يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"А. В. Кулебякин"', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The work was financially supported by Russian Science Foundation Grant No. 22-29-01220., Работа выполнена при финансовой поддержке гранта РНФ 22-29-01220.

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 4 (2023); 320-331 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 4 (2023); 320-331 ; 2413-6387 ; 1609-3577

    Relation: https://met.misis.ru/jour/article/downloadSuppFile/562/199; https://met.misis.ru/jour/article/downloadSuppFile/562/201; https://met.misis.ru/jour/article/downloadSuppFile/562/202; https://met.misis.ru/jour/article/downloadSuppFile/562/203; https://met.misis.ru/jour/article/downloadSuppFile/562/204; https://met.misis.ru/jour/article/downloadSuppFile/562/205; Basu R.N. Materials for solid oxide fuel cells. In: Basu S. (Eds). Recent trends in fuel cell science and technology. New York, NY: Springer; 2007. P. 286—331. https://doi.org/10.1007/978-0-387-68815-2_12; Clarke D.R., Oechsner M., Padture N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bulletin. 2012; 37(10): 891—898. https://doi.org/10.1557/mrs.2012.232; Yildirim H., Pachter R. Extrinsic dopant effects on oxygen vacancy formation energies in ZrO2 with implication for memristive device performance. ACS Applied Electronic Materials. 2019; 1(4): 467—477. https://doi.org/10.1021/acsaelm.8b00090; Hongsong Z., Jianguo L., Gang L., Zheng Z., Xinli W. Investigation about thermophysical properties of Ln2Ce2O7 (Ln = Sm, Er and Yb) oxides for thermal barrier coatings. Materials Research Bulletin. 2012; 47(12): 4181—4186. https://doi.org/10.1016/j.materresbull.2012.08.074; Guo L., Guo H., Ma G., Gong S., Xu H. Phase stability, microstructural and thermo-physical properties of BaLn2Ti3O10 (Ln = Nd and Sm) ceramics. Ceramics International. 2013; 39(6): 6743—6749. https://doi.org/10.1016/j.ceramint.2013.02.003; Wei X., Hou G., An Y., Yang P., Zhao X., Zhou H., Chen J. Effect of doping CeO2 and Sc2O3 on structure, thermal properties and sintering resistance of YSZ. Ceramics International. 2021; 47(5): 6875—6883. https://doi.org/10.1016/j.ceramint.2020.11.032; Liu X.Y., Wang X.Z., Javed A., Zhu C., Liang G.Y. The effect of sintering temperature on the microstructure and phase transformation in tetragonal YSZ and LZ/YSZ composites. Ceramics International. 2016; 42(2): 2456—2465. https://doi.org/10.1016/j.ceramint.2015.10.046; Evans A.G., Mumm D.R., Hutchinson J.W., Meier G.H., Pettit F.S. Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science. 2001; 46(5): 505—553. https://doi.org/10.1016/S0079-6425(00)00020-7; Vaßen R., Jarligo M.O., Steinke T., Mack D.E., Stöver D. Overview on advanced thermal barrier coatings. Surface and Coatings Technology. 2010; 205(4): 938—942. https://doi.org/10.1016/j.surfcoat.2010.08.151; Bahamirian M., Hadavi S.M.M., Farvizi M., Rahimipour M.R., Keyvani A. Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100 °C and 1300 °C for advanced TBC applications. Ceramics International. 2019; 45(6): 7344—7350. https://doi.org/10.1016/j.ceramint.2019.01.018; Bobzin K., Zhao L., Öte M., Königstein T. A highly porous thermal barrier coating based on Gd2O3–Yb2O3 co-doped YSZ. Surface and Coatings Technology. 2019; 366: 349—354. https://doi.org/10.1016/j.surfcoat.2019.03.064; Shi Q., Yuan W., Chao X., Zhu Z. Phase stability, thermal conductivity and crystal growth behavior of RE2O3 (RE = La, Yb, Ce, Gd) co-doped Y2O3 stabilized ZrO2 powder. Journal of Sol-Gel Science and Technology. 2017; 84(1): 341—348. https://doi.org/10.1007/s10971-017-4483-z; Chen D., Wang Q., Liu Y., Ning X. Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides (La2O3, Gd2O3, and Yb2O3) co-doped YSZ coatings. Surface and Coatings Technology. 2020; 403:v126387. https://doi.org/10.1016/j.surfcoat.2020.126387; Sharma A., Witz G., Howell P.C., Hitchman N. Interplay of the phase and the chemical composition of the powder feedstock on the properties of porous 8YSZ thermal barrier coatings. Journal of the European Ceramic Society. 2021; 41(6): 3706—3716. https://doi.org/10.1016/j.jeurceramsoc.2020.10.062; Bisson J.F., Fournier D., Poulain M., Lavigne O., Mévrel R. Thermal conductivity of yttria-zirconia single crystals, determined with spatially resolved infrared thermography. Journal of the American Ceramic Society. 2000; 83(8): 1993—1998. https://doi.org/10.1111/j.1151-2916.2000.tb01502.x; Fan W., Wang Z.Z., Bai Y., Che J.W., Wang R.J., Ma F., Tao W.Z., Liang G.Y. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications. Journal of the European Ceramic Society. 2018; 38(13): 4502—4511. https://doi.org/10.1016/j.jeurceramsoc.2018.06.002; Raghavan S., Wang H., Porter W.D., Dinwiddie R.B, Mayo M.J. The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scripta Materialia. 1998; 39(8): 1119—1125.; Loganathan A., Gandhi A.S. Toughness evolution in Gd-and Y-stabilized zirconia thermal barrier materials upon high-temperature exposure. Journal of Materials Science. 2017; 52: 7199—7206. https://doi.org/10.1007/s10853-017-0956-2; Ponnuchamy M.B., Gandhi A.S. Phase and fracture toughness evolution during isothermal annealing of spark plasma sintered zirconia co-doped with Yb, Gd and Nd oxides. Journal of the European Ceramic Society. 2015; 35(6): 1879—1887. https://doi.org/10.1016/j.jeurceramsoc.2014.12.027; Rebollo N.R., Gandhi A.S., Levi C.G. Phase stability issues in emerging TBC systems. High Temperature Corrosion and Materials Chemistry IV. 2003: 431—442.; Borik M.A., Chislov A., Kulebyakin A., Lomonova E., Milovich F., Myzina V., Ryabochkina P., Sidorova N., Tabachkova N. Phase composition and mechanical properties of Sm2O3 partially stabilized zirconia crystals. Crystals. 2022; 12(11): 1630. https://doi.org/10.3390/cryst12111630; Niihara K.A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. Journal of Materials Science Letters. 1983; 2: 221—223. https://doi.org/10.1007/BF00725625; Chien F.R., Ubic F.J., Prakash V., Heuer A.H. Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals. Acta Materialia. 1998; 46(6): 2151—2171. https://doi.org/10.1016/S1359-6454(97)00444-8; https://met.misis.ru/jour/article/view/562

