-
1Academic Journal
المؤلفون: V. V. Tsukanov, N. E. Veselova, A. V. Vasyutin, A. Savchenko, J. L. Tonkikh, A. G. Borisov, В. В. Цуканов, Н. Е. Веселова, А. В. Васютин, А. А. Савченко, Ю. Л. Тонких, А. Г. Борисов
المصدر: Meditsinskiy sovet = Medical Council; № 15 (2024); 139–145 ; Медицинский Совет; № 15 (2024); 139–145 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: CD161, Opisthorchis felineus, liver fibrosis, T-helpers, T-cytotoxic cells, NCR Va7.2, фиброз печени, Т-хелперы, Т-цитотоксические клетки
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8580/7535; Nel I, Bertrand L, Toubal A, Lehuen A. MAIT cells, guardians of skin and mucosa? Mucosal Immunol. 2021;14(4):803–814. https://doi.org/10.1038/s41385-021-00391-w.; Mehta H, Lett MJ, Klenerman P, Filipowicz Sinnreich M. MAIT cells in liver inflammation and fibrosis. Semin Immunopathol. 2022;44(4):429–444. https://doi.org/10.1007/s00281-022-00949-1.; Legoux F, Salou M, Lantz O. MAIT Cell Development and Functions: the Microbial Connection. Immunity. 2020;53(4):710–723. https://doi.org/10.1016/j.immuni.2020.09.009.; Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: new guardians of the liver. Clin Transl Immunology. 2016;5(8):e98. https://doi.org/10.1038/cti.2016.51.; Balmer ML, Slack E, de Gottardi A, Lawson MA, Hapfelmeier S, Miele L et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med. 2014;6(237):237ra66. https://doi.org/10.1126/scitranslmed.3008618.; Bengtsson B, Maucourant C, Sandberg JK, Björkström NK, Hagström H. Evaluation of mucosal-associated invariant T-cells as a potential biomarker to predict infection risk in liver cirrhosis. PLoS ONE. 2024;19(5):e0294695. https://doi.org/10.1371/journal.pone.0294695.; Meermeier EW, Harriff MJ, Karamooz E, Lewinsohn DM. MAIT cells and microbial immunity. Immunol Cell Biol. 2018;96(6):607–617. https://doi.org/10.1111/imcb.12022.; Klenerman P, Hinks TSC, Ussher JE. Biological functions of MAIT cells in tissues. Mol Immunol. 2021;130:154–158. https://doi.org/10.1016/j.molimm.2020.12.017.; Amini A, Pang D, Hackstein CP, Klenerman P. MAIT Cells in Barrier Tissues: Lessons from Immediate Neighbors. Front Immunol. 2020;11:584521. https://doi.org/10.3389/fimmu.2020.584521.; Li J, Zhao H, Lv G, Aimulajiang K, Li L, Lin R, Aji T. Phenotype and function of MAIT cells in patients with alveolar echinococcosis. Front Immunol. 2024;15:1343567. https://doi.org/10.3389/fimmu.2024.1343567.; Ha SJ, West EE, Araki K, Smith KA, Ahmed R. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol Rev. 2008;223:317–333. https://doi.org/10.1111/j.1600-065X.2008.00638.x.; Kasprowicz V, Schulze Zur Wiesch J, Kuntzen T, Nolan BE, Longworth S, Berical A. et al. High level of PD-1 expression on hepatitis C virus (HCV)- specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J Virol. 2008;82(6):3154–3160. https://doi.org/10.1128/JVI.02474-07.; Penna A, Pilli M, Zerbini A, Orlandini A, Mezzadri S, Sacchelli L et al. Dysfunction and functional restoration of HCV-specific CD8 responses in chronic hepatitis C virus infection. Hepatology. 2007;45(3):588–601. https://doi.org/10.1002/hep.21541.; Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;571(7764):211–218. https://doi.org/10.1038/s41586-019-1325-x.; Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, Roelli P et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature. 2019;571(7764):265–269. https://doi.org/10.1038/s41586-019-1326-9.; Tanwar S, Rhodes F, Srivastava A, Trembling PM, Rosenberg WM. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J Gastroenterol. 2020;26(2):109–133. https://doi.org/10.3748/wjg.v26.i2.109.; Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol. 2023;15(4):809–819. https://doi.org/10.1016/j.jcmgh.2022.12.014.; Napier RJ, Adams EJ, Gold MC, Lewinsohn DM. The Role of Mucosal Associated Invariant T Cells in Antimicrobial Immunity. Front Immunol. 2015;6:344. https://doi.org/10.3389/fimmu.2015.00344.; Tan Z, Qian X, Jiang R, Liu Q, Wang Y, Chen C et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol. 2013;191(4):1835–1844. https://doi.org/10.4049/jimmunol.1203013.; Hegde P, Weiss E, Paradis V, Wan J, Mabire M, Sukriti S et al. Mucosalassociated invariant T cells are a profibrogenic immune cell population in the liver. Nat Commun. 2018;9(1):2146. https://doi.org/10.1038/s41467-018-04450-y.; Lett MJ, Mehta H, Keogh A, Jaeger T, Jacquet M, Powell K et al. Stimulatory MAIT cell antigens reach the circulation and are efficiently metabolised and presented by human liver cells. Gut. 2022;71(12):2526–2538. https://doi.org/10.1136/gutjnl-2021-324478.; Kong X, Feng D, Wang H, Hong F, Bertola A, Wang FS, Gao B. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology. 2012;56(3):1150–1159. https://doi.org/10.1002/hep.25744.; Zhang X, Xie X, Wang Y, Li W, Lin Z. Interleukin-26 promotes the proliferation and activation of hepatic stellate cells to exacerbate liver fibrosis by the TGF-β1/Smad2 signaling pathway. Int J Clin Exp Pathol. 2019;12(12):4271–4279. Available at: https://pubmed.ncbi.nlm.nih.gov/31933827.; He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M et al. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol. 2021;18(1):18–37. https://doi.org/10.1038/s41423-020-00580-w.
