-
1Academic Journal
المؤلفون: K. D. Popov, T. M. Alekseeva, V. D. Nazarov, A. I. Vlasenko, S. M. Malyshev, К. Д. Попов, Т. М. Алексеева, В. Д. Назаров, А. И. Власенко, С. М. Малышев
المساهمون: Funds of the Ministry of Health of Russia., Средства Министерства здравоохранения Российской Федерации.
المصدر: Neuromuscular Diseases; Том 13, № 3 (2023); 33-39 ; Нервно-мышечные болезни; Том 13, № 3 (2023); 33-39 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2023-13-3
مصطلحات موضوعية: тау-белок, markers of treatment response, nusinersen, neurofilaments, tau-protein, маркеры ответа на терапию, нусинерсен, нейрофиламенты
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/557/357; Butchbach M.E.R. Genomic variability in the survival motor neuron genes (SMN1 and SMN2): Implications for spinal muscular atrophy phenotype and therapeutics development. Int J Mol Sci 2021;22(15):7896. DOI:10.3390/ijms22157896; Kariyawasam D.S.T., D’Silva A., Lin C. et al. Biomarkers and the development of a personalized medicine approach in spinal muscular atrophy. Front Neurol. 2019;10:898. PMID: 31481927. DOI:10.3389/fneur.2019.00898; Calucho M., Bernal S., Alías L. et al. Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord 2018;28(3):208–15. DOI:10.1016/j.nmd.2018.01.003; Yuan A., Rao M.V., Veeranna Nixon R.A. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol 2017;9(4):a018309. DOI:10.1101/cshperspect.a018309; Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 2005;233(1– 2):183–98. DOI:10.1016/j.jns.2005.03.015; Darras B.T., Crawford T.O., Finkel R.S. et al. Neurofilament as a potential biomarker for spinal muscular atrophy. Ann Clin Transl Neurol 2019;6(5):932–44. DOI:10.1002/acn3.779; Muntoni R., Sumner C., Darras B. et al. Association between plasma phosphorylated neurofilament heavy chain and efficacy endpoints in the nusinersen NURTURE Study. Neuromuscul Disord 2019;29(S1):S146. DOI:10.1016/j.nmd.2019.06.384; Nitz E., Smitka M., Schallner J. et al. Serum neurofilament light chain in pediatric spinal muscular atrophy patients and healthy children. Ann Clin Transl Neurol 2021;8(10):2013–24. DOI:10.1002/acn3.51449; Olsson B., Alberg L., Cullen N. C. et al. NFL is a marker of treatment response in children with SMA treated with nusinersen. J Neurol 2019;266(9):2129–36. DOI:10.1007/s00415-019-09389-8; Johannsen J., Weiss D., Daubmann A. et al. Evaluation of putative CSF biomarkers in paediatric spinal muscular atrophy (SMA) patients before and during treatment with nusinersen. J Cell Mol Med 2021;25(17):8419–31. DOI:10.1111/jcmm.16802; Verma S., Perry K., Razdan R. et al. CSF IL-8 Associated with response to gene therapy in a case series of spinal muscular atrophy. Neurotherapeutics 2023;20(1):245–53. DOI:10.1007/s13311-022-01305-9; Wurster C.D., Günther R., Steinacker P. et al. Neurochemical markers in CSF of adolescent and adult SMA patients undergoing nusinersen treatment. Ther Adv Neurol Disord 2019;12:1756286419846058. DOI:10.1177/1756286419846058; Freigang M., Steinacker P., Wurster C.D. et al. Glial fibrillary acidic protein in cerebrospinal fluid of patients with spinal muscular atrophy. Ann Clin Transl Neurol 2022;9(9):1437–48. DOI:10.1002/acn3.51645; Milella G., Introna A., D’Errico E. et al. Cerebrospinal fluid and clinical profiles in adult type 2–3 spinal muscular atrophy patients