يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"А. А. Юшкова"', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The research was financially supported by the Russia, Исследование выполнено при финансовой поддержке Российского научного фонда (РНФ), проект № 23-25-00490. URL: www.rscf.ru/en/project/23-25-00490/

    المصدر: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 4 (2024); 458-472 ; Трансплантология; Том 16, № 4 (2024); 458-472 ; 2542-0909 ; 2074-0506

    وصف الملف: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/939/906; Levitsky J, Kandpal M, Guo K, Kleiboeker S, Sinha R, Abecassis M, et al. Donor-derived cell-free DNA levels predict graft injury in liver trans plant recipi ents. Am J Transplant. 2022;22(2):532–540. PMID: 34510731 https://doi.org/10.1111/ajt.16835; Avramidou E, Vasileiadou S, Antoniadis N. Liver transplantation and ddcfDNA: a small solution for a big problem. Livers. 2023;3(1):76–81. https://doi.org/10.3390/livers3010007; García-Fernández N, Macher HC, Suárez-Artacho G, Gómez-Bravo MÁ, Molinero P, Guerrero JM, et al. DonorSpecific Cell-Free DNA qPCR quantification as a noninvasive accurate biomarker for early rejection detection in liver transplantation. J Clin Med. 2022;12(1):36. PMID: 36614837 https://doi.org/10.3390/jcm12010036; Cheng AP, Cheng MP, Loy CJ, Lenz JS, Chen K, Smalling S, et al. Cell-free DNA profiling informs all major complications of hematopoietic cell transplantation. Proc Natl Acad Sci USA. 2022;119(4):e2113476118. PMID: 35058359 https://doi.org/10.1073/pnas.2113476118; Aljurf M, Abalkhail H, Alseraihy A, Mohamed SY, Ayas M, Alsharif F, et al. Chimerism analysis of cell-free DNA in patients treated with hematopoietic stem cell transplantation may predict early relapse in patients with hematologic malignancies. Biotechnol Res Int. 2016;2016:8589270. PMID: 27006832 https://doi.org/10.1155/2016/8589270; Pasca S, Guo MZ, Wang S, Stokvis K, Shedeck A, Pallavajjala A, et al. Cell-free DNA measurable residual disease as a predictor of postallogeneic hematopoietic cell transplant outcomes. Blood Adv. 2023;7(16):4660–4670. PMID: 37276081 https://doi.org/10.1182/bloodadvances.2023010416; Gardner McKinlay RJM, Sutherland GR, Shaffer LG, eds. Chromosome abnormalities and genetic counseling. Oxford University Press Inc.; 2011.; Lo YM, Corbetta N, Chamber lain PF, Rai V, Sargent IL, Red man CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–487. PMID: 9274585 https://doi.org/10.1016/S01406736(97)02174-0; Kazakov VI, Bozhkov VM, Linde VA, Repina MA, Mikhaˇіlov VM. Extracellular DNA in the blood of pregnant women. Cytology. 1995;37(3):232–236. (In Russ.).; Jeon YJ, Zhou Y, Li Y, Guo Q, Chen J, Quan S, et al. The feasibility study of noninvasive fetal trisomy 18 and 21 detection with semiconductor sequencing platform. PLoS One. 2014;9(10):e110240. PMID: 25329639 https://doi.org/10.1371/journal.pone.0110240; Thung DT, Beulen L, Hehir-Kwa J, Faas BH. Implementation of whole genome massively parallel sequencing for noninvasive prenatal testing in laboratories. Expert Rev Mol Diagn. 2015;15(1):111–124. PMID: 25347354 https://doi.org/10.1586/14737159.2015.973857; Grunt M, Hillebrand T, Schwarzenbach H. Clinical relevance of size selection of circulating DNA. Transl Cancer Res. 2018;7(Suppl 2):S171–84. https://doi.org/10.21037/tcr.2017.10.10; Schwarzenbach H, Pantel K. Circulating DNA as biomarker in breast cancer. Breast Cancer Res. 2015;17(1):e136. PMID: 26453190 https://doi.org/10.1186/s13058-015-0645-5; Page K, Hava N, Ward B, Brown J, Guttery DS, Ruangpratheep C, et al. Detection of HER2 amplification in circulating free DNA in patients with breast cancer. Br J Cancer. 