-
2Academic Journal
المؤلفون: A. V. Vasyutin, V. V. Tsukanov, N. E. Veselova, E. G. Gorchilova, J. L. Tonkikh, A. A. Savchenko, A. G. Borisov, А. В. Васютин, В. В. Цуканов, Н. Е. Веселова, Е. Г. Горчилова, Ю. Л. Тонких, А. А. Савченко, А. Г. Борисов
المصدر: Meditsinskiy sovet = Medical Council; № 15 (2024); 62–69 ; Медицинский Совет; № 15 (2024); 62–69 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: иннатный иммунитет, Opisthorchis felineus, neutrophils, liver fibrosis, chemiluminescence, innate immunity, нейтрофилы, фиброз печени, хемилюминесценция
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8573/7528; Karbysheva N, Nikonorova M, Matros O, Kiushkina I, Nemilostiva E, Choroshilova I et al. Clinical polymorphism in patients with Opisthorchis felineus infection in the Western Siberia. IDCases. 2021;24:e01064. https://doi.org/10.1016/j.idcr.2021.e01064.; Плотникова ЕЮ, Баранова ЕН. Проблемы лечения описторхозной инвазии. РМЖ. Медицинское обозрение. 2018;2(3):53–56. Режим доступа: https://www.rmj.ru/articles/gastroenterologiya/Problemy_lecheniyaopistorhoznoy_invazii.; Цуканов ВВ, Тонких ЮЛ, Гилюк АВ, Васютин АВ, Коленчукова ОА, Ржавичева ОС и др. Диагностика, клиника и лечение описторхоза. Доктор.Ру. 2019;8(163):49–53. https://doi.org/10.31550/1727-2378-2019-163-8-49-53.; Peters L, Burkert S, Grüner B. Parasites of the liver – epidemiology, diagnosis and clinical management in the European context. J Hepatol. 2021;75(1):202–218. https://doi.org/10.1016/j.jhep.2021.02.015.; Kovner AV, Pakharukova MY, Maksimova GA, Mordvinov VA. Characteristics of liver fibrosis associated with chronic Opisthorchis felineus infection in Syrian hamsters and humans. Exp Mol Pathol. 2019;110:104274. https://doi.org/10.1016/j.yexmp.2019.104274.; Thuwajit C, Thuwajit P, Uchida K, Daorueang D, Kaewkes S, Wongkham S, Miwa M. Gene expression profiling defined pathways correlated with fibroblast cell proliferation induced by Opisthorchis viverrini excretory/ secretory product. World J Gastroenterol. 2006;12(22):3585–3592. https://doi.org/10.3748/wjg.v12.i22.3585.; Tan S, Machrumnizar M. Fish and Food-Fatale: Food-borne Trematode Opisthorchis viverrini and Cholangiocarcinoma. Helminthologia. 2023;60(4):287–299. https://doi.org/10.2478/helm-2023-0036.; Sripa B, Brindley PJ, Mulvenna J, Laha T, Smout MJ, Mairiang E et al. The tumorigenic liver fluke Opisthorchis viverrini-multiple pathways to cancer. Trends Parasitol. 2012;28(10):395–407. https://doi.org/10.1016/j.pt.2012.07.006.; Zhang CY, Liu S, Yang M. Treatment of liver fibrosis: Past, current, and future. World J Hepatol. 2023;15(6):755–774. https://doi.org/10.4254/wjh.v15.i6.755.; Pakharukova MY, Lishai EA, Zaparina O, Baginskaya NV, Hong SJ, Sripa B, Mordvinov VA. Opisthorchis viverrini, Clonorchis sinensis and Opisthorchis felineus liver flukes affect mammalian host microbiome in a speciesspecific manner. PLoS Negl Trop Dis. 2023;17(2):e0011111. https://doi.org/10.1371/journal.pntd.0011111.; Kovner AV, Kapushchak YK, Zaparina O, Mordvinov VA, Pakharukova MY. Hepatic vascular changes associated with Opisthorchis felineus infection in Syrian hamsters and humans. Acta Trop. 2024;250:107100. https://doi.org/10.1016/j.actatropica.2023.107100.; Hata T, Hiromichi I. Biliary Parasitic Diseases Associated with Hepatobiliary Carcinoma. Visc Med. 2023;39(3-4):71–75. https://doi.org/10.1159/000531599.; Sivanand A, Talati D, Kalariya Y, Patel P, Gandhi SK. Associations of Liver Fluke Infection and Cholangiocarcinoma: A Scoping Review. Cureus. 