يعرض 1 - 11 نتائج من 11 نتيجة بحث عن '"А. В. Лавров"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Agricultural Machinery and Technologies; Том 18, № 3 (2024); 91-98 ; Сельскохозяйственные машины и технологии; Том 18, № 3 (2024); 91-98 ; 2073-7599

    وصف الملف: application/pdf

    Relation: https://www.vimsmit.com/jour/article/view/607/542; Косолапов В.М., Трофимов И.А., Трофимова Л.С., Яковлева Е.П. Кормопроизводство и рациональное природопользование // Адаптивное кормопроизводство. 2016. N2. С. 6-20. EDN: WYMJXJ.; Лавров А.В. Зубина В.А. Методические подходы к оценке технологической потребности в сельскохозяйственных тракторах для АПК // Агроинженерия. 2021. N1(101). С. 20-26. DOI:10.26897/2687-1149-2021-1-20-26.; Измайлов А.Ю., Лобачевский Я.П., Марченко О.С., Ценч Ю.С. Создание инновационной техники и ресурсосберегающих технологий производства кормов – основа развития животноводства // Вестник МГАУ им. В.П. Горячкина. 2017. N6 (82). С. 23-28. DOI:10.26897/1728-7936-2017-6-23-28.; Aldoshin N.V., Vasiliev A.S., Kudryavtsev A.V. et al. Improvement of forage lands in central non-black earth zone of Russia by using some integrated approaches. Plant Science Today. 2021. Vol. 8. N1. 9-15. DOI:10.14719/pst.2021.8.1.827.; Алдошин Н.В., Васильев А.С., Голубев В.В. Обоснование приемов обработки почвы при освоении залежных земель // Вестник Воронежского государственного аграрного университета. 2020. Т. 13. Вып. 1 (64). С. 28-35. DOI:10.17238/issn2071-2243.2020.1.28.; Косолапов В.М. Научное обеспечение развития кормопроизводства // Аграрная наука Евро-Северо-Востока. 2010. N4(19). С. 19-26. EDN: MWCCRT.; Кутузова А.А., Тебердиев Д.М., Косолапов В.М. и др. Агроэнергетическая эффективность усовершенствованных технологий и современных систем производства высококачественных объёмистых кормов на луговых сенокосах в Нечернозёмной зоне // Кормопроизводство. 2021. N7. С. 3-10. EDN: SATPRC.; Попов В.Д., Сухопаров А.И. Оценка использования потенциала кормовых угодий // Технологии и технические средства механизированного производства продукции растениеводства и животноводства. 2018. N95. С. 143-153. DOI:10.24411/0131-5226-2018-10041.; Косолапов В.М., Чернявских В.И. Кормопроизводство: состояние, проблемы и роль ФНЦ «ВИК им. В. Р. Вильямса» в их решении // Достижения науки и техники АПК. 2022. Т. 36. N4. С. 5-14. DOI:10.5385 9/02352451_202236_4_5.; Volovik V.T., Shpakov A.S. Scientific and practical basis of rapeseed production in the Central Federal District. IOP: Earth and Environmental Science. 2021. Vol. 663. 012020. DOI:10.1088/1755-1315/663/1/012020.; Shpakov A.S., Brazhnikova T.S. Methods of biologization of grain-grass crop rotations and their infl uence on fertility of soddy-podzolic soil of the forest zone. IOP: Earth and Environmental Science. 2021. Vol. 901. 012030. DOI:10.1088/1755-1315/901/1/012030.; Shpakov A.S. Alfalfa (Medicago sativa) in forage crop rotations of the forest zone. IOP: Earth and Environmental Science. 2021. Vol. 901. 012009. DOI:10.1088/1755-1315/901/1/012009.; Коновалова Л.К., Окорков В.В. Совершенствование классификации агротехнологий (структурно-модульный подход) // Современные наукоемкие технологии. Региональное приложение. 2019. N3(59). С. 101-112. EDN: LITJVX.; Федорова О.А., Текушев А.Х., Чаплыгин М.Е., Давыдова С.А. Технологии и технические средства для поверхностного улучшения кормовых угодий // Известия Нижневолжского агроуниверситетского комплекса: Наука и высшее профессиональное образование. 2022. N2 (66). 404-414. DOI:10.32786/2071-9485-2022-02-50.; Marchenko O., Tekushev A. Prospective technologies, types and calculation of the technical means for the production of forages in arid regions of the country. Agricultural Mechanization in Asia, Africa and Latin America. 2019. Vol. 50. N1. 90-93. EDN: YHZLTA.; Лобачевский Я.П., Ценч Ю.С. Принципы формирования систем машин и технологий для комплексной механизации и автоматизации технологических процессов в растениеводстве // Сельскохозяйственные машины и технологии. 2022. Т. 16. N4. С. 4-12. DOI:10.22314/2073-7599-2022-16-4-4-12.; Дмитриев С.Ю., Дмитриев Ю.П., Ценч Ю.С. Комплекс машин агромаш для обработки залежных земель // Вестник ВИЭСХ. 2018. N2(31). С. 40-47. EDN: RXFMCP.; Лавров А.В., Бейлис В.М., Казакова В.А. Порядок разработки машинных технологий для растениеводства // Международный сельскохозяйственный журнал. 2021. N6(384). С. 69-73. DOI:10.24412/2587-6740-2021-6-69-73.; https://www.vimsmit.com/jour/article/view/607

  2. 2
    Academic Journal

    المساهمون: The work was supported by the Russian Science Foundation grant No. 23-15-00482, https://rscf.ru/project/23-15-00482/., Работа выполнена за счет гранта Российского научного фонда № 23-15-00482, https://rscf.ru/project/23-15-00482/

    المصدر: Neuromuscular Diseases; Том 14, № 1 (2024); 51-62 ; Нервно-мышечные болезни; Том 14, № 1 (2024); 51-62 ; 2413-0443 ; 2222-8721