2011;104(8):1342– 1348. PMID: 21427727 https://doi.org/10.1038/bjc.2011.89; Page K, Powles T, Slade MJ, Tamburo De Bella M, Walker RA, Coombes RC, et al. The importance of careful blood processing in isolation of cell-free DNA. Ann N Y Acad Sci. 2006;1075:313–317. PMID: 17108226 https://doi.org/10.1196/annals.1368.0; Trigg RM, Martinson LJ, Parpart-Li S, Shaw JA. Factors that influence quality and yield of circulating-free DNA: a systematic review of the methodology literature. Heliyon. 2018;4(7):e00699. PMID: 30094369 https://doi.org/10.1016/j.heliyon.2018.e00699; Barton DE. DNA prep for eukaryotic cells (macrophages)? 1995. Available at: http://www.bio.net/bionet/mm/methods-and-reagents/1995-July/031231.html [Accessed August 6, 2024].; Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C, et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quan titative polymerase chain reaction. Blood. 2002;99(12):4618–4625. PMID: 12036896 https://doi.org/10.1182/blood.V99.12.4618; Thierry AR, Messaoudi SEl, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35(3):347–376. PMID: 27392603 https://doi.org/10.1007/s10555-0169629-x; Fernández-Galán E, Badenas C, Fondevila C, Jiménez W, Navasa M, PuigButillé JA, et al. Monitoring of donorderived cell-free DNA by short tandem repeats: concentration of total cell-free DNA and fragment size for acute rejection risk assessment in liver transplantation. Liver Transpl. 2022;28(2):257– 268. PMID: 34407295 https://doi.org/10.1002/lt.26272; Zhao D, Zhou T, Luo Y, Wu C, Xu D, Zhong C, et al. Preliminary clinical experience applying donor-derived cell-free DNA to discern rejection in pediat ric liver transplant recipients. Sci Rep. 2021;11(1):1138. PMID: 33441886 https://doi.org/10.1038/s41598-020-80845-6; Andrikovics H, Őrfi Z, Meggyesi N, Bors A, Varga L, Kövy P, et al. Current trends in applications of circulatory microchimerism detection in transplantation. Int J Mol Sci. 2019;20(18):4450. PMID: 31509957 https://doi.org/10.3390/ijms20184450; Duque-Afonso J, Waterhouse M, Pfeifer D, Follo M, Duyster J, Bertz H, et al. Cell-free DNA characteristics and chimerism analysis in patients after allogeneic cell transplantation. Clin Biochem. 2018;52:137–141. PMID: 29180242 https://doi.org/10.1016/j.clin-biochem.2017.11.015; Waterhouse M, Pennisi S, Pfeifer D, Scherer F, Zeiser R, Duyster J, et al. Monitoring of measurable residual disease using circulating DNA after allogeneic hematopoietic cell transplantation. Cancers (Basel). 2022;14(14):3307. PMID: 35884368 https://doi.org/10.3390/cancers14143307; Смирнова С.Ю., Никулина Е.Е., Габеева Н.Г., Королева Д.А., Татарникова С.А., Смольянинова А.К. и др. Свободно циркулирующая ДНК в плазме у пациентов с диффузной В-крупноклеточной лимфомой и В-клеточной лимфомой высокой степени злокачественности («Double hit»/«Triple hit»). Клиническая онкогематология. 2023;16(2):200–208. https://doi.org/10.21320/2500-2139-2023-16-2200-208; Soloveva M, Solovev M, Yakutik I, Biderman B, Nikulina E, Risin skaya N, et al. RAS-ERK pathway genes mutations in the lesions from various tumour loci in multiple myeloma. EMJ Hematol. 