-
1Academic Journal
المؤلفون: A. V. Pak, E. A. Pashkov, N. D. Abramova, A. V. Poddubikov, F. G. Nagieva, E. A. Bogdanova, E. P. Pashkov, O. A. Svitich, V. V. Zverev, А. В. Пак, Е. А. Пашков, Н. Д. Абрамова, А. В. Поддубиков, Ф. Г. Нагиева, Е. А. Богданова, Е. П. Пашков, О. А. Свитич, В. В. Зверев
المساهمون: The study was carried out using the scientific equipment of the Center for Collective Use of the I. Mechnikov Research Institute of Vaccines and Sera, and supported by the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 075-15-2021-676 dated July 28, 2021., Исследование выполнено с использованием научного оборудования Центра коллективного пользования Научно-исследовательского института вакцин и сывороток им. И.И. Мечникова Министерства здравоохранения Российской Федерации при финансовой поддержке Министерства науки и высшего образования Российской Федерации, соглашение № 075-15-2021-676 от 28.07.2021.
المصدر: Fine Chemical Technologies; Vol 17, No 5 (2022); 384-393 ; Тонкие химические технологии; Vol 17, No 5 (2022); 384-393 ; 2686-7575 ; 2410-6593
مصطلحات موضوعية: вирусная РНК, IL-1β, influenza A virus, IFN-λ3, gene expression, siRNA, pro-inflammatory cytokines, IL-28β, viral RNA, вирус гриппа А, экспрессия генов, миРНК, провоспалительные цитокины
وصف الملف: application/pdf
Relation: https://www.finechem-mirea.ru/jour/article/view/1880/1875; https://www.finechem-mirea.ru/jour/article/view/1880/1876; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1880/728; Пашков Е.А., Коротышева М.О., Пак А.В., Файзулоев Е.Б., Сидоров А.В., Поддубиков А.В., Быстрицкая Е.П., Дронина Ю.Е., Солнцева В.К., Зайцева Т.А., Пашков Е.П., Быков А.С., Свитич О.А., Зверев В.В. Исследование противогриппозной активности комплексов миРНК против клеточных генов FLT4, Nup98 и Nup205 на модели in vitro. Тонкие химические технологии. 2022;17(2):140–151. https://doi.org/10.32362/2410-6593-2022-17-2-140-151; Пашков Е.А., Файзулоев Е.Б., Корчевая Е.Р., Ртищев А.А., Черепович Б.С., Сидоров А.В., Поддубиков А.В., Быстрицкая Е.П., Дронина Ю.Е., Быков А.С., Свитич О.А., Зверев В.В. Нокдаун клеточных генов FLT4, Nup98 и Nup205 как супрессор вирусной активности гриппа А/WSN/33 (H1N1) в культуре клеток А549. Тонкие химические технологии. 2021;16(6):476–489. https://doi.org/10.32362/2410-6593-2021-16-6-476-489; Sellers S.A., Hagan R.S., Hayden F.G., Fischer W.A. II. The hidden burden of influenza: A review of the extrapulmonary complications of influenza infection. Influenza Other Respir. Viruses. 2017;11(5):372–393. https://doi.org/10.1111/irv.12470; Koehler P., Βassetti M., Kochanek M., Shimabukuro-Vornhagen A., Cornely O.A. Intensive care management of influenza-associated pulmonary aspergillosis. Clin. Microbiol. Infect. 2019;25(12):1501–1509. https://doi.org/10.1016/j.cmi.2019.04.031; Radzišauskienė D., Vitkauskaitė M., Žvinytė K., Mameniškienė R. Neurological complications of pandemic A(H1N1)2009pdm, postpandemic A(H1N1)v, and seasonal influenza A. Βrain Βehav. 2021;11(1):e01916. https://doi.org/10.1002/brb3.1916; Kalil A.C., Thomas P.G. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit. Care. 2019;23(1):258. https://doi.org/10.1186/s13054-019-2539-x; Plotnikova M.A., Klotchenko S.A., Vasin A.V. Development of a multiplex quantitative PCR assay for the analysis of human cytokine gene expression in influenza A virus-infected cells. J. Immunol. Methods. 