Zbar B. The genetic basis of cancer of the kidney. J Urol 2003;170(6 Pt 1):2163–72.; de Paulsen N., Brychzy A., Foumier M. C. et al. Role of transforming growth factoralpha in von Hippel–Lindau (VHL) (– / –) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci USA 2001;98(4):1387–92.; Hudes G., Carducci M., Tomczak P. et al. Global ARCC Trial. Temsirolimus, interferon alfa, or both for advanced renalcell carcinoma. N Engl J Med 2007;356(22): 2271–81.; Li M., Rathmell W. K. The current status of biomarkers for renal cell carcinoma. 2011. Pр. 153–7.; Zamparese R., Pannone G., Santoro A. et al. Survivin expression in renal cell carcinoma. Cancer Invest 2008;26(9):929–35.; Cho D., Signoretti S., Dabora S. et al. Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer 2007;5(6): 379–85.; Hehlgans S., Cordes N. Caveolin-1: an essential modulator of cancer cell radioand chemoresistance. Am J Cancer Res 2011;1(4):521–30.; Campbell L., Jasani B., Edwards K. et al. Combined expression of caveolin-1 and an activated AKT / mTOR pathway predicts reduced disease- free survival in clinically confined renal cell carcinoma. Br J Cancer 2008;98(5):931–40.; Vasavada S. P., Novick A. C., Williams B. R. P53, bcl-2, and Bax expression in renal cell carcinoma. Urology 1998;51(6):1057–61.; Uchida T., Gao J. P., Wang G. et al. Clinical significance of p53, mdm2, and bcl-2 proteins in renal cell carcinoma. Urology 2002;59(4):615–20.; Itoi T., Yamana K., Bilim V. et al. Impact of frequent Bcl-2 expression on prognosis in renal cell carcinoma patients. Br J Cancer 2004;90(1):200–5.; Rioux-Leclercq N., Turlin В., Bansard J. et al. Value of immunohistochemical Ki-67 and p53 determinations as predictive factors of outcome in renal cell carcinoma. Urology 2000;55(4):501–5.; Papadopoulos I., Weichert-Jacobsen К., Wacker H. H., Sprenger E. Correlation between DNA ploidy, proliferation marker Ki-67 and early tumor progression in renal cell carcinoma. A prospective study. Eur Urol 1997;31(1):49–53.; Ivanov S., Liao S. Y., Ivanova A. et al. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 2001;158(3):905–19.; Dorai T., Sawczuk I., Pastorek J. et al. Role of carbonic anhydrases in the progression of renal cell carcinoma subtypes: proposal of a unified hypothesis. Cancer Invest 2006;24(8):754–79.; Swinson D. E., Jones J. L., Richardson D. et al. Carbonic anhydrase IX expression, a novel surrogate marker of tumor hypoxia, is associated with a poor prognosis in nonsmall- cell lung cancer. J Clin Oncol 2003;21(3):473–82.; Maseide K., Kandel R. A., Bell R. S. et al. Carbonic anhydrase IX as a marker for poor prognosis in soft tissue sarcoma. Clin Cancer Res 2004;10(13):4464–71.; Span P. N., Bussink J., Manders P. et al. Carbonic anhydrase-9 expression levels and prognosis in human breast cancer: association with treatment outcome. Br J Cancer 2003;89(2):271–6.; Leibovich B., Sheinin Y., Lohse C. et al. Carbonic anhydrase IX is not an independent predictor of outcome for patients with clear cell renal cell carcinoma. J Clin Oncol 2007;25(30):4757–64.; Rioux-Leclercq N., Fergelot P., Zerrouki S. et al. Plasma level and tissue expression of vascular endothelial growth factor in renal cell carcinoma: a prospective study of 50 cases. Hum Pathol 2007;38(10):1489–95.; Deprimo S. E., Bello C. L., Smeraglia J. et al. Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: Modulation of VEGF and VEGF-related proteins. J Transl Med 2007;5:32.; Gottardo F., Liu C. G., Ferracin M. et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 2007;25(5):387–92.; Munari E., Marchionni L., Chitre A. et al. Clear cell papillary renal cell carcinoma: micro-RNA expression profiling and comparison with clear cell renal cell carcinoma and papillary renal cell carcinoma. Hum Pathol 2014;45(6):1130–8.; Bera A., Das F., Ghosh-Choudhury N. et al. MicroRNA-21‑induced dissociation of PDCD4 from rictor contributes to Akt-IKKβ-mTORC1 axis to regulate renal cancer cell invasion. Exp Cell Res 2014;328(1):99–117.; Qiu M., Liu L., Chen L. et al. MicroRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells. Biochem Biophys Res Commun 2014;452(1):163–9.; Li X., Xin S., He Z. et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor PDCD4 and promotes cell transformation, proliferation, and metastasis in renal cell carcinoma. Cell Physiol Biochem 2014;33(6):1631–42.; Heinzelmann J., Unrein A., Wickmann U. et al. MicroRNAs with prognostic potential for metastasis in clear cell renal cell carcinoma: a comparison of primary tumors and distant metastases. Ann Surg Oncol 2014;21(3):1046–54.; Fu Q., Liu Z., Pan D., Zhang W. et al. Tumor miR-125b predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. Cancer Sci 2014. doi:10.1111 / cas. 12507.; Zhao J. J., Chen P. J., Duan R. et al. Up- regulation of miR-630 in clear cell renal cell carcinoma is associated with lower overall survival. Int J Clin Exp Pathol 2014;7(6):3318–23.; Ishihara T., Seki N., Inoguchi S. et al. Expression of the tumor suppressive miRNA-23b / 27b cluster is a good prognostic marker in clear cell renal cell carcinoma. J Urol 2014. pii: S0022–5347(14)03935–4. doi:10.1016 /j. juro. 2014.07.001.; Gao C., Peng F. H., Peng L. K. MiR-200c sensitizes clear-cell renal cell carcinoma cells to sorafenib and imatinib by targeting heme oxygenase-1. Neoplasma 2014. doi:10.4149 / neo_2014_083.; Mc Dermott D. F., Regan M. M., Clark J. I. et al Randomized phase III trial of high-daose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastastic renal cell. J Clin Oncol 2005;23(1):133–41.; Escudier B., Eisen T., Stadler W. M. et al.; TARGET Study Group. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007;356(2):125–34.; Bellmunt J., Négrier S., Escudier B. et al. Metastatic renal cell cancer in the elderly: position paper of a SIOG Taskforce. Crit Rev Oncol Hematol 2009;69(1):64–72.; Bellmunt J., Negrier S., Escudier B. et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 2006;24(1):16–24.; Figlin R. A., Hutson T. E., Tomczac P. et al. Overall survival with sunitinib versus interferon alfa as first-line treatment in metastatic renal-cell carcinoma. ASCO Annual Meeting Proceedings 2008. J Clin Oncol 2008;26(Suppl): 5024.; Sternberg C. N., Davis I. D., Mardiak J. et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 2010;28(6):1061–8.; Larkin J. M., Eisen T. Kinase inhibitors in the treatment of renal cell carcinoma. Crit Rev Oncol Hematol 2006;60(3):216–26.; Keane T., Gilatt D., Evans C. P. et al. Current and future trends in the treatment of renal cancer. Eur Urol Suppl 2007;6: 374–84.; Patel P. H., Chadalavada R. S., Chaganti R. S., Motzer R. J. Targeting von Hippel–Lindau pathway in renal cell carcinoma. Clin Cancer Res 2006;12(24):7215–20.; Motzer R. J., Escudier B., Oudard S. et al.; RECORD-1 Study Group. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebocontrolled phase III trial. Lancet 2008;372(9637):449–56.; Sosman J., Puzanov I. Combination argeted therapy in advanced renal cell carcinoma. Cancer 2009;115(10):2368–75.; Sternberg C. N., Bellmunt J., Grunwald V. et al. Advances in the management of etastatic renal cell cancer. Eur Urol Suppl 2009;8:758–61.; Алексеев Б. Я., Калпинский А. С. Применение таргетных препаратов в лечении метастатического рака почки: последовательное назначение или комбинация. Онкоурология 2010;(4):16–23.; [Alexeyev B. Ya., Kalpinskiy A. S. Application of target drugs in therapy of metastatic kidney cancer: sequential prescription or combination. Onkourologiya = Oncourology 2010; (4):16–23. (In Russ.)]; NCCN clinical practice guidelines in oncology: kidney cancer. National Comprehensive Cancer Network Web site. URL: http://www.nccn.org / professionals /physician_gls / f_guidelines.asp.; Gowrishankar B., Ibragimova I., Zhou Y. et al. MicroRNA expression signatures of stage, grade, and progression in clear cell RCC. Cancer Biol Ther 2014;15(3):329–41.; Cho D. Novel targeting of phosphatidylinositol 3‑kinase and mammalian target of rapamycin in renal cell carcinoma. Cancer J 2013;19(4):311–5.; https://umo.abvpress.ru/jour/article/view/26