-
1Academic Journal
المؤلفون: R. N. Suprun, Yu. V. Rumyantseva, O. I. Bydanov, L. I. Zharikova, S. N. Lagoiko, V. V. Lebedev, K. L. Kondratchik, E. A. Druy, E. G. Mansurova, T. V. Asekretova, O. E. Murashkina, O. V. Aleynikova, L. G. Fechina, G. V. Bykova, N. I. Ponomareva, N. V. Myakova, A. M. Popov, Yu. V. Olshanskaya, A. N. Kazakova, D. V. Litvinov, G. A. Novichkova, A. I. Karachunskiy, Р. Н. Супрун, Ю. В. Румянцева, О. И. Быданов, Л. И. Жарикова, С. Н. Лагойко, В. В. Лебедев, К. Л. Кондратчик, Е. А. Друй, Е. Г. Мансурова, Т. В. Асекретова, О. Е. Мурашкина, О. В. Алейникова, Л. Г. Фечина, Г. В. Быкова, Н. И. Пономарева, Н. В. Мякова, А. М. Попов, Ю. В. Ольшанская, А. Н. Казакова, Д. В. Литвинов, Г. А. Новичкова, А. И. Карачунский
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 9, № 3 (2022); 12-31 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 9, № 3 (2022); 12-31 ; 2413-5496 ; 2311-1267
مصطلحات موضوعية: токсичность, children, Down syndrome, therapy, survival, toxicity, дети, синдром Дауна, терапия, выживаемость
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/854/752; Ross J.A., Spector L.G., Robison L.L., Olshan A.F. Epidemiology of leukemia in children with Down syndrome. Pediatr Blood Cancer. 2005;44(1):8–12. doi:10.1002/pbc.20165. PMID: 15390275.; Hasle H., Clemmensen I.H., Mikkelsen M. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet. 2000;355(9199):165–9. doi:10.1016/S0140-6736(99)05264-2. PMID: 10675114.; Robison L.L. Down syndrome and leukemia. Leukemia. 1992;6 Suppl 1:5–7. PMID: 1532221.; Avet-Loiseau H., Mechinaud F., Harousseau J.L. Clonal hematologic disorders in Down syndrome. A review. J Pediatr Hematol Oncol. 1995;17(1):19–24. doi:10.1097/00043426-199502000-00003. PMID: 7743232.; Zipursky A., Peeters M., Poon A. Megakaryoblastic leukemia and Down’s syndrome: a review. Pediatr Hematol Oncol. 1987;4(3):211–30. doi:10.3109/08880018709141272. PMID: 2978961.; Lange B. The management of neoplastic disorders of haematopoiesis in children with Down’s syndrome. Br J Haematol. 2000;110(3):51–24. doi:10.1046/j.1365-2141.2000.02027.x. PMID: 10997960.; Румянцева Ю.В., Карачунский А.И., Алейникова О.В., Фечина Л.Г., Шамардина А.В., Литвинов Д.В., Пономарева Н.И., Бойченко Э.Г., Дудкин С.А., Стренева О.В., Кондратчик К.Л., Мансурова Е.Г., Минкина Л.М., Лапотентова Е.С., Инюшкина Е.В., Юдина Н.Б., Павлова Г.П., Жуковская Е.В., Хлебникова О.П., Лагойко С.Н., Башарова Е.В., Денисов Р.Э., Злобина В.Д., Банщикова Е.С., Асланян К.С., Кондакова Е.В., Целоусова Е.В., Мякова Н.В., Туробова Т.В., Рыскаль О.В., Чипсанова Н.Ф., Варфоломеева С.Р., Румянцев А.Г. Эффективность протокола ALL-МВ-2002 у детей с острым лимфобластным лейкозом. Терапевтический архив. 2010;82(7):11–9.; Валиев Т.Т., Шервашидзе М.А., Осипова И.В., Бурлуцкая Т.И., Попова Н.А., Осмульская Н.С., Алескерова Г.А., Сабанцев С.Л., Гордеева З.С., Батманова Н.А., Тренина М.Р., Бирлюкова Д.В., Киргизов К.И., Варфоломеева С.Р. Лечение острого лимфобластного лейкоза у детей по протоколу ALL IC-BFM 2002: результаты мультицентрового ретроспективного исследования. Российский журнал детской гематологии и онкологии 2021;8(3):59–70. doi:10.21682/2311-1267-2021-8-3-59-70.; Супрун Р.Н., Румянцева Ю.В., Быданов О.И., Жарикова Л.И., Лагойко С.Н., Лебедев В.В., Кондратчик К.Л., Асланян К.С., Алейникова О.В., Фечина Л.Г., Быкова Г.В., Пономарева Н.И., Мякова Н.В., Попов А.М., Ольшанская Ю.В., Казакова А.Н., Масчан А.А., Новичкова Г.А., Карачунский А.И. Острый лимфобластный лейкоз у детей с синдромом Дауна: опыт группы «Москва–Берлин». Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2021;20(1):14–26. doi:10.24287/1726-1708-2021-20-1-14-26.; Bene M.C., Castoldi G., Knapp W., Ludwig W.D., Matutes E., Orfao A., van’t Veer M.B. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6. PMID: 7564526.; Новикова И.А., Вержбицкая Т.Ю., Мовчан Л.В., Цаур Г.А., Белевцев М.В., Попов А.М. Стандарт российско-белорусской кооперативной группы по иммунофенотипированию острого лимфобластного лейкоза у детей. Онкогематология. 2018;13(1):73‒82. doi:10.17650/1818-8346-2018-13-1-73-82.; Kaplan E.L., Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81.; Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep. 1966;50(3):163‒70. PMID: 5910392.; Kalbfleisch J., Prentice R. The Statistical Analysis of Failure Time Data. Wiley, New York, 2002.; Cortese G., Andersen P.K. Competing risks and time-dependent covariates. Biom J. 2010;52(1):138‒58. doi:10.1002/bimj.200900076. PMID: 20029852.; Brewster H.F., Cannon H.E. Acute lymphatic leukemia: report of case in eleventh month mongolian idiot. New Orl Med Surg J. 1930;82:872–3.; Dördelmann M., Schrappe M., Reiter A., Zimmermann M., Graf N., Schott G., Lampert F., Harbott J., Niemeyer C., Ritter J., Dörffel W., Nessler G., Kühl J., Riehm H. Down’s syndrome in childhood acute lymphoblastic leukemia: clinical characteristics and treatment outcome in four consecutive BFM trials. Berlin–Frankfurt–Münster Group. Leukemia. 1998;12(5):645–51. doi:10.1038/sj.leu.2400989. PMID: 9593260.; Chessells J.M., Harrison G., Richards S.M., Bailey C.C., Hill F.G., Gibson B.E., Hann I.M. Down’s syndrome and acute lymphoblastic leukaemia: clinical features and response to treatment. Arch Dis Child. 2001;85(4):321–5. doi:10.1136/adc.85.4.321. PMID: 11567943.; Whitlock J.A., Sather H.N., Gaynon P., Robison L.L., Wells R.J., Trigg M., Heerema N.A., Bhatia S. Clinical characteristics and outcome of children with Down syndrome and acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood. 2005;106(13):4043–9. doi:10.1182/blood-2003-10-3446. PMID: 16109782.; Zeller B., Gustafsson G., Forestier E., Abrahamsson J., Clausen N., Heldrup J., Hovi L., Jonmundsson G., Lie S.O., Glomstein A., Hasle H.; Nordic Society of Paediatric Haematology and Oncology (NOPHO). Acute leukaemia in children with Down syndrome: a population-based Nordic study. Br J Haematol. 2005;128(6):797–804. doi:10.1111/j.1365-2141.2005.05398.x. PMID: 15755283.; Maloney K.W., Carroll W.L., Carroll A.J., Devidas M., Borowitz M.J., Martin P.L., Pullen J., Whitlock J.A., Willman C.L., Winick N.J., Camitta B.M., Hunger S.P. Down syndrome childhood acute lymphoblastic leukemia has a unique spectrum of sentinel cytogenetic lesions that influences treatment outcome: a report from the Children’s Oncology Group. Blood. 2010;116(7):1045–50. doi:10.1182/blood-2009-07-235291. PMID: 20442364.; Maloney K.W., Wood B., Whitlock J.A., Loh M., Raetz E.A., Winick N. Event free and overall survival for children with Down syndrome and B-lymhoblastic leukemia in Children's Oncology Group trials AALL0232 and AALL0331. Pediatr Blood Cancer. 2014;61(S1):S4 abstract # 4009.; Buitenkamp T.D., Izraeli S., Zimmermann M., Forestier E., Heerema N.A., van den Heuvel-Eibrink M.M., Pieters R., Korbijn C.M., Silverman L.B., Schmiegelow K., Liang D.C., Horibe K., Arico M., Biondi A., Basso G., Rabin K.R., Schrappe M., Cario G., Mann G., Morak M., Panzer-Grümayer R., Mondelaers V., Lammens T., Cavé H., Stark B., Ganmore I., Moorman A.V., Vora A., Hunger S.P., Pui C.H., Mullighan C.G., Manabe A., Escherich G., Kowalczyk J.R., Whitlock J.A., Zwaan C.M. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood. 2014;123(1):70–7. doi:10.1182/blood-2013-06-509463. PMID: 24222333.; Athale U.H., Puligandla M., Stevenson K.E., Asselin B., Clavell L.A., Cole P.D., Kelly K.M., Laverdiere C., Leclerc J.M., Michon B., Schorin M.A., Sulis M.L., Welch J.J.G., Harris M.H., Neuberg D.S., Sallan S.E., Silverman L.B. Outcome of children and adolescents with Down syndrome treated on Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium protocols 00-001 and 05-001. Pediatr Blood Cancer. 2018;65(10):e27256. doi:10.1002/pbc.27256.; Thompson B.J., Bhansali R., Diebold L., Cook D.E., Stolzenburg L., Casagrande A.S., Besson T., Leblond B., Désiré L., Malinge S., Crispino J.D. DYRK1A controls the transition from proliferation to quiescence during lymphoid development by destabilizing Cyclin D3. J Exp Med. 2015;212(6):953–70. doi:10.1084/jem.20150002.; Lane A.A., Chapuy B., Lin C.Y., Tivey T., Li H., Townsend E.C., van Bodegom D., Day T.A., Wu S.C., Liu H., Yoda A., Alexe G., Schinzel A.C., Sullivan T.J., Malinge S., Taylor J.E., Stegmaier K., Jaffe J.D., Bustin M., te Kronnie G., Izraeli S., Harris M.H., Stevenson K.E., Neuberg D., Silverman L.B., Sallan S.E., Bradner J.E., Hahn W.C., Crispino J.D., Pellman D., Weinstock D.M. Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nat Genet. 2014;46(6):618–23. doi:10.1038/ng.2949.; Mullighan C.G., Collins-Underwood J.R., Phillips L.A., Loudin M.G., Liu W., Zhang J., Ma J., Coustan-Smith E., Harvey R.C., Willman C.L., Mikhail F.M., Meyer J., Carroll A.J., Williams R.T., Cheng J., Heerema N.A., Basso G., Pession A., Pui C.H., Raimondi S.C., Hunger S.P., Downing J.R., Carroll W.L., Rabin K.R. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41(11):1243–6. doi:10.1038/ng.469.; Hanada I., Terui K., Ikeda F., Toki T., Kanezaki R., Sato T., Kamio T., Kudo K., Sasaki S., Takahashi Y., Hayashi Y., Inukai T., Kojima S., Koike K., Kosaka Y., Kobayashi M., Imaizumi M., Mitsui T., Hori H., Hara J., Horibe K., Nagai J., Goto H., Ito E. Gene alterations involving the CRLF2-JAK pathway and recurrent gene deletions in Down syndrome associated acute lymphoblastic leukemia in Japan. Genes Chromosomes Cancer. 2014;53(11):902–10. doi:10.1002/gcc.22201.; Buitenkamp T.D., Pieters R., Gallimore N.E., van der Veer A., Meijerink J.P., Beverloo H.B., Zimmermann M., de Haas V., Richards S.M., Vora A.J., Mitchell C.D., Russell L.J., Schwab C., Harrison C.J., Moorman A.V., van den Heuvel-Eibrink M.M., den Boer M.L., Zwaan C.M. Outcome in children with Down’s syndrome and acute lymphoblastic leukemia: role of IKZF1 deletions and CRLF2 aberrations. Leukemia. 