2016;430:51–55. https://doi.org/10.1016/j.jim.2016.01.005; Wang J., Wu Y., Ma C., Fiorin G., Wang J., Pinto L.H., et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc. Natl. Acad. Sci. USA. 2013;110(4):1315–1320. https://doi.org/10.1073/pnas.1216526110; Lampejo T. Influenza and antiviral resistance: an overview. Eur. J. Clin. Microβiol. Infect. Dis. 2020;39(7):1201–1208. https://doi.org/10.1007/s10096-020-03840-9; Leneva I.A., Russell R.J., Βoriskin Y.S., Hay A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral Res. 2009;81(2):132–140. https://doi.org/10.1016/j.antiviral.2008.10.009; Goldhill D.H., Te Velthuis A.J.W., Fletcher R.A., Langat P., Zambon M., Lackenby A., Βarclay W.S. The mechanism of resistance to favipiravir in influenza. Proc. Natl. Acad. Sci. USA. 2018;115(45):11613–11618. https://doi.org/10.1073/pnas.1811345115; Yang H., Winkler W., Wu X. Interferon Inducer IFI35 regulates RIG-I-mediated innate antiviral response through mutual antagonism with Influenza protein NS1. J. Virol. 2021;95(11):e00283–21. https://doi.org/10.1128/jvi.00283-21; Sa Ribero M., Jouvenet N., Dreux M., Nisole S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020;16(7):e1008737. https://doi.org/10.1371/journal.ppat.1008737; Hauser P., Khosla J., Aurora H., Laurin J., Kling M.A., Hill J., Gulati M., Thornton A.J., Schultz R.L., Valentine A.D., Meyers C.A., Howell C.D. A prospective study of the incidence and open-label treatment of interferoninduced major depressive disorder in patients with hepatitis C. Mol. Psychiatry. 2002;7(9):942–947. https://doi.org/10.1038/sj.mp.4001119; Han J., Perez J., Schafer A., Cheng H., Peet N., Rong L., et al. Influenza virus: small molecule therapeutics and mechanisms of antiviral resistance. Curr. Med. Chem. 2018;25(38):5115–5127. https://doi.org/10.2174/0929867324666170920165926; Fire A.Z. Gene silencing by double-stranded RNA. Cell Death Differ. 2007;14(12):1998–2012. https://doi.org/10.1038/sj.cdd.4402253; Fire A., Xu S.Q., Montgomery M.K., Kostas S.A., Driver S.E., Mell C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811. https://doi.org/10.1038/35888; Estrin M.A., Hussein I.T.M., Puryear W.Β., Kuan A.C., Artim S.C., Runstadler J.A. Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One. 2018;13(5):e0197246. https://doi.org/10.1371/journal.pone.0197246; Пашков Е.А., Корчевая Е.Р., Файзулоев Е.Б., Пашков Е.П., Зайцева Т.А., Ртищев А. А., Поддубиков А.В., Свитич О.А., Зверев В.В. Создание модели изучения противовирусного действия малых интерферирующих РНК in vitro. Санитарный врач. 2022;1. https://doi.org/10.33920/med-08-2201-07; Park H.S., Liu G., Thulasi Raman S.N., Landreth S.L., Liu Q., Zhou Y. NS1 Protein of 2009 Pandemic Influenza A Virus Inhibits Porcine NLRP3 Inflammasome-Mediated Interleukin-1 Βeta Production by Suppressing ASC Uβiquitination. J. Virol. 201828;92(8):e00022–18. https://doi.org/10.1128/JVI.00022-18; Julkunen I., Melén K., Nyqvist M., Pirhonen J., Sareneva T., Matikainen S. Inflammatory responses in influenza A virus infection. Vaccine. 2000;19(Suppl. 1):S32–S37. https://doi.org/10.1016/S0264-410X(00)00275-9; Lee H.K, Loh T.P., Lee C.K., Tang J.W., Chiu L., Koay E.S. A universal influenza A and B duplex real-time RT-PCR assay. J. Med. Virol. 2012;84(10):1646–1651. https://doi.org/10.1002/jmv.23375; Piasecka J., Lenartowicz E., Soszynska-Jozwiak M., Szutkowska B., Kierzek R., Kierzek E. RNA Secondary Structure Motifs of the Influenza A Virus as Targets for siRNA-Mediated RNA Interference. Mol. Ther. Nucleic Acids. 2020;19:627–642. https://doi.org/10.1016/j.omtn.2019.12.018; https://www.finechem-mirea.ru/jour/article/view/1880
-
2Academic Journal
المؤلفون: E. A. Pashkov, M. O. Korotysheva, A. V. Pak, E. B. Faizuloev, A. V. Sidorov, A. V. Poddubikov, E. P. Bystritskaya, Yu. E. Dronina, V. K. Solntseva, T. A. Zaiceva, E. P. Pashkov, A. S. Bykov, O. A. Svitich, V. V. Zverev, Е. А. Пашков, М. О. Коротышева, А. В. Пак, Е. Б. Файзулоев, А. В. Сидоров, А. В. Поддубиков, Е. П. Быстрицкая, Ю. Е. Дронина, В. К. Солнцева, Т. А. Зайцева, Е. П. Пашков, А. С. Быков, О. А. Свитич, В. В. Зверев
المساهمون: The authors are grateful to the Center for Collective Use of the I.I. Mechnikov Research Institute of Vaccines and Sera., Авторы выражают благодарность центру коллективного пользования НИИВС им И.И. Мечникова.