    وصف الملف: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/590/377; Bladen C.L., Salgado D., Mongeset S. et al. The TREAT-NMD DMD Global Database: Analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 2015;36(4):395–402. DOI:10.1002/humu.22758; Blake D.J., Weir A., Newey S.E., Davies K.E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002;82(2):291–329. DOI:10.1002/humu.22758; Van der Pijl E.M., van Putten M., Niks E.H. et al. Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models. Eur J Neurosci 2016;43(12):1623–35. DOI:10.1111/ejn.13249; Tuffery-Giraud S., Béroud C., Leturcq F. et al. Genotype– phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD–DMD database: A model of nationwide knowledgebase. Hum Mutat 2009;30(6):934–45. DOI:10.1002/humu.20976; Oshima J., Magner D.B., Lee J.A. et al. Regional genomic instability predisposes to complex dystrophin gene rearrangements. Hum Genet 2009;126(3):411–23. DOI:10.1007/s00439-009-0679-9; Pegoraro E., Hoffman E.P., Pivaet L. et al. SPP1 genotype is a deter minant of disease severity in Duchenne muscular dystrophy. Neurology 2011;76(3):219–26. DOI:10.1212/WNL.0b013e318207afeb; Nowak K.J., Davies K.E. Duchenne muscular dystrophy and dystro phin: pathogenesis and opportunities for treatment. EMBO Rep 2004;5(9):872–6. DOI:10.1038/sj.embor.7400221; Crisafulli S., Sultana J., Fontana A. et al. Global epidemiology of Duchenne muscular dystrophy: An updated systematic review and meta-analysis. Orphanet J Rare Dis 2020;15(1):141. DOI:10.1186/s13023-020-01430-8; Mercuri E., Bönnemann C.G., Muntoni F. Muscular dystrophies. Lancet 2019;394(10213):2025–38. DOI:10.1016/S0140-6736(19)32910-1; Landfeldt E., Thompson R., Sejersen T. et al. Life expectancy at birth in Duchenne muscular dystrophy: A systematic review and meta-analysis. Eur J Epidemiol 2020;35(7):643–53. DOI:10.1007/s10654-020-00613-8; Nigro G., Comi L.I., Limongelli F.M. et al. Prospective study of X-linked progressive muscular dystrophy in campania. Muscle Nerve 1983;6(4):253–62. DOI:10.1002/mus.880060403; Kilroy E.A., Ignacz A.C., Brann K.L. et al. Beneficial impacts of neuromuscular electrical stimulation on muscle structure and function in the zebrafish model of Duchenne muscular dystrophy. eLife 2022;11:e62760. DOI:10.7554/eLife.62760; Werneck L.C., Lorenzoni P.J., Dal-Prá Ducci R. et al. Duchenne muscular dystrophy: an historical treatment review. Arq Neuropsiquiatr 2019;77:579–89. DOI:10.1590/0004-282X20190088; Zupan A. Long-term electrical stimulation of muscles in children with duchenne and becker muscular dystrophy. Muscle Nerve 1992;15(3):362–7. DOI:10.1002/mus.880150316; Yoshida M., Matsuzaki T., Date M. et al. Skeletal muscle fiber degeneration in mdx mice induced by electrical stimulation. Muscle Nerve 1997;20(11):1422–32. DOI:10.1002/(sici)1097-4598(199711)20:113.0.co;2-3; Kar N.C., Pearson C.M. Cholinesterase and esterase activity in normal and dystrophic human muscle. Biochem Med 1973;7(3):452–9. DOI:10.1016/0006-2944(73)90066-5; Serafini L., Bonvini E. Therapeutic trials with galantamine in Duchenne–Griesinger-type progressive muscular dystrophy. Rass Clin Sci 1961;37:20–4.; Gamstorp I. Clinical evaluation of an oral anabolic steroid (methandrostenolone, dianabol CIBA) in children with muscular weakness and wasting. Acta Paediatr 1964;53(6):570–7. DOI:10.1111/j.1651-2227.1964.tb07269.x; Dowben R.M., Perlstein M.A. Muscular dystrophy treated with norethandrolone. Arch Intern Med 1961;107:245–51. DOI:10.1001/archinte.1961.03620020095009; Rudman D., Chyatte S.B., Pattersonet J.H. et al. Metabolic effects of human growth hormone and of estrogens in boys with Duchenne muscular dystrophy. J Clin Invest 1972;51(5):1118–24. DOI:10.1172/JCI106904; Heckmatt J.Z., Heckmatt J.Z., Hyde S.A. et al. Therapeutic trial of isaxonine in duchenne muscular dystrophy. Muscle Nerve 1988;11(8):836–47. DOI:10.1002/mus.880110807; Zavadenko N.N., Kamennykh L.N. Effect of sinestrol on the course of the myodystrophic process in progressive Duchenne muscular dystrophy. Zh Nevropatol Psikhiatr Im S S Korsakova 1989;89(8):41–5.; Zatz M., Betti R.T.B., Levy J.A. Begnign duchenne muscular dystrophy in a patient with growth hormone deficiency. Am J Med Genet 1981;10(3):301–4. DOI:10.1002/ajmg.1320240323; Fenichel G.M., Griggs R.C, Kissel J. et al. A randomized efficacy and safety trial of oxandrolone in the treatment of Duchenne dystrophy. Neurology 2001;56(8):1075–9. DOI:10.1212/wnl.56.8.1075; Collipp P.J., Kelemen J., Chen S.Y. et al. Growth hormone inhibition causes increased selenium levels in Duchenne muscular dystrophy: A possible new approach to therapy. J Med Genet 1984; 21(4):254–6. DOI:10.1136/jmg.21.4.254; Coakley J.H., Moorcraft J., Hipkin L.J. et al. The effect of mazindol on growth hormone secretion in boys with Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatry 1988;51(12):1551–7. DOI:10.1136/jnnp.51.12.1551; Tidball J.G., Wehling-Henricks M. Evolving therapeutic strategies for Duchenne muscular dystrophy: Targeting downstream events. Pediatr Res 2004;56(6):831–41. DOI:10.1203/01.PDR.0000145578.01985.D0; Spencer M.J., Mellgren R.L. Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Hum Mol Genet 2002;11(21):2645–55. DOI:10.1093/hmg/11.21.2645; Kitaura T. How β2-adrenergic agonists induce skeletal muscle hypertrophy? J Phys Fit Sports Med 2013;2(4):423–8. DOI:10.7600/jpfsm.2.423; Skura C.L., Fowler E.G., Wetzel G.T. et al. Albuterol increases lean body mass in ambulatory boys with Duchenne or Becker muscular dystrophy. Neurology 2008;70(2):137–43. DOI:10.1212/01.WNL.0000287070.00149.a9; Fowler E.G., Graves M.C., Wetzel G.T., Spencer M.J. Pilot trial of albuterol in Duchenne and Becker muscular dystrophy. Neurology 2004;62(6):1006–8. DOI:10.1212/01.wnl.0000118530.71646.0f; Lavi E., Cohen A., Dor T. et al. Growth hormone therapy for children with Duchenne muscular dystrophy and glucocorticoid induced short stature. J Endocr Soc 2021;5(Suppl 1):A715. DOI:10.1210/jendso/bvab048.1455; Rutter M.M., Collins J., Rose S.R. et al. Growth hormone treatment in boys with Duchenne muscular dystrophy and glucocorticoid-induced growth failure. Neuromuscul Disord 2012;22(12): 1046–56. DOI:10.1016/j.nmd.2012.07.009; Cittadini A., Comi L.I., Longobardi S. et al. A preliminary randomized study of growth hormone administration in Becker and Duchenne muscular dystrophies. Eur Heart J 2003;24(7):664–72. DOI:10.1016/s0195-668x(02)00740-6; Frank G.R., Smith R.E. Effective growth hormone therapy in a growth hormone deficient patient with Duchenne muscular dystrophy without evidence of acceleration of the dystrophic process. J Pediatr Endocrinol Metab 2001;14(2):211–4. DOI:10.1515/jpem.2001.14.2.211; Shavlakadze T., White J., Hoh J.F.Y. et al. Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice. Mol Ther Elsevier 2004;10(5):829–43. DOI:10.1016/j.ymthe.2004.07.026; Rutter M.M., Wong B.L., Collins J.J. et al. Recombinant human insulin-like growth factor-1 therapy for 6 months improves growth but not motor function in boys with Duchenne muscular dystrophy. Muscle Nerve 2020;61(5):623–31. DOI:10.1002/mus.26846; Schuelke M., Wagner K.R., Stolz L.E. et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004;350(26):2682–8. DOI:10.1056/NEJMoa040933; Wagner K.R., McPherron A.C., Winik N. et al. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 2002;52(6):832–6. DOI:10.1002/ana.10385; Bogdanovich S., Krag T.O.B., Barton E.R. et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002;420(6914):418–21. DOI:10.1038/nature01154; Campbell C., McMillan H.J., Mah J.K. et al. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial. Muscle Nerve 2017;55(4):458–64. DOI:10.1002/mus.25268; Wagner K.R., Abdel-Hamid H.Z., Mah J.K. et al. Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy. Neuromuscul Disord 2020;30(6):492–502. DOI:10.1016/j.nmd.2020.05.002; Thomson W.H.S., Guest K.E. A trial of therapy by nucleosides and nucleotides in muscular dystrophy. J Neurol Neurosurg Psychiatry 1963;26(2):111–22. DOI:10.1136/jnnp.26.2.111; Pearce J.M.S., Gubbay S.S., Hardy J. et al. Laevadosin in treatment of the duchenne type of muscular dystrophy: Preliminary results of a double-blind controlled trial. Br Med J 1964;2(5414):915–7. DOI:10.1136/bmj.2.5414.915; Rybalka E., Timpani C.A., Stathi C.G. et al. Metabogenic and nutriceutical approaches to address energy dysregulation and skeletal muscle wasting in Duchenne muscular dystrophy. Nutrients 2015;7(12)9734–67. DOI:10.3390/nu7125498; Thomson W.H.S., Smith I. X-linked recessive (Duchenne) muscular dystrophy (DMD) and purine metabolism: Effects of oral allopurinol and adenylate. Metabolism 1978;27(2):151–63. DOI:10.1016/0026-0495(78)90161-0; Hellsten-Westing Y. Immunohistochemical localization of xanthine oxidase in human cardiac and skeletal muscle. Histochemistry 1993;100(3):215–22. DOI:10.1007/BF00269094; Camiña F., Novo-Rodriguez M.I., Rodriguez-Segade S., Castro-Gago M. Purine and carnitine metabolism in muscle of patients with Duchenne muscular dystrophy. Clin Chim Acta 1995;243(2):151–64. DOI:10.1016/0009-8981(95)06164-9; Thomson W.H., Smith I. Allopurinol in Duchenne’s muscular dystrophy. N Engl J Med 1978;299(2):101.; Castro-Gago M., Lojo S., Novo I. et al. Effects of chronic allopurinol therapy on purine metabolism in Duchenne muscular dystrophy. Biochem Biophys Res Commun 1987;147(1):152–7. DOI:10.1016/s0006-291x(87)80100-6; De Bruyn C.H., Kulakowski S., van Bennekom C.A. et al. Purine Metabolism in Duchenne Muscular Dystrophy. Purine Metabolism in Man-III: Clinical and Therapeutic Aspects. Boston: Springer US, 1980. Pp. 177–182. DOI:10.1007/978-1-4615-9140-5_29; Kulakowski S., Renoirte P., de Bruyn C.H. Dynamometric and biochemical observations in Duchenne patients receiving allopurinol. Neuropediatrics 1981;12(1):92–4.; Tamari H., Ohtani Y., Higashi A. et al. Xanthine oxidase inhibitor in Duchenne muscular dystrophy. Brain Dev 1982;4(2):137–43. DOI:10.1016/s0387-7604(82)80007-7; Mendell J.R., Wiechers D.O. Lack of benefit of allopurinol in Duchenne dystrophy. Muscle Nerve 1979;2(1):53–6. DOI:10.1002/mus.880020108; Doriguzzi C., Bertolotto A., Ganzit G.P. et al. Ineffectiveness of allopurinol in Duchenne muscular dystrophy. Muscle Nerve 1981;4(2):176–8. DOI:10.1002/mus.880040216; Hunter J.R., Galloway J.R., Brooke M.M. et al. Effects of allopurinol in Duchenne’s muscular dystrophy. Arch Neurol 1983; 40(5):294–9. DOI:10.1001/archneur.1983.04050050062009; Griffiths R.D., Cady E.B., Edwards R.H., Wilkie D.R. Muscle energy metabolism in Duchenne dystrophy studied by 31P-NMR: Controlled trials show no effect of allopurinol or ribose. Muscle Nerve 1985;8(9):760–7. DOI:10.1002/mus.880080904; Bertorini T.E., Palmieri G.M., Griffin J. et al. Chronic allopurinol and adenine therapy in Duchenne muscular dystrophy: Effects on muscle function, nucleotide degradation, and muscle ATP and ADP content. Neurology 1985;35(1):61–5. DOI:10.1212/wnl.35.1.61; Bakouche P., Chaouat D., Nick J. Allopurinol not effective in muscular dystrophy. N Engl J Med 1979;301(14):785. DOI:10.1056/NEJM197910043011414; Stern L.M., Fewings J.D., Bretag A.H. et al. The progression of Duchenne muscular dystrophy: Clinical trial of allopurinol therapy. Neurology 1981;31(4):422–6. DOI:10.1212/wnl.31.4.422; Petrillo S., Pelosi L., Piemonte F. et al. Oxidative stress in Duchenne muscular dystrophy: Focus on the NRF2 redox pathway. Hum Mol Genet 2017;26(14):2781–90. DOI:10.1093/hmg/ddx173; Renjini R., Gayathri N., Nalini A. et al. Oxidative damage in muscular dystrophy correlates with the severity of the pathology: role of glutathione metabolism. Neurochem Res 2012;37(4):885–98. DOI:10.1007/s11064-011-0683-z; Kelly-Worden M., Thomas E. Mitochondrial dysfunction in Duchenne muscular dystrophy. Open J Endocr Metab Dis 2014;4(8): 211–8. DOI:10.4236/ojemd.2014.48020; Bodensteiner J.B., Engel A.G. Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: A study of 567,000 mus cle fibers in 114 biopsies. Neurology 1978;28(5):439. DOI:10.1212/wnl.28.5.439; Brenman J.E., Chao D.S., Xia H. et al. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 1995;82(5):743–52. DOI:10.1016/0092-8674(95)90471-9; Wink D.A., Cook J.A., Pacelli R. et al. Nitric oxide (NO) protects against cellular damage by reactive oxygen species. Toxicol Lett 1995;82–83:221–6. DOI:10.1016/0378-4274(95)03557-5; Uberti F., Lattuada D., Morsanuto V. et al. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab 2014;99(4): 1367–74. DOI:10.1210/jc.2013-2103; Sander M., Chavoshan B., Harris S.A. et al. Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Nat Acad Sci USA 2000;97(25):13818–23. DOI:10.1073/pnas.250379497; Гремякова Т.А., Суслов В.М., Сакбаева Г.Е., Степанов А.А. Витамин D в профилактике и терапии коморбидных состояний при мышечной дистрофии Дюшенна. Неврологический журнал им. Л.О. Бадаляна 2021;2(1):38–50. DOI:10.46563/2686-8997-2021-2-1-38-50; Bhattacharyya S., Bhattacharyya K., Maitra A. Possible mechanisms of interaction between statins and vitamin D. QJM Mon J Assoc Phys 2012;105(5):487–91. DOI:10.1093/qjmed/hcs001; Плещева А.В., Пигарова Е.А., Дзеранова Л.К. Витамин D и метаболизм: факты, мифы и предубеждения. Ожирение и метаболизм 2012;(2):33–42. DOI:10.14341/omet2012233-42; Bianchi M.L., Morandi L., Andreucci E. et al. Low bone density and bone metabolism alterations in Duchenne muscular dystrophy: response to calcium and vitamin D treatment. Osteoporos Int 2011;22(2):529–39. DOI:10.1007/s00198-010-1275-5; Debruin D.A., Andreacchio N., Hanson E.D. et al. The effect of vitamin D supplementation on skeletal muscle in the mdx mouse model of Duchenne muscular dystrophy. Sports 2019;7(5):96. DOI:10.3390/sports7050096; Bian Q., McAdam L., Grynpas M. et al. Increased rates of vitamin D insufficiency in boys with Duchenne muscular dystrophy despite higher vitamin D3 supplementation. Glob Pediatr Health 2019; 6:2333794X19835661. DOI:10.1177/2333794X19835661; Bessman S.P., Geiger P.J. Transport of energy in muscle: the phosphorylcreatine shuttle. Science 1981;211(4481):448–52. DOI:10.1126/science.6450446; Bessman S.P., Carpenter C.L. The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 1985;54:831–62. DOI:10.1146/annurev.bi.54.070185.004151; Krzanowski J., Matschinsky F.M. Regulation of phosphofructokinase by phosphocreatine and phosphorylated glycolytic intermediates. Biochem Biophys Res Commun 1969;34(6):816–23. DOI:10.1016/0006-291x(69)90253-8; Willoughby D.S., Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc 2001;33(10):1674–81. DOI:10.1097/00005768-200110000-00010; Louis M., Lebacq J., Poortmans J.R. et al. Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve 2003;27(5):604–10. DOI:10.1002/mus.10355; Walter M.C., Lochmüller H., Reilich P. et al. Creatine monohydrate in muscular dystrophies: A double-blind, placebo-controlled clinical study. Neurology 2000;54(9):1848–50. DOI:10.1212/wnl.54.9.1848; Tarnopolsky M.A., Mahoney D.J., Vajsar J. et al. Creatine monohyd rate enhances strength and body composition in Duchenne muscular dystrophy. Neurology 2004;62(10):1771–7. DOI:10.1212/01.wnl.0000125178.18862.9d; Banerjee B., Sharma U., Balasubramanian K. et al. Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: A randomized, placebo-controlled 31P MRS study. Magn Reson Imaging 2010;28(5):698–707. DOI:10.1016/j.mri.2010.03.008; Hankard R.G., Hammond D., Haymond M.W., Darmaun D. Oral glutamine slows down whole body protein breakdown in Duchenne muscular dystrophy. Pediatr Res 1998;43(2):222–6. DOI:10.1203/00006450-199802000-00011; Mok E., Eléouet-Da Violante C., Daubrosse C. et al. Oral glutamine and amino acid supplementation inhibit whole-body protein degradation in children with Duchenne muscular dystrophy. Am J Clin Nutr 2006;83(4):823–8. DOI:10.1093/ajcn/83.4.823; Escolar D.M., Buyse G., Henricson E. et al. CINRG randomized controlled trial of creatine and glutamine in Duchenne muscular dystrophy. Ann Neurol 2005;58(1):151–5. DOI:10.1002/ana.20523; Ключников С.О., Гнетнева Е.С. Убихинон (коэнзим Q10): теория и клиническая практика. Педиатрия 2008;87(3):103–10.; Folkers K., Simonsen R. Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochim Biophys Acta 1995;1271(1):281–6. DOI:10.1016/0925-4439(95)00040-b; Spurney C.F., Rocha C.T., Henricson E. et al. CINRG pilot trial of coenzyme Q10 in steroid treated Duchenne muscular dystrophy. Muscle Nerve 2011;44(2):174–8. DOI:10.1002/mus.22047; Wang R.T., Silverstein Fadlon C.A., Ulm J.W. et al. Online self-report data for Duchenne muscular dystrophy confirms natural history and can be used to assess for therapeutic benefits. PLoS Curr 2014. DOI:10.1371/currents.md.e1e8f2be7c949f9ffe81ec6fca1cce6a; Hodgens A., Sharman T. Corticosteroids. StatPearls. Treasure Island: StatPearls Publishing, 2023.; Ericson-Neilsen W., Kaye A.D. Steroids: Pharmacology, complications, and practice delivery issues. Ochsner J 2014;14(2):203–7.; Siegel I.M., Miller J.E., Ray R.D. Failure of corticosteroid in the treatment of Duchenne (pseudo-hypertrophic) muscular dystrophy. Report of a clinically matched three year double-blind study. IMJ Ill Med J 1974;145(1):32, 33.; Angelini C., Peterle E. Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol 2012;31(1):9–15.; Mendell J.R., Moxley R.T., Griggs R.C. et al. Randomized, double-blind six-month trial of prednisone in Duchenne’s muscular dystrophy. N Engl J Med 1989;320(24):1592–7. DOI:10.1056/NEJM198906153202405; Brooke M.H., Fenichel G.M., Griggs R.C. et al. Clinical investigation of Duchenne muscular dystrophy. Interesting results in a trial of prednisone. Arch Neurol 1987;44(8):812–7. DOI:10.1001/archneur.1987.00520200016010; Fenichel G.M., Florence J.M., Pestronk A. et al. Long-term benefit from prednisone therapy in Duchenne muscular dystrophy. Neurology 1991;41(12):1874–7. DOI:10.1212/wnl.41.12.1874; Griggs R.C., Moxley R.T.3rd, Mendell J.R. et al. Duchenne dystrophy: Randomized, controlled trial of prednisone (18 months) and azathioprine (12 months). Neurology 1993;43(3 Pt 1):520. DOI:10.1212/wnl.43.3_part_1.520; Griggs R.C., Moxley R.T., Mendell J.R. et al. Prednisone in Duchenne dystrophy: A Randomized, controlled trial defining the time course and dose response. Arch Neurol 1991;48(4):383–8. DOI:10.1001/archneur.1991.00530160047012; Angelini C., Pegoraro E., Turella E. et al. Deflazacort in Duchenne dystrophy: Study of long-term effect. Muscle Nerve 1994;17(4):386–91. DOI:10.1002/mus.880170405; Shieh P.B., Mcintosh J., Jin F. et al. Deflazacort versus prednisone/prednisolone for maintaining motor function and delaying loss of ambulation: A post HOC analysis from the ACT DMD trial. Muscle Nerve 2018;58(5):639–45. DOI:10.1002/mus.26191; Biggar W.D., Skalsky A., McDonald C.M. Comparing deflazacort and prednisone in Duchenne muscular dystrophy. J Neuromuscul Dis 2022;9(4):463–76. DOI:10.3233/JND-210776; Parente L. Deflazacort: Therapeutic index, relative potency and equivalent doses versus other corticosteroids. BMC Pharmacol Toxicol 2017;18(1):1. DOI:10.1186/s40360-016-0111-8; Bonifati M.D., Ruzza G., Bonometto P. et al. A multicenter, double-blind, randomized trial of deflazacort versus prednisone in Duchenne muscular dystrophy. Muscle Nerve 2000;23(9):1344–7. DOI:10.1002/1097-4598(200009)23:93.0.co;2-f; Angelini C. The role of corticosteroids in muscular dystrophy: A critical appraisal. Muscle Nerve 2007;36(4):424–35. DOI:10.1002/mus.20812; Silversides C.K., Webb G.D., Harris V.A., Biggar D.W. Effects of deflazacort on left ventricular function in patients with Duchenne muscular dystrophy. Am J Cardiol 2003;91(6):769–72. DOI:10.1016/s0002-9149(02)03429-x; Koeks Z., Bladen C.L., Salgado D. et al. Clinical outcomes in Duchenne muscular dystrophy: A study of 5345 patients from the TREAT-NMD DMD Global Database. J Neuromuscul Dis 2017;4(4):293–306. DOI:10.3233/JND-170280; Kissel J.T., Lynn D.J., Rammohan K.W. et al. Mononuclear cell analysis of muscle biopsies in prednisone- and azathioprine-treated Duchenne muscular dystrophy. Neurology 1993;43(3 Pt 1):532. DOI:10.1212/wnl.43.3_part_1.532; Kirschner J., Schessl J., Schara U. et al. Treatment of Duchenne muscular dystrophy with ciclosporin A: A randomised, double-blind, placebo-controlled multicentre trial. Lancet Neurol 2010;9(11):1053–9. DOI:10.1016/S1474-4422(10)70196-4; Hoffman E.P., Riddle V., Siegler M.A. et al. Phase 1 trial of vamorolone, a first-in-class steroid, shows improvements in side effects via biomarkers bridged to clinical outcomes. Steroids 2018;134:43–52. DOI:10.1016/j.steroids.2018.02.010; Hoffman E.P., Schwartz B.D., Mengle-Gaw L.J. et al. Vamorolone trial in Duchenne muscular dystrophy shows dose-related improvement of muscle function. Neurology 2019;93(13):e1312–e1323. DOI:10.1212/WNL.0000000000008168; Klingler W., Jurkat-Rott K., Lehmann-Horn F., Schleip R. The role of fibrosis in Duchenne muscular dystrophy. Acta Myol 2012;31(3):184–95.; Papich M.G. Penicillamine. Saunders Handbook of Veterinary Drugs. Elsevier, 2016. Pp. 612–613.; Roelofs R.I., de Arango G.S., Law P.K. et al. Treatment of Duchenne’s muscular dystrophy with penicillamine: Results of a double-blind trial. Arch Neurol 1979;36(5):266–8. DOI:10.1001/archneur.1979.00500410044005; Bradley W.G., Enomoto A., Gardner-Medwin D. A double-blind controlled trial of penicillamine therapy in Duchenne muscular dystrophy – interim comments. Proc R Soc Med 1977; 70(Suppl 3):94.; Fenichel G.M., Brooke M.H., Griggs R.C. et al. Clinical investigation in Duchenne muscular dystrophy: Penicillamine and vitamin E. Muscle Nerve 1988;11(11):1164–8. DOI:10.1002/mus.880111110; Romanelli R.G., Caligiuri A., Carloni V. et al. Effect of pentoxifylline on the degradation of procollagen type I produced by human hepatic stellate cells in response to transforming growth factor-beta 1. Br J Pharmacol 1997;122(6):1047–54. DOI:10.1038/sj.bjp.0701484; Escolar D.M., Zimmerman A., Bertorini T. et al. Pentoxifylline as a rescue treatment for DMD. Neurology 2012;78(12):904–13. DOI:10.1212/WNL.0b013e31824c46be; Lin P.-S., Chang H.-H., Yeh C.-Y. et al. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/ Smad signaling. J Formos Med Assoc 2017;116(5):351–8. DOI:10.1016/j.jfma.2016.07.014; Zimmerman A., Clemens P.R., Tesi-Rocha C. et al. Liquid formulation of pentoxifylline is a poorly tolerated treatment for Duchenne dystrophy. Muscle Nerve 2011;44(2):170–3. DOI:10.1002/mus.22127; Morales M.G., Gutierrez J., Cabello-Verrugio C. et al. Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet 2013;22(24):4938–51. DOI:10.1093/hmg/ddt352; Connolly A.M., Zaidman C.M., Brandsema J.F. et al. Pamrevlumab, a fully human monoclonal antibody targeting connective tissue growth factor, for non-ambulatory patients with Duchenne muscular dystrophy. J Neuromuscul Dis 2023;10(4):685–99. DOI:10.3233/JND-230019; García A.M., Goldemberg A.L., Fernández H. et al. Effect of chronic administration of verapamil in Duchenne muscular dystrophy. Gen Pharmacol 1990;21(6):939–42. DOI:10.1016/0306-3623(90)90459-y; Emery A.E., Skinner R., Howden L.C., Matthews M.B. et al. Verapamil in Duchenne muscular dystrophy. Lancet Lond Engl 1982;1(8271):559. DOI:10.1016/s0140-6736(82)92063-3; Phillips M.F., Quinlivan R. Calcium antagonists for Duchenne muscular dystrophy. Cochrane Database Syst Rev 2008;4:CD004571. DOI:10.1002/14651858.CD004571.pub2; Dick D.J., Gardner-Medwin D., Gates P.G. et al. A trial of flunarizine in the treatment of Duchenne muscular dystrophy. Muscle Nerve 1986;9(4):349–54. DOI:10.1002/mus.880090412; Moxley R.T.3rd, Brooke M.H., Fenichel G.M. et al. Clinical investigation in Duchenne dystrophy. VI. Double-blind controlled trial of nifedipine. Muscle Nerve 1987;10(1):22–33. DOI:10.1002/mus.880100106; Pernice W., Beckmann R., Ketelsen U.P. et al. A double-blind placebo controlled trial of diltiazem in Duchenne dystrophy. Klin Wochenschr 1988;66(13):565–70. DOI:10.1007/BF01720830; Bertorini T.E., Palmieri G.M., Griffin J.W. et al. Effect of chronic treatment with the calcium antagonist diltiazem in Duchenne muscular dystrophy. Neurology 1988;38(4):609–13. DOI:10.1212/wnl.38.4.609; Patten B.M., Zeller R.S. Clinical trials of vasoactive and antiserotonin drugs in Duchenne muscular dystrophy. Ann Clin Res 1983;15(4):164–6.; Victor R.G., Sweeney H.L., Finkel R. et al. A phase 3 randomized placebo-controlled trial of tadalafil for Duchenne muscular dystrophy. Neurology 2017;89(17):1811–20. DOI:10.1212/WNL.0000000000004570; https://nmb.abvpress.ru/jour/article/view/590

