-
1Academic Journal
المؤلفون: A. N. Afanaseva, V. B. Saparova, I. E. Makarenko, T. A. Selmenskikh, D. V. Kurkin, A. L. Hohlov, R. V. Drai, А. Н. Афанасьева, В. Б. Сапарова, И. Е. Макаренко, Т. А. Сельменских, Д. В. Куркин, А. Л. Хохлов, Р. В. Драй
المساهمون: The work was carried out with the financial support of LLC "GEROPHARM". The sponsor had no influence on the course of the study or interpretation of the results., Работа выполнена при финансовой поддержке ООО «ГЕРОФАРМ». Спонсор не оказывал влияния на ход исследования и интерпретацию результатов.
المصدر: Drug development & registration; Том 13, № 1 (2024); 247-255 ; Разработка и регистрация лекарственных средств; Том 13, № 1 (2024); 247-255 ; 2658-5049 ; 2305-2066
مصطلحات موضوعية: антитела к ромиплостиму, biosimilar, neutralizing antibody studies, clinical studies of immunogenicity, validation, cell viability determination, antibodies to romiplostim, биоаналог, исследования нейтрализующих антител, клинические испытания иммуногенности, валидация, определение жизнеспособности клеток
وصف الملف: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/1757/1252; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1757/2133; Kayal L., Jayachandran S., Singh K. Idiopathic thrombocytopenic purpura. Contemporary Clinical Dentistry. 2014;5(3):410–414. DOI:10.4103/0976-237X.137976.; Provan D., Arnold D. M., Bussel J. B., Chong B. H., Cooper N., Gernsheimer T., Ghanima W., Godeau B., González-López T. J., Grainger J., Hou M., Kruse C., McDonald V., Michel M., Newland A. C., Pavord S., Rodeghiero F., Scully M., Tomiyama Y., Wong R. S., Zaja F., Kuter D. J. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Advances. 2019;3(22):3780–3817. DOI:10.1182/bloodadvances.2019000812.; Zufferey A., Kapur R., Semple J. Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP). Journal of Clinical Medicine. 2017;6(2):16. DOI:10.3390/jcm6020016.; Pietras N. M., Pearson-Shaver A. L. Immune Thrombocytopenic Purpura. StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.; Neunert C., Noroozi N., Norman G., Buchanan G. R., Goy J., Nazi I., Kelton J. G., Arnold D. M. Severe bleeding events in adults and children with primary immune thrombocytopenia: a systematic review. Journal of Thrombosis and Haemostasis. 2015;13(3):457–464. DOI:10.1111/jth.12813.; Soff G. A., Miao Y., Bendheim G., Batista J., Mones J. V., Parameswaran R., Wilkins C. R., Devlin S. M., Abou-Alfa G. K., Cercek A., Kemeny N. E., Sarasohn D. M., Mantha S. Romiplostim Treatment of Chemotherapy-Induced Thrombocytopenia. Journal of Clinical Oncology. 2019;37(31):2892–2898. DOI:10.1200/JCO.18.01931.; Bussel J. B., Soff G., Balduzzi A., Cooper N., Lawrence T., Semple J. W. A Review of Romiplostim Mechanism of Action and Clinical Applicability. Drug Design, Development and Therapy. 2021;15:2243–2268. DOI:10.2147/DDDT.S299591.; Kuter D. J. Romiplostim. In: Lyman G. H., Dale D. C., editors. Hematopoietic Growth Factors in Oncology. New York: Springer; 2011. P. 267–288. DOI:10.1007/978-1-4419-7073-2_16.; Yang A. S. Development of romiplostim: a novel engineered peptibody. Seminars in Hematology. 2015;52(1):12–15. DOI:10.1053/j.seminhematol.2014.10.007.; Bussel J.B., Kuter D. J., George J. N., McMillan R., Aledort L. M., Conklin G. T., Lichtin A. E., Lyons R. M., Nieva J., Wasser J. S., Wiznitzer I., Kelly R., Chen C.-F., Nichol J. L. AMG 531, a thrombopoiesis-stimulating protein, for chronic ITP. New England Journal of Medicine. 