يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"А. Дербенева С."', وقت الاستعلام: 0.30s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: National Journal glaucoma; Том 20, № 3 (2021); 59-77 ; Национальный журнал Глаукома; Том 20, № 3 (2021); 59-77 ; 2311-6862 ; 2078-4104

    وصف الملف: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/343/348; Tan O., Chopra V., Lu A.T. et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009; 116:2305–2314. doi:10.1016/j.ophtha.2009.05.025; Kim Y.J., Kang M.H., Cho H.Y., Lim H.W., Seong M. Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol. 2014; 58(3):244–251. doi:10.1007/s10384-014-0315-7; Sung K.R., Sun J.H., Na J.H., Lee J.Y., Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012; 119(2):308–313. doi:10.1016/j.ophtha.2011.08.022; Na J.H., Sung K.R., Lee J.R., Lee K.S., Baek S., Kim H.K., Sohn Y.H. Detection of glaucomatous progression by spectral-domain optical coherence tomography. Ophthalmology. 2013; 120(7):1388–1395. doi:10.1016/j.ophtha.2012.12.014; Yip V.C.H., Wong H.T., Yong V.K.Y. et al. Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J Glaucoma. 2019; 28(1):80–87. doi:10.1097/IJG.00000000000101125; Yarmohammadi A., Zangwill L.M., Manalastas P.I.C., Fuller N.J. et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology. 2018; 125(4):578–587. doi:10.1016/j.ophtha.2017.10.029; Moghimi S., Zangwill L.M., Penteado R.C. et al. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2018; 125(11):1720–1728. doi:10.1016/j.ophtha.2018.05.006; Фурсова А.Ж., Гамза Ю.А., Тарасов М.С., Васильева М.А., Дербенева А.С. Сравнительное исследование структурных и микроциркуляторных параметров у пациентов с первичной открытоугольной глаукомой и сахарным диабетом. Российский офтальмологический журнал. 2020; 13(3):42–50. doi:10.21516/2072-0076-2020-13-3-42-50; Hou H., Shoji T., Zangwill L.M., Moghimi S. Progression of primary open-angle glaucoma in diabetic and nondiabetic patients. Am J Ophthalmol. 2018; 189:1–9. doi:10.1016/j.ajo.2018.02.002; Wang Y., Xin C., Li M., Swain D.L., Cao K., Wang H., Wang N. Macular vessel density versus ganglion cell complex thickness for detection of early primary open-angle glaucoma. BMC Ophthalmol. 2020; 20(1):17. doi:10.1186/s12886-020-1304-x; Poli M., Cornut P.L., Nguyen A.M., De Bats F., Denis P. Accuracy of peripapillary versus macular vessel density in diagnosis of early to advanced primary open angle glaucoma. J Fr Ophtalmol. 2018;41(7):619–629.; Triolo G., Rabiolo A., Shemonski N.D., Fard A., Di Matteo F., Sacconi R. et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58(13):5713–5722.; Chung J.K., Hwang Y.H., Wi J.M., Kim M., Jung J.J. Glaucoma diagnostic ability of the optical coherence tomography angiography vessel density parameters. Curr Eye Res. 2017; 42(11):1458–1467.; Bojikian K., Nobrega P., Wen J.C., Zhang Q., Mudumbai R.C., Johnstone M.A., Wang R.K., Chen P.P. Macular vascular microcirculation in eyes with open-angle glaucoma using different visual field severity classification systems. J Glaucoma. 2019; 28(9):790–796. doi:10.1097/IJG.0000000000001308; Chen H.S., Liu C.H., Wu W.C., Tseng H.J., Lee Y.S. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci. 2017; 58(9):3637–3645. doi:10.1167/iovs.17-21846; Penteado R.C., Zangwill L.M., Daga F.B. et al. Optical coherence tomography angiography macular vascular density measurements and the Central 10-2 visual field in glaucoma. J Glaucoma. 2018; 27(6):481–489. doi:10.1097/IJG.0000000000000964; Freiberg F.J., Pfau M., Wons J., Wirth M.A., Becker M.D., Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016; 254(6):1051–1058. doi:10.1007/s00417-015-3148-2; Kwon J., Choi J., Shin J.W., Lee J., Kook M.S. Glaucoma diagnostic capabilities of foveal avascular zone parameters using optical coherence tomography angiography according to visual field defect location. J Glaucoma. 