  2. 2
    Academic Journal

    المساهمون: This work was carried out with financial support under RNF Grant 19-72-10113. The structure was studied at the Joint Use Center for Materials Science and Metallurgy of the National University of Science and Technology MISiS with financial support from the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-696)., Работа выполнена при финансовой поддержке гранта РНФ 19-72-10113. Исследование структуры выполнены на оборудовании ЦКП «Материаловедение и металлургия» Национальный исследовательский технологический университет «МИСиС» при финансовой поддержке Министерства науки и высшего образования РФ (Соглашение № 075-15-2021-696).

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 25, № 2 (2022); 115-124 ; Известия высших учебных заведений. Материалы электронной техники; Том 25, № 2 (2022); 115-124 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2022-2

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/463/365; Basu R.N. Materials for solid oxide fuel cells. In: Recent trends in fuel cell science and technology. New York, USA: Springer; 2007: 286—331. https://doi.org/10.1007/978-0-387-68815-2_12; Clarke D.R., Oechsner M., Padture N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bulletin. 2012; 37(10): 891—898. https://doi.org/10.1557/mrs.2012.232; Yildirim H., Pachter R. Extrinsic dopant effects on oxygen vacancy formation energies in ZrO2 with implication for memristive device performance. ACS Applied Electronic Materials. 2019; 1(4): 467—477. https://doi.org/10.1021/acsaelm.8b00090; Maccauro P.G. Zirconia as a ceramic biomaterial. Biomaterials. 1999; 20(1): 1—25. https://doi.org/10.1016/s0142-9612(98)00010-6; Chevalier J., Liens A., Reveron H., Zhang F., Reynaud P., Douillard T., Preiss L., Sergob V., Lughi V., Swaind M., Courtois N. Forty years after the promise of «ceramic steel?»: Zirconia-based composites with a metal-like mechanical behavior. Journal of the American Ceramic Society. 2020; 103(3): 1482—1513. https://doi.org/10.1111/jace.16903; Buzynin A.N., Grishina T.N., Kiselyov T.V., Kosuhina L.A., Kravchenko N.V., Lomonova E.E., Panov V.A., Sidorov M.S., Trishenkov M.A., Filachev A.M. Zirconia-based solid solutions — new materials of photoelectronics. Optical Memory & Neural Networks. 2009; 18: 312—321. https://doi.org/10.3103/S1060992X09040109; Hannink R.H.J., Kelly P.M., Muddle B.C. Transformation toughening in zirconia-containing ceramics. Journal of the American Ceramic Society. 2000; 83(3): 461—87. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x; Chevalier J., Gremillard L., Virkar A.V., Clarke D.R. The tetragonal-monoclinic transformation in zirconia: lessons learned and future. Journal of the American Ceramic Society. 2009; 92(9): 1901—1920. https://doi.org/10.1111/j.1551-2916.2009.03278.x; Basu B., Vleugels J., Biest O.V.D. Microstructure-toughness-wear relationship of tetragonal zirconia ceramics. Journal of the European Ceramic Society. 2004; 24(7): 2031—2040. https://doi.org/10.1016/S0955-2219(03)00355-8; Sharma A., Witz G., Howell P.C., Hitchman N. Interplay of the phase and the chemical composition of the powder feedstock on the properties of porous 8YSZ thermal barrier coatings. Journal of the European Ceramic Society. 