2023;15(10):e46400. https://doi.org/10.7759/cureus.46400.; Qian M-B, Keiser J, Utzinger J, Zhou X-N. Clonorchiasis and opisthorchiasis: epidemiology, transmission, clinical features, morbidity, diagnosis, treatment, and control. Clin Microbiol Rev. 2024;37(1):e0000923. https://doi.org/10.1128/cmr.00009-23.; Reis ES, Mastellos DC, Hajishengallis G, Lambris JD. New insights into the immune functions of complement. Nat Rev Immunol. 2019;19(8):503–516. https://doi.org/10.1038/s41577-019-0168-x.; Zhang H, He F, Li P, Hardwidge PR, Li N, Peng Y. The Role of Innate Immunity in Pulmonary Infections. Biomed Res Int. 2021;2021:6646071. https://doi.org/10.1155/2021/6646071.; Orsini EM, Perelas A, Southern BD, Grove LM, Olman MA, Scheraga RG. Stretching the Function of Innate Immune Cells. Front Immunol. 2021;12:767319. https://doi.org/10.3389/fimmu.2021.767319.; Hu S, Liu X, Gao Y, Zhou R, Wei M, Dong J et al. Hepatitis B Virus Inhibits Neutrophil Extracellular Trap Release by Modulating Reactive Oxygen Species Production and Autophagy. J Immunol. 2019;202(3):805–815. https://doi.org/10.4049/jimmunol.1800871.; Lacy BE, Mearin F, Chang L, Chey WD, Lembo AJ, Simren M et al. Bowel Disorders. Gastroenterology. 2016;150(6):1393–1407. https://doi.org/10.1053/j.gastro.2016.02.031.; Stanghellini V, Chan FK, Hasler WL, Malagelada JR, Suzuki H, Tack J et al. Gastroduodenal Disorders. Gastroenterology. 2016;150(6):1380–1392. https://doi.org/10.1053/j.gastro.2016.02.011.; Liew PX, Kubes P. The Neutrophil’s Role During Health and Disease. Physiol Rev. 2019;99(2):1223–1248. https://doi.org/10.1152/physrev.00012.2018.; Hammerich L, Tacke F. Hepatic inflammatory responses in liver fibrosis. Nat Rev Gastroenterol Hepatol. 2023;20(10):633–646. https://doi.org/10.1038/s41575-023-00807-x.; Liu K, Wang FS, Xu R. Neutrophils in liver diseases: pathogenesis and therapeutic targets. Cell Mol Immunol. 2021;18(1):38–44. https://doi.org/10.1038/s41423-020-00560-0.; Moreau R, Périanin A, Arroyo V. Review of Defective NADPH Oxidase Activity and Myeloperoxidase Release in Neutrophils From Patients With Cirrhosis. Front Immunol. 2019;10:1044. https://doi.org/10.3389/fimmu.2019.01044.; Taylor NJ, Manakkat Vijay GK, Abeles RD, Auzinger G, Bernal W et al. The severity of circulating neutrophil dysfunction in patients with cirrhosis is associated with 90-day and 1-year mortality. Aliment Pharmacol Ther. 2014;40(6):705–715. https://doi.org/10.1111/apt.12886.; Boussif A, Rolas L, Weiss E, Bouriche H, Moreau R, Périanin A. Impaired intracellular signaling, myeloperoxidase release and bactericidal activity of neutrophils from patients with alcoholic cirrhosis. J Hepatol. 2016;64(5):1041–1048. https://doi.org/10.1016/j.jhep.2015.12.005.; Agraz-Cibrian JM, Segura-Ortega JE, Delgado-Rizo V, Fafutis-Morris M. Alterations in neutrophil extracellular traps is associated with the degree of decompensation of liver cirrhosis. J Infect Dev Ctries. 2016;10(5):512–517. https://doi.org/10.3855/jidc.7165.
-
3Academic Journal
المؤلفون: A. R. Dorotenko, I. M. Sukhanov, A. A. Savchenko, O. A. Dravolina, I. V. Belozertseva, А. Р. Доротенко, И. М. Суханов, А. А. Савченко, О. А. Драволина, И. В. Белозерцева
المساهمون: The study was supported by a grant from the Russian Science Foundation (Project № 23-25-00158)., Исследование выполнено при поддержке гранта Российского научного фонда (Проект № 23-25-00158).