2017; 26(12):1120–1129. doi:10.1097/IJG.0000000000000800; Shoji T., Zangwill L.M., Akagi T. et al. Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study. Am J Ophthalmol. 2017; 182:107e117.; Spaide F. Measurable aspects of the retinal neurovascular unit in diabetes, glaucoma, and controls. Am J Ophthalmol. 2019; 207:395–409. doi:10.1016/j.ajo.2019.04.035; Sohn E.H., van Dijk H.W., Jiao C. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA. 2016; 113(19):E2655–64. doi:10.1073/pnas.1522014113; Wu Z., Weng D.S.D., Thenappan A., Ritch R., Hood D.C. Evaluation of a region-of-interest approach for detecting progressive glaucomatous macular damage on optical coherence tomography. Transl Vis Sci Technol. 2018; 7(2):14. doi:10.1167/tvst.7.2.14; Ng D.S., Chiang P.P., Tan G., Cheung C.G., Cheng C.Y., Cheung C.Y., Wong T.Y., Lamoureux E.L., Ikram M.K. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy. Clin Exp Ophthalmol. 2016; 44(4):243–250. doi:10.1111/ceo.12724.; https://www.glaucomajournal.ru/jour/article/view/343

  2. 2
    Academic Journal

    المصدر: National Journal glaucoma; Том 19, № 2 (2020); 66-74 ; Национальный журнал Глаукома; Том 19, № 2 (2020); 66-74 ; 2311-6862 ; 2078-4104

    وصف الملف: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/299/307; Tham Y.C., Li X., Wong T.Y. et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121(11):2081-2090. doi:10.1016/j.ophtha.2014.05.013; Егоров Е.А. Патогенез и лечение первичной открытоугольной гла- укомы [Электронный ресурс] / Е.А. Егоров, В.Н. Алексеев. М.: ГЭОТАР-Медиа; 2017. 224 с. ISBN 978-5-9704-4204-3; Gordon M.O., Beiser J.A., Brandt J.D., Heuer D.K. The Ocular Hyper- tension Treatment Study: baseline factors that predict the onset of pri- mary open-angle glaucoma. Arch Ophthalmol. 2002; 120(6):714-720; discussion 829-830. doi:10.1001/archopht.120.6.714; Varma R., Lee P.P., Goldberg I., Kotak S. An assessment of the health and economic burdens of glaucoma. Am J Ophthalmol. 2011; 152(4):515-522. doi:10.1016/j.ajo.2011.06.004; Ko F., Boland M.V., Gupta P., Gadkaree S.K. et al. Diabetes, triglyceride levels, and other risk factors for glaucoma in the National Health and Nutrition Examination Survey 2005–2008. Invest Ophthalmol Vis Sci. 2016; 57:2152–2157. doi:10.1167/iovs.15-18373; Lin H.C., Stein J.D., Nan B., Childers D. et al. Association of geroprotective effects of metformin and risk of open-angle glaucoma in persons with diabetes mellitus. JAMA Ophthalmol. 2015; 133:915–923. doi:10.1001/jamaophthalmol.2015.1440; Ellis J.D., Evans J.M., Ruta D.A., Baines P.S. et al. Glaucoma incidence in an unselected cohort of diabetic patients: is diabetes mellitus a risk factor for glaucoma? DARTS/MEMO collaboration. Diabetes Audit and Research in Tayside Study. Medicines Monitoring Unit. Br J Ophthalmol. 2000; 84:1218–1224. doi:10.1136/bjo.84.11.1218; Goldacre M.J., Wotton C.J., Keenan T.D. Risk of selected eye diseases in people admitted to the hospital for hypertension or diabetes mellitus: record linkage tudies. Br J Ophthalmol. 2012; 96:872–876. doi:10.1136/bjophthalmol-2012-301519; Zhao D., Cho J., Kim M.H., Friedman D.S. et al. Diabetes, fasting glucose, and the risk of glaucoma: a meta-analysis. Ophthalmology. 2015; 122:72–78. doi:10.1016/j.ophtha.2014.07.051; Shakya-Vaidya S., Aryal U.R., Upadhyay M., Krettek A. Do non-communicable diseases such as hypertension and diabetes associate with primary open-angle glaucoma? Insights from a case-control study in Nepal. Glob Health Action. 2013; 6:22636. doi:10.3402/gha.v6i0.22636; Mitchell P., Smith W., Attebo K., Healey P.R. Prevalence of open-angle glaucoma in Australia. The Blue Mountains Eye Study. Ophthalmology. 