2021; 41(6): 3706—3716. https://doi.org/10.1016/j.jeurceramsoc.2020.10.062; Fèvre M., Finel A., Caudron R., Mévrel R. Local order and thermal conductivity in yttria-stabilized zirconia. II. Numerical and experimental investigations of thermal conductivity. Physical review B. 2005; 72: 104118-1—104118-7. https://doi.org/10.1103/PhysRevB.72.104118; Hasselman D.P.H., Johnson L.F., Benten H.D., Syed R., Lee H.M., Swain M.V. Thermal diffusivity and conductivity of dense polycrystalline ZrO2 ceramics: a survey. American Ceramic Society Bulletin. 1987; 66(5): 799—806.; Wang X., Guo L., Zhang H., Gong S., Guo H. Structural evolution and thermal conductivities of (Gd1-xYbx)2Zr2O7 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings. Ceramics International. 2015; 41(10А): 12621—12625. https://doi.org/10.1016/j.ceramint.2015.06.090; Ma W., Gao Y., Zhang J., Bai Y., Jia R., Dong H., Wang R., Bao M. Phase composition, microstructure and thermophysical properties of the Srx(Zr0.9Y0.05Yb0.05)O1.95+x ceramics. Journal of the European Ceramic Society. 2021; 41(4): 2734—2745. https://doi.org/10.1016/j.jeurceramsoc.2020.12.031; Lakiza S.M., Hrechanyuk M.I., Red’ko V.P., Ruban O.K., Tyshchenko Ja.S., Makudera A.O., Dudnik O.V. The role of hafnium in modern thermal barrier coatings. Powder Metallurgy and Metal Ceramics. 2021; 60: 70—89. https://doi.org/10.1007/s11106-021-00217-1; Yuan J., Zhou X., Dong S., Jiang J., Deng L., Song W., Dingwell D.B., Cao X. Plasma sprayed 18 mol% YO1.5 stabilized hafnia as potential thermal barrier coating. Ceramics International. 2021; 47(10А): 14515—14526. https://doi.org/10.1016/j.ceramint.2021.02.031; Cahill D.G., Watson S.K., Pohl R.O. Lower limit to the thermal conductivity of disordered crystals. Physical Review B. 1992; 46: 6131—6140. https://doi.org/10.1103/PhysRevB.46.6131; Youngblood G.E., Rice R.W., Ingel R.I. Thermal diffusivity of partially and fully stabilized (yttria) zirconia single crystals. Journal of the American Ceramic Society. 1988; 71(4): 255–260. https://doi.org/10.1111/j.1151-2916.1988.tb05856.x; Bisson J.-F., Fournier D., Poulain M., Lavigne O., Meґvrel R. Thermal conductivity of yttria-zirconia single crystals determined with spatially resolved infrared thermography. Journal of the American Ceramic Society. 2000; 83(8): 1993—1998. https://doi.org/10.1111/j.1151-2916.2000.tb01502.x; Fan W., Wang Z., Bai Y., Che J.W., Wang R.J., Ma F., Tao W.Z., Liang G.Y. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications. Journal of the European Ceramic Society. 2018; 38(13): 4502—4511. https://doi.org/10.1016/j.jeurceramsoc.2018.06.002; Shi Q., Yuan W., Chao X., Zhu Z. Phase stability, thermal conductivity and crystal growth behavior of Re2O3 (Re = La, Yb, Ce, Gd) co-doped Y2O3 stabilized ZrO2 powder. Journal of Sol-Gel Science and Technology. 2017; 84: 341—348. https://doi.org/10.1007/s10971-017-4483-z; Chen D., Wang Q., Liu Y., Ning X. Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides (La2O3, Gd2O3, and Yb2O3) co-doped YSZ coatings. Surface & Coatings Technology. 2020; 403: 126387. https://doi.org/10.1016/j.surfcoat.2020.126387; Goff J.P., Hayes W., Hull S., Hutchings M.T., Clausen K.N. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Physical Review B. 1999; 59: 14202—14219. https://doi.org/10.1103/PhysRevB.59.14202; Li Y., Gong J., Xie Y., Chen Y. Analysis of non-linear Arrhenius behavior of ionic conduction in cubic zirconia stabilized with yttria and calcia. Journal of Materials Science Letters. 