المصدر: The Scientific Notes of the Pavlov University; Том 30, № 4 (2023); 32-42 ; Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова; Том 30, № 4 (2023); 32-42 ; 2541-8807 ; 1607-4181 ; 10.24884/1607-4181-2023-30-4
وصف الملف: application/pdf
Relation: https://www.sci-notes.ru/jour/article/view/1014/pdf_342; Bateup, H.S., Svenningsson, P., Kuroiwa, M., Gong, S., Nishi, A., Heintz, N., Greengard, P., 2008. Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat. Neurosci. 11, 932–939. https://doi.org/10.1038/nn.2153; Gerfen, C.R., Surmeier, D.J., 2011. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–66. https://doi.org/10.1146/annurev-neuro-061010-113641; Heiman, M., Schaefer, A., Gong, S., Peterson, J.D., Day, M., Ramsey, K.E., Suárez-Fariñas, M., Schwarz, C., Stephan, D.A., Surmeier, D.J., Greengard, P., Heintz, N., 2008. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–48. https://doi.org/10.1016/j.cell.2008.10.028; Tritsch, N.X., Sabatini, B.L., 2012. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76, 33–50. https://doi.org/10.1016/j.neuron.2012.09.023; Valjent, E., Bertran-Gonzalez, J., Hervé, D., Fisone, G., Girault, J.A., 2009. Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci. 32, 538–547. https://doi.org/10.1016/j.tins.2009.06.005; Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., Di Filippo, M., 2014. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat. Neurosci. 17, 1022–1030. https://doi.org/10.1038/nn.3743; Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., Costa, R.M., 2013. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242. https://doi.org/10.1038/nature11846; Friend, D.M., Kravitz, A. V., 2014. Working together: Basal ganglia pathways in action selection. Trends Neurosci. 37, 301–303. https://doi.org/10.1016/j.tins.2014.04.004; Jin, X., Tecuapetla, F., Costa, R.M., 2014. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430. https://doi.org/10.1038/nn.3632; Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., Sibley, D.R., 1990. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432. https://doi.org/10.1126/science.2147780; Bolger, G.B., 2021. The PDE-Opathies: Diverse Phenotypes Produced by a Functionally Related Multigene Family. Trends Genet. 37, 669–681. https://doi.org/10.1016/j.tig.2021.03.002; Baillie, G.S., Tejeda, G.S., Kelly, M.P., 2019. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat. Rev. Drug Discov. 18, 770–796. https://doi.org/10.1038/s41573-019-0033-4; Coskran, T.M., Morton, D., Menniti, F.S., Adamowicz, W.O., Kleiman, R.J., Ryan, A.M., Strick, C.A., Schmidt, C.J., Stephenson, D.T., 2006. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J. Histochem. Cytochem. 54, 1205–1213. https://doi.org/10.1369/jhc.6A6930.2006; Kelly, M.P., Adamowicz, W., Bove, S., Hartman, A.J., Mariga, A., Pathak, G., Reinhart, V., Romegialli, A., Kleiman, R.J., 2014. Select 3’,5’-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell. Signal. 26, 383–397. https://doi.org/10.1016/j.cellsig.2013.10.007; Lakics, V., Karran, E.H., Boess, F.G., 2010. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59, 367–374. https://doi.org/10.1016/j.neuropharm.2010.05.004; Seeger, T.F., Bartlett, B., Coskran, T.M., Culp, J.S., James, L.C., Krull, D.L., Lanfear, J., Ryan, A.M., Schmidt, C.J., Strick, C.A., Varghese, A.H., Williams, R.D., Wylie, P.G., Menniti, F.S., 2003. Immunohistochemical localization of PDE10A in the rat brain. Brain Res. 985, 113–126. https://doi.org/10.1016/S0006-8993(03)02754-9; Xie, Z., Adamowicz, W.O., Eldred, W.D., Jakowski, A.B., Kleiman, R.J., Morton, D.G., Stephenson, D.T., Strick, C.A., Williams, R.D., Menniti, F.S., 2006. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience 139, 597–607. https://doi.org/10.1016/j.neuroscience.2005.12.042; García, A.M., Redondo, M., Martinez, A., Gil, C., 2014. Phosphodiesterase 10 inhibitors: New disease modifying drugs for Parkinson’s disease? Curr. Med. Chem. 21, 1171–1187. https://doi.org/10.2174/0929867321666131228221749; DeMartinis, N., Lopez, R.N., Pickering, E.H., Schmidt, C.J., Gertsik, L., Walling, D.P., Ogden, A., 2019. A proof-of-concept study evaluating the phosphodiesterase 10A Inhibitor PF-02545920 in the adjunctive treatment of suboptimally controlled symptoms of schizophrenia. J. Clin. Psychopharmacol. 