1996; 103(10):1661-1669. doi:10.1016/s01616420(96)30449-1; Zhou M., Wang W., Huang W., Zhang X. Diabetes mellitus as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. PLoS One. 2014; 9(8):e102972. doi:10.1371/journal.pone.010297; Khatri A., Shrestha J.K., Thapa M., Khatri B.K. Severity of primary openangle glaucoma in patients with hypertension and diabetes. Diabetes Metab Syndr Obes. 2018; 11:209–215. doi:10.2147/DMSO.S160978; Hymowitz M.B., Chang D., Feinberg E.B., Roy S. Increased intraocular pressure and hyperglycemic level in diabetic patients. PLoS One. 201622; 11(3):e0151833. doi:10.1371/journal.pone.0151833; Agrawal A., Ahuja1 S., Singh A., Samanta R. Influence of glycated haemoglobin levels on intraocular pressure in patients with Type–II Diabetes Mellitus. Nepal J Ophthalmol. 2019; 11(21):19-23. doi:10.3126/nepjoph.v11i1.25412; Luo X.Y., Tan N., Chee M.-L., Shi Y. Direct and Indirect Associations Between Diabetes and Intraocular Pressure: The Singapore Epidemiology of Eye Diseases Study. Invest Ophthalmol Vis Sci. 2018; 59:2205–2211. doi:10.1167/iovs.17-23013; Lee J.S., Oum B.S., Choi H.Y., Lee J.E. Differences in corneal thickness and corneal endothelium related to duration in diabetes. Eye (Lond). 2006; 20:315–318. doi:10.1038/sj.eye.6701868; Rehany U., Ishii Y., Lahav M., Rumelt S. Ultrastructural changes in corneas of diabetic patients: an electron-microscopy study. Cornea. 2000; 19:534–538. doi:10.1097/00003226-200007000-00026; Shen L., Walter S., Melles R.B., Glymour M.M. et al. Diabetes pathology and risk of primary open-angle glaucoma: evaluating causal mechanisms by using genetic information. Am J Epidemiol. 2016; 183:147– 155. doi:10.1093/aje/kwv204; Van Dijk H.W., Verbraak F.D., Stehouwer M., Kok P.H. et al. Association of visual function and ganglion cell layer thickness in patients with diabetes mellitus type 1 and no or minimal diabetic retinopathy. Vision Res. 2011; 51:224–228. doi:10.1016/j.visres.2010.08.024; Zhao Y.X., Chen X.W. Diabetes and risk of glaucoma: systematic review and a Meta-analysis of prospective cohort studies. Int J Ophthalmol. 2017; 10(9):1430-1435. doi:10.18240/ijo.2017.09.16; Husain S., Abdul Y., Singh S., Ahmad A. et al. Regulation of nitric oxide production by δ-opioid receptors during glaucomatous injury. PLoS One. 2014; 9:e110397. doi:10.1371/journal.pone.0110397; Toda N., Nakanishi-Toda M. Nitric oxide: ocular blood flow, glaucoma and diabetic retinopathy. Prog Retin Eye Res. 2007; 26:205–238. doi:10.1016/j.preteyeres.2007.01.004; Zheng L., Kern T.S. Role of nitric oxide, superoxide, peroxynitrite, and PARP in diabetic retinopathy. Front Biosci (Landmark Ed). 2009; 14:3974–3987. doi:10.2741/3505; Cavet M.E., Vittitow J.L., Impagnatiello F., Ongini E. et al. Nitric oxide (NO): an emerging target for the treatment of glaucoma. Invest Ophthalmol Vis Sci. 2014; 55:5005–5015. doi:10.1167/iovs.14-14515; Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007; 87:315–424. doi:10.1152/physrev.00029.2006; Ciccone M.M., Scicchitano P., Cameli M., Cecere A. et al. Endothelial function in pre-diabetes, diabetes and diabetic cardiomyopathy: a review. J Diabetes Metab. 2014; 5:364. doi:10.4172/2155-6156.1000364; Ochiai Y., Ochiai H. Higher concentration of transforming growth factor-beta in aqueous humor of glaucomatous eyes and diabetic eyes. Jpn J Ophthalmol. 2002; 46:249–253. doi:10.1016/s00215155(01)00523-8; Li A.-F., Chen A., Roy S. High glucose-induced fibronectin overexpression inhibits trabecular meswork cell permeability. Invest Ophthalmol Vis Sci. 2003; 44(ARVO):E-Abstract 1151.; Sato T., Roy S. Effect of high glucose on fibronectin expression and cell proliferation in trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2002; 43(1):170–175.; Wong V.H., Bui B.V., Vingrys A.J. Clinical and experimental links between diabetes and glaucoma. Clin Exp Optom. 