2002; 21: 157—159. https://doi.org/10.1023/A:1014253400747; Norberg S.T., Hull S., Ahmed I., Eriksson S.G., Marrocchelli D., Madden P.A., Li P., Irvine J.T.S. Structural disorder in doped zirconias. Part I: the Zr0.8Sc0.2-xYxO1.9 (0.0 ≤ x ≤ 0.2) system. Chemistry of Materials. 2011; 23(6): 1356—1364. https://doi.org/10.1021/cm102808k; Marrocchelli D., Madden P.A., Norberg S.T., Hull S. Structural disorder in doped zirconias. Part II: vacancy ordering effects and the conductivity maximum. Chemistry of Materials. 2011; 23(6): 1365—1373. https://doi.org/10.1021/cm102809t; Popov P.A., Solomennik V.D., Lomonova E.E., Borik M.A., Myzina V.A. Thermal conductivity of single crystal ZrO2–Y2O3 solid solutions in the temperature range 50–300 K. Physics of the Solid State. 2012; 54(3): 658—661. https://doi.org/10.1134/S1063783412030250; Borik M.A., Volkova T.V., Kulebyakin A.V., Kuritsyna I.E., Lomonova E.E., Myzina V.A., Milovich F.O., Ryabochkina P.A., Tabachkova N.Yu., Zentsova A.I., Popov P.A. Thermal conductivity of cubic ZrO2 single crystals stabilized with yttrium oxide. Physics of the Solid State. 2020; 62(1): 235—239. https://doi.org/10.1134/S1063783420010072; Кузьминов Ю.С., Ломонова Е.Е., Осико В.В. Тугоплавкие материалы из холодного тигля. М.: Наука;2004. 369 с.; Ruh R., Garrett H.J., Domagala R.F., Patel V.A. The system zirconia-scandia. Journal of the American Ceramic Society. 1977; 60(9-10): 399—403. https://doi.org/1010.1111/j.1151-2916.1977.tb15521.x; Yashima M., Kakihana M., Yoshimura M. Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ionics. 1996; 86–88(Pt 2): 1131—1149. https://doi.org/10.1016/0167-2738(96)00386-4; Chiba R., Yoshimura F., Yamaki J., Ishii T., Yonezawa T., Endou K. Ionic conductivity and morphology in Sc2O3 and Al2O3 doped ZrO2 films prepared by the sol-gel method. Solid State Ionics. 1997; 104(3-4): 259—266. https://doi.org/10.1016/S0167-2738(97)00423-2; Arachi Y., Suzuki M., Asai T., Emura S., Kamiyama T., Izumi F. High-temperature structure of Sc2O3-doped ZrO2. Solid State Ionics. 2004; 175(1-4): 119—121. https://doi.org/10.1016/j.ssi.2004.09.025; Huang H., Hsieh C.-H., Kim N., Stebbins J., Prinz F. Structure, local environment, and ionic conduction in scandia stabilized zirconia. Solid State Ionics. 2008; 179(27-32): 1441—1445. https://doi.org/10.1016/j.ssi.2008.02.061; Agarkov D.A., Borik M.A., Volkova T.V., Eliseeva G.M., Kulebyakin A.V., Larina N.A., Lomonova E.E., Myzina V.A., Ryabochkina P.A., Tabachkova N.Yu. Phase composition and local structure of scandia and yttria stabilized zirconia solid solution. Journal of Luminescence. 2020; 222: 117170. https://doi.org/10.1016/j.jlumin.2020.117170; Borik M.A., Gerasimov M.V., Kulebyakin A.V., Larina N.A., Lomonova E.E., Milovich F.O., Myzina V.A., Ryabochkina P.A., Sidorova N.V., Tabachkova N.Y. Structure and phase transformations in scandia, yttria, ytterbia and ceria doped zirconia base solid solutions during directional melt crystallization. Journal of Alloys and Compounds. 2020; 844: 156040. https://doi.org/10.1016/j.jallcom.2020.156040; Borik M.A., Kulebyakin A.V., Lomonova E.E., Myzina V.A., Popov P.A., Milovich F.O., Tabachkova N.Yu. Thermal conductivity of single-crystal ZrO2-based solid solutions stabilized with scandium and yttrium oxides in the temperature range 50–300 K. Physics of the Solid State. 2018; 60(12): 2672—2677. https://doi.org/10.1134/S1063783418120090; https://met.misis.ru/jour/article/view/463