2023;11(1):35–36. https://doi.org/10.33590/emjhematol/10305683; Catarino R, Ferreira MM, Rodrigues H, Coelho A, Nogal A, Sousa A, et al. Quantification of free circulating tumor DNA as a diagnostic marker for breast cancer. DNA Cell Biol. 2008;27(8):415–421. PMID: 18694299 https://doi.org/10.1089/dna.2008.0744; Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4(162):162ra154. PMID: 23197571 https://doi.org/10.1126/scitranslmed.3004742; Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–586. PMID: 24449238 https://doi.org/10.1200/jCO.2012.45.2011; Frattini M, Gallino G, Signoroni S, Balestra D, Lusa L, Battaglia L, et al. Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett. 2008;263(2):170–181. PMID: 18395974 https://doi.org/10.1016/j.canlet.2008.03.021; Chan KCA, Zhang J, Hui ABY, Wong N, Lau TK, Leung TN, et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem. 2004;50(1):88–92. PMID: 14709639 https://doi.org/10.1373/clinchem.2003.024893; Hou Y, Yang J, Deng F, Wang F, Peng H, Guo F, et al. Association between cell-free DNA fetal fraction and pregnant character: a retrospective cohort study of 27,793 maternal plasmas. Sci Rep. 2023;13(1):11420. PMID: 37452067 https://doi.org/10.1038/s41598-02338151-4; Benn P, Borrell A, Chiu RWK, Cuckle H, Dugoff L, Faas B, et al. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat Diagn. 2015;35(8):725–734. PMID: 25970088 https://doi.org/10.1002/pd.4608; Lu Y-S, Chen Y-Y, Ding S-Y, Zeng L, Shi L-C, Li Y-J, et al. Performance analy sis of non-invasive prenatal testing for trisomy 13, 18, and 21: a large-scale retrospective study (2018–2021). Heliyon. 2024;10(13):e33437. PMID: 39040373 https://doi.org/10.1016/j.heliyon.2024.e33437; Kwon H-J, Yun S, Joo J, Park D, Do W-J, Lee S, et al. Improving the accuracy of noninvasive prenatal testing through size-selection between fetal and maternal cfDNA. Prenat Diagn. 2023;43(13):1581–1592. PMID: 37975672 https://doi.org/10.1002/pd.6464; Шубина Е., Янкевич Т., Гольцов А.Ю., Мукосей И.С., Кочеткова Т.О., Быстрицкий А.А. и др. Определение доли плодовой ДНК в плазме крови беременной женщины с помощью высокопроизводительного секвенирования набора частотных однонуклеотидных полиморфизмов. Вестник российского государственного медицинского университета. 2018;7(3):30–34. https://doi.org/10.24075/brsmu.2018.031; https://www.jtransplantologiya.ru/jour/article/view/939

  2. 2
    Academic Journal

    المصدر: Vavilov Journal of Genetics and Breeding; Том 23, № 2 (2019); 190-198 ; Вавиловский журнал генетики и селекции; Том 23, № 2 (2019); 190-198 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1935/1199; Biedka S., Micic J., Wilson D., Brown H., Diorio-Toth L., Wool- ford J.L., Jr. Hierarchical recruitment of ribosomal proteins and as-sembly factors remodels nucleolar pre-60S ribosomes. J. Cell Biol. 2018;217(7):2503-2518. DOI 10.1083/jcb.201711037.; Bischof J., Maeda R.K., Hediger M., Karch F., Basler K. An optimized transgenesis system for Drosophila using germ-line-specific фС31 integrases. Proc. Natl. Acad. Sci. USA. 2007;104(9):3312-3317. DOI 10.1073/pnas.06115nm4.; Bonaccorsi S., Giansanti M.G., Gatti M. Spindle assembly in Dro-sophila neuroblasts and ganglion mother cells. Nat. Cell Biol. 2000; 2(1):54-56. DOI 10.1038/71378.; Chalkley G.E., Verrijzer C.P. Immuno-depletion and purification strate¬gies to study chromatin-remodeling factors in vitro. Methods En- zymol. 