39, 318–328. https://doi.org/10.1097/JCP.0000000000001047; Kehler, J., Nielsen, J., 2011. PDE10A inhibitors: Novel therapeutic drugs for schizophrenia. Curr. Pharm. Des. 17, 137–150. https://doi.org/10.2174/138161211795049624; Macek, T.A., McCue, M., Dong, X., Hanson, E., Goldsmith, P., Affinito, J., Mahableshwarkar, A.R., 2019. A phase 2, randomized, placebo-controlled study of the efficacy and safety of TAK-063 in subjects with an acute exacerbation of schizophrenia. Schizophr. Res. 204, 289–294. https://doi.org/10.1016/j.schres.2018.08.028; Schmidt, C.J., Chapin, D.S., Cianfrogna, J., Corman, M.L., Hajos, M., Harms, J.F., Hoffman, W.E., Lebel, L.A., McCarthy, S.A., Nelson, F.R., Proulx-LaFrance, C., Majchrzak, M.J., Ramirez, A.D., Schmidt, K., Seymour, P.A., Siuciak, J.A., Tingley, F.D., Williams, R.D., Verhoest, P.R., Menniti, F.S., 2008. Preclinical characterization of selective phosphodiesterase 10A inhibitors: A new therapeutic approach to the treatment of schizophrenia. J. Pharmacol. Exp. Ther. 325, 681–690. https://doi.org/10.1124/jpet.107.132910; Siuciak, J.A., Chapin, D.S., Harms, J.F., Lebel, L.A., McCarthy, S.A., Chambers, L., Shrikhande, A., Wong, S., Menniti, F.S., Schmidt, C.J., 2006. Inhibition of the striatum-enriched phosphodiesterase PDE10A: A novel approach to the treatment of psychosis. Neuropharmacology 51, 386–396. https://doi.org/10.1016/j.neuropharm.2006.04.013; Megens, A.A.H.P., Hendrickx, H.M.R., Mahieu, M.M.A., Wellens, A.L.Y., de Boer, P., Vanhoof, G., 2014b. PDE10A inhibitors stimulate or suppress motor behavior dependent on the relative activation state of the direct and indirect striatal output pathways. Pharmacol. Res. Perspect. 2, 1–21. https://doi.org/10.1002/prp2.57; Sukhanov, I., Dorotenko, A., Fesenko, Z., Savchenko, A., Efimova, E. V., Mor, M.S., Belozertseva, I. V., Sotnikova, T.D., Gainetdinov, R.R., 2022a. Inhibition of PDE10A in a new rat model of severe dopamine depletion suggests new approach to non‐dopamine Parkinson’s disease therapy. Biomolecules 13, 9. https://doi.org/10.3390/biom13010009; Arakawa, K., Maehara, S., Yuge, N., Ishikawa, M., Miyazaki, Y., Naba, H., Kato, Y., Nakao, K., 2016. Pharmacological characterization of a novel potent, selective, and orally active phosphodiesterase 10A inhibitor, PDM-042 [(E)-4-(2-(2-(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)vinyl)-6-(pyrrolidin-1-yl)pyrimidin-4-yl)morpholine] in rats: potential. Pharmacol. Res. Perspect. 4, 1–12. https://doi.org/10.1002/prp2.241; Suzuki, K., Harada, A., Suzuki, H., Capuani, C., Ugolini, A., Corsi, M., Kimura, H., 2018. Combined treatment with a selective PDE10A inhibitor TAK-063 and either haloperidol or olanzapine at subeffective doses produces potent antipsychotic-like effects without affecting plasma prolactin levels and cataleptic responses in rodents. Pharmacol. Res. Perspect. 6, e00372. https://doi.org/10.1002/prp2.372; Langen, B., Dost, R., Egerland, U., Stange, H., Hoefgen, N., 2012. Effect of PDE10A inhibitors on MK-801-induced immobility in the forced swim test. Psychopharmacology (Berl). 221, 249–259. https://doi.org/10.1007/s00213-011-2567-y; Megens, A.A.H.P., Hendrickx, H.M.R., Hens, K.A., Fonteyn, I., Langlois, X., Lenaerts, I., Somers, M.V.F., De Boer, P., Vanhoof, G., 2014a. Pharmacology of JNJ-42314415, a centrally active phosphodiesterase 10A (PDE10A) inhibitor: A comparison of PDE10A inhibitors with D2 receptor blockers as potential antipsychotic drugs. J. Pharmacol. Exp. Ther. 349, 138–154. https://doi.org/10.1124/jpet.113.211904; Mango, D., Bonito-Oliva, A., Ledonne, A., Nisticò, R., Castelli, V., Giorgi, M., Sancesario, G., Fisone, G., Berretta, N., Mercuri, N.B., 2014. Phosphodiesterase 10A controls D1-mediated facilitation of GABA release from striato-nigral projections under normal and dopamine-depleted conditions. Neuropharmacology 76, 127–136. https://doi.org/10.1016/j.neuropharm.2013.08.010; Threlfell, S., Sammut, S., Menniti, F.S., Schmidt, C.J., West, A.R., 2009. Inhibition of phosphodiesterase 10A increases the responsiveness of striatal projection neurons to cortical stimulation. J. Pharmacol. Exp. Ther. 328, 785–795. https://doi.org/10.1124/jpet.108.146332; Lee, S.J., Lodder, B., Chen, Y., Patriarchi, T., Tian, L., Sabatini, B.L. 2021. Cell-Type-Specific Asynchronous Modulation of PKA by Dopamine in Learning. Nature 590, 451–456. https://doi.org/10.1038/s41586-020-03050-5; Martel, J.C., Gatti McArthur, S., 2020. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front. Pharmacol. 11, 1003. https://doi.org/10.3389/fphar.2020.01003; Sukhanov, I., Dorotenko, A., Savchenko, A., Dravolina, O.A., 2022b. Tolerance to a paradoxical increase in motor activity induced by PDE10A inhibition under hypodopaminergic conditions [WWW Document]. Authorea. https://doi.org/10.22541/au.166024983.30383141/v1; Hornykiewicz, O., 2017. L-DOPA. J. Parkinsons. Dis. 7, S3–S10. https://doi.org/10.3233/JPD-179004; Gancher, S.T., Woodward, W.R., Nutt, J.G., 1996. Apomorphine tolerance in Parkinson’s disease: Lack of a dose effect. Clin. Neuropharmacol. 19, 59–64. https://doi.org/10.1097/00002826-199619010-00004; Nutt, J.G., Carter, J.H., Woodward, W.R., 1994. Effect of brief levodopa holidays on the short-duration response to levodopa: Evidence for tolerance to the antiparkinsonian effects. Neurology 44, 1617–1617. https://doi.org/10.1212/WNL.44.9.1617; Lewis, M.M., Huang, X., Nichols, D.E., Mailman, R.B., 2008. D1 and functionally selective dopamine agonists as neuroprotective agents in Parkinsons disease. CNS Neurol. Disord. - Drug Targets 5, 345–353. https://doi.org/10.2174/187152706777452245; Mailman, R., Huang, X., Nichols, D.E., 2001. Parkinson’s disease and D1 dopamine receptors. Curr. Opin. Investig. Drugs 2, 1582–1591; Zhang, J., Xiong, B., Zhen, X., Zhang, A., 2009. Dopamine D1 receptor ligands: where are we now and where are we going. Med. Res. Rev. 29, 272–294. https://doi.org/10.1002/med.20130; Lewis, M.M. Van Scoy Sol De Jesus, L.J., Hakun, J.G., Eslinger, P.J., Fernandez-Mendoza, J., Yang Yang, L. K., Snyder, B.L., Loktionova, N., Duvvuri, S., Gray, D.L., Huang, X., Mailman, R.B. 2023. Dopamine D1 Agonists: First Potential Treatment for Late-Stage Parkinson’s Disease. Biomolecules. - 13. 829. https://doi.org/10.3390/biom13050829; Threlfell, S., West, A.R., 2013. Modulation of striatal neuron activity by cyclic nucleotide signalling and phosphodiesterase inhibition. Basal Ganglia 3, 137–146. https://doi.org/10.1016/j.baga.2013.08.001; Hufgard, J.R., Williams, M.T., Skelton, M.R., Grubisha, O., Ferreira, F.M., Sanger, H., Wright, M.E., Reed-Kessler, T.M., Rasmussen, K., Duman, R.S., Vorhees, C. V., 2017. Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a. Psychopharmacology (Berl). 234, 1803–1813. https://doi.org/10.1007/s00213-017-4587-8; https://www.sci-notes.ru/jour/article/view/1014
-
4Academic Journal
المؤلفون: V. V. Tsukanov, M. A. Cherepnin, A. A. Savchenko, A. V. Vasyutin, E. V. Kasparov, A. G. Borisov, V. D. Belenyuk, Ju. L. Tonkikh, В. В. Цуканов, М. А. Черепнин, А. А. Савченко, А. В. Васютин, Э. В. Каспаров, А. Г. Борисов, В. Д. Беленюк, Ю. Л. Тонких
المصدر: Meditsinskiy sovet = Medical Council; № 18 (2023); 44-51 ; Медицинский Совет; № 18 (2023); 44-51 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: воспалительная активность, genotypes 1 and 3 of HCV, NK cells, liver fibrosis, viral load, inflammatory activity, 1-й и 3-й генотипы хронического вирусного гепатита С, NK-клетки, фиброз печени, вирусная нагрузка
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7854/6975; Njiomegnie GF, Read SA, Fewings N, George J, McKay F, Ahlenstiel G. Immunomodulation of the Natural Killer Cell Phenotype and Response during HCV Infection. J Clin Med. 2020;9(4):1030. https://doi.org/10.3390/jcm9041030.; Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975;16(2):216–229. https://doi.org/10.1002/ijc.2910160204.; Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5(2):112–117. https://doi.org/10.1002/eji.1830050208.; Goyos A, Fort M, Sharma A, Lebrec H. Current Concepts in Natural Killer Cell Biology and Application to Drug Safety Assessments. Toxicol Sci. 2019;170(1):10–19. https://doi.org/10.1093/toxsci/kfz098.; Mandal A, Viswanathan C. Natural killer cells: In health and disease. Hematol Oncol Stem Cell Ther. 2015;8(2):47–55. https://doi.org/10.1016/j.hemonc.2014.11.006.; Howell J, Visvanathan K. The role of natural killer cells in hepatitis C infection. Antivir Ther. 2013;18(7):853–865. https://doi.org/10.3851/IMP2565.; Björkström NK, Strunz B, Ljunggren HG. Natural killer cells in antiviral immunity. Nat Rev Immunol. 