2012;26(10):2204–11. doi:10.1038/leu.2012.84.; Tran T.H., Loh M.L. Ph-like acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2016;2016(1):561–6. doi:10.1182/asheducation-2016.1.561. PMID: 27913529.; Schwartzman O., Savino A.M., Gombert M., Palmi C., Cario G., Schrappe M., Eckert C., von Stackelberg A., Huang J.Y., Hameiri-Grossman M., Avigad S., te Kronnie G., Geron I., Birger Y., Rein A., Zarfati G., Fischer U., Mukamel Z., Stanulla M., Biondi A., Cazzaniga G., Vetere A., Wagner B.K., Chen Z., Chen S.J., Tanay A., Borkhardt A., Izraeli S. Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome. Proc Natl Acad Sci USA. 2017;114(20):E4030–9. doi:10.1073/pnas.1702489114.; Taub J.W. Relationship of chromosome 21 and acute leukemia in children with Down syndrome. J Pediatr Hematol Oncol. 2001;23(3):175–8. doi:10.1097/00043426-200103000-00012. PMID: 11305722.; Østergaard A., Bohnstedt C., Grell K., Degn M., Zeller B., Taskinen M., Hafsteinsdottir S., Björgvinsdóttir H., Heyman M., Hoogerbrugge P., Schmiegelow K.; Nordic Society of Paediatric Haematology and Oncology (NOPHO). Acute lymphoblastic leukemia and Down syndrome: 6-mercaptopurine and methotrexate metabolites during maintenance therapy. Leukemia. 2021;35(3):863–6. doi:10.1038/s41375-020-0946-2.; Mikkelsen T.S., Thorn C.F., Yang J.J., Ulrich C.M., French D., Zaza G., Dunnenberger H.M., Marsh S., McLeod H.L., Giacomini K., Becker M.L., Gaedigk R., Leeder J.S., Kager L., Relling M.V., Evans W., Klein T.E., Altman R.B. PharmGKB summary: methotrexate pathway. Pharmacogenet Genomics. 2011;21(10):679–86. doi:10.1097/FPC.0b013e328343dd93. PMID: 21317831.; Belkov V.M., Krynetski E.Y., Schuetz J.D., Yanishevski Y., Masson E., Mathew S., Raimondi S., Pui C.H., Relling M.V., Evans W.E. Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood. 1999;93(5):1643–50. PMID: 10029593.; Zhang L., Taub J.W., Williamson M., Wong S.C., Hukku B., Pullen J., Ravindranath Y., Matherly L.H. Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: relationship to immunophenotype and ploidy. Clin Cancer Res. 1998;4(9):2169–77. PMID: 9748136.; Peeters M., Poon A. Down syndrome and leukemia: unusual clinical aspects and unexpected methotrexate sensitivity. Eur J Pediatr. 1987;146(4):416–22. doi:10.1007/BF00444952. PMID: 2958283.; Hedeland R.L., Hvidt K., Nersting J., Rosthøj S., Dalhoff K., Lausen B., Schmiegelow K. DNA incorporation of 6-thioguanine nucleotides during maintenance therapy of childhood acute lymphoblastic leukaemia and non-Hodgkin lymphoma. Cancer Chemother Pharmacol. 2010;66(3):485–91. doi:10.1007/s00280-009-1184-5.; Roberts I., Izraeli S. Haematopoietic development and leukaemia in Down syndrome. Br J Haematol. 2014;167(5):587–99. doi:10.1111/bjh.13096.; O’Brien M.M., Taub J.W., Chang M.N., Massey G.V., Stine K.C., Raimondi S.C., Becton D., Ravindranath Y., Dahl G.V.; Childre’s Oncology Group Study POG 9421. Cardiomyopathy in children with Down syndrome treated for acute myeloid leukemia: a report from the Children’s Oncology Group Study POG 9421. J Clin Oncol. 2008;26(3):414–20. doi:10.1200/JCO.2007.13.2209.; Baird P.A., Sadovnick A.D. Life expectancy in Down syndrome. J Pediatr. 1987;110(6):849–54. doi:10.1016/s0022-3476(87)80395-5. PMID: 2953876.; Levin S. The immune system and susceptibility to infections in Down’s syndrome. Prog Clin Biol Res. 1987;246:143–62. PMID: 2958878.; https://journal.nodgo.org/jour/article/view/854
-
2Academic Journal
المؤلفون: A. F. Valiakhmetova, L. I. Papusha, L. A. Yasko, A. E. Druy, S. K. Gorelyshev, A. I. Karachunskiy, Э. Ф. Валиахметова, Л. И. Папуша, Л. А. Ясько, А. Е. Друй, С. К. Горелышев, А. И. Карачунский
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 7, № 1 (2020); 51-61 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 7, № 1 (2020); 51-61 ; 2413-5496 ; 2311-1267 ; 10.21682/2311-1267-2020-7-1
مصطلحات موضوعية: синдром Ли–Фраумени, children, radiation therapy, chemotherapy, TP53, Li–Fraumeni syndrome, дети, лучевая терапия, химиотерапия, ТР53
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/574/535; Merino D.M., Shlien A., Villani A., Pienkowska M., Mack S., Ramaswamy V., Shih D., Tatevossian R., Novokmet A., Choufani S., Dvir R., Ben-Arush M., Harris B.T., Hwang E.I., Lulla R., Pfister S.M., Achatz M.I., Jabado N., Finlay J.L., Weksberg R., Bouffet E., Hawkins C., Taylor M.D., Tabori U., Ellison D.W., Gilbertson R.J., Malkin D. Molecular characterization of choroid plexus tumors reveals novel clinically relevant subgroups. Clin Cancer Res 2015;21(1):184–92. doi:10.1158/1078-0432.CCR-14-1324.; Jeibmann A., Wrede B., Peters O., Wolff J.E., Paulus W., Hasselblatt M. Malignant progression in choroid plexus papillomas. J Neurosurg Pediatr 2007;107(3):199–202. doi:10.1097/01.jnen.0000240464.26005.90.; Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131(6):1–18. doi:10.1007/s00401-016-1545-1.; Sun M.Z., Oh M.C., Ivan M.E., Kaur G., Safaee M., Kim J.M., Phillips J.J., Auguste K.I., Parsa A.T. Current management of choroid plexus carcinomas. Neurosurg Rev2014;37(2):179–92. doi:10.1007/s10143-013-0499-1; CPT-SIOP-2009. Intercontinental Multidisciplinary Registry and Treatment Optimization Study for Patients with Choroid Plexus Tumors, 2010. Pp. 617–636.; Rickert C.H., Paulus W. Tumors of the choroid plexus. Microsc Res Tech 2001;(52)1:104–11. doi:10.1002/1097-0029(20010101)52:13.0.CO;2-3.; Wolff J.E.A., Sajedi M., Brant R., Coppes M.J., Egeler R.M. Choroid plexus tumours. Br J Cancer 2002;(87)10:1086–91. doi:10.1038/sj.bjc.6600609.; Carlotti C.G., Salhia B., Weitzman S., Greenberg M., Dirks P.B., Mason W., Becker L.E., Rutka J.T. Evaluation of proliferative index and cell cycle protein expression in choroid plexus tumors in children. Acta Neuropathol 2002;103(1):1–10. doi:10.1007/s004010100419.; Wrede B., Hasselblatt M., Peters O., Thall P.F., Kutluk T., Moghrabi A., Mahajan A., Rutkowski S., Diez B., Wang X., Pietsch T., Kortmann R.D., Paulus W., Jeibmann A., Wolff J.E.A. Atypical choroid plexus papilloma: Clinical experience in the CPT-SIOP-2000 study. J Neurooncol 2009;(95)3:383–92. doi:10.1007/s11060-009-9936-y.; Jeibmann A., Hasselblatt M., Gerss J., Wrede B., Egensperger R., Beschorner R., Hans V.H.J., Rickert C.H., Wolff J.E., Paulus W. Prognostic implications of atypical histologic features in choroid plexus papilloma. J Neuropathol Exp Neurol 2006;(65)11:1069–73. doi:10.1097/01.jnen.0000240464.26005.90.; Judkins A.R., Burger P.C., Hamilton R.L., Kleinschmidt-DeMasters B., Perry A., Pomeroy S.L., Rosenblum M.K., Yachnis A.T., Zhou H., Rorke L.B., Biegel J. INI1 protein expression distinguishes atypical teratoid/rhabdoid tumor from choroid plexus carcinoma. J Neuropathol Exp Neurol 2005; 64(5):391–7. doi:10.1093/jneu/64.5.391.; Tabori U., Shlien A., Baskin B., Levitt S., Ray P., Alon N., Hawkins C., Bouffet E., Pienkowska M., Lafay-Cousin L., Gozali A., Zhukova N., Shane L., Gonzalez I., Finlay J., Malkin D. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol 2010; 28(12):1995–2001. doi:10.1200/JCO.2009.26.8169.; Gozali A.E., Britt B., Shane L., Gonzalez I., Gilles F., McComb J.G., Krieger M.D., Lavey R.S., Shlien A., Villablanca J.G., Erdreich-Epstein A., Dhall G., Jubran R., Tabori U., Malkin D., Finlay J.L. Choroid Plexus Tumors; Management, Outcome, and Association With the Li–Fraumeni Syndrome: The Children’s Hospital Los Angeles (CHLA) Experience, 1991–2010. Pediatr Blood Cancer 2012;58(5):905–9. doi:10.1002/pbc.; Tabori U., Malkin D. Risk Stratification in Cancer Predisposition Syndromes: Lessons Learned from Novel Molecular Developments in Li–Fraumeni Syndrome. Cancer Res 2008;68(7):2053–7. doi:10.1158/0008-5472.; Ruland V., Hartung S., Kordes U., Wolff J.E., Paulus W., Hasselblatt M. Choroid Plexus Carcinomas are Characterized by Complex Chromosomal Alterations Related to Patient Age and Prognosis. Genes Chromosomes Cancer 2014;53(5):373–80. doi:10.1002/gcc.22148.; Saenz-Robles M.T., Symonds H., Chen J., Van Dyke T. Induction versus Progression of Brain Tumor Development : Differential Functions for the pRB- and p53-Targeting Domains of Simian Virus 40 T Antigen. Mol Cell Biol 1994;14(4):2686–98. doi:10.1128/mcb.14.4.2686.; Symonds H., Krall L., Remington L., Saenz-Robles M., Jacks T., Van Dyke T. p53-dependent apoptosis in vivo: impact of p53 inactivation on tumorigenesis. Cold Spring Harb Symp Quant Biol 1994;59:247–57. doi:10.1101/sqb.1994.059.01.029.; Tong Y., Merino D., Malkin D., Gilbertson R.J., Tong Y., Merino D., Nimmervoll B., Gupta K., Wang Y.D., Finkelstein D., Dalton J. Cross-Species Genomics Identifies TAF12, NFYC, and RAD54L as Choroid Plexus Carcinoma Oncogenes. Cancer Cell 2015;27(5):712–27. doi:10.1016/j.ccell.2015.04.005.; Zaky W., Finlay J.L. Pediatric choroid plexus carcinoma. Biologically and clinically in need of new perspectives. Pediatr Blood Cancer 2018;65(7):e27031. doi:10.1002/pbc.27031.; Merve A., Acquati S., Hoeck J., Jeyapalan J., Behrens A., Marino S. CMYC over expression induces choroid plexus tumors through modulation of inflammatory pathways. Neuro Oncol 2017;(19):iv48. doi:10.1093/neuonc/nox083.201.; Momota H., Shih A.H., Edgar M.A., Holland E.C. c-Myc and beta-catenin cooperate with loss of p53 to generate multiple members of the primitive neuroectodermal tumor family in mice. Oncogene 2008;27(32):4392–401. doi:10.1038/onc.2008.81.; Koos B., Paulsson J., Jarvius M., Sanchez B.C., Wrede B., Mertsch S., Jeibmann A., Kruse A., Peters O., Wolff J.E.A., Galla H.J., So O., Paulus W., Arne O. Platelet-Derived Growth Factor Receptor Expression and Activation in Choroid Plexus Tumors. Neurobiol 2009;175(4):1631–7. doi:10.2353/ajpath.2009.081022.; Zhu V.W., Hinduja S., Knezevich S.R., Silveira W.R., Delozier C.D. A rare case of choroid plexus carcinoma that led to the diagnosis of Lynch syndrome (hereditary nonpolyposis colorectal cancer). Clin Neurol Neurosurg 2017;158:46–8. doi:10.1016/j.clineuro.2017.04.013.; Pencalet P., Sainte-Rose C., Lellouch-Tubiana A., Kalifa C., Brunelle F., Sgouros S., Meyer P., Cinalli G., Zerah M., Pierre-Kahn A., Renier D. Papillomas and carcinomas of the choroid plexus in children. J Neurosurg 1998;88(3):521–8. doi:10.3171/jns.1998.88.3.0521.; Meyers S.P., Chuang S.H., Pollack I.F., Korones D.N., Zimmerman R.A. Choroid plexus carcinomas in children: MRI features and patient outcomes. Neuroradiology 2004;46(9):770–80. doi:10.1007/s00234-004-1238-7.; Cannon D.M., Mohindra P., Gondi V., Kruser T.J., Kozak K.R. Choroid plexus tumor epidemiology and outcomes: implications for surgical and radiotherapeutic management. J Neurooncol 2015;121(1):151–7. doi:10.1007/s11060-014-1616-x.; Zaky W., Dhall G., Khatua S., Brown R.J., Ginn K.F., Gardner S.L., Yildiz V.O., Yankelevich M., Finlay J.L. Choroid Plexus Carcinoma in Children: The Head Start Experience. Pediatr Blood Cancer 2015;62(5):784–9. doi:10.1002/pbc.25436.; Donovan D.J., Prauner R.D. Shunt-related abdominal metastases in a child with choroid plexus carcinoma: Case report. Neurosurgery 2005;56(2):E412. doi:10.1227/01.NEU.0000147982.80732.3D.; Baksh B.S., Sinha N., Salehi A., Han R.H., Miller B.A., Dahiya S., Gauvain K.M., Limbrick D.D. Widely Metastatic Choroid Plexus Carcinoma Associated with Novel TP53 Somatic Mutation. World Neurosurg 2018;119:233–6. doi:10.1016/j.wneu.2018.07.284.; Horska A., Ulug A.M., Melhem E.R., Filippi C.G., Burger P.C., Edgar M.A., Souweidane M.M., Carson B.S., Barker P.B; Proton Magnetic Resonance Spectroscopy of Choroid Plexus Tumors in Children. J Magn Reson Imaging 2001;14(1):78–82. doi:10.1002/jmri.1154.; Balaji R., Ramachandran K., Kusumakumari P., Krishnakumar A.S., Venugopal M. CT and MR Imaging in Choroid Plexus Carcinoma. Report of Two Cases. J Neuroradiology 2006;19(3):330–3. doi:10.1177/197140090601900309.; Korchi A.M., Garibotto V., Ansari M., Merlini L. Pseudoprogression after proton beam irradiation for a choroid plexus carcinoma in pediatric patient : MRI and PET imaging patterns. Childs Nerv Syst 2013;29:509–12. doi:10.1007/s00381-012-1967-6.; Lewis P. Carcinoma of the choroid plexus. Brain 1967;90(1):177–86. doi:10.1093/brain/90.1.177.; Wrede B., Liu P., Wolff J.E.A. Chemotherapy improves the survival of patients with choroid plexus carcinoma: A meta-analysis of individual cases with choroid plexus tumors. J Neurooncol 2007: 85(3):345–51. doi:10.1007/s11060-007-9428-x.; Mallick S., Benson R., Melgandi W., Rath G.K. Effect of Surgery, Adjuvant Therapy, and Other Prognostic Factors on Choroid Plexus Carcinoma: A Systematic Review and Individual Patient Data Analysis. Int J Radiat Oncol 2017;99(5):1199–206. doi:10.1016/j.ijrobp.2017.08.012.; Greenberg M.L. Chemotherapy of choroid plexus carcinoma. Child’s Nerv Syst 1999;15(10):571–7. doi:10.1007/s003810050545.; Bettegowda C., Adogwa O., Mehta V., Chaichana K.L., Weingart J., Carson B.S., Jallo J.I., Ahn E.S.M. Treatment of choroid plexus tumors: a 20-year single institutional experience. Neurosurg Pediatr 2015;14(11):871–82. doi:10.3171/2012.8.PEDS12132.; Sun M.Z., Ivan M.E., Clark A.J., Oh M.C., Delance A.R., Oh T., Safaee M., Kaur G., Bloch O., Molinaro A., Gupta N., Parsa A.T. Gross total resection improves overall survival in children with choroid plexus carcinoma. J Neurooncol 2014;116(1):179–85. doi:10.1007/s11060-013-1281-5.; Packer R.J., Perilongo G., Johnson D., Sutton L.N., Vezina G., Zimmerman R.A., Ryan J., Reaman G., Schut L. Choroid plexus carcinoma of childhood. Cancer 1992;69(2):580–5. doi:10.1002/1097-0142(19920115)69:23.0.CO;2-O.; Wrede B., Liu P., Ater J., Wolff J.E.A. Second surgery and the prognosis of choroid plexus carcinoma – results of a meta-analysis of individual cases. Anticancer Res 2005;25(6):4429–33.; Menon G., Nair S.N., Baldawa S.S., Rao R.B., Krishnakumar K.P., Gopalakrishnan C.V. Choroid plexus tumors: an institutional series of 25 patients. Neurol India 2010;58(3):429–36. doi:10.4103/0028-3886.66455.; Kumabe T., Tominaga T., Kondo T., Yoshimoto T., Kayama T. Intraoperative radiation therapy and chemotherapy for huge choroid plexus carcinoma in an infant – case report. Neurol Med Chir (Tokyo) 1996:36(3):179–84. doi:10.2176/nmc.36.179.; Pellerino A., Cassoni P., Boldorini R. Response to combined radiotherapy and chemotherapy of a leptomeningeal spread from choroid plexus carcinoma: case report. Neurol Sci 2014;36(4):639–41. doi:10.1007/s10072-014-1983-2.; Wolff J.E.A., Sajedi M., Coppes M.J., Anderson R.A., Maarten E.R. Radiation therapy and survival in choroid plexus carcinoma. Lancet 1999;353(9170):2126. doi:10.1016/S0140-6736(99)01744-4.; Fitzpatrick L.K., Aronson L.J., Cohen K.J. Is there a requirement for adjuvant therapy for choroid plexus carcinoma that has been completely resected? J Neurooncol 2002;57(2):123–6. doi:10.1023/A:1015773624733.; Mazloom A., Wolff J.E.W., Paulino A.C. The impact of radiotherapy fields in the treatment of patients with choroid plexus carcinoma. Int J Radiat Oncol Biol Phys 2010;78(1):79–84. doi:10.1016/j.ijrobp.2009.07.1701.; Bahar M., Kordes U., Tekautz T., Wolff J. Radiation Therapy for Choroid Plexus Carcinoma Patients with Li–Fraumeni Syndrome: Advantageous or Detrimental? Anticancer Res 2015;35(5):3013–7. PMID: 25964589.; Siegfried A., Morin S., Munzer C., Delisle M.B., Gambart M., Puget S., Maurage C.A., Miquel C., Dufour C., Leblond P., André N., Branger D.F., Kanold J., Kemeny J.L., Icher C., Vital A., Coste E.U., Bertozzi A.I. A French retrospective study on clinical outcome in 102 choroid plexus tumors in children. J Neurooncol 2017;135(1):151–60. doi:10.1007/s11060-017-2561-2.; Sun M.Z., Ivan M.E., Oh M.C., Delance A.R., Clark A.J., Safaee M., Oh T., Kaur G., Molinaro A., Gupta N., Parsa A.T. Effects of adjuvant chemotherapy and radiation on overall survival in children with choroid plexus carcinoma. J Neurooncol 2014;120(2):353–60. doi:10.1007/s11060-014-1559-2.; Berger C., Thiesse P., Lellouch-Tubiana A., Kalifa C., Pierre-Kahn A., Bouffet E. Choroid plexus carcinomas in childhood: clinical features and prognostic factors. Neurosurgery 1998;42(3):470–5. doi:10.1097/00006123-199803000-00006.; Chow E., Reardon D.A., Shah A.B., Jenkins J.J., Langston J., Heideman R.L., Sanford R., Kun L.E., Merchant T.E. Pediatric choroid plexus neoplasms. Radiat Oncol Biol Phys 1999;44(2):249–54. doi:10.1016/s0360-3016(98)00560-4.; Geyer J.R., Sposto R., Jennings M. Multiagent Chemotherapy and Deferred Radiotherapy in Infants With Malignant Brain Tumors: A Report From the Children’s Cancer Group. J Clin Oncol 2005;23(30):7621–31. doi:10.1200/JCO.2005.09.095.; Grundy R.G., Wilne S.H., Robinson K.J., Ironside J.W., Cox T., Chong W.K., Michalski A., Campbell R.H.A., Bailey C.C., Thorp N., Pizer B., Punt J., Walker D.A., Ellison D.W., Machin D. Primary postoperative chemotherapy without radiotherapy for treatment of brain tumours other than ependymoma in children under 3 years: results of the first UKCCSG/SIOP CNS 9204 trial. Eur J Cancer 2010;46(1):120–33. doi:10.1016/j.ejca.2009.09.013.; Lafay-Cousin L., Mabbott D.J., Halliday W., TayLor M.D., Tabori U., KaMaLy-AsL I., KuLKarni A.V., Bartels U., Greenber M., Bouffet E. Use of ifosfamide, carboplatin, and etoposide chemotherapy in choroid plexus carcinoma. Pediatr Neurosurg 2010;5(6):615–21. doi:10.3171/2010.3.PEDS09354.; Koh E.J., Wang K.C., Phi J.H., Lee J.Y., Choi J.W., Park S.H., Park K.D. Clinical outcome of pediatric choroid plexus tumors: retrospective analysis from a single institute. Childs Nerv Sys 2014;30(2):217–25. doi:10.1007/s00381-013-2223-4.; Bahar M., Dhir A., Kordes U., Wolff J. Intercontinental multidisciplinary data collection and treatment optimization study for patients with choroid plexus tumor. Neuro-Oncology 2015;17 (suppl 5):v186-v186. doi:10.1093/neuonc/nov229.01.; Mosleh O., Tabori U., Bartels U., Huang A., Schechter T., Bouffet E. Successful Treatment of a Recurrent Choroid Plexus Carcinoma with Surgery Followed by High-Dose Chemotherapy and Stem Cell Rescue. Pediatr Hematol Oncol 2013;30(5):386–91. doi:10.3109/08880018.2012.756089.; Schneider C., Kamaly-Asl I., Ramaswamy V., Lafay-Cousin L., Kulkarni A.V., Rutka J.T., Remke M., Coluccia D., Tabori U., Hawkins C., Bouffet E., Taylor M.D. Neoadjuvant chemotherapy reduces blood loss during the resection of pediatric choroid plexus carcinomas. J Neurosurg Pediatr 2015;16(2):126–33. doi:10.3171/2014.12.PEDS14372.; Kawakami C., Inoue A., Takitani K., Tsuji M., Wakai K., Tamai H. Imatinib mesylate treatment for platelet-derived growth factor receptor alfa-positive choroid plexus carcinoma. Clin Pract 2012;(2)2:e49. doi:10.4081/cp.2012.e49.; Cornelius A., Foley J., Bond J., Nagulapally A.B., Steinbrecher J., Hendricks W.P.D., Rich M., Yendrembam S., Bergendahl G., Trent J.M., Sholler G.S. Molecular guided therapy provides sustained clinical response in refractory choroid plexus carcinoma. Front Pharmacol 2017;25(8):1–9. doi:10.3389/fphar.2017.00652.; McEvoy M., Robison N., Manley P., Yock T., Konopka K., Brown R.E., Wolff J., Green A.L. Successful Treatment of Recurrent Li–Fraumeni Syndrome-related Choroid Plexus Carcinoma. Pediatr Hematol Oncol 2017;39(8):e473–e475. doi:10.1097/MPH.0000000000000965.; https://journal.nodgo.org/jour/article/view/574
-
3Academic Journal
المؤلفون: E. F. Valiakhmetova, L. A. Yasko, L. I. Papusha, A. E. Druy, A. I. Karachunsky, Э. Ф. Валиахметова, Л. А. Ясько, Л. И. Папуша, А. Е. Друй, А. И. Карачунский
المصدر: Advances in Molecular Oncology; Том 6, № 2 (2019); 28-41 ; Успехи молекулярной онкологии; Том 6, № 2 (2019); 28-41 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2019-6-2
مصطلحات موضوعية: ингибитор тирозинкиназы, targeted therapy, BRAF:KIAA1549 fusion, BRAFV600 mutation, subependymal giant cell astrocytoma, mTOR, tyrosine kinase inhibitor, таргетная терапия, слияние BRAF:KIAA1549, мутация BRAFV600, субэпендимальная гигантоклеточная астроцитома