treated with nusinersen: An 18-month single-centre experience. Clin Drug Investig 2021;41(9):775–84. DOI:10.1007/s40261-021-01071-0; Faravelli I., Meneri M., Saccomano D. et al. Nusinersen treatment and cerebrospinal fluid neurofilaments: An explorative study on Spinal Muscular Atrophy type 3 patients. J Cell Mol Med 2020;24(5):3034–9. DOI:10.1111/jcmm.14939; De Wel B., de Schaepdryver M., Poesen K., Claeys K.G. Biochemical and clinical biomarkers in adult SMA 3–4 patients treated with nusinersen for 22 months. Ann Clin Transl Neurol 2022;9(8):1241–51. DOI:10.1002/acn3.51625; Šimić G., Vukić V., Babić M. et al. Total tau in cerebrospinal fluid detects treatment responders among spinal muscular atrophy types 1–3 patients treated with nusinersen. CNS Neurosci Ther 2022. DOI:10.1111/cns.14051; Paris A., Bora P., Parolo S. et al. A pediatric quantitative systems pharmacology model of neurofilament trafficking in spinal muscular atrophy treated with the antisense oligonucleotide nusinersen. CPT Pharmacometrics Syst Pharmacol 2023;12(2):196–206. DOI:10.1002/psp4.12890; Walter M. C., Wenninger S., Thiele S. et al. Safety and treatment effects of nusinersen in longstanding adult 5q-SMA type 3: A prospective observational study. J Neuromuscul Dis 2019;6(4):453–65. DOI:10.3233/JND-190416; Hromadkova L., Siddiqi M.K., Liu H., Safar J. G. Populations of tau conformers drive prion-like strain effects in Alzheimer’s disease and related dementias. Cells 2022;11(19):2997. DOI:10.3390/cells11192997; Blennow K., Hampel H., Weiner M., Zettenberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 2010;6(3):131–44. DOI:10.1038/nrneurol.2010.4; Totzeck A., Stolte B., Kizina K. et al. Neurofilament heavy chain and tau protein are not elevated in cerebrospinal fluid of adult patients with spinal muscular atrophy during loading with nusinersen. Int J Mol Sci 2019;20(21):5397. DOI:10.3390/ijms20215397; Wyss M., Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000;80(3):1107–213. DOI:10.1152/physrev.2000.80.3.1107; Alves C.R.R., Zhang R., Johnstone A.J. et al. Serum creatinine is a biomarker of progressive denervation in spinal muscular atrophy Neurology 2020;94(9):e921–e931. DOI:10.1212/WNL.0000000000008762; Freigang M., Wurster C.D., Hagenacker T. et al. Serum creatine kinase and creatinine in adult spinal muscular atrophy under nusinersen treatment. Ann Clin Transl Neurol 2021;8(5):1049–63. DOI:10.1002/acn3.51340; Abati E., Citterio G., Bresolin N. et al. Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease? Neurobiol Dis 2020;140:104870. DOI:10.1016/j.nbd.2020.104870; Freigang M., Steinacker P., Wurster C. D. et al. Increased chitotriosidase 1 concentration following nusinersen treatment in spinal muscular atrophy. Orphanet J Rare Dis 2021;16(1):330. DOI:10.1186/s13023-021-01961-8; Kobayashi Y., Ishikawa N., Tateishi Y. et al. Evaluation of cerebrospinal fluid biomarkers in pediatric patients with spinal muscular atrophy. Brain Dev 2023;45(1):2–7. DOI:10.1016/j.braindev.2022.09.008; Stolte B., Nonnemacher M., Kizina K. et al. Nusinersen treatment in adult patients with spinal muscular atrophy: A safety analysis of laboratory parameters. J Neurol 2021;268(12):4667–79. DOI:10.1007/s00415-021-10569-8; Orbach R., Sagi L., Sadot E. et al. Cerebrospinal fluid characteristics of patients treated with