2006;355(16):1672–1681. DOI:10.1056/NEJMoa054626.; Kuter D. J., Bussel J. B., Lyons R. M., Pullarkat V., Gernsheimer T. B., Senecal F. M., Aledort L. M., George J. N., Kessler C. M., Sanz M. A., Liebman H. A., Slovick F. T., de Wolf J. T. M., Bourgeois E., Guthrie T. H., Newland A., Wasser J. S., Hamburg S. I., Grande C., Lefrère F., Lichtin A. E., Tarantino M. D., Terebelo H. R., Viallard J.-F., Cuevas F. J., Go R. S., Henry D. H., Redner R. L., Rice L., Schipperus M. R., Guo D. M., Nichol J. L. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial. The Lancet. 2008;371(9610):395–403. DOI:10.1016/S0140-6736(08)60203-2.; Shirasugi Y., Ando K., Miyazaki K., Tomiyama Y., Okamoto S., Kurokawa M., Kirito K., Yonemura Y., Mori S., Usuki K., Iwato K., Hashino S., Wei H., Lizambri R. Romiplostim for the treatment of chronic immune thrombocytopenia in adult Japanese patients: a double-blind, randomized Phase III clinical trial. International Journal of Hematology. 2011;94(1):71–80. DOI:10.1007/s12185-011-0886-8.; Schellekens H. Immunogenicity of therapeutic proteins: Clinical implications and future prospects. Clinical Therapeutics. 2002;24(11):1720–1740. DOI:10.1016/s0149-2918(02)80075-3.; Civoli F., Kroenke M. A., Reynhardt K., Zhuang Y., Kaliyaperumal A., Gupta S. Development and optimization of neutralizing antibody assays to monitor clinical immunogenicity. Bioanalysis. 2012;4(22):2725–2735. DOI:10.4155/bio.12.239.; Chalmers S., Tarantino M. D. Romiplostim as a treatment for immune thrombocytopenia: a review. Journal of Blood Medicine. 2015;6:37–44. DOI:10.2147/JBM.S47240.; Shankar G., Devanarayan V., Amaravadi L., Barrett Y. C., Bowsher R., Finco-Kent D., Fiscella M., Gorovits B., Kirschner S., Moxness M., Parish T., Quarmby V., Smith H., Smith W., Zuckerman L. A., Koren E. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. Journal of Pharmaceutical and Biomedical Analysis. 2008;48(5):1267–1281. DOI:10.1016/j.jpba.2008.09.020.; Shen M., Dai T. Statistical methods of screening cut point determination in immunogenicity studies. Bioanalysis. 2021;13(7):551–563. DOI:10.4155/bio-2019-0296.; Arefeva A. N., Makarenko I. E., Saparova V. B., Karal-ogli D. D., Afanaseva A. N., Dorotenko A. R., Kalatanova A. V., Kurkin D. V., Khokhlov A. L., Drai R. V. Comparability of biosimilar romiplostim with originator: Protein characterization, animal pharmacodynamics and pharmacokinetics. Biologicals. 2023;81:101666. DOI:10.1016/j.biologicals.2023.101666.; Jawa V., Hokom M., Hu Z., El-Abaadi N., Zhuang Y., Berger D., Gupta S., Swanson S. J., Chirmule N. Assessment of immunogenicity of romiplostim in clinical studies with ITP subjects. Annals of Hematology. 2010;89(1):75–85. DOI:10.1007/s00277-010-0908-2.; Mytych D. T., Park J. K., Kim J., Barger T. E., Boshier A., Jawa V., Kuter D. J. Assessment of romiplostim immunogenicity in adult patients in clinical trials and in a global postmarketing registry. British Journal of Haematology. 2020;190(6):923–932. DOI:10.1111/bjh.16658.; Fang Q., Huang F., Liang J., Chen Y., Li C., Zhang M., Wu X., Luo W. Safety of romiplostim and eltrombopag for children with immune thrombocytopenia: a pharmacovigilance study of the FDA adverse event reporting system database. Expert Opinion on Drug Safety. 2023;22(8):707–714. DOI:10.1080/14740338.2023.2182288.; https://www.pharmjournal.ru/jour/article/view/1757
-
2Academic Journal
المؤلفون: A. V. Babina, R. V. Drai, V. B. Saparova, A. N. Afanasyeva, P. G. Zaikin, V. I. Shmurak, T. E. Eltysheva, I. E. Makarenko, А. В. Бабина, Р. В. Драй, В. Б. Сапарова, А. Н. Афанасьева, П. Г. Заикин, В. И. Шмурак, Т. Э. Елтышева, И. Е. Макаренко
المساهمون: The sponsor of this study is LLC "GEROPHARM"., Спонсор данного исследования ООО «ГЕРОФАРМ».