2022;22(2):112–123. https://doi.org/10.1038/s41577-021-00558-3.; Mele D, Oliviero B, Mantovani S, Ludovisi S, Lombardi A, Genco F et al. Adaptive Natural Killer Cell Functional Recovery in Hepatitis C Virus Cured Patients. Hepatology. 2021;73(1):79–90. https://doi.org/10.1002/hep.31273.; Wei Y, Bingyu W, Lei Y, Xingxing Y. The antifibrotic role of natural killer cells in liver fibrosis. Exp Biol Med (Maywood). 2022;247(14):1235–1243. https://doi.org/10.1177/15353702221092672.; Yoon JC, Yang CM, Song Y, Lee JM. Natural killer cells in hepatitis C: Current progress. World J Gastroenterol. 2016;22(4):1449–1460. https://doi.org/10.3748/wjg.v22.i4.1449.; European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2016. J Hepatol. 2017;66(1):153–194. https://doi.org/10.1016/j.jhep.2016.09.001.; European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2018. J Hepatol. 2018;69(2):461–511. https://doi.org/10.1016/j.jhep.2018.03.026.; Ludwig J. Terminology of chronic hepatitis, hepatic allograft rejection, and nodular lesions of the liver: summary of recommendations developed by an international working party, supported by the World Congresses of Gastroenterology, Los Angeles, 1994. Am J Gastroenterol. 1994;89(8 Suppl.):177–181. Available at: https://pubmed.ncbi.nlm.nih.gov/8048409.; Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet. 1997;349(9055):825–832. https://doi.org/10.1016/s0140-6736(96)07642-8.; Кудрявцев ИВ, Субботовская АИ. Опыт измерения параметров иммунного статуса с использованием шести-цветного цитофлуориметрического анализа. Медицинская иммунология. 2015;17(1):19–26. Режим доступа: https://www.mimmun.ru/mimmun/article/viewFile/803/747.; Sutherland DR, Ortiz F, Quest G, Illingworth A, Benko M, Nayyar R, Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B Clin Cytom. 2018;94(4):637–651. https://doi.org/10.1002/cyto.b.21626.; Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–640. https://doi.org/10.1016/s1471-4906(01)02060-9.; Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461–469. https://doi.org/10.1182/blood-2007-09-077438.; Poli A, Michel T, Thérésine M, Andrès E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology. 2009;126(4):458–465. https://doi.org/10.1111/j.1365-2567.2008.03027.x.; Yan Y, Zeng J, Xing L, Li C. Extra- and Intra-Cellular Mechanisms of Hepatic Stellate Cell Activation. Biomedicines. 2021;9(8):1014. https://doi.org/10.3390/biomedicines9081014.; Zhang Y, Wu Y, Shen W, Wang B, Yuan X. Crosstalk between NK cells and hepatic stellate cells in liver fibrosis (Review). Mol Med Rep. 2022;25(6):208. https://doi.org/10.3892/mmr.2022.12724.; Spengler U, Nattermann J. Immunopathogenesis in hepatitis C virus cirrhosis. Clinical Science. 2007;112(3):141–155. https://doi.org/10.1042/CS20060171.; Gao B, Radaeva S, Jeong WI. Activation of natural killer cells inhibits liver fibrosis: a novel strategy to treat liver fibrosis. Expert Rev Gastroenterol Hepatol. 2007;1(1):173–180. https://doi.org/10.1586/17474124.1.1.173.; Tian Z, Chen Y, Gao B. Natural killer cells in liver disease. Hepatology. 2013;57(4):1654–1662. https://doi.org/10.1002/hep.26115.; Cheent K, Khakoo SI. Natural killer cells and hepatitis C: action and reaction. Gut. 2011;60(2):268–278. https://doi.org/10.1136/gut.2010.212555.; Ahlenstiel G, Titerence RH, Koh C, Edlich B, Feld JJ, Rotman Y et al. Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon-alfa-dependent manner. Gastroenterology. 2010;138(1):325–335.e1-e2. https://doi.org/10.1053/j.gastro.2009.08.066.; Edlich B, Ahlenstiel G, Zabaleta Azpiroz A, Stoltzfus J, Noureddin M, Serti E et al. Early changes in interferon signaling define natural killer cell response and refractoriness to interferon-based therapy of hepatitis C patients. Hepatology. 2012;55(1):39–48. https://doi.org/10.1002/hep.24628.; Черепнин МА, Цуканов ВВ, Савченко АА, Васютин АВ, Тонких ЮЛ, Борисов АГ. Клинические проявления у пациентов с 1 и 3 генотипом вирусного гепатита «С» в зависимости от выраженности фиброза печени. Доктор.Ру. 2023;22(2):32–38. https://doi.org/10.31550/1727-2378-2023-22-2-32-38.; Черепнин МА, Цуканов ВВ, Савченко АА, Васютин АВ, Каспаров ЭВ, Тонких ЮЛ, Борисов АГ. Сопоставление клинико-лабораторной характеристики и частоты фиброза печени у больных хроническим вирусным гепатитом С первого и третьего генотипов. Медицинский совет. 2022;(7):98–103. https://doi.org/10.21518/2079-701X-2022-16-7-98-103.; https://www.med-sovet.pro/jour/article/view/7854