  3. 3
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 19, № 3 (2016); 170-178 ; Известия высших учебных заведений. Материалы электронной техники; Том 19, № 3 (2016); 170-178 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2016-3

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/235/200; Zebarjadi, M. Perspectives on thermoelectrics: from fundamentals to device applications / M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, G. Chen // Energy and Environmental Science. − 2012. − V. 5. − P. 5147—5162. DOI:10.1039/C1EE02497C; Гогоци, Г. А. Изучение механических характеристик монокристаллов диоксида циркония, предназначенных для конструкционых применений / Г. А. Гогоци, Е. Е. Ломонова, В. В. Осико // Огнеупоры. − 1991. − № 8. − С. 14—17.; Ingel, R. P. Elastic Anisopropy in zirconia single crystals / R. P. Ingel, D. Lewis III // J. Amer. Ceram. Soc. − 1988. − V. 71, N 4. − P. 265—271. DOI:10.1111/j.1151-2916.1988.tb05858.x; Bolon, A. M. Raman spectroscopic observations of ferroelastic switching in ceria−stabilized zirconia / A. M. Bolon, M. M. Gentleman // J. Amer. Ceram. Soc. − 2011. − V. 94, N 12. − P. 4478—4482. DOI:10.1111/j.1551-2916.2011.04737.x; Mercer, C. On a ferroelastic mechanism governing the toughness of metastable tetragonal−prime (t′) yttria−stabilized zirconia / C. Mercer, J. R. Williams, D. R. Clarke, A. G. Evans // Proc. Royal Soc. A. − 2007. − V. 463. − P. 1393—1408. DOI:10.1098/rspa.2007.1829; Virkar, A. V. Pole of ferroelasticity in toughening of zirconia ceramics / A. V. Virkar // Key Engineering Materials Vols. − 1998. − V. 153–154. − P. 183—210. DOI:10.4028/www.scientific.net/KEM.153-154.183; Gaillard, Y. Nanoindentation of yttria−doped zirconia: Effect of crystallographic structure on deformation mechanisms / Y. Gaillard, M. Anglada, E. Jimenez−Piquea // J. Mater. Res. − 2009. − V. 24, iss. 3. − P. 719—727. DOI:10.1557/jmr.2009.0091; Hannink, R. H. J. Transformation toughening in zirconia− containing ceramics / R. H. J. Hannink, P. M. Kelly, B. C. Muddle / J. Amer. Ceram. Soc. − 2000. − V. 83, N 3. − P. 461—487. DOI:10.1111/j.1151-2916.2000.tb01221.x; Chevalier, J. The tetragonal−monoclinic transformation in zirconia: Lessons learned and future trends / J. Chevalier, L. Gremillardw, A. V. Virkar, D. R. Clarke // J. Amer. Ceram. Soc. − 2009. − V. 92, N 9. − P. 1901—1920. DOI:10.1111/j.1551-2916.2009.03278.x; Martinez−Fernandez, J. Microindentation−Induced Transformation in 3.5−mol%−yttria−partially−stabilized zirconia single crystals / J. Martinez−Fernandez, M. Jimenez−Melendo, A. Dominguez−Rodriguez, A. H. Heuer // J. Amer. Ceram. Soc. − 1991. − V. 75, N 5. − P. 1071—1081. DOI:10.1111/j.1151-2916.1991.tb04345.x; Morscher, G. N. Temperature Dependence of Hardness in yttria−stabilized zirconia single crystals / G. N. Morscher, P. Pirouz, A. H. Heuer // J. Amer. Ceram. Soc. − 1991. − V. 74, N 3. − P. 491—500. DOI:10.1111/j.1151-2916.1991.tb04049.x; Otsuka, K. Effects of dislocations on the oxygen ionic conduction in yttria stabilized zirconia / K. Otsuka, K. Matsunaga, A. Nakamura, S. Ii, A. Kuwabara, T. Yamamoto, Y. Ikuhara // Materials Transactions. − 2004. − V. 45, N 7. − P. 2042—2047. DOI:10.2320/matertrans.45.2042; Фролов, К. В. Исследование механических и трибологических свойств нанокристаллического материала нового поколения на основе диоксида циркония / К. В. Фролов, В. В. Осико, В. В. Алисин, М. А. Вишнякова, З. В. Игнатьева, Е. Е. Ломонова, А. Ф. Мельшанов, Г. В. Москвитин, В. Г. Павлов, М. С. Пугачев // Проблемы машиностроения и надежности машин. − 2006. − № 4. − C. 3—8.; Saiki, A. SEM observation of the stress−induced transformation by Vickers indentation in Y−PSZ crystals / A. Saiki, N. Ishizawa, N. Mizutani, M. Kato // J. Ceram. Soc. Jpn. − 1989. − V. 97, N 1. − P. 43—48. DOI:10.2109/jcersj.97.43; Gogotsi, G. Indentation fracture of Y2O3−partially stabilized ZrO2 crystals / G. Gogotsi, D. Ostrovoy / J. Mater. Sci. Lett. − 1995. − V. 14, iss. 20. − P. 1406—1409. DOI:10.1007/BF00462198; Muñoz, A. High temperature plastic anisotropy of Y2O3 partially stabilized ZrO2 single crystals / A. Muñoz, D. Gómez García, A. Domínguez−Rodríguez, F. Wakai // J. Europ. Ceram. Soc. − 2002. − V. 22, iss. 1. − P. 2609—2613. DOI:10.1016/S0955-2219(02)00123-1; Baither, D. Ferroelastic and plastic deformation of t’−zirconia single crystals / D. Baither, M. Bartsch, B. Baufeld, A. Tikhonovsky, A. Foitzik, M. Ruhle, U. Messerschmidt // J. Amer. Ceram. Soc. − 2001. − V. 84, N 8. − P. 1755—1762. DOI:10.1111/j.11512916.2001.tb00911.x; Borik, M. A. Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content / M. A. Borik, V. T. Bublik, A. V. Kulebyakin, E. E. Lomonova, F. O. Milovich, V. A. Myzina, V. V. Osiko, N. Yu. Tabachkova // J. Alloys and Compounds. − 2014. − V. 586. − P. 231—235. DOI:10.1016/j.jallcom.2013.01.126; Borik, M. A. Change in the phase composition, structure and mechanical properties of directed melt crystallised partially stabilised zirconia crystals depending on the concentration of Y2O3 / M. A. Borik, V. T. Bublik, A. V. Kulebyakin, E. E. Lomonova, F. O. Milovich, V. A. Myzina, V. V. Osiko, S. V. Seryakov, N. Y. Tabachkova // J. Europ. Ceram. Soc. − 2015. − V. 35, N 6. − P. 1889—1894. DOI:10.1016/j.jeurceramsoc.2014.12.012; Osiko, V. V. Synthesis of refractory materials by skull melting technique / V. V. Osiko, M. A. Borik, E. E. Lomonova // Springer Handbook of Crystal Growth. − Berlin; Heidelberg: Springer−Verlag, 2010. − Pt. B. − P. 433—477. DOI:10.1007/978-3-540-74761-1_14; Alisin, V. V. Zirconia−bazed nanocrystalline synthesized by directional crystallization from the melt / V. V. Alisin, M. A. Borik, E. E. Lomonova, A. F. Melshanov, G. V. Moskvitin, V. V. Osiko, V. A. Panov, V. G. Pavlov, M. A. Vishnjakova // Mater. Sci. Eng.: C. − 2005. − V. 25. − P. 577—583. DOI:10.1016/j.msec.2005.07.003; Борик, М. А. Особенности методики исследования кристаллов частично стабилизированного диоксида циркония / М. А. Борик, В. Т. Бублик, А. В. Кулебякин, Е. Е. Ломонова, В. А. Мызина, Ф. О. Милович, Н. Ю. Табачкова // Заводская лаборатория. Диагностика материалов. − 2012. − Т. 78, № 7. − С. 26—30.; Oliver, W. C. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments / W. C. Oliver, G. M. Pharr // J. Mater. Res. − 1992. − V. 7, N 6. − P. 1564—1583. DOI:10.1557/JMR.1992.1564; Jang, B.−K. Influence of low indentation load on Young’s modulus and hardness of 4 mol% Y2O3–ZrO2 by nanoindentation / B.−K. Jang // J. Alloys and Compounds. − 2006. − V. 426, iss. 1–2. − P. 312—315. DOI:10.1016/j.jallcom.2006.01.086; Deville, S. Atomic force microscopy study and qualitative analysis of martensite relief in zirconia / S. Deville, J. Chevalier, H. Attaoui // J. Amer. Ceram. Soc. − 2005. − V. 88, N 5. − P. 1261—1267. DOI:10.1111/j.1551-2916.2005.00174.x; https://met.misis.ru/jour/article/view/235