intrathecal nusinersen for spinal muscular atrophy. Muscle Nerve 2022;66(6):762–6. DOI:10.1002/mus.27731; Kessler T., Latzer P., Schmid P. et al. Cerebrospinal fluid proteomic profiling in nusinersen-treated patients with spinal muscular atrophy. J Neurochem 2020;153(5):650–61. DOI:10.1111/jnc.14953; Gingele S., Hümmert M. W., Alvermann S. et al. Routine cerebrospinal fluid cytology reveals unique inclusions in macrophages during treatment with nusinersen. Front Neurol 2019;10:735. DOI:10.3389/fneur.2019.00735; Schafernak K.T., Jacobsen J.R., Hernandez D. et al. Cytochemical characterization of cerebrospinal fluid macrophage inclusions in pediatric patients receiving intrathecal nusinersen (SPINRAZA®) for spinal muscular atrophy. Acta Cytol 2022;66(1):79–84. DOI:10.1159/000518005; Magri F., Vanoli F., Corti S. miRNA in spinal muscular atrophy pathogenesis and therapy. J Cell Mol Med 2018;22(2):755–67. DOI:10.1111/jcmm.13450; Bonanno S., Marcuzzo S., Malacarne C. et al. Circulating myomiRs as potential biomarkers to monitor response to nusinersen in pediatric SMA patients. Biomedicines 2020;8(2):21. DOI:10.3390/biomedicines8020021; Magen I., Aharoni S., Yacovzada N. S. et al. Muscle microRNAs in the cerebrospinal fluid predict clinical response to nusinersen therapy in type II and type III spinal muscular atrophy patients. Eur J Neurol 2022;29(8):2420–30. DOI:10.1111/ene.15382; Zaharieva I.T., Scoto M., Aragon-Gawinska K. et al. Response of plasma microRNAs to nusinersen treatment in patients with SMA. Ann Clin Transl Neurol 2022;9(7):1011–26. DOI:10.1002/acn3.51579; Geyer P.E., Holdt L.M., Teupser D., Mann M. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol 2017;13(9):942. DOI:10.15252/msb.20156297; Schorling D.C., Kölbel H., Hentschel A. et al. Cathepsin D as biomarker in cerebrospinal fluid of nusinersen-treated patients with spinal muscular atrophy. Eur J Neurol 2022;29(7):2084–96. DOI:10.1111/ene.15331; Introna A., Milella G., D’Errico E. et al. Is cerebrospinal fluid amyloid-β42 a promising biomarker of response to nusinersen in adult spinal muscular atrophy patients? Muscle Nerve 2021;63(6):905–9. DOI:10.1002/mus.27212; Wadman R.I., Stam M., Jansen M.D. et al. A comparative study of SMN protein and mRNA in blood and fibroblasts in patients with spinal muscular atrophy and healthy controls. PLoS One 2016;11(11):e0167087. DOI:10.1371/journal.pone.0167087; Otsuki N., Arakawa R., Kaneko K. et al. A new biomarker candidate for spinal muscular atrophy: identification of a peripheral blood cell population capable of monitoring the level of survival motor neuron protein. PLoS One 2018;13(8):e0201764. DOI:10.1371/journal.pone.0201764; Czech C., Tang W., Bugawan T. et al. Biomarker for spinal muscular atrophy: expression of SMN in peripheral blood of SMA patients and healthy controls. PLoS One 2015;10(10):e0139950. DOI:10.1371/journal.pone.0139950; https://nmb.abvpress.ru/jour/article/view/557
-
2Academic Journal
المؤلفون: V. A. Malko, G. N. Bisaga, M. P. Topuzova, A. I. Vlasenko, O. A. Shcherbakova, A. G. Mikheeva, A. A. Mikhailova, D. I. Lagutina, T. L. Karonova, T. M. Alekseeva, В. А. Малько, Г. Н. Бисага, М. П. Топузова, А. И. Власенко, О. А. Щербакова, А. Г. Михеева, А. А. Михайлова, Д. И. Лагутина, Т. Л. Каронова, Т. М. Алексеева
المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 2 (2023); 198-208 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 2 (2023); 198-208 ; 2713-265X ; 2713-2927
مصطلحات موضوعية: постковидный синдром, coronavirus disease 2019, demyelinating diseases, Post-COVID syndrome, long COVID, новая коронавирусная инфекция, демиелинизирующие заболевания
وصف الملف: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/1804/827; Wu Y., Xu X., Chen Z., Duan J., Hashimoto K., Yang L. et al. Nervous system involvement after infection with COVID-19 and other coronaviruses.Brain, Behav. Immun. 2020;8718–22. DOI:10.1016/j.bbi.2020.03.031.; Lima M., Siokas V., Aloizou A.-M., Liampas I., Mentis A.-F.A., Tsouris Zet al. Unraveling the possible routes of SARS-COV-2 invasion into the central nervous system. Curr. Treat Options Neurol. 2020;22(11):37DOI: 10.1007/s11940-020-00647-z.; Bsteh G., Assar H., Gradl C., Heschl B., Hiller M. S., Krajnc N. et al. Long-term outcome after COVID-19 infection in multiple sclerosis: a nation-wide multicenter matched-control study. Eur. J. Neurol. 2022:10.1111/ene.15477. DOI:10.1111/ene.15477.; Pugliatti M., Berger T., Hartung H.-P., Oreja-Guevara C., Bar-Or A. Multiple sclerosis in the era of COVID-19: disease course, DMTs and SARSCoV2 vaccinations. Current Opinion in Neurology. 2022;35(3):319–327.DOI:10.1097/WCO.0000000000001066.; Sormani M.P., De Rossi N., Schiavetti I., Carmisciano L., Cordioli C.,Moiola L. et al. Disease-modifying therapies and coronavirus disease 2019 severity in multiple sclerosis. Ann. Neurol. 2021;89(4):780–789.DOI:10.1002/ana.26028.; Bsteh G., Hegen H., Traxler G., Krajnc N., Leutmezer F., Di Pauli F. et al.Comparing humoral immune response to SARS-CoV2 vaccines in people with multiple sclerosis and healthy controls: An Austrian prospective multicenter cohort study. Eur. J. Neurol. 2022;29(5):1538–1544. DOI:10.1111/ene.15265.; Nalbandian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S. et al. Post-acute COVID-19 syndrome. Nat. Med. 2021;27(4):601–615. DOI:10.1038/s41591-021-01283-z.; Bell M.L., Catalfamo C.J., Farland L.V., Ernst K.C., Jacobs E.T., Klimentidis Y.C. et al. Post-acute sequelae of COVID-19 in a non-hospitalized cohort: Results from the Arizona CoVHORT. PLoS One. 2021;16(8):e0254347. DOI:10.1371/journal.pone.0254347.; Garjani A., Middleton R.M., Nicholas R., Evangelou N. Recovery From COVID-19 in multiple sclerosis: a prospective and longitudinal cohort study of the United Kingdom Multiple Sclerosis Register. Neurol. Neuroimmunol. Neuroinflamm. 2021;9(1)e1118. DOI:10.1212/NXI.0000000000001118.; Czarnowska A., Kapica-Topczewska K., Zajkowska O., AdamczykSowa M., Kubicka-Bączyk K., Niedziela N. et al. Symptoms after COVID-19 infection in individuals with multiple sclerosis in Poland. J. Clin. Med. 2021;10(22):5225. DOI:10.3390/jcm10225225.; Salter A., Fox R.J., Newsome S.D., Halper J., Li D.K.B., Kanellis P. et al.Outcomes and risk factors associated with SARS-CoV-2 infection in a North American registry of patients with multiple sclerosis. JAMA Neurol. 2021;78(6):699–708. DOI:10.1001/jamaneurol.2021. 0688.; Klineova S., Harel A., Straus Farber R., DeAngelis T., Zhang Y,Hentz R. et al. Outcomes of COVID-19 infection in multiple sclerosis and related conditions: One-year pandemic experience of the multicenter New York COVID-19 Neuroimmunology Consortium (NYCNIC). Mult. Scler. Relat. Disord. 