2011; 94:4–23. doi:10.1111/j.14440938.2010.00546.x; Ino-Ue M., Zhang L., Naka H., Kuriyama H. et al. Polyol metabolism of retrograde axonal transport in diabetic rat large optic nerve fiber. Invest Ophthalmol Vis Sci. 2000; 41:4055–4058.; Rudzinski M., Wong T.P., Saragovi H.U. Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. J Neurobiol. 2004; 58:341–354. doi:10.1002/neu.10293; Tanuj Dada. Is glaucoma a neurodegeneration caused by central insulin resistance: diabetes type 4? J Curr Glaucoma Pract. 2017; 11(3):77-79. doi:10.5005/jp-journals-10028-1228; Song B.J., Aiello L.P., Pasquale L.R. Presence and risk factors for glaucoma in patients with diabetes. Curr Diab Rep. 2016; 16(12):124. doi:10.1007/s11892-016-0815-6; Schur E.A., Melhorn S.J., Oh S.-K., Matthew L.J. Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans. Obesity (Silver Spring). 2015; 23(11):2142-2148. doi:10.1002/oby.21248; Gunasekar P.G., Kanthasamy A.G., Borowitz J.L., Isom G.E. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J Neurochem. 1995; 65(5):2016-2021. doi:10.1046/j.1471-4159.1995.65052016.x; Wilson G.N., Smith M.A., Inman D.M., Dengler-Crish C.M. Early cytoskeletal protein modifications precede overt structural degeneration in the DBA/2J mouse model of glaucoma. Front Neurosci. 2016; 3(10):494. doi:10.3389/fnins.2016.00494; Löffler K.U., Edward D.P., Tso M.O. Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest Ophthalmol Visual Sci. 1995; 36(1):24-31.; Zachary I. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals. 2005; 14(5):207-221. doi:10.1159/000088637; Rossino M.G., Dal Monte M., Casini G. Relationships between neurodegeneration and vascular damage in diabetic retinopathy. Front Neurosci. 2019; 8;13:1172. doi:10.3389/fnins.2019.01172; Antonetti D.A., Barber A.J., Bronson S.K., Freeman W.M. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes. 2006; 55(9):2401-2411. doi:10.2337/db05-1635; Hernandez C., Simo R. Neuroprotection in diabetic retinopathy. Curr Diabet Reports. 2012; 12(4):329-337. doi:10.1007/s11892-012-0284-5; Simo R., Hernandez C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog Retin Eye Res. 2015; 48:160-180. doi:10.1016/j.preteyeres.2015.04.003; Hernandez C., Da Monte M., Simо R., Casini G. Neuroprotection as a therapeutic target for diabetic retinopathy. J Diabet Res. 2016:18. Article ID 9508541. doi:10.1155/2016/9508541; Zhang X., Wang N., Barile G.R., Bao S. Diabetic retinopathy: neuron protection as a therapeutic target. Int J Biochem Cell Biol. 2013; 45(7):1525–1529. doi:10.1016/j.biocel.2013.03.002; Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy. Molecular Neurobiol. 2015; 51(3): 878–884. doi:10.1007/s12035-014-8732-7; Barber A.J. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27(2):283-290. doi:10.1016/S0278-5846(03)00023-X; Hammes H.P. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia. 2018; 61:29–38. doi:10.1007/s00125-017-4435-8; Simo R., Stitt A.W., Gardner T.W. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia. 2018; 61:1902–1912. doi:10.1007/s00125-018-4692-1; Foxton R.H., Finkelstein A., Vijay S., Dahlmann-Noor A. VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol. 2013; 182(4):1379-1390. doi:10.1016/j.ajpath.2012.12.032 5; Du J., Patrie J.T., Prum B.E., Netland P.A. Effects of intravitreal antiVEGF therapy on glaucoma-like progression in susceptible eyes. J Glaucoma. 2019; 28(12):1035-1040. doi:10.1097/IJG.0000000000001382; Kopić A., Biuk D., Barać J., Vinković M. Retinal nerve fiber layer thickness in glaucoma patients treated with multiple intravitreal anti-VEGF (bevacizumab) injections. Acta Clin Croat. 