  4. 4
    Academic Journal

    المساهمون: Russian Federal Property Foundation (grants Nos. 14–29–04081 and 13–03–12408), Российский фонд фундаментальных исследований (№ 14−29−04081 и № 13−03−12408).

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 18, № 4 (2015); 246-254 ; Известия высших учебных заведений. Материалы электронной техники; Том 18, № 4 (2015); 246-254 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2015-4

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/222/187; Badwal, S. P. S. Scandia−zirconia electrolytes for intermediate temperature solid oxide fuel cell operation / S. P. S. Badwal, F. T. Ciacchi, D. Milosevic // Solid State Ionics. − 2000. − V. 136–137. − P. 91—99. DOI:10.1016/S0167−2738(00)00356-8; Kharton, V. V. Transport properties of solid oxide electrolyte ceramics: a brief review / V. V. Kharton, F. M. B. Marques, A. Atkinson // Solid State Ionics. − 2004. − V. 174, iss. 1–4. − P. 135—149. DOI:10.1016/j.ssi.2004.06.015; Fergus, J. W. Electrolytes for solid oxide fuel cells / J. W. Fergus // J. Power Sources. − 2006. − V. 162, iss. 1. − P. 30—40. DOI:10.1016/j.jpowsour.2006.06.062; Yokokawa, H. Solid oxide electrolytes for high temperature fuel cells / H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M. E. Brito // Electrochemistry. − 2005. − V. 73, iss. 1. − P. 20—30.; Politova, T. I. Investigation of scandia−yttria−zirconia system as an electrolyte material for intermediate temperature fuel cells— influence of yttria content in system (Y2O3)x(Sc2O3)(11−x)(ZrO2)89 / T. I. Politova, J. T. S. Irvine // Solid State Ionics. − 2004. − V. 168, N 1–2. − P. 153—165. DOI:10.1016/j.ssi.2004.02.007; Wakako, A. Fracture mechanism of scandia−doped zirconia / A. Wakako, D. Hanashiro, Y. Arai, J. Malzbender // Acta Materialia. − 2013. − V. 61, iss. 8. − P. 3082—3089. DOI:10.1016/j.actamat. 2013.01.068; Fujimori, H. Structural changes of scandia−doped zirconia solid solutions: rietveld analysis and saman scattering / H. Fujimori, M. Yashima, M. Kakihana, M. Yoshimura // J. Amer. Ceram. Soc. − 1998. − V. 81, iss. 11. − P. 2285—2293. DOI:10.1111/j.1151-2916.1998. tb02710.x 8. Simoncic, P. Systematics of phase transition and mixing energetics in rare earth / P. Simoncic, A. Navrotsky // J. Amer. Ceram. Soc. − 2007. − V. 90, iss. 7. − P. 2143—2150. DOI:10.1111/j.15512916.2007.01678.x; Spirin, A. Scandia−stabilized zirconia doped with yttria: Synthesis, properties, and ageing behavior / A. Spirin, V. Ivanov, A. Nikonov, A. Lipilin, S. Paranin, V. Khrustov, A. Spirina // Solid State Ionics. − 2012. − V. 225. − P. 448—452. DOI:10.1016/j. ssi.2012.02.022; Tataryn, T. Twin structure of the ZrO2−Sc2O3 crystal / T. Tataryn, D. Savytskii, C. Paulmann, U. Bismayer // Crystal Ra diation Physics and Chemistry. − 2009. − V. 78, iss. 10. − P. 101—104. DOI:10.1016/j.radphyschem.2009.03.088; Shobit, O. Electrical conductivity of 10 mol% Sc2O3–1 mol% M2O3–ZrO2 ceramics / O. Shobit, W. B. Najib, W. Chen, N. Bonanos // J. Amer. Ceram. Soc. − 2012. − V. 95, iss. 6. − P. 1965—1972. DOI:10.1111/j.1551-2916.2012.05126.x; Agarkov, D. A. Analysis of interfacial processes at the SOFC electrodes by in−situ Raman spectroscopy / D. A. Agarkov, I. N. Burmistrov, F. M. Tsybrov, I. I. Tartakovskii, V .V. Kharton, S. I. Bredikhin, V. V. Kveder // ECST. − 2015. − V. 68, iss. 1. − P. 2093— 2103. DOI:10.1149/06801.2093ecst; Yashima, M. Metastable−stable phase diagrams in the zirconia− containing systems utilized in solid−oxide fuel cell application / M. Yashima, M. Kakihana, M. Yoshimura // Solid State Ionics. − 1996. − V. 86–88, Pt 2. − P. 1131—1149. DOI:10.1016/0167−2738(96)00386-4; Chiba, R. Ionic conductivity and morphology in Sc2O3 and Al2O3 doped ZrO2 films prepared by the sol−gel method / R. Chiba, F. Yoshimura, J. Yamaki, T. Ishii, T. Yonezawa, K. Endou // Solid State Ionics. − 1997. − V. 104, iss. 3–4. − P. 259—266. DOI:10.1016/ S0167-2738(97)00423-2; Sheu, T.−S. Phase relationships in the ZrO2—Sc2O3 and ZrO2—In2O3 systems / T.−S. Sheu, J. Xu, T.−Y. Tien // J. Amer. Ceram. Soc. − 1993. − V. 76, iss. 8. − P. 2027—2032. DOI:10.1111/j.11512916.1993.tb08328.x; Кузьминов, Ю. С. Тугоплавкие материалы из холодного тигля / Ю. С. Кузьминов, Е. Е. Ломонова, В. В. Осико. − М. : Наука, 2004. − 372 с.; Borik, M. A. Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content / M. A. Borik, V. T. Bublik, A. V. Kulebyakin, E. E. Lomonova, F. O. Milovich, V. A. Myzina, V. V. Osiko, N. Y. Tabachkova // J. Alloys and Compounds. − 2014. − V. 586. − P. 231—235. DOI:10.1016/j.jallcom.2013.01.126; Андриевская, Е. Р. Фазовые равновесия в системах оксидов гафния, циркония, иттрия с оксидами редкоземельных элементов / Е. Р. Андриевская. − К. : Наукова думка, 2010. − 472 с.; Fujimori, H. −cubic phase transition of scandia− doped zirconia solid solution: Calorimetry, X−ray diffraction, and Raman scattering / H. Fujimori, M. Yashima, M. Kakihana, M. Yoshimura // J. Appl. Phys. − 2002. − V. 91, iss. 10. − P. 6493—6498. DOI:10.1063/1.1471576; Arachi, Y. Electrical conductivity of the ZrO − Ln2O3 (Ln=lanthanides) system / Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, N. Imanishai // Solid State Ionics. − 1999. − V. 121, N 1–4. − P. 133—139. DOI:10.1016/S0167-2738(98)00540-2; https://met.misis.ru/jour/article/view/222