  3. 3
    Academic Journal

    المساهمون: The work was supported by the Russian Science Foundation grant No. 23-15-00482, https://rscf.ru/project/23-15-00482/., Работа выполнена за счет гранта Российского научного фонда № 23-15-00482, https://rscf.ru/project/23-15-00482/.

    المصدر: Neuromuscular Diseases; Том 14, № 2 (2024); 44-52 ; Нервно-мышечные болезни; Том 14, № 2 (2024); 44-52 ; 2413-0443 ; 2222-8721

    وصف الملف: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/602/388; Bladen C.L., Salgado D., Mongeset S. et al. The TREAT-NMD DMD Global Database: Analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 2015;36(4):395–402. DOI:10.1002/humu.22758; Blake D.J., Weir A., Newey S.E., Davies K.E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002;82(2):291–329. DOI:10.1002/humu.22758; Van der Pijl E.M., van Putten M., Niks E.H. et al. Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models. Eur J Neurosci 2016;43(12):1623–35. DOI:10.1111/ejn.13249; Tuffery-Giraud S., Béroud C., Leturcq F. et al. Genotype–phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD–DMD database: A model of nationwide knowledgebase. Hum Mutat 2009;30(6):934–45. DOI:10.1002/humu.20976; Oshima J., Magner D.B., Lee J.A. et al. Regional genomic instability predisposes to complex dystrophin gene rearrangements. Hum Genet 2009;126(3):411–23. DOI:10.1007/s00439-009-0679-9; Pegoraro E., Hoffman E.P., Pivaet L. et al. SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy. Neurology 2011;76(3):219–26. DOI:10.1212/WNL.0b013e318207afeb; Nowak K.J., Davies K.E. Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 2004;5(9):872–6. DOI:10.1038/sj.embor.7400221; Crisafulli S., Sultana J., Fontana A. et al. Global epidemiology of Duchenne muscular dystrophy: An updated systematic review and meta-analysis. Orphanet J Rare Dis 2020;15(1):141. DOI:10.1186/s13023-020-01430-8; Mercuri E., Bönnemann C.G., Muntoni F. Muscular dystrophies. Lancet 2019;394(10213):2025–38. DOI:10.1016/S0140-6736(19)32910-1; Landfeldt E., Thompson R., Sejersen T. et al. Life expectancy at birth in Duchenne muscular dystrophy: A systematic review and meta-analysis. Eur J Epidemiol 2020;35(7):643–53. DOI:10.1007/s10654-020-00613-8; Nigro G., Comi L.I., Limongelli F.M. et al. Prospective study of X-linked progressive muscular dystrophy in campania. Muscle Nerve 1983;6(4):253–62. DOI:10.1002/mus.880060403; Burke J.F., Mogg A.E. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 1985;13(17):6265–72. DOI:10.1093/nar/13.17.6265; Martin R., Mogg A.E., Heywood L.A. et al. Aminoglycoside suppression at UAG, UAA and UGA codons in Escherichia coli and human tissue culture cells. Mol Gen Genet 989;217(2–3):411–8. DOI:10.1007/BF02464911; Uis S. Gonzalez I., Spencer J.P. Aminoglycosides: A practical review. Am Fam Physician 1998;58(8):1811–20.; Rosenberg C.R., Fang X., Allison K.R. Potentiating aminoglycoside antibiotics to reduce their toxic side effects. PLoS One 2020;15(9):e0237948. DOI:10.1371/journal.pone.0237948; Kimura S., Ito K., Miyagi T. et al. A novel approach to identify Duchenne muscular dystrophy patients for aminoglycoside antibiotics therapy. Brain Dev 2005;27(6):400–5. DOI:10.1016/j.braindev.2004.09.014; Politano L., Nigro G., Nigro V. et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol 2003;22(1):15–21.; Wagner K.R., Hamed S., Hadley D.W. et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001;49(6):706–11. DOI:10.1002/ana.1023; Barton-Davis E.R., Cordier L., Shoturma D.I. et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999;104(4):375–81. DOI:10.1172/JCI7866; Malik V., Rodino-Klapac L.R., Viollet L. et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol 2010;67(6):771–80. DOI:10.1002/ana.22024; Welch E.M., Barton E.R., Zhuo J. et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007;447(7140):87–91. DOI:10.1038/nature05756; Du M., Liu X., Welch E.M. et al. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci USA 2008;105(6):2064–9. DOI:10.1073/pnas.0711795105; Finkel R.S., Flanigan K.M., Wong B. et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PloS One 2013;8(12):e81302. DOI:10.1371/journal.pone.0081302; Bushby K., Finkel R., Wong B. et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 2014;50(4): 477–87. DOI:10.1002/mus.24332; De Cacau L.A.P., de Santana-Filho V.J., Maynard L.G. et al. Reference values for the six-minute walk test in healthy children and adolescents: A systematic review. Braz J Cardiovasc Surg 2016;31(5):381–8. DOI:10.5935/1678-9741.20160081; Kasović M., Štefan L., Petrić V. Normative data for the 6-min walk test in 11–14 year-olds: A population-based study: 1. BMC Pulm Med 2021;21(1):1–6. DOI:10.1186/s12890-021-01666-5; Henricson E., Abresch R., Han J.J. et al. The 6-minute walk test and person-reported outcomes in boys with Duchenne muscular dystrophy and typically developing controls: Longitudinal comparisons and clinically-meaningful changes over one year. PLoS Curr 2013;5:ecurrents.md.9e17658b007eb79fcd6f723089f79e06. DOI:10.1371/currents.md.9e17658b007eb79fcd6f723089f79e06; McDonald C.M., Campbell C., Torricelli R.E. et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): A multicentre, randomised, double-blind, placebocontrolled, phase 3 trial. Lancet Lond Engl 2017;390(10101):1489–98. DOI:10.1016/S0140-6736(17)31611-2; Morkous S.S. Treatment with ataluren for Duchene muscular dystrophy. Pediatr Neurol Briefs 2020;34:12. DOI:10.15844/pedneurbriefs-34-12; Mercuri E., Muntoni F., Osorio A.N. et al. Safety and effectiveness of ataluren: Comparison of results from the STRIDE Registry and CINRG DMD Natural History Study. J Comp Eff Res 2020;9(5):341–60. DOI:10.2217/cer-2019-0171; Michael E., Sofou K., Wahlgren L. et al. Long term treatment with ataluren – the Swedish experience. BMC Musculoskelet Disord.2021;22(1):837. DOI:10.1186/s12891-021-04700-z; Ryan N.J. Ataluren: First global approval. Drugs 2014;74(14): 1709–14. DOI:10.1007/s40265-014-0287-4; FDA Advisory Committee: More Study Needed Before It Can Recommend Approval of Translarna. Available at: https://www.pharmacypracticenews.com/Online-First/Article/09-17/FDA-Advisory-Committee-More-Study-Needed-Before-It-CanRecommend-Approval-of-Translarna/44750?ses=ogst.; Arakawa M., Shiozuka M., Nakayama Y. et al. Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice. J Biochem (Tokyo) 2003;134(5):751–8. DOI:10.1093/jb/mvg203; Taguchi A., Nishiguchi S., Shiozuka M. et al. Negamycin analogue with readthrough-promoting activity as a potential drug candidate for Duchenne muscular dystrophy. ACS Med Chem Lett. 2012;3(2): 118–22. DOI:10.1021/ml200245t; Kayali R., Ku J.-M., Khitrov G. et al. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum Mol Genet 2012;21(18):4007–20. DOI:10.1093/hmg/dds223; Monaco A.P., Bertelson C.J., Liechti-Gallati S. et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988;2(1):90–5. DOI:10.1016/0888-7543(88)90113-9; Heald A., Anderson L.V., Bushby K.M. et al. Becker muscular dystrophy with onset after 60 years. Neurology 1994;44(12):2388–90. DOI:10.1212/wnl.44.12.2388; Shiga N., Takeshima Y., Sakamoto H. et al. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy. J Clin Invest 1997;100(9):2204–10. DOI:10.1172/JCI119757; Wang R.T., Barthelemy F., Martin A.S. et al. DMD genotype correlations from the Duchenne Registry: Endogenous exon skipping is a factor in prolonged ambulation for individuals with a defined mutation subtype. Hum Mutat 2018;39(9):1193–202. DOI:10.1002/humu.23561; Echevarría L., Aupy P., Goyenvalle A. Exon-skipping advances for Duchenne muscular dystrophy. Hum Mol Genet 2018;27(R2): R163–72. DOI:10.1093/hmg/ddy171; Yokota T., Duddy W., Echigoya Y. et al. Exon skipping for nonsense mutations in Duchenne muscular dystrophy: Too many mutations, too few patients? Expert Opin Biol Ther 2012;12(9):1141–52. DOI:10.1517/14712598.2012.693469; Nakamura A., Shiba N., Miyazaki D. et al. Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. J Hum Genet 2017; 62(4):459–63. DOI:10.1038/jhg.2016.152; Echigoya Y., Lim K.R.Q., Nakamura A. et al. Multiple exon skipping in the Duchenne muscular dystrophy hot spots: Prospects and challenges. J Pers Med 2018;8(4):41. DOI:10.3390/jpm8040041; Sheikh O., Yokota T. Advances in genetic characterization and genotype–phenotype correlation of Duchenne and Becker muscular dystrophy in the personalized medicine era. J Pers Med 2020;10(3):111. DOI:10.3390/jpm10030111; Takeshima Y., Nishio H., Sakamoto H. et al. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe. J Clin Invest 1995;95(2):515–20. DOI:10.1172/JCI117693; Pramono Z.A., Takeshima Y., Alimsardjono H. et al. Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence. Biochem Biophys Res Commun 1996;226(2):445–9. DOI:10.1006/bbrc.1996.1375; Charleston J.S., Schnell F.J., Dworzak J. et al. Eteplirsen treatment for Duchenne muscular dystrophy: Exon skipping and dystrophin production. Neurology 2018;90(24):e2146–54. DOI:10.1212/WNL.0000000000005680; Mendell J.R., Rodino-Klapac L.R., Sahenk Z. et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 2013;74(5):637–47. DOI:10.1002/ana.23982; Mendell J.R., Goemans N., Lowes L.P. et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 2016;79(2):257–71. DOI:10.1002/ana.24555; McDonald C.M., Wong B., Flanigan K.M. et al. Placebo-controlled phase 2 trial of drisapersen for Duchenne muscular dystrophy. Ann Clin Transl Neurol 2018;5(8):913–26. DOI:10.1002/acn3.579; Goemans N., Mercuri E., Belousova E. et al. A randomized placebocontrolled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy. Neuromuscul Disord Elsevier 2018;28(1):4–15. DOI:10.1016/j.nmd.2017.10.004; Heo Y.-A. Golodirsen: First approval. Drugs 2020;80(3):329–33. DOI:10.1007/s40265-020-01267-2; Dhillon S. Viltolarsen: First approval. Drugs 2020;80(10):1027–31. DOI:10.1007/s40265-020-01339-3; Komaki H., Takeshima Y., Matsumura T. et al. Viltolarsen in Japanese Duchenne muscular dystrophy patients: A phase 1/2 study. Ann Clin Transl Neurol 2020;7(12):2393–408. DOI:10.1002/acn3.51235; Shirley M. Casimersen: First approval. Drugs 2021;81(7):875–9. DOI:10.1007/s40265-021-01512-2; Lee T., Awano H., Yagi M. et al. 2’-O-methyl RNA/ethylenebridged nucleic acid chimera antisense oligonucleotides to induce dystrophin exon 45 skipping. Genes 2017;8(2):67. DOI:10.3390/genes8020067; Moulton H.M., Moulton J.D. Morpholinos and their peptide conjugates: Therapeutic promise and challenge for Duchenne muscular dystrophy. Biochem Biophys Acta 2010;1798(12):2296–303. DOI:10.1016/j.bbamem.2010.02.012; Goyenvalle A., Griffith G., Babbs A. et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 2015;21(3):270–5. DOI:10.1038/nm.3765; Friedmann T., Roblin R. Gene therapy for human genetic disease? Science 1972;175(4025):949–55. DOI:10.1126/science.175.4025.949; Wang B., Li J., Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 2000;97(25):13714–9. DOI:10.1073/pnas.240335297; Harper S.Q., Hauser M.A., DelloRusso C. et al. Modular flexibility of dystrophin: Implications for gene therapy of Duchenne muscular dystrophy. Nat Med 2002;8(3):253–61. DOI:10.1038/nm0302-253; Fabb S.A., Wells D.J., Serpente P. et al. Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/ mdx mice. Hum Mol Genet 2002;11(7):733–41. DOI:10.1093/hmg/11.7.733; FDA Approves First Gene Therapy for Treatment of Certain Patients with Duchenne Muscular Dystrophy. FDA, 2023. Available at: https://www.fda.gov/news-events/press-announcements/fdaapproves-first-gene-therapy-treatment-certain-patients-duchennemuscular-dystrophy.; Mendell J.R., Sahenk Z., Lehman K. et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy: A nonrandomized controlled trial. JAMA Neurol 2020;77(9):1122–31. DOI:10.1001/jamaneurol.2020.1484; Лавров А.В., Заклязьминская Е.В. Генная терапия кардиомиопатий: возможности и ближайшие перспективы. Клиническая и экспериментальная хирургия. Журнал им. акад. Б.В. Петровского 2023;11(1):32–46. DOI:10.33029/2308-1198-2023-11-1-32-46; Elangkovan N., Dickson G. Gene therapy for Duchenne muscular dystrophy. J Neuromuscul Dis;8(Suppl 2):S303–16. DOI:10.3233/JND-210678; Wilton-Clark H., Yokota T. Antisense and gene therapy options for Duchenne muscular dystrophy arising from mutations in the N-terminal hotspot. Genes 2022;13(2):257. DOI:10.3390/genes13020257; Зайнитдинова М.И., Смирнихина С.А., Лавров А.В. и др. Генотерапевтические подходы к лечению миодистрофии Дюшенна. Гены и клетки 2019;14(4):6–18. DOI:10.23868/201912026; Kupatt C., Windisch A., Moretti A. et al. Genome editing for Duchenne muscular dystrophy: A glimpse of the future? Gene Ther 2021;28(9):542–8. DOI:10.1038/s41434-021-00222-4; Erkut E., Yokota T. CRISPR therapeutics for Duchenne muscular dystrophy. Int J Mol Sci 2022;23(3):1832. DOI:10.3390/ijms23031832; https://nmb.abvpress.ru/jour/article/view/602