2021;55:103153. DOI:10.1016/j.msard.2021.103153.; Toscano S., Chisari C.G., Patti F. Multiple sclerosis, COVID-19 and vaccines: making the point. Neurol. Ther. 2021;10(2):627–649. DOI:10.1007/s40120-021-00288-7.; Kelly H., Sokola B., Abboud H. Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients. J. Neuroimmunol. 2021;356:577599. DOI:10.1016/j.jneuroim.2021.577599.; Dreyer-Alster S., Menascu S., Mandel M., Shirbint E., Magalashvili D.,Dolev M. et al. COVID-19 vaccination in patients with multiple sclerosis: Safety and humoral efficacy of the third booster dose. J. Neurol. Sci.2022;434:120155. DOI:10.1016/j.jns.2022.120155.; https://www.sibjcem.ru/jour/article/view/1804
-
3Academic Journal
المؤلفون: A. I. Vlasenko, O. A. Portik, G. N. Bisaga, M. P. Topuzova, V. A. Malko, P. Sh. Isabekova, N. V. Skripchenko, T. M. Alekseeva, А. И. Власенко, О. А. Портик, Г. Н. Бисага, М. П. Топузова, В. А. Малько, П. Ш. Исабекова, Н. В. Скрипченко, Т. М. Алексеева
المساهمون: Исследование выполнено при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Соглашение № 075-15-2020-901 от 13.11.2020).
المصدر: Journal Infectology; Том 14, № 2 (2022); 65-72 ; Журнал инфектологии; Том 14, № 2 (2022); 65-72 ; 2072-6732 ; 10.22625/2072-6732-2022-14-2
مصطلحات موضوعية: аутоиммунные неврологические заболевания, SARS-CoV-2, autoimmune neurological diseases
وصف الملف: application/pdf
Relation: https://journal.niidi.ru/jofin/article/view/1354/974; Center for Systems Science and Engineering // COVID-19 content portal. URL:www.systems.jhu.edu/research/public-health/ncov/ (дата обращения: 09.05.2022). Saad I. COVID-19: breaking down a global health crisis / Saad I. [et al.] // Ann Clin Microbiol Antimicrob. – 2021. Vol.20, №35.; Galea M. Neurological manifestations and pathogenic mechanisms of COVID-19 / Galea M. [et al.] // Neurological Research. – 2022. – Р. 1-12.; Лобзин, Ю.В. COVID-19-ассоциированный педиатрический мультисистемный воспалительный синдром / Ю.В. Лобзин [и др.] // Медицина экстремальных ситуаций. – 2021. – № 2. – С. 13–19.; Mahboubi M. Neurological complications associated with Covid-19; molecular mechanisms and therapeutic approaches / Mahboubi M. [et al.] // // Reviews in Medical Virology. – 2022. – Р. e2334.; Manzano G. Acute disseminated encephalomyelitis and acute hemorrhagic leukoencephalitis following COVID-19: systematic review and meta-synthesis / Manzano G. [et al.] // Neurology Neuroimmunology Neuroinflammation. – 2021. Vol.8, №6. – Р. e1080.; Ariño H. Neuroimmune disorders in COVID-19 / Ariño H. [et al.] // Journal of Neurology. – 2022. – Р. 1-13.; Molina А.Е. SARS-CoV-2, a new causative agent of Guillain-Barré syndrome? / Molina А.Е. [et al.] // Med Intensiva. – 2022. – Vol.46, № 2. – Р. 110-111. Abu-Rumeileh S. Guillain–Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases / Abu-Rumeileh S. [et al.] // Journal of neurology. 2021. – Vol.268, № 4. – Р. 1133-1170.; Dalakas M.C. Guillain-Barré syndrome: The first documented COVID-19–triggered autoimmune neurologic disease: More to come with myositis in the offing / Dalakas M.C. // Neurology Neuroimmunology Neuroinflammation. – 2020. – Vol.7, №5.; Seyede M. Guillain-Barré/Miller Fisher overlap syndrome in a patient after coronavirus disease-2019 infection: a case report / Seyede M. [et al.] // J Med Case Rep. – 2022. – Vol.16,№1.; Keddie S. Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome / Keddie S. // Brain. – 2021. – Vol.144,№2. – Р. 682-693.; Sriwastava S. Guillain Barré Syndrome and its variants as a manifestation of COVID-19: A systematic review of case reports and case series / Sriwastava S. [et al.] // Journal of the neurological sciences. – 2021. – Vol. 15, №420. – Р. 117263.; Laved A. Neurological associations of SARS-cov-2 infection: a systematic review / Laved A. // CNS Neurol Disord Drug Targets. – 2022. – Vol. 21, №3. – P. 246-258.; Mohammad А. Guillain Barre Syndrome as a Complication of COVID-19: A Systematic Review / Mohammad А. [et al.] // Can J Neurol Sci. – 2022. – №1. – P. 1-11.; Finsterer J. Guillain-Barré syndrome is immunogenic in SARS-CoV-2 infected / Finsterer J. [et al.] // J Med Virol. 2022. – Vol. 94, №1. – P. 22-23.; Marie I. Intravenous immunoglobulin-associated arterial and venous thrombosis; report of a series and review of the literature / Marie I. [et al.] // British Journal of Dermatology. 2006. – №4. – Р. 714-721.; Hoepner R. Is COVID-19 severity associated with reduction in T lymphocytes in anti-CD20-treated people with multiple sclerosis or neuromyelitis optica spectrum disorder? / Hoepner R. [et al.] // CNS Neurosci Ther. – 2022. – Vol.28, №6. – P.971-973.; Xia H. Evasion of type I interferon by SARS-CoV-2 / Xia H. [et al.] // Cell reports. – 2020. – Vol. 33, №1. – Р. 108234.; Sormani M. DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France / Sormani M. [et al.] // Annals of Clinical and Translational Neurology. – 2021. – Vol.8, №8. Р. 1738-1744.; Finsterer J. SARS-CoV-2 triggered relapse of multiple sclerosis / Finsterer J. // Clin Neurol Neurosurg. – 2022. №215. – Р.207-210.; Alroughani R. Prevalence, severity, outcomes, and risk factors of COVID-19 in multiple sclerosis: an observational study in the Middle East / Alroughani R. [et al.] // J Clin Neurosci. – 2022. – №99. – P. 311-316.; Wang Y. SARS-CoV-2-associated acute disseminated encephalomyelitis: a systematic review of the literature / Wang Y. [et al.] // Journal of Neurology. – 2021. – Р.1-22.; Wang C. Assessment and management of acute disseminated encephalomyelitis (ADEM) in the pediatric patient / Wang C. // Pediatric Drugs. – 2021. – Vol.23(3);213-221.; Esmaeili S. Acute disseminated encephalitis (ADEM) as the first presentation of COVID-19; a case report / Esmaeili S. [et al.] // Ann Med Surg (Lond). – 2022. – №77. – P. 103511.; Gilhus N.E. Myasthenia gravis: subgroup classification and therapeutic strategies / Gilhus N.E., Verschuuren J. // Lancet Neurol. 2015; Vol.14, №10. – Р. 1023-36.; Baig A.M. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms / Baig A.M. [et al.] // ACS Chem Neurosci. – 2020. – Vol.11, №7. – Р.995-998.; Liu R. Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia / Liu R. [et al.] // Eur J Immunol. – 2010. – Vol.40, №6. – Р. 1577-89.; Thiruppathi M. Impaired regulatory function in circulating CD4(+)CD25(high)CD127(low/-) T cells in patients with myasthenia gravis / Thiruppathi M. [et al.] // Clin Immunol. – 2012. Vol.145, №3. – Р. 209-2.; Gunes H. What chances do children have against COVID-19? Is the answer hidden within the thymus? / Gunes H. [et al.] // European journal of pediatrics. – 2021. – Vol.180, №3. – Р. 983-986.; Wang W. High-dimensional immune profiling by mass cytometry revealed immunosuppression and dysfunction of immunity in COVID-19 patients / Wang W., Su B., Pang L, Qiao L. // Cell Mol Immunol. – 2020. – Vol.17, №6. – Р. 650-652.; Quin C. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China / Quin C., Zhou L., Hu Z. // Clin Infect Dis. – 2020. – Vol.71, №15. – Р. 762-768.; Muir R. Innate lymphoid cells are the predominant source of IL-17A during the early pathogenesis of acute respiratory distress syndrome / Muir R., Osbourn M., Dubois A.V. // Am J Respir Crit Care Med. – 2016. – Vol.193, №4. – Р. 407-16.; Sriwastava S. New onset of ocular myasthenia gravis in a patient with COVID-19: a novel case report and literature review / Sriwastava S., Tandon M., Kataria S. // J Neurol. – 2021. – Vol.268, №8. – Р. 2690-2696.; Brossard-Barbosa N. Seropositive ocular myasthenia gravis developing shortly after COVID-19 infection: report and review of the literature / Brossard-Barbosa N. [et al.] // J Neuroophthalmol. – 2022.; Алексеева, Т.М. Дебют генерализованной миастении после перенесенной новой коронавирусной инфекции (COVID-19) / Т.М. Алексеева [и др.] // Журнал инфектологии. – 2021. – Т.13, № 4. – С. 127–132.; Jakubíkova M. Predictive factors for a severe course of COVID-19 infection in myasthenia gravis patients with an overall impact on myasthenic outcome status and survival / Jakubíkova M., Tyblova M., Tesar A., Horakova M. // Eur J Neurol. – 2021. – Vol.28, №10. – Р. 3418-3425.; Kim Y. Outcomes in myasthenia gravis patients: analysis from electronic health records in the United States / Kim Y. [et al.] // Front Neurol. – 2022.; Muppidi S. COVID-19-associated risks and effects in myasthenia gravis (CARE-MG) / Muppidi S. [et al.] // Lancet Neurol. – 2020. – Vol.19, №12. – Р. 970-971.; Emamikhah M. Opsoclonus-myoclonussyndrome, a post-infectious neurologic complication of COVID-19: case series and review of literature / Emamikhah M. [et al.] // Journal of neurovirology. – 2021. – Vol.1, №9.; Urrea-Mendoza E. Opsoclonus-Myoclonus-Ataxia Syndrome (OMAS) associated with SARS-CoV-2 infection: post-infectious neurological complication with benign prognosis / UrreaMendoza E., Okafor K. // J Neurovirol. – 2021. – Vol.11, №7.; Fernandes J. Opsoclonus myoclonus ataxia syndrome in severe acute respiratory syndrome coronavirus-2 / Fernandes J., Puhlmann P. // Journal of Neurovirology. – 2021. – Vol.1, №3.; Roman G. Acute transverse myelitis (ATM. clinical review of 43 patients with COVID-19-associated ATM and 3 post-vaccination ATM serious adverse events with the ChAdOx1 nCoV-19 vaccine (AZD1222) / Roman G., Gracia F. // Frontiers in immunology. – 2021. – Vol.12, №879.; https://journal.niidi.ru/jofin/article/view/1354
-
4Academic Journal
المؤلفون: A. E. Bagriy, M. V. Khomenko, I. N. Tsiba, V. A. Еfremenko, E. V. Schukina, O. A. Prikolotа, A. I. Vlasenko, А. Э. Багрий, М. В. Хоменко, И. Н. Цыба, В. А. Ефременко, Е. В. Щукина, О. А. Приколота, А. И. Власенко
المصدر: Medical Herald of the South of Russia; № 1 (2017); 4-11 ; Медицинский вестник Юга России; № 1 (2017); 4-11 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2017-1
مصطلحات موضوعية: тематический обзор, indications and modes for use, safety control, thematic overview, показания, режимы применения, контроль безопасности
وصف الملف: application/pdf