  5. 5
    Academic Journal

    المساهمون: This work has been performed within project No. 16.1733.2014/K of the competitive part of the State task for universities subordinated to the Ministry of Education of Russia in the field of scientific activities for 2014—2016, Работа выполнена в рамках проекта №16.1733.2014/К конкурсной части государственного задания вузам, подведомственным Минобрнауки России, в сфере научной деятельности на 2014— 2016 годы.

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; № 1 (2014); 58-64 ; Известия высших учебных заведений. Материалы электронной техники; № 1 (2014); 58-64 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2014-1

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/21/17; Osiko, V. V. Synthesis of refractory materials by skull melting / V. V. Osiko, M. A. Borik, E. E. Lomonova // Technique Springer Handbook of crystal growth. – 2010. – N 353. – Chap. 14. – P. 432—477.; Badwal, S. P. S. Science and technology of zirconia V / S. P. S. Badwal, M. J. Bannister, R. H. J. Hannink. – Lancaster; Basel: Technomic Publ. Co., 1993. – 858 p.; Hannink, R. H. J. Transformation toughening in zirconia-containing ceramics / R. H. J. Hannink, P. M. Kelly, B. C. Muddle // J. Amer. Cer. Soc. – 2000. – V. 83, N 3. – P. 461—487.; Григорович, В. К. Твердость и микротвердость металлов / В. К. Григорович. – М. : Наука, 1976. – 230 с.; Borik, M. A. Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content / M. A. Borik, V. T. Bublik, A. V. Kulebyakin, E. E. Lomonova, F. O. Milovich, V. A. Myzina, V. V. Osiko, N. Y. Tabachkova // J. Alloys and Comp. – 2014. – V. 586. – P. 231—235.; Акимов Г. Я. Эволюция фазового состава и физико-химических свойств керамики ZrO2 — 4 (мол.) % / Г. Я. Акимов, Г. А. Маринин, В. Ю. Каменева // Физика твердого тела. – 2004. – Т. 46, № 2.; Yamashita, I. Phase separation and hydrothermal degradation of 3 mol. % Y2O3—ZrO2 ceramics / I. Yamashita, K. Tsukuma // J. Ceramic Soc. of Jap. – 2005. – V. 113, N 8. – P. 530—533.; Yamashita, I. Synchrotron X−ray study of the crystal structure and hydrothermal degradation of yttria-stabilized tetragonal zirconia polycrystal / I. Yamashita, K. Tsukuma // J. Amer. Ceram. Soc. – 2008. – V. 91, N 5. – P. 1634—1639.; Eichler, A. Tetragonal Y−doped zirconia: Structure and ion conductivity / A. Eichler // Phys. Rev. – 2001. – V. 64, N 17.; Ganduglia−Pirovano, M. V. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges / M. V. Ganduglia−Pirovano, A. Hofmann, J. Sauer // Surf. Sci. Rep. – 2007. N 63. – P. 219—270.; Safonov, A. A. Oxygen vacancies in tetragonal ZrO2: ab initio embedded cluster calculations / A. A. Safonov, A. A. Bagatur’yants, A. A. Korkin // Microelectronic Engineering. – 2003. – N 69. – P. 629—632.; Borik, M. A. Structure and mechanical properties of crystals of partially stabilized zirconia after thermal treatment / M. A. Borik, V. T. Bublik, A. V. Kulebyakin, E. E. Lomonova, F. O. Milovich, V. A. Myzina, V. V. Osiko, S. V. Seryakov, N. Y. Tabachkova // Phys. of the Solid State. – 2013. – V. 55, N 8. – P. 1690—1696.; https://met.misis.ru/jour/article/view/21