  4. 4
    Academic Journal

    المصدر: Agricultural Machinery and Technologies; Том 17, № 3 (2023); 61-66 ; Сельскохозяйственные машины и технологии; Том 17, № 3 (2023); 61-66 ; 2073-7599

    وصف الملف: application/pdf

    Relation: https://www.vimsmit.com/jour/article/view/529/482; Лурье А.Б. Статистическая динамика сельскохозяйственных агрегатов. М.: Колос. 1981. 382 с.; Попов В.Б. Математическое моделирование мобильного сельскохозяйственного агрегата в режиме транспортного переезда // Вестник Гомельского государственного технического университета им. П.О. Сухого. 2005. N3(22). С. 13-18.; Проектирование полноприводных колесных машин. М.: МГТУ им. Н.Э. Баумана. 2008. Кн. 1. 496 с.; Жеглов Л.Ф. Спектральный метод расчета систем подрессоривания колесных машин. М.: МГТУ им. Н.Э Баумана. 2009. 150 с.; Котиев Г.О., Сарач Е.Б. Комплексное подрессоривание высокоподвижных двухзвенных гусеничных машин. М.: МГТУ им. Н.Э. Баумана. 2010. 184 с.; Сергиенко А.Н., Медведев Н.Г., Любарский Б.Г., Беляев С.Н., Шушляпин С.В. Методика задания неровностей профиля дороги при моделировании подвески автомобиля с рекуператором энергии колебаний // Вiстник НТУ «ХПI». Cepiя: Математичне моделювання в техніці та технологіях. Харкiв: 2013. N37. C. 185-192.; Рыков С.П., Бекирова Р.С., Коваль В.С. Моделирование случайного микропрофиля автомобильных дорог // Системы. Методы. Технологии. 2010. N4(8). С. 33-37.; Хачатуров А.А., Афанасьев В.Л., Васильев В.С., Гольдин Г.В., Додонов Б.М., Жигарев В.П., Кольцов В.И., Юрик В.С., Яковлев Е.И. Динамика системы дорога-шина-автомобиль-водитель. М.: Машиностроение. 1976. 535 с.; Быков В.В. Цифровое моделирование в статистической радиотехнике. М.: Советское радио. 1971. 328 с.; Методы статистического моделирования в радиотехнике: Санкт-Петербург: Электросвязь. 2003. 36 с.; Липатов И.Н. Оценка погрешности моделирования случайного процесса с заданной корреляционной функцией // Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления. 2010. N4. С. 82-87.; Прохоров С.А. (ред.). Прикладной анализ случайных процессов. Самара: СНЦ РАН. 2007. 582 с.; https://www.vimsmit.com/jour/article/view/529

  5. 5
    Academic Journal

    المساهمون: The work has been funded by the state assignment of the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ».