المصدر: Drug development & registration; Том 12, № 2 (2023); 124-134 ; Разработка и регистрация лекарственных средств; Том 12, № 2 (2023); 124-134 ; 2658-5049 ; 2305-2066
مصطلحات موضوعية: ГИИЧ, biosimilar, genetically engineered human insulin, биоаналог, биосимиляр, генно-инженерный инсулин человека
وصف الملف: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/1492/1125; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1492/1640; Zalcberg J. Biosimilars are coming: ready or not. Internal Medicine Journal. 2018;48(9):1027–1034. DOI:10.1111/imj.14033.; Agbogbo F. K., Ecker D. M., Farrand A., Han K., Khoury A., Martin A., McCool J., Rasche U., Rau T. D., Schmidt D., Sha M., Treuheit N. Current perspectives on biosimilars. Journal of Industrial Microbiology and Biotechnology. 2019;46(9–10):1297–1311. DOI:10.1007/s10295-019-02216-z.; de Mora F. Biosimilars: A Value Proposition. BioDrugs. 2019;33(4):353–356. DOI:10.1007/s40259-019-00360-7.; Бабенко А. Ю., Драй Р. В., Каронова Т. Л., Макаренко И. Е. Подходы доказательной медицины при разработке и регистрации фармакологических препаратов для лечения сахарного диабета. Русский медицинский журнал. 2018;1(I):48–54.; Dranitsaris G., Amir E., Dorward K. Biosimilars of biological drug therapies: regulatory, clinical and commercial considerations. Drugs. 2011;71(12):1527–1536. DOI:10.2165/11593730-000000000-00000.; Kresse G. B. Biosimilars – science, status, and strategic perspective. European Journal of Pharmaceutics and Biopharmaceutics. 2009;72(3):479–486. DOI:10.1016/j.ejpb.2009.02.014.; Шестакова М. В., Викулова О. К. Биосимиляры: презумпция «виновности». Сахарный диабет. 2011;14(4):91–99.; Harvey R. D. Science of Biosimilars. Journal of Oncology Practice. 2017;13(9):17–23. DOI:10.1200/JOP.2017.026062.; Tariman J. D. Biosimilars: Exploring the History, Science, and Progress. Clinical Journal of Oncology Nursing. 2018;22(5):5–12. DOI:10.1188/18.CJON.S1.5-12.; Jenkins N., Murphy L., Tyther R. Post-translational modifications of recombinant proteins: significance for biopharmaceuticals. Molecular Biotechnology. 2008;39(2):113–118. DOI:10.1007/s12033-008-9049-4.; Gámez-Belmonte R., Hernández-Chirlaque C., Arredondo-Amador M., Aranda C. J., González R., Martínez-Augustin O., Sánchez de Medina F. Biosimilars: Concepts and controversies. Pharmacological Research. 2018;133:251–264. DOI:10.1016/j.phrs.2018.01.024.; Caliceti P., Veronese F. M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Advanced Drug Delivery Reviews. 2003;55(10):1261–1277. DOI:10.1016/s0169-409x(03)00108-x.; Hossain M. A., Bathgate R. A. D. Challenges in the design of insulin and relaxin/insulin-like peptide mimetics. Bioorganic & Medicinal Chemistry. 2018;26(10):2827–2841 DOI:10.1016/j.bmc.2017.09.030.; Soldatov A. A., Avdeeva J. I., Kryuchkov N. A., Skosyreva E. S. Safety concerns of biosimilar hormone products. Current Medical Research and Opinion. 2019;35(6):1003–1009. DOI:10.1080/03007995.2018.1552041.; Kang H. N., Knezevic I. Regulatory evaluation of biosimilars throughout their product life-cycle. Bulletin World Health Organization. 