2017; 56(3):406-414. doi:10.20471/acc.2017.56.03.07; Рудько А.С., Будзинская М.В., Андреева И.В., Карпилова М.А. Влияние интравитреальных инъекций ранибизумаба и афлиберцепта на слой нервных волокон сетчатки при сочетании неоваскулярной возрастной макулярной дегенерации и глаукомы. Вестник офтальмологии. 2019; 135 (5. вып. 2):177-183. doi:10.17116/oftalma2019135052177; Garcia-Martin E., Cipres M., Melchor I., Gil-Arribas L. Neurodegeneration in patients with type 2 diabetes mellitus without diabetic retinopathy. J Ophthalmol. 2019: 1825819. doi:10.1155/2019/1825819; Spaide F. Measurable aspects of the retinal neurovascular unit in diabetes, glaucoma, and controls. Am J Ophthalmol. 2019; 207:395-409. doi:10.1016/j.ajo.2019.04.035; Hou H., Shoji T., Zangwill L.M., Moghimi S. Progression of primary open-angle glaucoma in diabetic and nondiabetic patients. Am J Ophthalmol. 2018; 189:1-9. doi:10.1016/j.ajo.2018.02.002; Takis A., Alonistiotis D., Ioannou N., Kontou E. Follow-up of the retinal nerve fiber layer thickness of diabetic patients type 2, as a predisposing factor for glaucoma compared to normal subjects. Clin Ophthalmol. 201713; 11:1135-1141. doi:10.2147/OPTH.S129935; Kim Y.S., Kim M., Choi M.Y., Lee D.H. Metformin protects against retinal cell death in diabetic mice. Biochem Biophys Res Commun. 201721; 492(3):397-403. doi:10.1016/j.bbrc.2017.08.087; Abdelgadir E., Ali R., Rashid F., Bashier A. Effect of metformin on different non-diabetes related conditions, a special focus on malignant conditions: review of literature. J Clin Med Res. 2017; 9:388–395. doi.org/10.14740/jocmr2922e; Lin H.C., Stein J.D., Nan B., Childers D. Association of geroprotective effects of metformin and risk of open-angle glaucoma in persons with diabetes mellitus. JAMA Ophthalmol. 2015; 133(8):915-923. doi:10.1001/jamaophthalmol.2015.1440; Amato F., López A., Peña-Méndez E.M., Vanhara P., Hampl A., Havel J. Artificial neural networks in medical diagnosis. J Appl Biomed. 2013; 11:47–58. doi:10.2478/v10136-012-0031-x; Apreutesei A.N., Tircoveanu F., Cantemir A., Bogdanici C. Predictions of ocular changes caused by diabetes in glaucoma patients. Comput Methods Programs Biomed. 2018; 154:183-190. doi:10.1016/j.cmpb.2017.11.013; https://www.glaucomajournal.ru/jour/article/view/299

  3. 3
    Academic Journal

    المصدر: National Journal glaucoma; Том 19, № 3 (2020); 23-33 ; Национальный журнал Глаукома; Том 19, № 3 (2020); 23-33 ; 2311-6862 ; 2078-4104

    وصف الملف: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/284/292; Schmidl D., Garhofer G., Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow-relevance for glaucoma. Exp Eye Res. 2011; 93:141–155. doi:10.1016/j.exer.2010.09.002; Bonomi L., Marchini G., Marraffa M., Bernardi P. et al. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000; 107(7):1287-1293. doi:10.1016/s0161-6420(00)00138; Tan O., Chopra V., Lu A.T. et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009; 116:2305–2314. doi:10.1016/j.ophtha.2009.05.025; Kim Y.J., Kang M.H., Cho H.Y., Lim H.W. et al. Comparative study of macular ganglion cell complex thickness measured by spectraldomain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol. 2014; 58(3):244-251. doi:10.1007/s10384-014-0315-7; Browning D.J. Retinal Vein Occlusions: Evidence-Based Management. New York, NY: Springer; 2012.; Chan G., Balaratnasingam C., Yu P.K. et al. Quantitative changes in perifoveal capillary networks in patients with vascular comorbidities. Invest Ophthalmol Vis Sci. 2013; 54:5175–5185. doi:10.1167/iovs.13-11945; Chao S.C., Yang S.J., Chen H.C., Sun C.C. et al. Early macular angiography among patients with glaucoma, ocular hypertension, and normal subjects. J Ophthalmol. 