وصف الملف: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/216/179; Ostrom Q.T., Gittleman H., Liao P. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2014;16(Suppl 4):iv1–63. DOI:10.1093/neuonc/nou223.; Louis D.N., Perry A., Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131(6):803–20. DOI:10.1007/s00401-016-1545-1.; Gnekow A.K., Falkenstein F., von Hornstein S. et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for lowgrade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro Oncol 2012;14(10):1265–84. DOI:10.1093/neuonc/nos202.; Robinson K.E., Fraley C.E., Pearson M.M. et al. Neurocognitive late effects of pediatric brain tumors of the posterior fossa: a quantitative review. J Int Neuropsychol Soc 2013;19(1):44–53. DOI:10.1017/S1355617712000987.; Jones D.T.W., Kocialkowski S., Liu L. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008;68(21):8673–7. DOI:10.1158/0008-5472.CAN-08-2097.; Pfister S., Janzarik W.G., Remke M. et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 2008;118(5):1739–49. DOI:10.1172/JCI33656DS1.; Collins V.P., Jones D.T.W., Giannini C. Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol 2015;129(6):775–88. DOI:10.1007/s00401-015-1410-7.; Northcott P.A., Pfister S.M., Jones D.T.W. et al. Next-generation(epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. Lancet Oncol 2015;16:293–302. DOI:10.1016/S1470-2045(14)71206-9.; Zhang J., Wu G., Miller C.P. et al. Wholegenome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 2013;45(6):602–12. DOI:10.1038/ng.2611.; Jacob K., Albrecht S., Sollier C. et al. Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. Br J Cancer 2009;101(4):722–33. DOI:10.1038/sj.bjc.6605179.; Hawkins C., Walker E., Mohamed N. et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-rade astrocytoma. Clin Cancer Res 2011;17(14):4790–8. DOI:10.1158/1078-0432.CCR-11-0034.; Arun D., Gutmann D.H. Recent advances in neurofibromatosis type 1. Curr Opin Neurol 2004;17(2):101–5.; Akinleye A., Furqan M., Mukhi N. et al. MEK and the inhibitors: from bench to bedside. J Hematol Oncol 2013;6(1):27. DOI:10.1186/1756-8722-6-27.; Владимирова Л.Ю. МЕК как терапевтическая мишень в онкологии. Злокачественные опухоли 2015;16(4):20–7. DOI:10.18027/2224-5057-2015-4s2-20-27.; Banerjee A., Jakacki R.I., Onar-Thomas A. et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory lowgrade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol 2017;19(8):1135–44. DOI:10.1093/neuonc/now282.; Bouffet E., Kieran M., Hargrave D. et al. Trametinib therapy in pediatric patients with low-grade gliomas (LGG) with BRAF gene fusion; a disease-specific cohort in the first pediatric testing of trametinib. Neuro Oncol 2018;20(Suppl 2):i114. DOI:10.1093/neuonc/noy059.387.; Nicolaides T., Nazemi K., Crawford J. et al. A safety study of vemurafenib, an oral inhibitor of BRAFV600E, in children with recurrent/refractory BRAFV600E mutant brain tumor: PNOC-002. Neuro Oncol 2017;19(Suppl 6):vi188. DOI:10.1093/neuonc/nox168.761.; Kieran M.W., Hargrave D.R., Cohen K.J. et al. Phase 1 study of dabrafenib in pediatric patients (pts) with relapsed or refractory BRAFV600E high- and low-grade gliomas (HGG, LGG), Langerhans cell histiocytosis (LCH), and other solid tumors (OST). J Clin Oncol 2015;33(Suppl 15).; Franz D.N., Belousova E., Sparagana S. et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2013;381(9861):125–32. DOI:10.1016/S0140-6736(12)61134-9.; Franz D.N., Agricola K., Mays M. et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol 2015;78(6):929–38. DOI:10.1002/ana.24523.; Kieran M., Yao X., Macy M. et al. A prospective multi-institutional phase II study of everolimus (Rad001), an mTOR inhibitor, in pediatric patients with recurrent or progressive low-grade glioma. A poetic consortium trial. Pediatr Blood Cancer 2013;(60):19.; Yalon M., Rood B., MacDonald T. et al. A feasibility and efficacy study of rapamycin and erlotinib for recurrent pediatric low-grade glioma (LGG). Pediatr Blood Cancer 2013;(60):71–6. DOI:10.1002/pbc.24142.; Hwang E.I., Jakacki R.I., Fisher M.J. et al. Long-term efficacy and toxicity of bevacizumab-based therapy in children with recurrent low-grade gliomas. Pediatr Blood Cancer 2013;60(5):776–82. DOI:10.1002/pbc.24297.; Kieran M.W., Chi S., Goldman S. et al. A phase I trial and PK study of cediranib (AZD2171), an orally bioavailable panVEGFR inhibitor, in children with recurrent or refractory primary CNS tumors. Childs Nerv Syst 2015;31(9):1433–45. DOI:10.1007/s00381-015-2812-5.; Grill J., Le Deley M.S., Le Teuff G. et al. Dose-finding study of vinblastine in combination with nilotinib in children, adolescents and young adults with refractory or recurrent low-grade glioma: results of the ITCC/SIOPE-Brain VINILO phase I trial (NCT01887522). J Clin Oncology 2016; 34(Suppl 15):10555. DOI:10.1200/ JCO.2016.34.15_suppl.10555.; DuBois S.G., Shusterman S., Ingle A.M. et al. Phase I and pharmacokinetic study of sunitinib in pediatric patients with refractory solid tumors: a children’s oncology group study. Clin Cancer Res 2011;17(15):5113–22. DOI:10.1158/1078-0432.CCR-11-0237.; Karajannis M.A., Legault G., Fisher M.J. et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol 2014;16(10): 1408–16. DOI:10.1093/neuonc/nou059.; Miller C., Guillaume D., Dusenbery K. et al. Report of effective trametinib therapy in 2 children with progressive hypothalamic optic pathway pilocytic astrocytoma: documentation of volumetric response. J Neurosurg Pediatr 2017;19(3):1–6. DOI:10.3171/2016.9.PEDS16328.; Wagner L.M., Myseros J.S., Lukins D.E. et al. Targeted therapy for infants with diencephalic syndrome: a case report and review of management strategies. Pediatr Blood Cancer 2018;65(5):е26917. DOI:10.1002/pbc.26917.; Kondyli M., Larouche V., Saint-Martin C. et al. Trametinib for progressive pediatric low-grade gliomas. J Neurooncol 2018; 140(2):435–44. DOI:10.1007/s11060018-2971-9.; Knight T., Shatara M., Carvalho L. et al. Dramatic response to trametinib in a male child with neurofibromatosis type 1 and refractory astrocytoma. Pediatr Blood Cancer 2019;66(10):e27474. DOI:10.1002/pbc.27474.; Schindler G., Capper D., Meyer J. et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011;121(3):397–405. DOI:10.1007/s00401-011-0802-6.; Dias-Santagata D., Lam Q., Vernovsky K. et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One 2011;6(3):е17948. DOI:10.1371/journal.pone.0017948.; Dougherty M.J., Santi M., Brose M.S. et al. Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 2010;12(7):621–30. DOI:10.1093/neuonc/noq007.; Rush S., Foreman N., Liu A. Brainstem ganglioglioma successfully treated with vemurafenib. J Clin Oncol 2013;31(10):159–60. DOI:10.1200/JCO.2012.44.1568.; Del Bufalo F., Carai A., Figà-Talamanca L. et al. Response of recurrent BRAFV600E mutated ganglioglioma to Vemurafenib as single agent. J Transl Med 2014;12:356. DOI:10.1186/s12967-014-0356-1.; Bufalo F., Cacchione A., Carai A. et al. BRAFv600E inhibitor (Vemurafenib) in pediatric patients affected by BRAFv6000E mutated gliomas. Neuro Oncol 2016;18(Suppl 3):iii24. DOI:10.1093/neuonc/now069.04.; Del Bufalo F., Ceglie G., Cacchione A. et al. BRAFV600E inhibitor (vemurafenib) for BRAF V600E mutated low grade gliomas. Front Oncol 2018;8:526. DOI:10.3389/fonc.2018.00526.; Pavelka Z., Berkovcova J., Skotakova J. et al. Objective response to Vemurafenib in a child treated for metastatic desmoplastic infantile astrocytoma. Neuro Oncol 2016;18(Suppl 3):iii92. DOI:10.1093/neuonc/now075.60.; Skrypek M., Foreman N., Guillaume D., Moertel C. Pilomyxoid astrocytoma treated successfully with vemurafenib. Pediatr Blood Cancer 2014;61(11):2099–100. DOI:10.1002/pbc.25084.; Lassaletta A., Guerreiro Stucklin A., Ramaswamy V. et al. Profound clinical and radiological response to BRAF inhibition in a 2-month-old diencephalic child with hypothalamic/chiasmatic glioma. Pediatr Blood Cancer 2016;63(11):2038–41. DOI:10.1002/pbc.26086.; Rizos H., Menzies A.M., Pupo G.M. et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: Spectrum and cli nical impact. Clin Cancer Res 2014;20(7):1965–77. DOI:10.1158/10780432.CCR-13-3122.; McCubrey J.A., Steelman L.S., Chappell W.H. et al. Mutations and deregulation of Ras/ Raf/MEK/ERK and PI3K/PTEN/Akt/ mTOR cascades which alter therapy response. Oncotarget 2012;3(9):954–87. DOI:10.18632/oncotarget.652.; Lam C., Bouffet E., Tabori U. et al. Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors. Pediatr Blood Cancer 2010;54(3): 476–9. DOI:10.1002/pbc.22298.; Franz D.N., Leonard J., Tudor C. et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 2006;59(3):490–8. DOI:10.1002/ana.20784.; Krueger D.A., Care M.M., Holland K. et al. Everolimus for subependymal giantcell astrocytomas in tuberous sclerosis. N Engl J Med 2010;363(19):1801–11. DOI:10.1056/NEJMoa1001671.; Vézina C., Kudelski A., Sehgal S.N. Rapamycin(AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975;28(10): 721–6. DOI:10.7164/antibiotics.28.721.; Sehgal S.N., Baker H., Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibio t (Tokyo) 1975;28(10): 727–32. DOI:10.7164/antibiotics.28.727.; Martel R.R., Klicius J., Galet S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol 1977;55(1):48–51. DOI:10.1139/y77-007.; Houchens D.P., Ovejera A.A., Riblet S.M., Slagel D.E. Human brain tumor xenografts in nude mice as a chemotherapy model. Eur J Cancer Clin Oncol 1983;19(6):799–805.; Morris R.E., Wu J., Shorthouse R. A study of the contrasting effects of cyclosporine, FK 506, and rapamycin on the suppression of allograft rejection. Transpl Proc 1990;22(4):1638–41.; Dilling M.B., Dias P., Shapiro D.N. et al. Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type i insulin-like growth factor receptor. Cancer Res 1994;54(4):903–7.; Heitman J., Movva N.R., Hall M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991;253(5022):905–9. DOI:10.1126/science.1715094.; Van Duyne G.D., Standaert R.F., Karplus P.A. et al. Atomic structure of FKBP-FK506, an immunophilinimmunosuppressant complex. Science 1991;252(5007):839–42. DOI:10.1126/science.1709302.; Choi J., Chen J., Schreiber S.L., Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996;273(5272):239–42. DOI:10.1126/science.273.5272.239.; Yang H., Rudge D.G., Koos J.D. et al. mTOR kinase structure, mechanism and regulation. Nature 2013;497(7448):217–23. DOI:10.1038/nature12122.; Kahan B.D., Steinberg S., Bartlet S. et al. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet 2000;356(9225):194–202. DOI:10.1016/S0140-6736(00)02480-6.; Bissler J.J., McCormack F.X., Young L.R. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 2008;358(2):140–51. DOI:10.1056/NEJMoa063564.; McCormack F.X., Inoue Y., Moss J. et al. Efficacy and safety of sirolimus in lymphan gioleiomyomatosis. N Engl J Med 2011;364(17):1595–606. DOI:10.1056/NEJMoa1100391.; Распоряжение Правительства Российской Федерации от 7 декабря 2011 г. № 2199-р Об утверждении перечня жизненно необходимых и важнейших лекарственных препаратов на 2012 г.; Распоряжение Правительства Российской Федерации от 10 декабря 2018 г. № 2738-р Об утверждении перечня жизненно необходимых и важнейших лекарственных препаратов для медицинского применения на 2019 г.; Hütt-Cabezas M., Karajannis M.A., Zagzag D. et al. Activation of MTORC1/ MTORC2 signaling in pediatric low-grade glioma and pilocytic astrocytoma reveals mTOR as a therapeutic target. Neuro Oncol 2013;15(12):1604–14. DOI:10.1093/neuonc/not132.; Jentoft M., Giannini C., Cen L. et al. Phenotypic variations in NF1-associated low grade astrocytomas: possible role for increased mTOR activation in a subset. Int J Clin Exp Pathol 2010;4(1):43–57.; Guertin D.A., Sabatini D.M. The Pharmacology of mTOR Inhibition. Sci Signal 2009;2(67):pe24. DOI:10.1126/scisignal.267pe24.; Feldman M.E., Shokat K.M. New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs). Curr Top Microbiol Immunol 2010;347(1):241–62. DOI:10.1007/82-2010-64.; Sun S.Y. mTOR kinase inhibitors as potential cancer therapeutic drugs. Cancer Lett 2013;340(1):1–8. DOI:10.1016/j.canlet.2013.06.017.; Lemmon M.A., Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010;141(7):1117–34. DOI:10.1016/j.cell.2010.06.011.; Shibuya M. Vascular endothelial growth factor(VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2011;2(12):1097–105. DOI:10.1177/1947601911423031.; Couec M.L., André N., Thebaud E. et al. Bevacizumab and irinotecan in children with recurrent or refractory brain tumors: toxicity and efficacy trends. Pediatr Blood Cancer 2012;59(1):34–8. DOI:10.1002/pbc.24066.; Nazarenko I., Hede S.M., He X. et al. PDGF and PDGF receptors in glioma. Ups J Med Sci 2012;117(2):99–112. DOI:10.3109/03009734.2012.665097.; McLaughlin M.E., Robson C.D., Kieran M.W. et al. Marked regression of metastatic pilocytic astrocytoma during treatment with imatinib mesylate (STI-571, Gleevec): a case report and laboratory investigation. J Pediatr Hematol Oncol 2003;25(8):644–8. DOI:10.1097/00043426-200308000-00012.; Peyrl A., Azizi A., Czech T. et al. Tumor stabilization under treatment with imatinib in progressive hypothalamic-chiasmatic glioma. Pediatr Blood Cancer 2009;52(4): 476–80. DOI:10.1002/pbc.21881.; Wetmore C., Daryani V.M., Billups C.A. et al. Phase II evaluation of sunitinib in the treatment of recurrent or refractory high‐grade glioma or ependymoma in children: a children’s Oncology Group Study ACNS1021. Cancer Med 2016;5(7):1416–24. DOI:10.1002/cam4.713.; Sievert A.J., Lang S.S., Boucher K.L. et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci USA 2013;110(15): 5957–62. DOI:10.1073/pnas.1219232110.; https://umo.abvpress.ru/jour/article/view/216
-
4Academic Journal
المؤلفون: A. I. Karachunskiy, Yu. V. Rumyantseva, A. fon Shtakelberg, А. И. Карачунский, Ю. В. Румянцева, А. фон Штакельберг
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 3, № 4 (2016); 60-72 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 3, № 4 (2016); 60-72 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2016-3-4
مصطلحات موضوعية: биспецифические моноклональные антитела, immunotherapy, anti-СВ19, blinatumomab, bispecific monoclonal antibody, иммунотерапия, анти-CD19, блинатумомаб
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/264/264; Kohler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495–7.; Riechmann L., Clark M., Waldmann H., Winter G. Reshaping human antibodies for therapy. Nature 1988;332:323–7.; Lazar G.A., Desjarlais J.R., Jacinto J. et al. A molecular immunology approach to antibody humanization and functional optimization. Mol Immunol 2007;44:1986–98.; Kreitman R.J. Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. Bio Drugs 2009;23:1–13.; Du X., Beers R., Fitzgerald D.J., Pastan I. Differential cellular internalization of antiCD19 and -CD22 immunotoxins results in different cytotoxic activity. Cancer Res 2008;68:6300–5.; Sapra P., Allen T.M. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res 2002;62:7190–4.; Labrijn A.F., Aalberse R.C., Schuurman J. When binding is enough: nonactivating antibody formats. Curr Opin Immunol 2008;20:479–85.; Gudowius S., Recker K., Laws H.J. et al. Identification of candidate target antigens for antibody-based immunotherapy in childhood B-cell precursor ALL. Klin Padiatr 2006;218:327–33.; Bene M.C. Immunophenotyping of acute leukaemias. Immunol Lett 2005;98:9–21.; Preijers F.W., Tax W.J., De Witte T. et al. Relationship between internalization and cytotoxicity of ricin A-chain immunotoxins. Br J Haematol 1988;70:289–94.; Desjarlais J.R., Lazar G.A., Zhukovsky E.A., Chu S.Y. Optimizing engagement of the immune system by anti-tumor antibodies: an engineer's perspective. Drug Discov Today 2007;12:898–910.; van Mirre E., Breunis W.B., Geissler J. et al. Neutrophil responsiveness to IgG, as determined by fixed ratios of mRNA levels for activating and inhibitory FcgammaRII (CD32), is stable over time and unaffected by cytokines. Blood 2006;108:584–90.; Pricop L., Redecha P., Teillaud J.L. et al. Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines. J Immunol 2001;166:531–7.; Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 2004;4:11–22.; Kashii Y., Giorda R., Herberman R.B. et al. Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J Immunol 1999;163:5358–66.; Boruchov A.M., Heller G., Veri M.C. et al. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J Clin Invest 2005;115:2914–23.; Michon J.M., Gey A., Moutel S. et al. In vivo induction of functional Fc gammaRI (CD64) on neutrophils and modulation of blood cytokine mRNA levels in cancer patients treated with G-CSF (rMetHuG-CSF). Br J Haematol 1998;100:550–6.; Rech J., Repp R., Rech D. et al. A humanized HLA-DR antibody (hu1D10, apolizumab) in combination with granulocyte colony-stimulating factor (filgrastim) for the treatment of non-Hodgkin's lymphoma: a pilot study. Leuk Lymphoma 2006;47:2147–54.; Dechant M., Bruenke J., Valerius T. HLA class II antibodies in the treatment of hematologic malignancies. Semin Oncol 2003;30:465–75.; Selenko N., Majdic O., Jager U. et al. Crosspriming of cytotoxic T cells promoted by apoptosis-inducing tumor cell reactive antibodies? J Clin Immunol 2002;22:124–30.; Selenko N., Maidic O., Draxier S. et al. CD20 antibody (C2B8)-induced apoptosis of lymphoma cells promotes phagocytosis by dendritic cells and cross-priming of CD8+cytotoxic T cells. Leukemia 2001;15:1619–26.; Idusogie E.E., Wong P.Y., Presta L.G. et al. Engineered antibodies with increased activity to recruit complement. J Immunol 2001;166:2571–5.; Dall’Acqua W.F., Cook K.E., Damschroder M.M. et al. Modulation of the effector functions of a human IgG1 through engineering of its hinge region. J Immunol 2006;177:1129–38.; Nimmerjahn F., Ravetch J.V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 2005;310:1510–2.; Richards J.O., Karki S., Lazar G.A. et al. Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther 2008;7:2517–27.; Lazar G.A., Dang W., Karki S. et al. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 2006;103:4005–10.; Bowles J.A., Wang S.Y., Link B.K. et al. Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood 2006;108:2648–54.; Kufer P., Lutterbuse R., Baeuerle P.A. A revival of bispecific antibodies. Trends Biotechnol 2004;22:238–44.; Offner S., Hofmeister R., Romaniuk A. et al. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol 2006;43:763–71.; Bargou R., Leo E., Zugmaier G. et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008;321:974–7.; Loffler A., Kufer P., Lutterbuse R. et al. A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 2000;95:2098–103.; Vallera D.A., Todhunter D.A., Kuroki D.W. et al. A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia/lymphoma. Clin Cancer Res 2005;11:3879–88.; WHO Expert Committee on Specifications for Pharmaceutical Preparations. World Health Organ Tech Rep Ser 2008:1–138.; Uckun F.M., Kersey J.H., Haake R. et al. Autologous bone marrow transplantation in high-risk remission B-lineage acute lymphoblastic leukemia using a cocktail of three monoclonal antibodies (BA-1/CD24, BA-2/CD9, and BA-3/CD10) plus complement and 4-hydroperoxycyclophosphamide for ex vivo bone marrow purging. Blood 1992;79:1094–104.; Hasegawa M., Fujimoto M., Poe J.C. et al. CD19 can regulate B lymphocyte signal transduction independent of complement activation. J Immunol 2001;167:3190–200.; Horton H.M., Bernett M.J., Pong E. et al. Potent in vitro and in vivo activity of an Fcengineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res 2008;68:8049–57.; Anderson K.C., Bates M.P., Slaughenhoupt B.L. et al. Expression of human B cellassociated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood 1984;63:1424–33.; Uckun F.M., Jaszcz W., Ambrus J.L. et al. Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood 1988;71:13–29.; Tedder T.F., Inaoki M., Sato S. The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 1997;6:107–18.; Yazawa N., Hamaguchi Y., Poe J.C., Tedder T.F. Immunotherapy using unconjugated CD19 monoclonal antibodies in animal models for B lymphocyte malignancies and autoimmune disease. Proc Natl Acad Sci USA 2005;102:15178–83.; Vlasveld L.T., Hekman A., Vyth-Dreese F.A. et al. Treatment of low-grade non-Hodgkin’s lymphoma with continuous infusion of low-dose recombinant interleukin-2 in combination with the B-cell-specific monoclonal antibody CLBCD19. Cancer Immunol Immunother 1995;40:37–47.; Hekman A., Honselaar A., Vuist W.M. et al. Initial experience with treatment of human B cell lymphoma with anti-CD19 monoclonal antibody. Cancer Immunol Immunother 1991;32:364–72.; Grossbard M.L., Lambert J.M., Goldmacher V.S. et al. Anti-B4-blocked ricin: a phase I trial of 7-day continuous infusion in patients with B-cell neoplasms. J Clin Oncol 1993;11:726–37.; Multani P.S., O’Day S., Nadler L.M., Grossbard M.L. Phase II clinical trial of bolus infusion anti-B4 blocked ricin immunoconjugate in patients with relapsed Bcell non-Hodgkin’s lymphoma. Clin Cancer Res 1998;4:2599–604.; Rowland A.J., Pietersz G.A., McKenzie I.F. Preclinical investigation of the antitumour effects of anti-CD19-idarubicin immunoconjugates. Cancer Immunol Immunother 1993;37:195–202.; Sapra P., Allen T.M. Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clin Cancer Res 2004;10:2530–7.; Schwemmlein M., Stieglmaier J., Kellner C. et al. A CD19-specific single-chain immunotoxin mediates potent apoptosis of B-lineage leukemic cells. Leukemia 2007;21:1405–12.; Ingle G.S., Chan P., Elliott J.M. et al. High CD21 expression inhibits internalization of antiCD19 antibodies and cytotoxicity of an antiCD19-drug conjugate. Br J Haematol 2008;140:46–58.; Gerber H.P., Kung-Sutherland M., Stone I. et al. Potent antitumor activity of the anti-CD19 auristatin antibody drug conjugate hBU12-vcMMAE against rituximab-sensitive and -resistant lymphomas. Blood 2009;113:4352–61.; Stieglmaier J., Bremer E., Kellner C. et al. Selective induction of apoptosis in leukemic Blymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunol Immunother 2008;57:233–46.; Molhoj M., Crommer S., Brischwein K. et al. CD19-/CD3-bispecific antibody of the BiTE class is far superior to tandem diabody with respect to redirected tumor cell lysis. Mol Immunol 2007;44:1935–43.; Brandl C., Haas C., d’Argouges S. et al. The effect of dexamethasone on polyclonal T cell activation and redirected target cell lysis as induced by a CD19/CD3-bispecific singlechain antibody construct. Cancer Immunol Immunother 2007;56:1551–63.; d’Argouges S., Wissing S., Brandl C. et al. Combination of rituximab with blinatumomab (MT103/MEDI-538), a T cell-engaging CD19-/CD3-bispecific antibody, for highly efficient lysis of human B lymphoma cells. Leuk Res 2009;33:465–73.; Topp M., Goekbuget N., Kufer P. et al. Treatment with Anti-CD19 BiTE Antibody Blinatumomab (MT103 / MEDI-538) Is Able to Eliminate Minimal Residual Disease (MRD) in Patients with B-Precursor Acute Lymphoblastic Leukemia (ALL): First Results of An Ongoing Phase II Study. ASH Annual Meeting Abstracts 2008;112:1926.; Kellner C., Bruenke J., Stieglmaier J. et al. A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother 2008;31:871–84.; Hoffmann P., Hofmeister R., Brischwein K. et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/ CD3-bispecific single-chain antibody construct. Int J Cancer 2005;115:98–104.; Portell C.A., Wenzell C.M., Advani A.S. Clinical and pharmacologic aspects of blinatumomab in the treatment of B- cell acute lymphoblastic leukemia. Clin Pharmacol 2013;5:5–11.; http://tabs.craic.com/. antibodies. Theraputic antibody database 2015.; Golay J., D’Amico A., Borleri G. et al. A novel method using blinatumomab for efficient, clinical-grade expansion of polyclonal T cells for adoptive immunotherapy. J Immunol 2014;193:4739–47.; Klinger M., Brandl C., Zugmaier G. et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell- engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 2012;119:6226–33.; Schlegel P., Lang P., Zugmaier G. et al. Pediatric posttransplant relapsed/refractory Bprecursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab. Haematologica 2014;99:1212–9.; Topp M.S., Kufer P., Gökbuget N. et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapyrefractory minimal residual disease in Blineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011;29:2493–8.; Bassan R., Dell’Angelo O., Paolo G.E. Toward victory in adult ALL: blinatumomab joins in. Blood 2012;120:5094–5.; Topp M.S., Gökbuget N., Zugmaier G. et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 2014;32:4134–40.; Topp M.S., Gökbuget N., Stein A.S. et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory Bprecursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 2015;16:57–66.; https://journal.nodgo.org/jour/article/view/264
-
5Academic Journal
المؤلفون: E. V. Kumirova, S. S. Ozerov, Е. А. Salnikova, L. A. Khachatryan, G. V. Tereshchenko, A. V. Pshonkin, А. Е. Samarin, I. D. Borodina, V. V. Emtsova, L. I. Papusha, Zh. S. Supik, A. P. Ektova, I. E. Gerbek, A. I. Karachunskiy, A. G. Rumyantsev, Э. В. Кумирова, С. С. Озеров, Е. А. Сальникова, Л. А. Хачатрян, Г. В. Терещенко, А. В. Пшонкин, А. Е. Самарин, И. Д. Бородина, В. В. Емцова, Л. И. Папуша, Ж. С. Супик, А. П. Эктова, И. Э. Гербек, А. И. Карачунский, А. Г. Румянцев
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 4, № 3 (2017); 43-50 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 4, № 3 (2017); 43-50 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2017-4-3
مصطلحات موضوعية: паллиативная помощь, congenital central nervous system tumors, chemotherapy, tumor associated syndromes, teratomas, vascular plexus papillomas, medulloblastomas, palliative care, врожденные опухоли центральной нервной системы, химиотерапия, опухолеассоциированные синдромы, тератомы, папилломы сосудистого сплетения, медуллобластомы
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/314/313; Karajannis M.A., Zagzag D. Molecular pathology of nervous system tumors. Byologycal stratification and targeted therapies. Springer Science + Business Media, NY, 2015.; Peris-Bonet R., Martínez-García C., Lacour B. et al. Childhood central nervous system tumours--incidence and survival in Europe (1978–1997): report from Automated Childhood Cancer Information System project. Eur J Cancer 2006;42(13):2064– 80. doi:10.1016/j.ejca.2006.05.009.; Chiang C.H., Ellison D.W. Molecular pathology of paediatric central nervous system tumours. J Pathol 2017;241(2):159–72. doi:10.1002/path.4813.; Ostrom Q.T., Gittleman H., Liao P. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2014;16 Suppl 4:iv1–63. doi:10.1093/ neuonc/nou223.; Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИРЦ» Минздрава России, 2017. 250 с. [Malignant tumors in Russia in 2015 (morbidity and fatality). Eds.: А.D. Kaprin, V.V. Starinskiy, G.V. Petrova. M.: MNIOI im. P.A. Gertsena – filial FGBU “NMIRTS” Minzdrava Rossii, 2017. 250 p. (In Russ.)].; Manoranjan B., Provias J.P. Congenital brain tumors: diagnostic pitfalls and therapeutic interventions. J Child Neurol 2011;26(5):599–614. doi:10.1177/0883073810394848.; Nejat F., Kazmi S.S., Ardakani S.B. Congenital brain tumors in a series of seven patients. Pediatr Neurosurg 2008;44(1):1–8. doi:10.1159/000110655.; Oi S., Kokunai T., Matsumoto S. Congenital brain tumors in Japan (ISPN Cooperative Study): specific clinical features in neonates. Childs Nerv Syst 1990;6(2):86–91. PMID: 2340534.; Hwang S.W., Su J.M., Jea A. Diagnosis and management of brain and spinal cord tumors in the neonate. Semin Fetal Neonatal Med 2012;17(4):202–6. doi:10.1016/j. siny.2012.03.001.; Fleming A.J., Chi S.N. Brain tumors in children. Curr Probl Pediatr Adolesc Health Care 2012;42(4):80–103. doi:10.1016/j.cppeds.2011.12.002.; Wakai S., Arai T., Nagai M. Congenital brain tumors. Surg Neurol 1984;21(6):597– 609. PMID: 6372141.; Матуев К.Б., Горелышев С.К., Лубнин А.Ю. и др. Опухоли головного мозга у детей грудного возраста: отдаленные результаты хирургического и комплексного лечения. Вестник Российского научного центра рентгенорадиологии Минздрава России 2013;13(4). [Matuev K.B., Gorelyshev S.K., Lubnin A.Yu. et al. Brain tumors in infants: long-term outcome of surgical and comprehensive treatment. Vestnik Rossiyskogo nauchnogo centra rentgenoradiologii Minzdrava Rossii = Vestnik of the Russian Scientific Center of Roentgenoradiology of the Ministry of Healthcare of the Russian Federation 2013;13(4). (In Russ.)].; Kim J.H., Duncan C., Manuelidis E.E. Congenital cerebellar medulloblastoma. Surg Neurol 1985;23(1):75–81. PMID: 3964981.; Матуев К.Б., Горелышев С.К., Лубнин А.Ю. Клинические рекомендации. Опухоли головного мозга у детей грудного возраста – клиника, диагностика и хирургическое лечение. М., 2015. 19 с. [Matuev K.B., Gorelyshev S.K., Lubnin A.Yu. Clinical recommendations. Brain tumors in infants – a clinic, diagnosis and surgical treatment. M, 2015. 19 p. (In Russ.)].; Børch K., Jacobsen T., Olsen J.H., Hirsch F., Hertz H. Neonatal cancer in Denmark 1943– 1985. Pediatr Hematol Oncol 1992;9(3): 209–16. PMID: 1524999.; Vasilatou-Kosmidis H. Cancer in neonates and infants. Med Pediatr Oncol 2003;41(1):7–9. doi:10.1002/mpo.10153. 17. Ellams I.D., Neuhäuser G., Agnoli A.L. Congenital intracranial neoplasm. Childs Nerv Syst 1986;2(4):165–8. PMID: 3779676.; Louis D., Perry A., Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131(6):803–20. doi:10.1007/s00401- 016-1545-1.; Solitaire G.B., Krigman M.R. Congenital intracranial neoplasm. A case report and review of the literature. J Neuropathol Exp Neurol 1964;23:280–92. PMID: 14137675.; Arnstein L.H., Boldrey E., Naffziger H.C. A case report and survey of brain tumors during the neonatal period. J Neurosurg 1951;8(3):315–9. doi:10.3171/ jns.1951.8.3.0315.; Avery G.B. Neonatology: pathophysiology and management of the newborn. Lippincott, Philadelphia, 1975. Pp. 675–685.; Rickert C.H. Neuropathology and prognosis of foetal brain tumours. Acta Neuropathol 1999;98(6):567–76. PMID: 10603031.; Raimondi A.J., Tomita T. Brain tumors during the first year of life. Childs Brain 1983;10(3):193–207. PMID: 6603338.; Tamura H., Kury G., Suzuki K. Intracranial teratomas in fetal life and infancy. Obstet Gynecol 1966;27(1):134–41. PMID: 5948051.; Sugimoto M., Kurishima C., Masutani S., Tamura M., Senzaki H. Congenital Brain Tumor within the First 2 Months of Life. Pediatr Neonatol 2015;56(6):369–75. doi:10.1016/j. pedneo.2015.04.004.; Isaacs H. II. Perinatal brain tumors: a review of 250 cases. Pediatr Neurol 2002;27(5):333–42. PMID: 12504200.; http://wikipedia.moesalih.com/Brain_tumor#Children.; Brat D.J., Shehata B.M., Castellano-Sanchez A.A. et al. Congenital glioblastoma: a clinicopathologic and genetic analysis. Brain Pathol 2007;17(3):276–81. doi:10.1111/j.1750-3639.2007.00071.x.; Roig M., Ballesca M., Navarro C. et al. Congenital spinal cord haemangioblastoma: another cause of spinal cord section syndrome in the newborn. J Neurol Neurosurg Psychiatr 1988;51(8):1091–3. PMID: 3216212.; Lee T.C., Olutoye O.O. Evaluation of the prenatally diagnosed mass. Semin Fetal Neonatal Med 2012;17(4):185–91. doi:10.1016/j. siny.2012.02.008.; Матуев К.