2018;96(4):281–285. DOI:10.2471/BLT.17.206284.; Ishii-Watabe A., Kuwabara T. Biosimilarity assessment of biosimilar therapeutic monoclonal antibodies. Drug Metabolism and Pharmacokinetics. 2019;34(1):64–70. DOI:10.1016/j.dmpk.2018.11.004.; Rahalkar H., Cetintas H. C., Salek S. Quality, Non-clinical and Clinical Considerations for Biosimilar Monoclonal Antibody Development: EU, WHO, USA, Canada, and BRICS-TM Regulatory Guidelines. Frontiers in Pharmacology. 2018;9:1079. DOI:10.3389/fphar.2018.01079.; Афанасьева А. Н., Сапарова В. Б., Макаренко И. Е., Драй Р. В., Сельменских Т. А. Опыт проведения валидации in vitro методики оценки инсулинозависимого захвата глюкозы. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2023;13(1):77–88. DOI:10.30895/1991-2919-2022-398.; https://www.pharmjournal.ru/jour/article/view/1492
-
3Academic Journal
المؤلفون: A. N. Afanasyeva, V. B. Saparova, I. E. Makarenko, R. V. Drai, T. A. Selmenskikh, А. Н. Афанасьева, В. Б. Сапарова, И. Е. Макаренко, Р. В. Драй, Т. А. Сельменских
المساهمون: I.S. Giba and A.A. Batueva, the authors’ colleagues from the quality assurance service of Pharm-Holding, CJSC, assisted in the research and preparation of the paper. GEROPHARM, OJSC provided funding for the research., В проведении исследования и подготовке статьи оказывали помощь коллеги из службы обеспечения качества ЗАО «Фарм Холдинг» И.С. Гиба и А.А. Батуева. Спонсорская поддержка ОАО «ГЕРОФАРМ».
المصدر: Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation; Том 13, № 1 (2023); 77-88 ; Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств; Том 13, № 1 (2023); 77-88 ; 2619-1172 ; 1991-2919
مصطلحات موضوعية: инсулинозависимый захват глюкозы, L6J1 rat myogenic cell line, metabolic activity, biological activity, insulin, determination of glucose in cell culture media, insulin-dependent glucose uptake, клеточная линия миобластов крысы L6J1, метаболическая активность, биологическая активность, инсулин, определение глюкозы в клеточнойкультуральной среде
وصف الملف: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/398/951; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/398/193; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/398/268; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/398/270; Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci USA. 1968;61(2):477–83. https://doi.org/10.1073/pnas.61.2.477; Mandel JL, Pearson ML. Insulin stimulates myogenesis in a rat myoblast line. Nature. 1974;251(5476):618– 20. https://doi.org/10.1038/251618a0; Jacobs FA, Bird RC, Sells BH. Differentiation of rat myoblasts. Regulation of turnover of ribosomal proteins and their mRNAs. Eur J Biochem. 1985;150(2):255–63. https://doi.org/10.1111/j.1432-1033.1985.tb09015.x; Portiér GL, Benders AG, Oosterhof A, Veerkamp JH, van Kuppevelt TH. Differentiation markers of mouse C2C12 and rat L6 myogenic cell lines and the effect of the differentiation medium. In Vitro Cell Dev Biol Anim. 1999;35(4):219–27. https://doi.org/10.1007/s11626-999-0030-8; Alvim RO, Cheuhen MR, Machado SR, Sousa AGP, Santos PCJL. General aspects of muscle glucose uptake. An Acad Bras Cienc. 