المصدر: Fine Chemical Technologies; Vol 17, No 2 (2022); 140-151 ; Тонкие химические технологии; Vol 17, No 2 (2022); 140-151 ; 2686-7575 ; 2410-6593
مصطلحات موضوعية: вирусная РНК, influenza A virus, gene expression, mRNA, small interfering RNA, viral RNA, вирус гриппа А, экспрессия генов, матричная РНК, малые интерферирующие РНК
وصف الملف: application/pdf
Relation: https://www.finechem-mirea.ru/jour/article/view/1822/1834; https://www.finechem-mirea.ru/jour/article/view/1822/1841; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1822/627; Peteranderl C., Herold S., Schmoldt C. Human Influenza Virus Infections. Semin. Respir. Crit. Care Med. 2016;37(4):487–500. https://doi.org/10.1055/s-0036-1584801; Sellers S.A., Hagan R.S., Hayden F.G., Fischer W.A. 2nd. The hidden burden of influenza: A review of the extrapulmonary complications of influenza infection. Influenza Other Respir. Viruses. 2017;11(5):372–393. https://doi.org/10.1111/irv.12470; Koehler P., Bassetti M., Kochanek M., Shimabukuro-Vornhagen A., Cornely O.A. Intensive care management of influenza-associated pulmonary aspergillosis. Clin. Microbiol. Infect. 2019;25(12):1501–1509. https://doi.org/10.1016/j.cmi.2019.04.031; Radzišauskienė D., Vitkauskaitė M., Žvinytė K., Mameniškienė R. Neurological complications of pandemic A(H1N1)2009pdm, postpandemic A(H1N1)v, and seasonal influenza A. Brain Behav. 2021;11(1):e01916. https://doi.org/10.1002/brb3.1916; Kalil A.C., Thomas P.G. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit. Care. 2019;23(1):258. https://doi.org/10.1186/s13054-019-2539-x; Webby R.J., Webster R.G. Emergence of influenza A viruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001;356(1416):1817–1828. https://doi.org/10.1098/rstb.2001.0997; Kirby B.J., Symonds W.T., Kearney B.P., Mathias A.A. Pharmacokinetic, Pharmacodynamic, and Drug-Interaction Profile of the Hepatitis C Virus NS5B Polymerase Inhibitor Sofosbuvir. Clin. Pharmacokinet. 2015;54(7):677–690. https://doi.org/10.1007/s40262-015-0261-7; Gentile I., Buonomo A.R., Borgia G. Dasabuvir: A Non-Nucleoside Inhibitor of NS5B for the Treatment of Hepatitis C Virus Infection. Rev. Recent Clin. Trials. 2014;9(2):115–123. https://doi.org/10.2174/1574887109666140529222602; Magro P., Zanella I., Pescarolo M., Castelli F., Quiros-Roldan E. Lopinavir/ritonavir: Repurposing an old drug for HIV infection in COVID-19 treatment. Biomed. J. 2021;44(1):43–53. https://doi.org/10.1016/j.bj.2020.11.005; Han J., Perez J., Schafer A., Cheng H., Peet N., Rong L., Manicassamy B. Influenza Virus: Small Molecule Therapeutics and Mechanisms of Antiviral Resistance. Curr. Med. Chem. 2018;25(38):5115–5127. https://doi.org/10.2174/0929867324666170920165926; Castle S.C. Clinical relevance of age-related immune dysfunction. Clin. Infect. Dis. 2000;31(2):578–585. https://doi.org/10.1086/313947; Looi Q.H., Foo J.B., Lim M.T., Le C.F., Show P.L. How far have we reached in development of effective influenza vaccine? Int. Rev. Immunol. 2018;37(5):266–276. https://doi.org/10.1080/08830185.2018.1500570; Pleguezuelos O., James E., Fernandez A., Lopes V., Rosas L.A., Cervantes-Medina A., Cleath J., Edwards K., Neitzey D., Gu W, Hunsberger S., Taubenberger J.K., Stoloff G., Memoli M.J. Efficacy of FLU-v, a broad-spectrum influenza vaccine, in a randomized phase IIb human influenza challenge study. npj Vaccines. 