2004;377:421-442. DOI 10.1016/S0076-6879(03)77028-1.; Cui Z., DiMario P.J. RNAi knockdown of Nopp140 induces Minute-like phenotypes in Drosophila. Mol. Biol. Cell. 2007;18(6):2179- 2191. DOI 10.1091/mbc.e07-01-0074.; Draptchinskaia N., Gustavsson P., Andersson B., Pettersson M., Wil- lig T.N., Dianzani I., Ball S., Tchernia G., Klar J., Matsson H., Tentler D., Mohandas N., Carlsson B., Dahl N. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet. 1999;21(2):169-175. DOI 10.1038/5951.; Farley-Barnes K.I., McCann K.L., Ogawa L.M., Merkel J., Surov- tseva Y.V., Baserga S.J. Diverse regulators of human ribosome bio¬genesis discovered by changes in nucleolar number. Cell Rep. 2018; 22(7):1923-1934. DOI 10.1016/j.celrep.2018.01.056.; Fisher E.M.C., Beer-Romero P, Brown L.G., Ridley A., McNeil J.A., Lawrence J.B., Willard H.F., Bieber F.R., Page D.C. Homologous ribosomal protein genes on the human X and Y chromosomes: escape from X inactivation and possible implications for Turner syndrome. Cell. 1990;63(6):1205-1218.; Genuth N.R., Barna M. The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life. Mol. Cell. 2018;71(3):364-374. DOI 10.1016/j.molcel.2018.07.018.; Goudarzi K.M., Lindstrom M.S. Role of ribosomal protein mutations in tumor development. Int. J. Oncol. 2016;48(4):1313-1324. DOI 10.3892/ijo.2016.3387.; Gramates L.S., Marygold S.J., Santos G.D., Urbano J.M., Antonazzo G., Matthews B.B., Rey A.J., Tabone C.J., Crosby M.A., Emmert D.B., Falls K., Goodman J.L., Hu Y., Ponting L., Schroeder A.J., Stre¬lets V.B., Thurmond J., Zhou P., the FlyBase Consortium. FlyBase at 25: looking to the future. Nucleic Acids Res. 2017;45(D1):D663- D671. DOI 10.1093/nar/gkw1016.; Gupta V, Warner J.R. Ribosome-omics of the human ribosome. RNA. 2014;20(7):1004-1013. DOI 10.1261/rna.043653.113.; Henras A.K., Plisson-Chastang C., O’Donohue M.F., Chakraborty A., Gleizes P.E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA. 2015;6(2):225-242. DOI 10.1002/wrna.1269.; Hoskins R.A., Carlson J.W., Wan K.H., Park S., Mendez I., Galle S.E., Booth B.W., Pfeiffer B.D., George R.A., Svirskas R., Krzywinski M., Schein J., Accardo M.C., Damia E., Messina G., Mendez-Lago M., de Pablos B., Demakova O.V., Andreyeva E.N., Boldyreva L.V., Marra M., Carvalho A.B., Dimitri P., Villasante A., Zhimulev I.F., Rubin G.M., Karpen G.H., Celniker S.E. The Release 6 reference sequence of the Drosophila melanogaster genome. Genome Res. 2015;25(3):445-458. DOI 10.1101/gr.185579.114.; Huang W., Massouras A., Inoue Y., Peiffer J., Ramia M., Tarone A.M., Turlapati L., Zichner T., Zhu D., Lyman R.F., Magwire M.M., Blankenburg K., Carbone M.A., Chang K., Ellis L.L., Fernan¬dez S., Han Y., Highnam G., Hjelmen C.E., Jack J.R., Javaid M., Jayaseelan J., Kalra D., Lee S., Lewis L., Munidasa M., Ongeri F., Patel S., Perales L., Perez A., Pu L., Rollmann S.M., Ruth R., Saa- da N., Warner C., Williams A., Wu Y.Q., Yamamoto A., Zhang Y., Zhu Y., Anholt R.R., Korbel J.O., Mittelman D., Muzny D.M., Gibbs R.A., Barbadilla A., Johnston J.S., Stone E.A., Richards S., Deplancke B., Mackay T.F.C. Natural variation in genome architec¬ture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res. 2014;24(7):1193-1208. DOI 10.1101/gr.171546. 113.; Kearse M.G., Chen A.S., Ware V.C. Expression of ribosomal protein L22e family members in Drosophila melanogaster: rpL22-like is differentially expressed and alternatively spliced. Nucleic Acids Res. 2011;39(7):2701-2716. DOI 10.1093/nar/gkq1218.; Kongsuwan K., Yu Q., Vincent A., Frisardi M.C., Rosbash M., Len- gyel J.A., Merriam J. A Drosophila Minute gene encodes a ribo-somal protein. Nature. 