    المصدر: Medical Genetics; Том 22, № 11 (2023); 20-26 ; Медицинская генетика; Том 22, № 11 (2023); 20-26 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2370/1749; Shteinberg M., Haq I.J., Polineni D., Davies J.C. Cystic fibrosis. Lancet. 2021 Jun 5;397(10290):2195-2211. doi:10.1016/S01406736(20)32542-3; Lopes-Pacheco M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front Pharmacol. 2020 Feb 21;10:1662. doi:10.3389/fphar.2019.01662; Zainal Abidin N., Haq I.J., Gardner A.I., Brodlie M. Ataluren in cystic fibrosis: development, clinical studies and where are we now? Expert Opin Pharmacother. 2017 Sep;18(13):1363-1371. doi:10.1080/14656566.2017.1359255; Doudna J.A. The promise and challenge of therapeutic genome editing. Nature. 2020 Feb;578(7794):229-236. doi:10.1038/s41586020-1978-5; Anzalone A.V., Koblan L.W., Liu D.R. Genome editing with CRISPRCas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020 Jul;38(7):824-844. doi:10.1038/s41587-020-0561-9; Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu .DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016 May 19;533(7603):4204. doi:10.1038/nature17946; Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464-471. doi:10.1038/nature24644; Lavrov A.V., Varenikov G.G., Skoblov M.Y. Genome scale analysis of pathogenic variants targetable for single base editing. BMC Med Genomics. 2020 Sep 18;13(Suppl 8):80. doi:10.1186/s12920-020-00735-8; Petrova N., Balinova N., Marakhonov A., Vasilyeva T., Kashirskaya N., Galkina V., Ginter E., Kutsev S., Zinchenko R. Ethnic Differences in the Frequency of CFTR Gene Mutations in Populations of the European and North Caucasian Part of the Russian Federation. Front Genet. 2021 Jun 16;12:678374. doi:10.3389/fgene.2021.678374; Регистр пациентов с муковисцидозом в Российской Федерации. 2020 год. Под редакцией Е.И. Кондратьевой, С.А. Красовского, М.А. Стариновой, А.Ю. Воронковой, Е.Л. Амелиной, Н.Ю. Каширской, С.Н. Авдеева, С.И. Куцева. Москва: МЕДПРАКТИКА-М, 2022. 68 с.; Kondrateva E., Demchenko A., Slesarenko Y,. Pozhitnova V., Yasinovsky M., Amelina E., Tabakov V., Voronina E., Lavrov A., Smirnikhina S. Generation of two induced pluripotent stem cell lines (RCMGi004-A and -B) from human skin fibroblasts of a cystic fibrosis patient with compound heterozygous F508del/W1282X mutations. Stem Cell Research 2021; 52: 102232. DOI:10.1016/j.scr.2021.102232; Hwang G.H., Park J., Lim K., Kim S., Yu J., Yu E., Kim S.T., Eils R., Kim J.S., Bae S. Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics. 2018 Dec 27;19(1):542. doi:10.1186/s12859-018-2585-4; Clement K., Rees H., Canver M.C., Gehrke J.M., Farouni R., Hsu J.Y., Cole M.A., Liu D.R., Joung J.K., Bauer D.E., Pinello L. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019 Mar; 37(3):224-226. doi:10.1038/s41587-019-0032-3; Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M, Gao X., Rees H.A., Lin Z., Liu D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018 Apr 5;556(7699):57-63. doi:10.1038/nature26155; Rees H.A., Liu D.R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018 Dec;19(12):770-788. doi:10.1038/s41576-018-0059-1; Wilschanski M. Class 1 CF Mutations. Front Pharmacol. 2012 Jun 20;3:117. doi:10.3389/fphar.2012.00117; Demchenko A., Kondrateva E., Tabakov V., Efremova A., Salikhova D., Bukharova T., Goldshtein D., Balyasin M., Bulatenko N., Amelina E., Lavrov A., Smirnikhina S. Airway and Lung Organoids from HumanInduced Pluripotent Stem Cells Can Be Used to Assess CFTR Conductance. Int. J. Mol. Sci. 2023, 24, 6293. https://doi.org/10.3390/ijms24076293; Maxwell K.G., Millman J.R. Applications of iPSC-derived beta cells from patients with diabetes. Cell Rep Med. 2021 Apr 20;2(4):100238. doi:10.1016/j.xcrm.2021.100238; Fleischer A., Vallejo-Díez S., Martín-Fernández J.M., SánchezGilabert A., Castresana M., Del Pozo A., Esquisabel A., Ávila S., Castrillo J.L., Gaínza E., Pedraz J.L., Viñas M., Bachiller D. iPSCDerived Intestinal Organoids from Cystic Fibrosis Patients Acquire CFTR Activity upon TALEN-Mediated Repair of the p.F508del Mutation. Mol Ther Methods Clin Dev. 2020 Apr 18;17:858-870. doi:10.1016/j.omtm.2020.04.005; Palmer D.J., Turner D.L., Ng P. A Single «All-in-One» HelperDependent Adenovirus to Deliver Donor DNA and CRISPR/ Cas9 for Efficient Homology-Directed Repair. Mol Ther Methods Clin Dev. 2020 Feb 4;17:441-447. doi:10.1016/j.omtm.2020.01.014; Suzuki S., Chosa K., Barillà C., Yao M., Zuffardi O., Kai H., Shuto T., Suico M.A., Kan Y.W., Sargent R.G., Gruenert D.C. Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events. Front Genome Ed. 2022 Apr 6;4:843885. doi:10.3389/fgeed.2022.843885; Johnson L.G., Olsen J.C., Sarkadi B., Moore K.L., Swanstrom R., Boucher R.C. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992 Sep;2(1):21-5. doi:10.1038/ng0992-21; Geurts M.H., de Poel E., Amatngalim G.D., et al. CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank [published online ahead of print, 2020 Feb 13]. Cell Stem Cell. 2020;S1934-5909(20)30019-9. doi:10.1016/j.stem.2020.01.019; Krishnamurthy S., Traore S., Cooney A.L., Brommel C.M., Kulhankova K., Sinn P.L., Newby GA, Liu DR, McCray PB. Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Res. 2021 Oct 11;49(18):10558-10572. doi:10.1093/nar/gkab788; Chiavetta R.F., Titoli S., Barra V., Cancemi P., Melfi R., Di Leonardo A. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int J Mol Sci. 2023 Jun 30;24(13):10940. doi:10.3390/ijms241310940; Melfi R., Cancemi P., Chiavetta R., Barra V., Lentini L., Di Leonardo A. Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci. 2020 Jul 6;21(13):4781. doi:10.3390/ijms21134781; Cuevas-Ocaña S., Yang J.Y., Aushev M., Schlossmacher G., Bear C.E., Hannan N.R.F., Perkins N.D., Rossant J., Wong A.P., Gray M.A. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci. 2023 Jun 17;24(12):10266. doi:10.3390/ijms241210266; Erwood S., Laselva O., Bily T.M.I., Brewer R.A., Rutherford A.H., Bear C.E., Ivakine E.A. Allele-Specific Prevention of Nonsense-Mediated Decay in Cystic Fibrosis Using Homology-Independent Genome Editing. Mol Ther Methods Clin Dev. 2020 May 12;17:11181128. doi:10.1016/j.omtm.2020.05.002; Santos L., Mention K., Cavusoglu-Doran K., Sanz D.J., Bacalhau M., Lopes-Pacheco M., Harrison P.T., Farinha C.M. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. J Cyst Fibros. 2021 Jun 5:S15691993(21)00167-3. doi:10.1016/j.jcf.2021.05.014; https://www.medgen-journal.ru/jour/article/view/2370

  6. 6
    Academic Journal

    المساهمون: The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ».

    المصدر: Medical Genetics; Том 22, № 11 (2023); 47-57 ; Медицинская генетика; Том 22, № 11 (2023); 47-57 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2374/1753; Pellegriti G., Frasca F., Regalbuto C., et al. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013;2013:965212. doi:10.1155/2013/965212.; Vigneri R., Malandrino P., Vigneri P. The changing epidemiology of thyroid cancer: why is incidence increasing? Curr Opin Oncol. 2015;27(1):1-7. doi:10.1097/CCO.0000000000000148.; Cooper D.S., Doherty G.M., Haugen B.R., et al. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:1167–214.; Pacini F., Castagna M.G., Brilli L., Pentheroudakis G., ESMO Guidelines Working Group. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012;23(Suppl.7):vii110–9.; Kebebew E., Greenspan F.S., Clark O.H., et al. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer. 2005;103(7):1330-5.; Wendler J., Kroiss M., Gast K., et al. Clinical presentation, treatment and outcome of anaplastic thyroid carcinoma: results of a multicenter study in Germany. Eur J Endocrinol. 2016;175(6):521-529.; Bongiovanni M., Spitale A., Faquin W.C., et al. The Bethesda system for reporting thyroid cytopathology: A meta-analysis. Acta Cytol. 2012;56(4):333-339. doi:10.1159/000339959.; Panebianco F., Nikitski A.V., Nikiforova M.N., et al. Characterization of thyroid cancer driven by known and novel ALK fusions. Endocr Relat Cancer. 2019;26(11):803-814. doi:10.1530/ERC-190325.; Doebele R.C., Drilon A., Paz-Ares L., et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 2020;21:271-282; National Comprehensive Cancer Network. Thyroid Carcinoma (Version 1.2023). http://www.nccn.org/professionals/physician_gls/pdf/bone.pdf.; Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014; 159(3):676690.; Zehir A., Benayed R., Shah R.H., et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine. 2017; 23(6): 703–713.; Rivera M., Ricarte-Filho J., Knauf J., et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol. 2010; 23(9):1191–200.; Armstrong M.J., Yang H., Yip L., Ohori N.P., et al. PAX8/PPARγ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid. 2014; 24:1369–74.; Nikiforova M.N., Biddinger P.W., Caudill C.M., et al. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002; 26(8):1016-23.; Ohori N.P., Wolfe J., Hodak S.P., et al. “Colloid-rich” follicular neoplasm/suspicious for follicular neoplasm thyroid fine-needle aspiration specimens: cytologic, histologic, and molecular basis for considering an alternate view. Cancer Cytopathol. 2013; 121(12):718-28.; Landa I., Ibrahimpasic T., Boucai L., et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016; 126(3):1052-66.; Michuda J., Park B.H., Cummings A.L., et al. Use of clinical RNA-sequencing in the detection of actionable fusions compared to DNA-sequencing alone. Journal of Clinical Oncology 2022; 40:16(suppl): 3077.; Marchiò C., Scaltriti M., Ladanyi M., et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol. 2019;30(9):1417-1427. doi:10.1093/annonc/mdz204.; https://www.medgen-journal.ru/jour/article/view/2374

  7. 7
    Academic Journal

    المصدر: Agricultural Machinery and Technologies; Том 16, № 2 (2022); 30­-36 ; Сельскохозяйственные машины и технологии; Том 16, № 2 (2022); 30­-36 ; 2618-6748 ; 2073-7599