2020;5(1):22. https://doi.org/10.1038/s41541-020-0174-9; Wang F., Chen G., Zhao Y. Biomimetic nanoparticles as universal influenza vaccine. Smart Mater. Med. 2020;1:21–23. https://doi.org/10.1016/j.smaim.2020.03.001; Smith M. Vaccine safety: medical contraindications, myths, and risk communication. Pediatr. Rev. 2015;36(6):227–238. https://doi.org/10.1542/pir.36.6.227; McManus M.T., Sharp P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 2002;3(10):737–747. https://doi.org/10.1038/nrg908; Пашков Е.А., Файзулоев Е.Б., Свитич О.А., Сергеев О.В., Зверев В.В. Перспектива создания специфических противогриппозных препаратов на основе синтетических малых интерферирующих РНК. Вопросы вирусологии. 2020;65(4):182–190. https://doi.org/10.36233/0507-4088-2020-65-4-182-190; Adams D., Suhr O.B. Patisiran, an investigational RNAi therapeutic for patients with hereditary transthyretinmediated (hATTR) amyloidosis: Results from the phase 3 APOLLO study. Revue Neurologique. 2018;174(S1):S37. https://doi.org/10.1016/j.neurol.2018.01.085; Zhao L., Wang X., Zhang X., Liu X., Zhang Y., Zhang S. Therapeutic strategies for acute intermittent porphyria. Intractable & Rare Diseases Research. 2020;9(4):205–216. https://doi.org/10.5582/irdr.2020.03089; Van der Ree M.H., et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Alimentary Pharmacology & Therapeutics. 2015;43(1):102–113. https://doi.org/10.1111/apt.13432; DeVincenzo J., et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proceedings of the National Academy of Sciences (PNAS). 2010;107(19):8800–8805. https://doi.org/10.1073/pnas.0912186107; Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virol. 2018;28(4):1976. https://doi.org/10.1002/rmv.1976; Lesch M., Luckner M., Meyer M., Weege F., Gravenstein I., Raftery M., Sieben C., Martin-Sancho L., Imai-Matsushima A., Welke R.W., Frise R., Barclay W., Schönrich G., Herrmann A., Meyer T.F., Karlas A. RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathog. 201918;15(3):e1007601. https://doi.org/10.1371/journal.ppat.1007601; Пашков Е.А., Файзулоев Е.Б., Корчевая Е.Р., Ртищев А.А., Черепович Б.С., Сидоров А.В., Поддубиков А.В., Быстрицкая Е.П., Дронина Ю.Е., Быков А.С., Свитич О.А., Зверев В.В. Нокдаун клеточных генов FLT4, Nup98 и Nup205 как супрессор вирусной активности гриппа А/WSN/33 (H1N1) в культуре клеток А549. Тонкие химические технологии. 2021;16(6):476–489. https://doi.org/10.32362/2410-6593-2021-16-6-476-489; Пашков Е.А., Корчевая Е.Р., Файзулоев Е.Б., Пашков Е.П., Зайцева Т.А., Ртищев А.А., Поддубиков А.В., Свитич О.А., Зверев В.В., Создание модели изучения противовирусного действия малых интерферирующих РНК in vitro. Санитарный врач. 2022;1. https://doi.org/10.33920/med-08-2201-07; Lee H.K, Loh T.P., Lee C.K., Tang J.W., Chiu L., Koay E.S. A universal influenza A and B duplex real-time RT-PCR assay. J. Med. Virol. 2012;84(10):1646–1651. https://doi.org/10.1002/jmv.23375; Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016;5(2):85–86. https://doi.org/10.5501/wjv.v5.i2.85; Estrin M.A., Hussein I.T.M., Puryear W.B., Kuan A.C., Artim S.C., Runstadler J.A. Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One. 2018;13(5):e0197246. https://doi.org/10.1371/journal.pone.0197246; Piasecka J., Lenartowicz E., Soszynska-Jozwiak M., Szutkowska B., Kierzek R., Kierzek E. RNA Secondary Structure Motifs of the Influenza A Virus as Targets for siRNA-Mediated RNA Interference. Mol. Ther. Nucleic Acids. 2020;19:627–642. https://doi.org/10.1016/j.omtn.2019.12.018; https://www.finechem-mirea.ru/jour/article/view/1822