2015;87(1):351–68. https://doi.org/10.1590/0001-3765201520140225; Goodyear LJ, King PA, Hirshman MF, Thompson CM, Horton ED, Horton ES. Contractile activity increases plasma membrane glucose transporters in absence of insulin. Am J Physiol. 1990;258(4 Pt 1):E667–72. https://doi.org/10.1152/ajpendo.1990.258.4.E667; Lee AD, Hansen PA, Holloszy JO. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett. 1995;361(1):51–4. https://doi.org/10.1016/0014-5793(95)00147-2; Lund S, Holman GD, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci USA. 1995;92(13):5817–21. https://doi.org/10.1073/pnas.92.13.5817; Rothman DL, Magnusson I, Cline G, Gerard D, Kahn CR, Shulman RG, Shulman GI. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA. 1995;92(4):983–7. https://doi.org/10.1073/pnas.92.4.983; Jiang S, Zhang Y, Yang Y, Huang Y, Ma G, Luo Y, et al. Glucose oxidase-instructed fluorescence amplification strategy for intracellular glucose detection. ACS Appl Mater Interfaces. 2019;11(11):10554–8. https://doi.org/10.1021/acsami.9b00010; Trinder P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol. 1969;22(2):158–61. https://doi.org/10.1136/jcp.22.2.158; https://www.vedomostincesmp.ru/jour/article/view/398
-
4Academic Journal
المؤلفون: A. N. Afanasyeva, V. B. Saparova, D. D. Karal-Ogly, E. I. Mukhametzyanova, D. V. Kurkin, A. V. Kalatanova, I. E. Makarenko, A. L. Khokhlov, I. A. Lugovik, А. Н. Афанасьева, В. Б. Сапарова, Д. Д. Карал-оглы, Е. И. Мухаметзянова, Д. В. Куркин, А. В. Калатанова, И. Е. Макаренко, А. Л. Хохлов, И. А. Луговик
المساهمون: The work was carried out with the financial support of LLC GEROPHARM group. The sponsor had no influence on the choice of materials for the publication, analysis and interpretation of the data., Работа выполнена при финансовой поддержке ООО «ГЕРОФАРМ». Спонсор не оказывал влияние на выбор материала для публикации, анализ и интерпретацию данных.
المصدر: Pharmacy & Pharmacology; Том 10, № 4 (2022); 354-370 ; Фармация и фармакология; Том 10, № 4 (2022); 354-370 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2022-10-4
مصطلحات موضوعية: TPO-R, biosimilar GP40141, Nplate®, complement-dependent cytotoxicity, drug safety studies, in vivo, in vitro, idiopathic thrombocytopenic purpura, toxicological profile, thrombopoietin receptor, биоаналог GP40141, Энплейт®, комплемент-зависимая цитотоксичность, исследования безопасности препаратов, идиопатическая тромбоцитопеническая пурпура, токсикологический профиль, тромбопоэтиновый рецептор
وصف الملف: application/pdf