Б., Хухлаева Е.А., Мазеркина Н.А. и др. Клинические особенности опухолей головного мозга у детей грудного возраста. Нейрохирургия и неврология детского возраста 2013;3:63–72. [Matuev K.B., Khukhlaeva E.A., Mazerkina N.A. et al. Clinical features of brain tumors in infants. Neirohirurgiya i nevrologiya detskogo vozrasta = Pediatric Neurosurgery and Neurology Research 2013;3(37):63– 72. (In Russ.)].; Păduraru L., Scripcaru D.C., Zonda G.I., Avasiloaiei A.L., Stamatin M. Early intrauterine development of mixed giant intracranial teratoma in newborn: a case report. Rom J Morphol Embryol 2015;56(2 Suppl):851–6. PMID: 26429185.; Cavalheiro S., Moron A.F., Hisaba W., Dastoli P., Silva NS. Fetal brain tumors. Childs Nerv Syst 2003;19(7–8):529-36. doi:10.1007/s00381-003-0770-9.; Курцер М.А., Притыко А.Г., Петраки В.Л. и др. Фетальная нейрохирургия гидроцефалии плода с успешным оперативным лечением в постнатальном периоде. http://npcmed.ru/wp-content/ uploads/2016/06/Fetalnaya-hirurgiya-gidrotsefalii-ploda.pdf. [Kurtser M.A., Prityko A.G., Petraki V.L. et al. Fetal neurosurgery of fetal hydrocephalus with successful operative treatment in the postnatal period. http:// npcmed.ru/wp-content/uploads/2016/06/ Fetalnaya-hirurgiya-gidrotsefalii-ploda.pdf. (In Russ.)].; Shamji M.F., Vassilyadi M., Lam C.H., Montes J.L., Farmer J.P. Congenital tumors of the central nervous system: the MCH experience. Pediatr Neurosurg 2009;45(5):368– 74. doi:10.1159/000257526.; Buetow P.C., Smirniotopoulos J., Done S. Congenital brain tumors: a review of 45 cases. AJR Am J Roentgenol 1990;155(3):587–93. doi:10.2214/ ajr.155.3.2167004.; https://journal.nodgo.org/jour/article/view/314
-
6Academic Journal
المؤلفون: M. V. Tikhonova, A. I. Karachunskiy, V. I. Pospelov, S. A. Rumyantsev, A. G. Rumyantsev, М. В. Тихонова, А. И. Карачунский, В. И. Поспелов, С. А. Румянцев, А. Г. Румянцев
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 4, № 2 (2017); 40-45 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 4, № 2 (2017); 40-45 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2017-4-2
مصطلحات موضوعية: мониторинга и терапии онкологических заболеваний с использованием экзосом, exosomal microRNAs, diagnostics, monitoring and therapy of oncological diseases using exosomes, микроРНК экзосом, возможности диагностики
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/294/294; Simons M., Raposo G. Exosomes – vesicular carriers for intercellular communication. Сuzz Opin Cell Biol 2009;21(4):575–81.; Pisitkun T., Shen R.-F., Knepper M.A. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 2004;101(36):13368–73.; Rotin D., Kumar S. Physiological functions of the HECT family of unbiquitin ligases. Nat Rev Mol Cell Biol 2009;10(6)398–409.; Falcone G., Felsani A., D’Agnano I. Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res 2015;34:32.; Johnson S.M., Grosshans H., Shingara J. et al. RAS is regulated by the let-7 microRNA family. Cell 2005;120(5):635–47.; Cimmino A., Calin G.A., Fabbri M. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005;102(29):13944–9.; Taylor D.D., Gercel-Taylor C. MicroRNA signatuers of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008;110(1):13–21.; Simpson R.J., Lim J.W., Moritz R.L., Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 2009;6(3):267–83.; Keller S., Ridinger J., Rupp A.K. et al. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 2011;9:86.; Baj-Krzyworzeka M., Szatanek R., Weglarczyk K. Tumor-derived microvesicles modulate biological activity of human monocytes. Immunol Lett 2007;113(2):76–82.; Viaud S., Ullrich E., Zitvogel L., Chaput N. Exosomes for the treatment of human malignancies. Horm Metab Res 2008;40(2):82–8.; Dai S., Wei D., Wu Z. et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 2008;16(4):782–90.; Iero M., Valenti R., Huber V. et al. Tumor-released exosomes and their implications in cancer immunity. Cell Death Differ 2008:15(1):80–8.; Mytar B.I., Siedlar M., Woloszyn M. et al. Cross-talk between human monocytes and cancer cells during reactive oxygen intermediates generation: the essential role of hyaluronan. Int J Cancer 2001;94(5):727–32.; Zhang H.-G., Kim H., Liu C. et al. Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity. Biochim Biophys Acta 2007;1773(7):1116–23.; Valenti R., Huber V., Iero M. et al. Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 2007;67(7):2912–5.; Woodman P.G., Futter C.E. Multivesicular bodies: co-ordinated progression to maturity. Curr Opin Cell Biol 2008;20(4):408–14.; Al-Nedawi K.I., Meehan B., Micallef J. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008;10(5):619–24.; Ciesla M., Skrzypek K., Kozakowska M. et al. MicroRNAs as biomarkers of disease onset. Anal Bioanal Chem 2011;401(7):2051–61.; Malladi S., Macalinao D.G., Jin X. et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 2016;165(1):45–60.; Pollard J.W. Defining metastatic cell latency. N Engl J Med 2016;375(3):280–2.; Lee H.J., Kim J.A., Kwon M.H. et al. In situ single step detection of exosome microRNA using molecular beacon. Biomaterials 2015;54:116–25.; He M., Crow J., Roth M. et al. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 2014;14(19):3773–80.; Wubbolts R., Leckie R.S., Veenheizen P.T. et al. Proteomic and biochemal analyses of human B-cell derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 2003;278(13):10963–72.; Subra C., Laulagnier K., Perret B., Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 2007;89(2):205–12.; Lamparski H.G., Metha-Damani A., Yao J.Y. et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 2002;270(2):211–26.; Gonzales P.A., Zhou H., Pisitkun T. et al. Isolation and purification of exosomes in urine. Methods Mol Biol 2010;641:89–99.; Koga K., Matsumoto K., Akiyoshi T. et al. Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 2005;25(6A):3703–7.; Delcayre A., Le Pecq J.B. Exosomes as novel therapeutic nanodevices. Carr Opin Mol Ther 2006;8(1):21–38.; Viaud S., Théry C., Ploix S. et al. Dendritic cell-derived exosomes for cancer immunotherapy: what’s next? Cancer Res 2010;70(4):1281–5.; Zitvogel L., Regnault A., Lozier A. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 1998;4(5):594–600.; https://journal.nodgo.org/jour/article/view/294
-
7Academic Journal
المؤلفون: A. I. Karachunskiy, Yu. V. Rumyantseva, S. N. Lagoyko, O. I. Bydanov, O. V. Aleynikova, L. G. Fechina, A. V. Shamardina, O. V. Streneva, K. L. Kondratchik, M. A. Postoykina, E. V. Inyushkina, I. I. Spichak, E. G. Mansurova, K. S. Aslanyan, N. I. Ponomareva, N. V. Myakova, V. A. Filimonenkova, A. A. Tarasenkova, A. G. Rumyantsev, А. И. Карачунский, Ю. В. Румянцева, С. Н. Лагойко, О. И. Быданов, Л. Г. Фечина, К. Л. Кондратчик, Е. В. Инюшкина, И. И. Спичак, Е. Г. Мансурова, К. С. Асланян, Н. И. Пономарева, Н. В. Мякова, В. А. Филимоненкова, А. А. Тарасенкова, А. Г. Румянцев, А. В. Шамардина, О. В. Стренева, М. А. Постойкина, О. В. Алейникова
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 4, № 3 (2017); 17-26 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 4, № 3 (2017); 17-26 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2017-4-3
مصطلحات موضوعية: интенсивная полихимиотерапия, MLL-rearrangement, MLL-negative infant acute lymphoblastic leukemia, multiagent intensive chemotherapy, MLL-перестройка, MLL-негативная младенческая лейкемия
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/311/310; Biondi A., Cimino G., Pieters R., Pui C.H. Biological and therapeutic aspects of infant leukemia. Blood 2000;96(1):24–33. PMID: 10891426.; Chessells J.M., Eden O.B., Bailey C.C., Lilleyman J.S., Richards S.M. Acute lymphoblastic leukaemia in infancy: experience in MRC UKALL trials. Report from the Medical Research Council Working Party on Childhood Leukaemia. Leukemia 1994;8(8):1275–9. PMID: 8057661.; Frankel L.S., Ochs J., Shuster J.J. et al. Therapeutic trial for infant acute lymphoblastic leukemia: the Pediatric Oncology Group experience (POG 8493). J Pediatr Hematol Oncol 1997;19(1):35–42. PMID: 9065717.; Reaman G., Zeltzer P., Bleyer W.A. et al. Acute lymphoblastic leukemia in infants less than one year of age: a cumulative experience of the Children’s Cancer Study Group. J Clin Oncol 1985;3(11):1513–21. doi:10.1200/ JCO.1985.3.11.1513.; Felix C.A., Lange B.J. Leukemia in infants. Oncologist 1999;4(3):225–40. PMID: 10394590.; Chen C.S., Sorensen P.H., Domer P.H. et al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood 1993;81(9):2386–93. PMID: 8481519.; Pui C.H., Behm F.G., Downing J.R. et al. 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J Clin Oncol. 1994;12(5):909–15. doi:10.1200/JCO.1994.12.5.909.; Hilden J.M., Frestedt J.L., Moore R.O. et al. Molecular analysis of infant acute lymphoblastic leukemia: MLL gene rearrangement and reverse transcriptase-polymerase chain reaction for t(4; 11)(q21; q23). Blood 1995;86(10):3876–82. PMID: 7579356.; Heerema N.A., Sather H.N., Ge J. et al. Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11): a report of the Children’s Cancer Group. Leukemia 1999;13(5):679–86. PMID: 10374870.; Pui C.H., Gaynon P.S., Boyett J.M. et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002;359(9321):1909–15. doi:10.1016/ S0140-6736(02)08782-2.; Karachunskiy A., Herold R., von Stackelberg A. et al. Results of the first randomized multicentre trial on childhood acute lymphoblastic leukaemia in Russia. Leukemia 2008;22(6):1144–53. doi:10.1038/ leu.2008.63.; Karachunskiy A., Roumiantseva J., Lagoiko S. et al. Efficacy and toxicity of dexamethasone vs methylprednisolone-long-term results in more than 1000 patients from the Russian randomized multicentric trial ALL-MB 2002. Leukemia 2015;29(9):1955–8. doi:10.1038/ leu.2015.63.; Карачунский А.