    وصف الملف: application/pdf

    Relation: https://www.vimsmit.com/jour/article/view/466/420; Измайлов А.Ю., Кряжков В.М., Антышев Н.М., Елизаров В.П., Келлер Н.Д., Лобачевский Я.П., Сорокин Н.Т., Гурылев Г.С., Савельев Г.С., Сизов О.А., Шевцов В.Г. Концепция модернизации парка сельскохозяйственных тракторов России на период до 2020 года. М.: ВИМ. 2013. 87 с.; Лачуга Ю.Ф., Измайлов А.Ю., Лобачевский Я.П. и др. Приоритетные направления научно-технического развития отечественного тракторостроения // Сельский механизатор. 2021. N2. С. 3-5.; Шевцов В.Г., Годжаев Т.З., Ерилина Е.В. Перспективы развития сельскохозяйственных мобильных энергосредств // Тракторы и сельхозмашины. 2018. N3. C. 25-31.; Lankenau G.F.D., Winter A.G. An engineering review of the farm tractor’s evolution to a dominant design. ASME Journal of Mechanical Design. 2018.; Кутьков Г.М. Энергонасыщенность и классификация тракторов // Тракторы и сельскохозяйственные машины. 2009. N5. С. 11-14.; Кутьков Г.М. Развитие технической концепции трактора // Тракторы и сельхозмашины. 2019. N1. С. 27-35.; Lipkovich E.I., Nesmiyan A.Y., Nikitchenko S.L., et al. Agricultural tractors of the fth generation. Scientia Iranica. 2020. Vol. 27. N2. 745-756.; Грибов И.В., Перевозчикова Н.В. Мощность – основной показатель для трактора тягово-энергетической концепции // Техника и технологии АПК. 2017. N5. С. 18-21.; Соловьев Р.Ю., Черанев С.В., Карякин С.Б., Коломейченко А.В., Грибов И.В. Актуальность разработки высокотехнологичных тракторов тяговых классов 0,6-2 // Техника и оборудование для села. 2019. N11(269). С. 14-17.; Шарипов В.М., Федоткин Р.С., Крючков В. А. и др. Экспериментальная проверка достоверности методики проектирования ведущих колес цевочного зацепления с резиноармированными гусеницами // Известия МГТУ МАМИ. 2017. N 3(33). С. 76-81.; Амельченко П.А., Дубовик Д.А., Жуковский И.Н. Энергонасыщенные тракторы: структура, производство и потребности АПК Беларуси // Вестник Белорусско-Российского университета. 2020. N3(68). С. 5-13.; Кутьков Г.М. Потенциальная производительность трактора // Тракторы и сельхозмашины. 2017. N5. С. 48-52.; Кутьков Г.М., Грибов И.В., Перевозчикова Н.В. Балластирование сельскохозяйственных тракторов // Тракторы и сельхозмашины. 2017. N9. С. 52-60.; Шутенко В.В., Перевозчикова Н.В., Хорт Д.О. Сравнение эффективности использования балластных грузов и транспортно-технологических модулей для повышения тягово-сцепных свойств трактора // Инновации в сельском хозяйстве. 2019. N3(32). С. 162-168.; Sidorov V.N., Voinash S.A., Ivanov A.A., Petrov S.A. Modu­lar-Technological Scheme for Tractors of Traction Clas­ses 1.4. IOP Conference. Earth and Environmental Science. 2020. Vol. 666. 042048.; Сидоров М.В., Лавров А.В., Воронин В.А. Модульно-технологическая схема для тракторов тягового класса 1,4 // Электротехнологии и электрооборудование в АПК. 2019. N4(37). С. 57-62.; Сидоров В.Н. Корнюшин Ю.П., Луценко Г.М. Укрупненная математическая модель модульного энергетического средства // Электронный журнал: наука, техника и образование. 2017. N4(16). С. 64-69.; Шутенко В.В. Перевозчикова Н.В. Математическое моделирование и оценка эффективности приводов транспортно-технологического модуля // Электротехнологии и электрооборудование в АПК. 2020. Т. 67. N1(38). С. 87 92.; Шутенко В.В., Перевозчикова Н.В. Создание алгоритма управления индивидуальным приводом ведущих колес транспортно-технологического модуля // Агроинженерия. 2020. N5(99). С. 10-15.; Лавров А.В., Сидоров М.В., Воронин В.А. Технологический модуль для крестьянских фермерских хозяйств // Сельский механизатор. 2021. N3. С 5-7.; Годжаев З.Д., Шевцов В.Г., Лавров А.В., Ценч Ю.С., Зубина В.А. Стратегия машинно-технологической модернизации сельского хозяйства России до 2030 года (Прогноз) // Технический сервис машин. 2019. N4(137). C. 220 229.; Измайлов А.Ю., Кряжков В.М., Антышев Н.М., Елизаров В.П., Лобачевский Я.П., Сорокин Н.Т., Гурылев Г.С., Савельев Г.С., Сизов О.А., Шевцов В.Г. Концепция модернизации сельскохозяйственных тракторов и тракторного парка России на период до 2020 года. М.: ВИМ. 2012. 56 с.; https://www.vimsmit.com/jour/article/view/466

  8. 8
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 67, № 1 (2022); 101-107 ; Российский вестник перинатологии и педиатрии; Том 67, № 1 (2022); 101-107 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1586/1207; Лавров А.В., Банников А.В., Чаушева А.И., Дадали Е.Л. Генетика умственной отсталости. Российский вестник перинатологии и педиатрии. 2016; 61(6): 13–20.; Vissers L., de Ligt J., Gilissen C., Janssen I., Steehouwer M., de Vries P. et al. A de novo paradigm for mental retardation. Nat Publ Gr 2010; 42(12): 1109–1112. DOI:10.1038/ng.712; Muncke N., Jung C., Rüdiger H., Ulmer H., Roeth R., Hubert A. et al. Missense Mutations and Gene Interruption in PROSIT240, a Novel TRAP240-Like Gene, in Patients with Congenital Heart Defect (Transposition of the Great Arteries). Circulation 2003; 108(23): 2843–2850. DOI:10.1161/ 01.CIR.0000103684.77636.CD; Tørring P.M., Larsen M.J., Brasch-Andersen C., Krogh L.N., Kibæk M., Laulund L. et al. Is MED13L-related intellectual disability a recognizable syndrome? Eur J Med Genet 2019; 62(2): 129–136. DOI:10.1016/j.ejmg.2018.06.014; Wieczorek D. Autosomal dominant intellectual disability. Medgen 2018; 30(3): 318–322. DOI:10.1007/s11825–018– 0206–2; The Deciphering Developmental Disorders Study., Fitzgerald T., Gerety S., Jones W., Van Kogelenberg M., King D. et al. Largescale discovery of novel genetic causes of developmental disorders. Nature 2015; 519(7542): 223–228. DOI:10.1038/ nature14135; Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А. и др. Руководство по интерпретации данных последовательности днк человека, полученных методами массового параллельного секвенирования (mps) (редакция 2018, версия 2). Медицинская генетика 2019; 18(2): 3–23.; Smol T., Petit F., Piton A., Keren B., Sanlaville D., Afenjar A. et al. MED13L-related intellectual disability : involvement of missense variants and delineation of the phenotype. Neurogenetics 2018; 19(2): 93–103. DOI:10.1007/s10048–018– 0541–0; Asadollahi R., Zweier M., Gogoll L., Schiffmann R., Sticht H., Steindl K. et al. Genotype-phenotype evaluation of MED13L defects in the light of a novel truncating and a recurrent missense mutation. Eur J Med Genet 2017; 60(9): 451–464. DOI:10.1016/j.ejmg.2017.06.004; Aoi H., Mizuguchi T., Ceroni J.R., Kim V.E.H., Furquim I., Honjo R.S. et al. Comprehensive genetic analysis of 57 families with clinically suspected Cornelia de Lange syndrome. J Hum Genet 2019; 64(10): 967–978. DOI:10.1038/s10038– 019–0643-z; Utami K.H., Winata C.L., Hillmer A.M., Aksoy I., Long H.T., Liany H. et al. Impaired development of neural-crest cellderived organs and intellectual disability caused by MED13L haploinsufficiency. Hum Mutat 2014; 35(11): 1311–1320. DOI:10.1002/humu.22636; Yamamoto T., Shimojima K., Ondo Y., Shimakawa S., Okamoto N. MED13L haploinsufficiency syndrome: A de novo frameshift and recurrent intragenic deletions due to parental mosaicism. Am J Med Genet Part A 2017; 173(5): 1264– 1269. DOI:10.1002/ajmg.a.38168; Helderman-van Den Enden A.T., de Jong R., den Dunnen J.T, Houwing-Duistermaat J.J., Kneppers A.L., Ginjaar H.B. et al. Recurrence risk due to germ line mosaicism: Duchenne and Becker muscular dystrophy. Clin Genet 2009; 75(4): 465– 472. DOI:10.1111/j.1399–0004.2009.01173.x; https://www.ped-perinatology.ru/jour/article/view/1586

  9. 9
    Academic Journal

    المصدر: Medical Genetics; Том 20, № 5 (2021); 48-54 ; Медицинская генетика; Том 20, № 5 (2021); 48-54 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1912/1492; Sanabria A., Kowalski L.P., Shah J.P., et al. Growing incidence of thyroid carcinoma in recent years: Factors underlying overdiagnosis. Head Neck 2018;40:855-66. doi:10.1002/hed.25029; Haugen B.R., Alexander E.K., Bible K.C., et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133. doi:10.1089/thy.2015.0020; Cibas E.S., Ali S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2017;27(11):1341-1346. doi:10.1089/thy.2017.0500; Rogers W.A., Craig W.L., Entwistle V.A. Ethical issues raised by thyroid cancer overdiagnosis: A matter for public health?. Bioethics. 2017;31(8):590-598. doi:10.1111/bioe.12383; Rahman S.T., McLeod D.S.A., Pandeya N., et al. Understanding Pathways to the Diagnosis of Thyroid Cancer: Are There Ways We Can Reduce Over-Diagnosis?. Thyroid. 2019;29(3):341-348. doi:10.1089/thy.2018.0570; Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676-690. doi:10.1016/j.cell.2014.09.050; Kasaian K., Wiseman S.M., Walker B.A. et al. The genomic and transcriptomic landscape of anaplastic thyroid cancer: implications for therapy. BMC Cancer. 2015;15:984. Published 2015 Dec 18. doi:10.1186/s12885-015-1955-9; Kunstman J.W., Juhlin C.C., Goh G., et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318-2329. doi:10.1093/hmg/ddu749; Landa I., Ibrahimpasic T., Boucai L., et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052-1066. doi:10.1172/JCI85271; Swierniak M., Pfeifer A., Stokowy T., et al. Somatic mutation profiling of follicular thyroid cancer by next generation sequencing. Mol Cell Endocrinol. 2016;433:130-137. doi:10.1016/j.mce.2016.06.007; Yoo S.K., Lee S., Kim S.J., et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet. 2016;12(8):e1006239. Published 2016 Aug 5. doi:10.1371/journal.pgen.1006239; Pozdeyev N., Gay L.M., Sokol E.S., et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. Clin Cancer Res. 2018;24(13):3059-3068. doi:10.1158/1078-0432.CCR-18-0373; Li H., Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010; 26: 589-595.; Van der Auwera G.A., Carneiro M.O., Hartl C., et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33. doi:10.1002/0471250953.bi1110s43; Boeva V., Popova T., Lienard M., et al. Multi-factor data normalization enables the detection of copy number aberrations in amplicon sequencing data. Bioinformatics. 2014;30(24):3443-3450. doi:10.1093/bioinformatics/btu436; Li M.M., Datto M., Duncavage E.J., et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4-23. doi:10.1016/j.jmoldx.2016.10.002; Paschke R., Cantara S., Crescenzi A., et al. European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur Thyroid J. 2017;6(3):115-129. doi:10.1159/000468519; Melo M., da Rocha A.G., Vinagre J., et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 2014;99:E754-65. doi:10.1210/jc.2013-3734; Bournaud C., Descotes F., Decaussin-Petrucci M., et al. TERT promoter mutations identify a high-risk group in metastasis-free advanced thyroid carcinoma. Eur J Cancer. 2019;108:41-49. doi:10.1016/j.ejca.2018.12.003; Karunamurthy A., Panebianco F., Hsiao S.J., et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;23(4):295-301. doi:10.1530/ERC-16-0043; https://www.medgen-journal.ru/jour/article/view/1912

  10. 10
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 61, № 6 (2016); 13-20 ; Российский вестник перинатологии и педиатрии; Том 61, № 6 (2016); 13-20 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2016-61-6