Relation: https://www.pharmpharm.ru/jour/article/view/1165/894; https://www.pharmpharm.ru/jour/article/view/1165/895; Kuter D.J., Newland A., Chong B.H., Rodeghiero F., Romero M.T., Pabinger I., Chen Y., Wang K., Mehta B., Eisen M. Romiplostim in adult patients with newly diagnosed or persistent immune thrombocytopenia (ITP) for up to 1 year and in those with chronic ITP for more than 1 year: a subgroup analysis of integrated data from completed romiplostim studies // Br. J. Haematol. – 2019. – Vol. 185, No. 3. – P. 503–513. DOI:10.1111/bjh.15803; Birocchi S., Podda G.M., Manzoni M., Casazza G., Cattaneo M. Thrombopoietin receptor agonists for the treatment of primary immune thrombocytopenia: a meta-analysis and systematic review // Platelets. – 2021. – Vol. 32, No. 2. – P. 216–226. DOI:10.1080/09537104.2020.1745168; Pietras N.M., Pearson-Shaver A.L. Immune Thrombocytopenic Purpura. 2022 May 10. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. – 2022.; Newland A., Godeau B., Priego V., Viallard J.F., López Fernández M.F., Orejudos A., Eisen M. Remission and platelet responses with romiplostim in primary immune thrombocytopenia: final results from a phase 2 study // Br. J. Haematol. – 2016. – Vol. 172, No. 2. – P. 262–273. DOI:10.1111/bjh.13827; Pasquet M., Aladjidi N., Guiton C., Courcoux M.F., Munzer M., Auvrignon A., Lutz P., Ducassou S., Leroy G., Munzer C., Leverger G.; Centre de Référence National des Cytopénies Auto-immunes de l’Enfant (CEREVANCE). Romiplostim in children with chronic immune thrombocytopenia (ITP): the French experience // Br. J. Haematol. – 2014. – Vol. 164, No. 2. – P. 266–271. DOI:10.1111/bjh.12609; Vishnu P., Aboulafia D.M. Long-term safety and efficacyof romiplostim for treatment of immune thrombocytopenia // J. Blood Med. – 2016. – Vol. 7. – P. 99–106. DOI:10.2147/JBM.S80646.; Wolff-Holz E., Tiitso K., Vleminckx C., Weise M. Evolution of the EU Biosimilar Framework: Past and Future // BioDrugs. – 2019. – Vol. 33, No. 6. – P. 621–634. DOI:10.1007/s40259-019-00377-y; Сунцова Е.В., Чиквина И.И., Садовская М.Н., Коцкая Н.Н., Хачатрян Л.А., Байдильдина Д.Д., Калинина И.И., Петрова У.Н., Пшонкин А.В., Лутфуллин И.Я., Лемазина Е.Н., Осипова И.В., Галеева А.В., Наумова О.С., Фисюн И.В., Быкова Г.В., Казарян Г.Р., Масчан А.А., Новичкова Г.А. Применение ромиплостима при впервые выявленной иммунной тромбоцитопении у детей // Вопросы гематологии/онкологии и иммунопатологии в педиатрии. – 2020. – Т. 19, № 1. – С. 18–26. DOI:10.24287/1726-1708-2020-19-1-18-26; Bussel J.B., Soff G., Balduzzi A., Cooper N., Lawrence T., Semple J.W. A Review of Romiplostim Mechanism of Action and Clinical Applicability // Drug Des. Devel. Ther. – 2021. – Vol. 15. – P. 2243‒2268. DOI:10.2147/DDDT.S299591; Yang A.S. Development of romiplostim: a novel engineered peptibody // Semin. Hematol. – 2015. – Vol. 52, No. 1. – P. 12–15. DOI:10.1053/j.seminhematol.2014.10.007; Kuter D.J. Romiplostim // Cancer Treat. Res. – 2011. – Vol. 157. P. 267–288. DOI:10.1007/978-1-4419-7073-2_16.; Bussel J.B., Kuter D.J., George J.N., McMillan R., Aledort L.M., Conklin G.T., Lichtin A.E., Lyons R.M., Nieva J., Wasser J.S., Wiznitzer I., Kelly R., Chen C.F., Nichol J.L. AMG 531, a thrombopoiesis-stimulating protein, for chronic ITP // N. Engl. J. Med. – 2006. – Vol. 355, No. 16. – P. 1672–1681. DOI:10.1056/NEJMoa054626. Erratum in: N Engl J Med. – 2006. – Vol. 355, No. 19. – Art. No. 2054.; Kuter D.J., Bussel J.B., Lyons R.M., Pullarkat V., Gernsheimer T.B., Senecal F.M., Aledort L.M., George J.N., Kessler C.M., Sanz M.A., Liebman H.A., Slovick F.T., de Wolf J.T., Bourgeois E., Guthrie T.H. Jr., Newland A., Wasser J.S., Hamburg S.I., Grande C., Lefrère F., Lichtin A.E., Tarantino M.D., Terebelo H.R., Viallard J.F., Cuevas F.J., Go R.S., Henry D.H., Redner R.L., Rice L., Schipperus M.R., Guo D.M., Nichol J.L. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial // Lancet. – 2008. – Vol. 371, No. 9610. – P. 395–403. DOI:10.1016/S0140-6736(08)60203-2; Kuter D.J., Rummel M., Boccia R., Macik B.G., Pabinger I., Selleslag D., Rodeghiero F., Chong B.H., Wang X., Berger D.P. Romiplostim or standard of care in patients with immune thrombocytopenia // N. Engl. J. Med. – 2010. – Vol. 363, No. 20. – P. 1889–1899. DOI:10.1056/NEJMoa1002625; Shirasugi Y., Ando K., Miyazaki K., Tomiyama Y., Okamoto S., Kurokawa M., Kirito K., Yonemura Y., Mori S., Usuki K., Iwato K., Hashino S., Wei H., Lizambri R. Romiplostim for the treatment of chronic immune thrombocytopenia in adult Japanese patients: a double-blind, randomized Phase III clinical trial // Int. J. Hematol. – 2011. – Vol. 94, No. 1. – P. 71–80. DOI:10.1007/s12185-011-0886-8.; Beck A., Reichert J.M. Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies // MAbs. 2011. – Vol. 3, No. 5. – P. 415–416. DOI:10.4161/mabs.3.5.17334; Czajkowsky D.M., Hu J., Shao Z., Pleass R.J. Fc-fusion proteins: new developments and future perspectives // EMBO Mol. Med. – 2012. – Vol. 4, No. 10. – P. 1015–1028. DOI:10.1002/emmm.201201379; Lee C.H., Delidakis G. Engineering IgG1 Fc Domains That Activate the Complement System // Methods Mol. Biol. – 2022. – Vol. 2421. – P. 187–200. DOI:10.1007/978-1-0716-1944-5_13; Sommarhem A. Resistance mechanisms of non-Hodgkin lymphomas against Rituximab treatment. Helsinki: University of Helsinki, 2007.; Amoroso A., Hafsi S., Militello L., Russo A.E., Soua Z., Mazzarino M.C., Stivala F., Libra M. Understanding rituximab function and resistance: implications for tailored therapy // Front. Biosci. (Landmark Ed). – 2011. – Vol. 16, No. 2. – P. 770–782. DOI:10.2741/3719; Cerny T., Borisch B., Introna M., Johnson P., Rose A.L. Mechanism of action of rituximab // Anticancer Drugs. – 2002. – Vol. 13 (Suppl 2). – P. 3–10. DOI:10.1097/00001813-200211002-00002; Pescovitz M.D. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action // Am. J. Transplant. – 2006. – Vol. 6(5 Pt 1). – P. 859–866. DOI:10.1111/j.1600-6143.2006.01288.x; Winkler M.T., Bushey R.T., Gottlin E.B., Campa M.J., Guadalupe E.S., Volkheimer A.D., Weinberg J.B., Patz E.F. Jr. Enhanced CDC of B cell chronic lymphocytic leukemia cells mediated by rituximab combined with a novel anti-complement factor H antibody. // PLoS One. – 2017. – Vol. 12, No. 6. – e0179841. DOI:10.1371/journal.pone.0179841; Pawluczkowycz A.W., Beurskens F.J., Beum P.V., Lindorfer M.A., van de Winkel J.G., Parren P.W., Taylor R.P. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX // J. Immunol. – 2009. – Vol. 183, No. 1. – P. 749–758. DOI:10.4049/jimmunol.0900632; https://www.pharmpharm.ru/jour/article/view/1165