2019; 15:7419470. doi:10.1155/2019/7419470; Richter G.M., Madi I., Chu Z., Burkemper B. et al. Structural and functional associations of macular microcirculation in the ganglion cellinner plexiform layer in glaucoma using optical coherence tomography angiography. J Glaucoma. 2018; 27(3):281-290. doi:10.1097/ IJG.0000000000000888; Kwon J., Choi J., Shin J.W., Lee J. et al. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects. Invest Ophthalmol Vis Sci. 2017; 58:1637–1645. doi:10.1167/iovs.16-21079; Hosari S., Hohberger B., Theelke L., Sari H. et al. OCT angiography: measurement of retinal macular microvasculature with Spectralis II OCT angiography reliability and reproducibility. Ophthalmologica. 2020; 243(1):7584. doi:10.1159/000502458; Kwon J., Choi J., Shin J.W., Lee J. et al. Diagnostic capabilities of foveal avascular zone parameters using optical coherence tomography angiography according to visual field defect location. J Glaucoma. 2017; 26(12):1120-1129. doi:10.1097/IJG.0000000000000800; Lommatzsch C., Heinz C., Koch J.M., Heimes-Bussmann B. et al. Does the foveal avascular zone change in glaucoma? Klin Monbl Augenheilkd. 2020; Apr 9. doi:10.1055/a-1080-2900; Takase N., Nozaki M., Kato A. et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015; 35:2377-2383. doi:10.1097/IAE.0000000000000849; Nagaoka T., Sato E., Takahashi A. et al. Impaired retinal circulation in patients with type 2 diabetes mellitus: retinal laser Doppler velocimetry study. Invest Ophthalmol Vis Sci. 2010; 51:6729-6734. doi:10.1167/iovs.10-5364; Freiberg F.J., Pfau M., Wons J. et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016; 254:1051-1058. doi:10.1007/s00417-015-3148-2; Al-Sheikh M., Akil H., Pfau M., Sadda S.R. Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016; 57:3907-3913. doi:10.1167/iovs.16-19570; Agemy S.A., Scripsema N.K., Shah C.M. et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina. 2015; 35:2353-2363. doi:10.1097/IAE.0000000000000862; Bates N.M., Tian J., Smiddy W.E., Lee W.H. et al. Relationship between the morphology of the foveal avascular zone, retinal structure, and macular circulation in patients with diabetes mellitus. D Sci Rep. 2018; 8(1):5355. doi:10.1038/s41598-018-23604; Mo S., Krawitz B., Efstathiadis E. et al. Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci. 2016; 57: OCT130–OCT140. doi:10.1167/iovs.15-18932; Shahlaee A., Pefkianaki M., Hsu J., Ho A.C. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016; 161:50–55.e1 doi:10.1016/j.ajo.2015.09.026; Ghassemi F., Mirshahi R., Bazvand F. et al. The quantitative measurements of foveal avascular zone using optical coherence tomography angiography in normal volunteers. J Curr Ophthalmol. 2017; 29:293–299. doi:10.3928/23258160-20170601-06; Samara W.A., Say E.A.T., Khoo C.T.L. et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015; 35:2188–2195. doi:10.1097/IAE.0000000000000847; Kostic M., Bates N.M., Milosevic N.T., Tian J. et al. Investigating the fractal dimension of the foveal microvasculature in relation to the morphology of the foveal avascular zone and to the macular circulation in patients with type 2 diabetes mellitus. Front Physiol. 2018; 9:1233. doi:10.3389/fphys.2018.01233; Choi J., Kwon J., Shin J.W., Lee J. et al. Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma. PLoS One. 2017; 12(9):e0184948. doi:10.1371/journal.pone.0184948; Kwon J., Choi J., Shin J.W., Lee J. et al. An optical coherence tomography angiography study of the relationship between foveal avascular zone size and retinal vessel density. Invest Ophthalmol Vis Sci. 2018; 59(10):4143-4153. doi:10.1167/iovs.18-24168; https://www.glaucomajournal.ru/jour/article/view/284