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/410/433; Leonard H., Wen X. The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment Retard Dev Disabil Res Rev 2002; 8: 117–134.; King B.H., Toth K.E., Hodapp R.M., Dykens E.M. Intellectual Disability. In: Comprehensive Textbook of Psychiatry. B.J. Sadock, V.A. Sadock, P. Ruiz (eds). 9th ed. Philadelphia: Lippincott Williams & Wilkins, 2009; 3444–3474.; Международная статистическая классификация болезней и проблем, связанных со здоровьем. 10-й пересмотр. ВОЗ, Женева. М.: Медицина, 1995; 1: 373– 375. (International Statistical Classification of Diseases and Related Health Problems. WHO, Geneva. Moscow: Meditsina, 1995; 1: 373–375. (in Russ.)); Komor A.C., Kim Y.B., Packer M.S. et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 61: 5985–5991.; Schaefer G.B., Bodensteiner J.B. Evaluation of the child with idiopathic mental retardation. Pediatr Clin North Am 1992; 39: 929–943.; Curry C.J., Stevenson R.E., Aughton D. et al. Evaluation of mental retardation: recommendations of a Consensus Conference: American College of Medical Genetics. Am J Med Genet 1997; 72: 468–477.; Armatas V. Mental retardation: definitions, etiology, epidemiology and diagnosis. J Sport Health Res 2009; 1: 2: 112–122.; Daily D.K., Ardinger H.H., Holmes G.E. Identification and evaluation of mental retardation. Am Fam Phys 2000; 61: 1059–1067.; McLaren J., Bryson S.E. Review of recent epidemiological studies of mental retardation: prevalence, associated disorders, and etiology. Am J Ment Retard 1987; 92: 243–254.; Stevenson R.E., Schwartz C.E., Schroer R.J. Emergence of the concept of X-linked mental retardation. In: X-linked mental retardation. R.E. Stevenson, C.E. Shwartz, R.J. Schroer. New York: Oxford University Press, 2000; 23–67.; Karam S.M., Riegel M., Segal S.L. et al. Genetic causes of intellectual disability in a birth cohort: a population-based study. Am J Med Genet A 2015; 167: 1204–1214.; Shashi V., McConkie-Rosell A., Rosell B. et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med 2014; 16: 176–182.; González G., Raggio V., Boidi M. et al. Advances in the identification of the aetiology of mental retardation. Rev Neurol 2013; 57: Suppl 1: S75–83.; Moeschler J.B., Shevell M. American Academy of Pediatrics Committee on Genetics. Clinical genetic evaluation of the child with mental retardation or developmental delays. Pediatrics 2006; 117: 2304–2316.; Chelly J., Khelfaoui M., Francis F. et al. Genetics and patho-physiology of mental retardation. Eur J Hum Genet 2006; 14: 701–713.; Hunter A.G. Outcome of the routine assessment of patients with mental retardation in a genetics clinic. Am J Med Genet 2000; 90: 60–68.; Weijerman M.E., de Winter J.P. Clinical practice. The care of children with Down syndrome. Eur J Pediatr 2010; 169: 1445–1452.; Mather C.A., Qi Z., Wiita A.P. False positive cell free DNA screening for microdeletions due to non-pathogenic copy number variants. Prenat Diagn 2016; 36: 584–586.; van Bon B.W.M., Mefford H.C., Menten B. et al. Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet 2009; 46: 511–523.; Crockett D.J., Ahmed S.R., Sowder D.R. et al. Velopharyngeal dysfunction in children with Prader-Willi syndrome after ad-enotonsillectomy. Int J Pediatr Otorhinolaryngol 2014; 78: 10: 1731–1734.; Luk H.M., Lo I.F.M. Angelman syndrome in Hong Kong Chinese: A 20 years’ experience. Eur J Med Genet 2016; 59: 6-7: 315–319.; Flint J., Knight S. The use of telomere probes to investigate submicroscopic rearrangements associated with mental retardation. Curr Opin Genet Dev 2003; 13: 3: 310–316.; Chiurazzi P., Schwartz C.E., Gecz J., Neri G. XLMR genes: update 2007. Eur J Hum Genet 2008; 16: 4: 422–434.; Ropers H.-.H, Hamel B.C.J. X-linked mental retardation. Nat Rev Genet 2005; 6: 1: 46–57.; Chiurazzi P., Hamel B.C., Neri G. XLMR genes: update 2000. Eur J Hum Genet 2001; 9: 2: 71-81.; Lehrke R. Theory of X-linkage of major intellectual traits. Am J Ment Defic 1972; 76: 6: 611–619.; Amos-Landgraf J.M., Cottle A., Plenge R.M. et al. X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. Am J Hum Genet 2006; 79: 3: 493–499.; Plenge R.M., Stevenson R.A., Lubs H.A. et al. Skewed X-chromosome inactivation is a common feature of X-linked mental retardation disorders. Am J Hum Genet 2002; 71: 1: 168–173.; Hagberg B. Condensed points for diagnostic criteria and stages in Rett syndrome. Eur Child Adolesc Psychiatry 1997; 6: Suppl 1: 2–4.; Kozinetz C.A., Skender M.L., MacNaughton N. et al. Epidemiology of Rett syndrome: a population-based registry. Pediatrics 1993; 91: 2: 445–450.; Hagberg B. Rett’s syndrome: prevalence and impact on progressive severe mental retardation in girls. Acta Paediatr Scand 1985; 74: 3: 405–408.; Au K.-.S, Williams A.T., Gambello M.J., Northrup H. Molecular genetic basis of tuberous sclerosis complex: from bench to bedside. J Child Neurol 2004; 19: 9: 699–709.; Curatolo P., Moavero R., de Vries P.J. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol 2015; 14: 7: 733–745.; Khemir S., El Asmi M., Sanhaji H. et al. Phenylketonuria is still a major cause of mental retardation in Tunisia despite the possibility of treatment. Clin Neurol Neurosurg 2011; 113: 9: 727–730.; Najmabadi H., Hu H., Garshasbi M. et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011; 478: 7367: 57–63.; Musante L., Ropers H.H. Genetics of recessive cognitive disorders. Trends Genet 2014; 30: 1: 32–39.; Hoodfar E., Teebi A.S. Genetic referrals of Middle Eastern origin in a western city: inbreeding and disease profile. J Med Genet 1996; 33: 3: 212–215.; Hamamy H.A., Masri A.T., Al-Hadidy A.M., Ajlouni K.M. Consanguinity and genetic disorders. Profile from Jordan. Saudi Med J 2007; 28: 7: 1015–1017.; Online Mendelian Inheritance in Man, OMIM ®, McKuisick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD), 05/09/2016/http:/omim.org/; Kuleshov M.V., Jones M.R., Rouillard A.D. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016; 44: W1: W90–97.; Chen E.Y., Tan C.M., Kou Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 2013; 14: 128.; Oeseburg B., Dijkstra G.J., Groothoff J.W. et al. Prevalence of chronic health conditions in children with intellectual disability: a systematic literature review. Intellect Dev Disabil 2011; 49: 2: 59–85.; Дадали Е.Л., Шаркова И.В., Воскобоева У.Ю. Клини-ко-генетическая характеристика моногенных идиопатических генерализованных эпилепсий. Нервные болезни 2014; 1:15–21. (Dadali E.L., Sharkova I.V., Voskoboeva E.Yu. Clinical and genetic characteristics of monogenic idiopathic generalized epilepsies. Nervnye bolezni 2014; 1: 15–21. (in Russ.)); Shaffer L.G., Lupski J.R. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet 2000; 34: 297–329.; Trask B.J. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet 1991; 7: 5: 149–154.; Rao P.H., Houldsworth J., Dyomina K. et al. Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood 1998; 92: 1: 234–240.; Lu X.Y., Harris C.P., Cooley L. et al. The utility of spectral karyotyping in the cytogenetic analysis of newly diagnosed pediatric acute lymphoblastic leukemia. Leukemia 2002; 16: 11: 2222–2227.; Miller D.T., Adam M.P., Aradhya S. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86: 5: 749–764.; Manning M., Hudgins L. Professional Practice and Guidelines Committee. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med 2010; 12: 11: 742–745.; Gilissen C., Hehir-Kwa J.Y., Thung D.T. et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014; 511: 7509: 344–347.; https://www.ped-perinatology.ru/jour/article/view/410

  11. 11
    Academic Journal

    المصدر: Agricultural Machinery and Technologies; № 4 (2016); 9-14 ; Сельскохозяйственные машины и технологии; № 4 (2016); 9-14 ; 2073-7599

    وصف الملف: application/pdf

    Relation: https://www.vimsmit.com/jour/article/view/140/96; Шевцов В.Г., Лавров А.В. Условия восстановления тракторного парка сельскохозяйственного производства как системы с ограниченными ресурсами // Тракторы и сельхозмашины. 2012. N2. С. 36; Кряжков В.М., Годжаев З.А., Шевцов В.Г. и др. Проблемы формирования инновационного парка сельскохозяйственных тракторов России // Тракторы и сельхозмашины. 2015. N2. С. 43-46; Шевцов В.Г., Лавров А.В. База данных «Количественно-возрастной состав парка тракторов сельскохозяйственных организаций Российской Федерации по годам (за период 19902009 гг.) // Ресурсосберегающие технологии и техническое обеспечение производства зерна: Сб. докл. Междунар. науч.техн. конф. М.: ВИМ, 2010. С. 392-396; Statistisches Jahrbuch ü berErnärung, Landwirtschaft und Forsten der Bundesrepublik Deutschland. Münster: Landwirtschaftverlag GmbH, 2011. 55. Jahrgang. 602 pp; Márquez L. Tractores Agricolas: tecnologia y utilización. Madrid: B&H Grupo Editorial, 2012. pp. 844; Сизов О.А., Шевцов В.Г., Лавров А.В. База данных «Выбывание пашни России из активного сельскохозяйственного оборота в связи с изменениями количественно-возрастных характеристик тракторного парка (за период с 1990 по 2010 год)» // Модернизация сельскохозяйственного производства на базе инновационных машинных технологий и автоматизированных систем: Сборник докладов XII Международной научно-технической конференции, Углич, 1012 сентября 2012 г. Ч. 1. М: ВИМ, 2012. С. 98-106; Россия в цифрах 2011: Крат. стат. сб. / Росстат. - М., 2011. 558 с; Измайлов А.Ю., Кряжков В.М., Антышев Н.М., Елизаров В.П., Лобачевский Я.П., Сорокин Н.Т., Гурылев Г.С., Савельев Г.С., Сизов О.А., Шевцов В.Г. Концепция модернизации сельскохозяйственных тракторов и тракторного парка России на период до 2020 года. М.: ВИМ, 2012. 67 с; Шевцов В.Г., Лавров А.В. Формирование количественновозрастного состава тракторного парка в условиях убыточного сельскохозяйственного производства // Тракторы и сельхозмашины. 2012. N3. С. 36; Драгайцев В.И., Морозов Н.М. Методика экономической оценки технологий и машин в сельском хозяйстве. М.: ВИИЭСХ, 2010. 146 с. 11.; ГОСТ Р 530562008 «Техника сельскохозяйственная. Методы экономической оценки». М.: Стандартинформ, 2009. 19 с; Сборник нормативных материалов на работы, выполняемые машиннотехнологическими станциями (МТС). М.: Росинформагротех. 2001. 190 с; Зацаринный В.А., Зацаринный А.В. Повышение производственной эффективности энергетических средств на основе управления их техническим состоянием // Проблемы современной аграрной науки: Сборник докладов Международной заочной научной конференции, Красноярск, 15 октября 2008 г. Красноярск: КрасГАУ, 2008. С. 115; https://www.vimsmit.com/jour/article/view/140