Relation: https://www.medicalherald.ru/jour/article/view/446/383; Catapano A.L., Graham I., De Backer G., Wiklund O., Chapman M.J., Drexel H. et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias // European Heart Journal – 2016. ‑ №37(39). – P. 2999-3058. doi:10.1093/eurheartj/ehw272; Piepoli M.F., Hoes A.W., Agewall S., Albus C., Brotons C., Catapano A.L. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice // European Heart Journal. – 2016 ‑ №37 (29). – P. 2315-2381. doi:10.1093/eurheartj/ehw106.; Drozda J.P., Ferguson T.B., Jneid H., Krumholz H.M., Nallamothu B.K., Olin J.W., Ting H.H. 2015 ACC/AHA Focused Update of Secondary Prevention Lipid Performance Measures // Journal of The American College Cardiology. – 2016. -№67(5). – P. 558-587. doi:10.1016/j.jacc.2015.02.003; Кухарчук В.В., Коновалов Г.А., Сусеков А.В., Сергиенко И.В., Семенова А.Е., Горнякова Н.Б. и соавт. Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Российские рекомендации (V пересмотр). ‑ М.; 2012. Доступно по: http://www.scardio.ru/content/Guidelines/rek_lipid_2012.pdf. Ссылка активна на 31.10.2016.; Stone N.J., Lloyd-Jones D.M. Lowering L.D.L. Cholesterol Is Good, but How and in Whom? //The New England Journal of Medicine. ‑ 2015. ‑ Vol.372. ‑ P. 1564-1565. doi:10.1056/NEJMe1502192; Jacobson T.A., Maki K.C., Orringer C.E., Jones P.H., Kris-Etherton P., Sikand G. et al. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 2 // Journal of Clinical Lipidology. – 2015. ‑ Vol.9; Suppl. 6.‑ S1–S122. doi:10.1016/j.jacl.2015.09.002; Cannon C.P., Blazing M.A., Giugliano R.P., McCagg A., White J.A., Theroux P. et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes //The New England Journal of Medicine. – 2015. ‑ №372 (25). – P. 2387-2397. doi:10.1056/NEJMoa1410489; Murphy S.A., Cannon C.P., Blazing M.A., Giugliano R.P., White J.A., Lokhnygina Y. et al. Reduction in Total Cardiovascular Events With Ezetimibe/Simvastatin Post-Acute Coronary Syndrome The IMPROVE-IT Trial //Journal of the American College Cardiology. – 2016. ‑ №67(4). – P.353–361. doi:10.1016/j.jacc.2015.10.077; Bakris G., Blonde L., Andrew M., Boulton J.M., D’Alessio D., de Groot M. et al. American Diabetes Association (ADA) Standards of Medical Care in Diabetes 2016 Cardiovascular disease and risk management //Diabetes Care. ‑ 2016. ‑ Vol.39. Suppl.1(Sec.8). ‑ P. S60- S71. doi:10.2337/dc16-S011.; Antman E.M. Clinical practice guidelines for chronic cardiovascular disorders: roadmap for the future //Journal of the American Medical Association. – 2014. – Vol.311(12). – P.1195-1196. doi:10.1001/jama.2014.1742; Сусеков А.В. Гиполипидемическая терапия: взгляд в прошлое и перспективы на ближайшее будущее // Кардиология. – 2016. – Т.56. – №6. – С.81-88. doi:10.18565/cardio.2016.6.81-88; Ивашкин В.Т., Драпкина О.М. Рекомендации по диагностике и лечению неалкогольной жировой болезни печени. ‑ М.; 2012. Доступно по: http://www.gastro-j.ru/article/718-h2- klinicheskierekomendatsii-nbsp-po-diagnostike-i-lecheniyu-nealkogolnoyzhirovoy-bolezni-pech/ Ссылка активна на 31.10.2016.; Астракова К.С., Рагино Ю.И., Шахтшнейдер Е.В., Воевода М.И. Пропротеиновая конвертаза субтилизин/кексин типа 9 (PCSK9) – новые возможности гиполипидемической терапии // Кардиология. ‑ 2016. ‑ №9. ‑ C.84–91. doi:10.18565/cardio.2016.9.84-91; https://www.medicalherald.ru/jour/article/view/446