1985;317(6037):555-558.; Kressler D., Hurt E., Bafiler J. A puzzle of life: crafting ribosomal sub¬units. Trends Biochem. Sci. 2017;42(8):640-654. DOI 10.1016/j. tibs.2017.05.005.; Lopes A.M., Miguel R.N., Sargent C.A., Ellis P.J., Amorim A., Af- fara N.A. The human RPS4 paralogue on Yq11.223 encodes a structurally conserved ribosomal protein and is preferentially ex-pressed during spermatogenesis. BMC Mol. Biol. 2010;11:33. DOI 10.1186/1471-2199-11-33.; Mackay T.F., Richards S., Stone E.A., Barbadilla A., Ayroles J.F., Zhu D., Casillas S., Han Y., Magwire M.M., Cridland J.M., Richard¬son M.F., Anholt R.R., Barron M., Bess C., Blankenburg K.P., Carbone M.A., Castellano D., Chaboub L., Duncan L., Harris Z., Javaid M., Jayaseelan J.C., Jhangiani S.N., Jordan K.W., Lara F., Lawrence F., Lee S.L., Librado P, Linheiro R.S., Lyman R.F., Mac¬key A.J., Munidasa M., Muzny D.M., Nazareth L., Newsham I., Pe¬rales L., Pu L.L., Qu C., Ramia M., Reid J.G., Rollmann S.M., Ro¬zas J., Saada N., Turlapati L., Worley K.C., Wu Y.Q., Yamamoto A., Zhu Y., Bergman C.M., Thornton K.R., Mittelman D., Gibbs R.A. The Drosophila melanogaster Genetic Reference Panel. Nature. 2012;482(7384):173-178. DOI 10.1038/nature10811.; Markstein M., Pitsouli C., Villalta C., Celniker S.E., Perrimon N. Ex-ploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat. Genet. 2008;40(4):476- 483. DOI 10.1038/ng.101.; Marygold S.J., Coelho C.M.A., Leevers S.J. Genetic analysis of RpL38 and RpL5, two Minute genes located in the centric hetero-chromatin of chromosome 2 of Drosophila melanogaster. Genetics. 2005;169(2):683-695. DOI 10.1534/genetics.104.034124.; Marygold S.J., Roote J., Reuter G., Lambertsson A., Ashburner M., Millburn G.H., Harrison P.M., Yu Z., Kenmochi N., Kaufman T.C., Leevers S.J., Cook K.R. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol. 2007;8(10):R216. DOI 10.1186/gb-2007-8-10-r216.; Mills E.W., Green R. Ribosomopathies: there’s strength in numbers. Science. 2017;358(6363):eaan2755. DOI 10.1126/science.aan2755.; Morata G., Ripoll P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 1975;42(2):211-221.; Moutinho-Pereira S., Stuurman N., Afonso O., Hornsveld M., Aguiar P., Goshima G., Vale R.D., Maiato H. Genes involved in centrosome- independent mitotic spindle assembly in Drosophila S2 cells. Proc. Natl. Acad. Sci. USA. 2013;110(49):19808-19813. DOI 10.1073/ pnas.1320013110.; Narla A., Ebert B.L. Ribosomopathies: human disorders of ribo¬some dysfunction. Blood. 2010;115(16):3196-3205. DOI 10.1182/ blood-2009-10-178129.; Neumuller R.A., Gross T., Samsonova A.A., Vinayagam A., Buck¬ner M., Founk K., Hu Y., Sharifpoor S., Rosebrock A.P., Andrews B., Winston F., Perrimon N. Conserved regulators of nucleolar size re¬vealed by global phenotypic analyses. Sci. Signal. 2013;6(289):ra70. DOI 10.1126/scisignal.2004145.; NMez Villacis L., Wong M.S., Ferguson L.L., Hein N., George A.J., Hannan K.M. New roles for the nucleolus in health and disease. BioEssays. 2018;40(5):e1700233. DOI 10.1002/bies.201700233.; O’Brochta D.A., Gomez S.P., Handler A.M. P element excision in Dro¬sophila melanogaster and related drosophilids. Mol. Gen. Genet. 1991;225(3):387-394.; Ogienko A.A., Yarinich L.A., Fedorova E.V., Lebedev M.O., Andrey-eva E.N., Pindyurin A.V., Baricheva E.M. New slbo-Gal4 driver lines for the analysis of border cell migration during Drosophi¬la oogenesis. Chromosoma. 