И., Мякова Н.В., Румянцева Ю.В. и др. Результаты мультицентрового исследования лечения острого лимфобластного лейкоза у детей по программам ALL-MB-91/ALL-BFM- 90m: анализ эффективности и токсичности. Терапевтический архив 2007;79(7):19–26. [Karachunsky A.I., Miakova N.V., Rumyantseva Yu.V. et al. The results of a multicenter trial of acute lymphoblastic leukemia treatment on ALL-MB 91/ ALL-BFM 90m in children: analysis of efficacy and toxicity. Terapevticheskiy arkhiv = Therapeutic Archive 2007;79(7):19–26. (In Russ.)].; Румянцева Ю.В., Карачунский А.И., Алейникова О.В. и др. Эффективность протокола ALL-МВ-2002 у детей с острым лимфобластным лейкозом. Терапевтический архив 2010;82(7):11–9. [Rumyantseva Yu.V., Karachunsky A.I., Aleynikova O.V. et al. Efficiency of the ALLMB-2002 protocol in children with acute lymphoblastic leukemia. Terapevticheskiy arkhiv = Therapeutic Archive 2010;82(7): 11–9. (In Russ.)].; Карачунский А.И., Румянцева Ю.В., Лагойко С.Н. и др. Возрастные особенности эффективности различных глюкокортикостероидов в терапии острого лимфобластного лейкоза. Терапевтический архив 2015;87(7):41–50. [Karachunsky A.I., Rumyantseva Y.V., Lagoiko S.N. et al. Age-related characteristics of the efficacy of different glucocorticosteroids in the therapy of acute lymphoblastic leukemia. Terapevticheskiy arkhiv = Therapeutic Archive 2015;87(7):41–50. (In Russ.)]. doi:10.17116/terarkh201587741-50.; Silverman L.B., McLean T.W., Gelber R.D. et al. Intensified therapy for infants with acute lymphoblastic leukemia: results from the Dana-Farber Cancer Institute Consortium. Cancer 1997;80(12): 2285–95. PMID: 9404706.; Reaman G.H., Sposto R., Sensel M.G. et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children’s Cancer Group. J Clin Oncol 1999;17(2):445–55. doi:10.1200/ JCO.1999.17.2.445.; Pui C.H., Chessells J.M., Camitta B. et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003;17(4):700–6. doi:10.1038/sj.leu.2402883.; Chessells J.M., Harrison C.J., Kempski H. et al.; MRC Childhood Leukaemia working party. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukemia working party. Leukemia 2002;16(5):776–84. doi:10.1038/sj. leu.2402468.; Ferster A., Benoit Y., Francotte N. et al. Treatment outcome in infant acute lymphoblastic leukemia. Children Leukemia Cooperative Group--EORTC. European Organization for Research and Treatment of Cancer. Blood 2000;95(8):2729–31. PMID: 10809540.; Borkhardt A., Wuchter C., Viehmann S. et al. Infant acute lymphoblastic leukemia – combined cytogenetic, immunophenotypical and molecular analysis of 77 cases. Leukemia 2002;16(9):1685–90. doi:10.1038/sj. leu.2402595.; Biondi A, Rizzari C, Valsecchi MG, et al. Role of treatment intensification in infants with acute lymphoblastic leukemia: results of two consecutive AIEOP studies. Haematologica 2006;91(4):534–7. PMID: 16537119.; Sanders J.E., Im H.J., Hoffmeister P.A. et al. Allogeneic hematopoietic cell transplantation for infants with acute lymphoblastic leukemia. Blood 2005;105(9):3749–56. doi:10.1182/blood-2004-08-3312.; van der Linden M.H., Valsecchi M.G., De Lorenzo P. et al. Outcome of congenital acute lymphoblastic leukemia treated on the Interfant-99 protocol. Blood 2009;114(18):3764–8. doi:10.1182/ blood-2009-02-204214.; Pieters R., Schrappe M., De Lorenzo P. et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007;370(9583):240–50. doi:10.1016/S0140- 6736(07)61126-X.; https://journal.nodgo.org/jour/article/view/311
-
8Academic Journal
المؤلفون: А. И. Карачунский
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 3, № 3 (2016); 72-75 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 3, № 3 (2016); 72-75 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2016-3-3
وصف الملف: application/pdf
-
9Academic Journal
المؤلفون: A. V. Pshonkin, Yu. V. Rumyantseva, D. V. Litvinov, A. F. Karelin, E. G. Boychenko, S. N. Lagoyko, O. I. Bydanov, L. I. Zharikova, O. V. Aleynikova, Ye. S. Tyutikova, M. A. Digoeva, O. R. Arakaev, O. V. Streneva, A. V. Shamardina, G. R. Sharapova, N. V. Myakova, N. I. Ponomareva, I. A. Khachatryan, K. L. Kondratchik, Ye. G. Mansurova, L. M. Minkina, Yu. V. Olshanskaya, N. B. Yudina, I. E. Gerbek, A. P. Shapochnik, A. I. Karachunskiy, А. В. Пшонкин, Ю. В. Румянцева, Д. В. Литвинов, А. Ф. Карелин, Э. Г. Бойченко, С. Н. Лагойко, О. И. Быданов, Л. И. Жарикова, О. В. Алейникова, Е. С. Тютикова, М. А. Дигоева, О. Р. Аракаев, О. В. Стренева, А. В. Шамардина, Г. Р. Шарапова, Н. В. Мякова, Н. И. Пономарева, Л. А. Хачатрян, К. Л. Кондратчик, Е. Г. Мансурова, Л. М. Минкина, Ю. В. Ольшанская, Н. Б. Юдина, И. Э. Гербек, А. П. Шапочник, А. И. Карачунский
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 3, № 1 (2016); 35-43 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 3, № 1 (2016); 35-43 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2016-3-1
مصطلحات موضوعية: ранний ответ, adolescents, therapy effectiveness, survival, early response, подростки, эффективность терапии, выживаемость
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/187/183; Schrappe M., Stanulla M. Treatment of childhood acute lymphoblastic leukemia. In: Pui C.H., ed. Treatment of acute leukemias. New Jersey: Humana Press Inc., 2003. Pp. 87‒104.; Bleyer А. Older adolescents with cancer in North America deficits in outcome and research. Pediatr Clin North Am 2002;49(5):1027–42.; Jeha S., Kantarjian H. Treatment of acute lymphoblastic leukemia in adolescents and young adults. In: Pui C.H., ed. Treatment of acute leukemias. New directions for clinical research. New Jersey: Humana Press Inc., 2003. Pp. 113–120.; Стренева О.В. Острый лимфобластный лейкоз у подростков: клиническая характеристика, результаты лечения по данным мультицентрового исследования. Авто-реф. дис. … канд. мед. наук. М., 2003. [Streneva O.V. Acute lymphoblastic leukemia in adolescents: clinical characteristics, treatment outcomes according to a multicenter study. Thesis abstract of … Ph. D. Med. Moscow, 2003. (In Russ.)].; Curran E., Stock W. How I treat acute lymphoblastic leukemia in older adolescents and young adults. Blood 2015;125(24):3702–10.; Ribera J.M., Oriol A. Acute lymphoblastic leukemia in adolescents and young adults. Hematol Oncol Clin North Am 2009;23(5):1033–42.; Bene M., Castoldi G., Knapp W. et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995;9(10):1783–6.; Румянцева Ю.В., Карачунский А.И., Алейникова О.В. и др. Эффективность протокола ALL-МВ-2002 у детей с острым лимфобластным лейкозом. Терапевтический архив 2010;7:11–20. [Rumyantseva Yu.V., Karachunskiy A.I., Aleynikova O.V. et al. Terapevticheskiy archive = Therapeutic Archives 2010;7:11–20. (In Russ.)].; Kaplan E.L., Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958;53:457–81.; Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966;50:163–70.; van den Berg H., van der Lelie J. Acute lymphoblastic leukemia in puberty and adolescence. Ann Oncol 2000;11:1375–9.; https://journal.nodgo.org/jour/article/view/187
-
10Academic Journal
المؤلفون: N. S. Grachev, S. R. Varfolomeeva, A. I. Karachunskiy, S. R. Talypov, N. A. Bolshakov, I. N. Vorozhtsov, R. S. Oganesyan, M. P. Kalinina, N. V. Babaskina, A. V. Petrushin, A. S. Krasnov, P. D. Pryanikov, P. A. Zharkov, A. G. Rumyantsev, Н. С. Грачёв, С. Р. Варфоломеева, А. И. Карачунский, С. Р. С.Р. Талыпов, Н. А. Большаков, И. Н. Ворожцов, Р. С. Оганесян, М. П. Калинина, Н. В. Бабаскина, А. В. Петрушин, А. С. Краснов, П. Д. Пряников, П. А. Жарков, А. Г. Румянцев
المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 3, № 2 (2016); 79-86 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 3, № 2 (2016); 79-86 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2016-3-2
مصطلحات موضوعية: онкология, orthopedics oncology, endoscopic sinus surgery, microsurgical reconstruction, children, hematology, Oncology, онкоортопедия, эндоскопическая синус-хирургия, микрохирургическая реконструкция, дети, гематология
وصف الملف: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/219/215; Simon T., Häberle B., Hero B. et al. Role of surgery in the treatment of patients with stage 4 neuroblastoma age 18 months or older at diagnosis. J Clin Oncol 2013;31(6):752–8.; Buse S., Gilfrich C., Wagener N. et al. Thoracoabdominal approach to large retroperitoneal tumours. BJU Int 2006;98(5):969–72.; Surgue M. Abdominal compartment syndrome. Curr Opin Crit Care 2005;11:333–8.; Hebra A., Powell D.D., Smith C.D. et al. Balloon tracheoplasty in children: results of a 15-year experience. J Pediatr Surg 1991;26:957–61.; Maeda K., Yasuhuku M., Yamamoto T. A new approach to the treatment of congenital tracheal stenosis: balloon tracheoplasty and expandable metallic stenting. J Pediatr Surg 2001;36:1646–9.; Lusk R. Computer-assisted functional endoscopic sinus surgery in children. Otolaryngol Clin North Am 2005;38(3):505–13.; Wise S.K., Del Gaudio J.M. Computer-aided surgery of the paranasal sinuses and skull base. Expert Rev Med Devices 2005;2(4):395–408.; Tschopp K.P., Thomaser E.G. Outcome of functional endonasal sinus surgery with and without CT-navigation. Rhinology 2008;46:116–20.; Liu X.L., Wu C.W., Zhao Y.S. et al. Exclusive real-time monitoring during recurrent laryngeal nerve dissection in conventional monitored thyroidectomy. Kaohsiung J Med Sci 2016;32(3):135–41.; Minahan R.E., Mandir A.S. Neurophysiologic intraoperative monitoring of trigeminal and facial nerves. J Clin Neurophysiol 2011;28(6):551–65.; Ishimaru M., Ono S., Suzuki S. et al. Risk Factors for Free Flap Failure in 2,846 Patients With Head and Neck Cancer: A National Database Study in Japan. J Oral Maxillofac Surg 2016. pii: S0278-2391(16)00024-0. [Epub ahead of print].; Jacob L.M., Dong W., Chang D.W. Outcomes of reconstructive surgery in pediatric oncology patients: Review of 10-year experience. Ann Surg Oncol 2010;17:2563–9.; Rodriguez-Merchan E.C. The haemophilic pseudotumour. Haemophilia 2002;8(1):12–6.; https://journal.nodgo.org/jour/article/view/219