2018;127(4):475-487. DOI 10.1007/ s00412-018-0676-7.; Olson M.O.J. Sensing cellular stress: another new function for the nucleolus? Sci. STKE. 2004;2004(224):pe10. DOI 10.1126/stke. 2242004pe10.; Pederson T. The plurifunctional nucleolus. Nucleic Acids Res. 1998; 26(17):3871-3876.; Robertson H.M., Preston C.R., Phillis R.W., Johnson-Schlitz D.M., Benz W.K., Engels W.R. A stable genomic source ofP element trans- posase in Drosophilamelanogaster. Genetics. 1988;118(3):461-470.; Rodriguez-Corona U., Sobol M., Rodriguez-Zapata L.C., Hozak P., Castano E. Fibrillarin from Archaea to human. Biol. Cell. 2015; 107(6):159-174. DOI 10.1111/boc.201400077.; Shi Z., Barna M. Translating the genome in time and space: spe-cialized ribosomes, RNA regulons, and RNA-binding proteins. Annu. Rev. Cell Dev. Biol. 2015;31:31-54. DOI 10.1146/annurev- cellbio-100814-125346.; Somma M.P., Ceprani F., Bucciarelli E., Naim V., De Arcangelis V., Piergentili R., Palena A., Ciapponi L., Giansanti M.G., Pellacani C., Petrucci R., Cenci G., Verni F., Fasulo B., Goldberg M.L., Di Cun- to F., Gatti M. Identification of Drosophila mitotic genes by com-bining co-expression analysis and RNA interference. PLoS Genet. 2008;4(7):e1000126. DOI 10.1371/journal.pgen.1000126.; Somma M.P., Fasulo B., Cenci G., Cundari E., Gatti M. Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Mol. Biol. Cell. 2002;13(7):2448-2460. DOI 10.1091/mbc.01- 12-0589.; Stage D.E., Eickbush T.H. Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res. 2007;17(12):1888- 1897. DOI 10.1101/gr.6376807.; Strunov A., Boldyreva L.V., Pavlova G.A., Pindyurin A.V., Gatti M., Kiseleva E. A simple and effective method for ultrastructural analy¬sis of mitosis in Drosophila S2 cells. MethodsX. 2016;3:551-559. DOI 10.1016/j.mex.2016.10.003.; Tavares A.A.M., Glover D.M., Sunkel C.E. The conserved mitotic ki-nase polo is regulated by phosphorylation and has preferred microtubule-associated substrates in Drosophila embryo extracts. EMBO J. 1996;15(18):4873-4883.; Tutuncuoglu B., Jakovljevic J., Wu S., Gao N., Woolford J.L., Jr. The N-terminal extension of yeast ribosomal protein L8 is involved in two major remodeling events during late nuclear stages of 60S ri- bosomal subunit assembly. RNA. 2016;22(9):1386-1399. DOI 10.1261/rna.055798.115.; van Nues R.W., Watkins N.J. Unusual C'/D' motifs enable box C/D snoRNPs to modify multiple sites in the same rRNA target region. Nucleic Acids Res. 2017;45(4):2016-2028.; Wehner K.A., Baserga S.J. The o70-like motif: a eukaryotic RNA binding domain unique to a superfamily of proteins required for ribosome biogenesis. Mol. Cell. 2002;9(2):329-339. DOI 10.1016/ S1097-2765(02)00438-0.; Xue S., Barna M. Specialized ribosomes: a new frontier in gene regula¬tion and organismal biology. Nat. Rev. Mol. Cell Biol. 2012;13(6): 355-369. DOI 10.1038/nrm3359.; Yang X., Mao F., Lv X., Zhang Z., Fu L., Lu Y., Wu W., Zhou Z., Zhang L., Zhao Y. Drosophila Vps36 regulates Smo trafficking in Hedgehog signaling. J. Cell Sci. 2013;126(Pt.18):4230-4238. DOI 10.1242/jcs.128603.; Zhang J., Harnpicharnchai P., Jakovljevic J., Tang L., Guo Y., Oeffin- ger M., Rout M.P., Hiley S.L., Hughes T., Woolford J.L., Jr. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev. 2007;21(20):2580- 2592. DOI 10.1101/gad.1569307.; https://vavilov.elpub.ru/jour/article/view/1935

  3. 3