-
5Academic Journal
المؤلفون: M. A. Cherepnin, V. V. Tsukanov, A. A. Savchenko, A. V. Vasyutin, A. G. Borisov, V. D. Belenyuk, J. L. Tonkikh, М. А. Черепнин, В. В. Цуканов, А. А. Савченко, А. В. Васютин, А. Г. Борисов, В. Д. Беленюк, Ю. Л. Тонких
المصدر: Meditsinskiy sovet = Medical Council; № 8 (2023); 142-149 ; Медицинский Совет; № 8 (2023); 142-149 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: вирусный гепатит С, Т-цитотоксические клетки, фиброз печени, вирусная нагрузка, воспалительная активность, cytotoxic T-cells, liver fibrosis, viral load, inflammatory activity
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7564/6738; Kemming J., Thimme R., Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci. 2020;21(16):5644. https://doi.org/10.3390/ijms21165644.; Spengler U., Nattermann J. Immunopathogenesis in hepatitis C virus cirrhosis. Clin Sci (Lond). 2007;112(3):141–155. https://doi.org/10.1042/CS20060171.; Stuart J.D., Salinas E., Grakoui A. Immune system control of hepatitis C virus infection. Curr Opin Virol. 2021;(46):36–44. https://doi.org/10.1016/j.coviro.2020.10.002.; Hofmann M., Tauber C., Hensel N., Thimme R. CD8+ T Cell Responses during HCV Infection and HCC. J Clin Med. 2021;10(5):991. https://doi.org/10.3390/jcm10050991.; Thimme R. T cell immunity to hepatitis C virus: Lessons for a prophylactic vaccine. J Hepatol. 2021;74(1):220–229. https://doi.org/10.1016/j.jhep.2020.09.022.; Бацких С.Н., Морозов С.В., Чуланов В.П., Покровский В.И. Вирус гепатита С 3-го генотипа: такой «простой», такой «сложный». Терапевтический архив. 2012;84(11):4–10. Режим доступа: https://ter-arkhiv.ru/0040-3660/article/view/31093.; European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2016. J Hepatol. 2017;66(1):153–194. https://doi.org/10.1016/j.jhep.2016.09.001.; European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2018. J Hepatol. 2018;69(2):461–511. https://doi.org/10.1016/j.jhep.2018.03.026.; Terminology of chronic hepatitis, hepatic allograft rejection, and nodular lesions of the liver: summary of recommendations developed by an international working party, supported by the World Congresses of Gastroenterology, Los Angeles, 1994. Am J Gastroenterol. 1994;89(8 Suppl):S177–S181. Available at: https://pubmed.ncbi.nlm.nih.gov/8048409/.; Poynard T., Bedossa P., Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet. 1997;349(9055):825–832. https://doi.org/10.1016/s0140-6736(96)07642-8.; Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шестицветного цитофлуориметрического анализа. Медицинская иммунология. 2015;17(1):19–26. Режим доступа: httpss://www.mimmun.ru/mimmun/article/viewFile/803/747.; Sutherland D.R., Ortiz F., Quest G., Illingworth A., Benko M., Nayyar R., Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B Clin Cytom. 2018;94(4):637–651. https://doi.org/10.1002/cyto.b.21626.; Dustin L.B. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr Drug Targets. 2017;18(7):826–843. https://doi.org/10.2174/1389450116666150825110532.; Wherry E.J., Ha S.J., Kaech S.M., Haining W.N., Sarkar S., Kalia V. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007;27(4):670–684. https://doi.org/10.1016/j.immuni.2007.09.006.; Radziewicz H., Ibegbu C.C., Hon H., Osborn M.K., Obideen K., Wehbi M. et al. Impaired hepatitis C virus (HCV)-specific effector CD8+ T cells undergo massive apoptosis in the peripheral blood during acute HCV infection and in the liver during the chronic phase of infection. J Virol. 2008;82(20):9808–9822. https://doi.org/10.1128/JVI.01075-08.; Ha S.J., West E.E., Araki K., Smith K.A., Ahmed R. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol Rev. 2008;223:317–333. https://doi.org/10.1111/j.1600-065X.2008.00638.x.; Kasprowicz V., Schulze Zur Wiesch J., Kuntzen T., Nolan B.E., Longworth S., Berical A. et al. High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J Virol. 2008;82(6):3154–3160. https://doi.org/10.1128/JVI.02474-07.; Penna A., Pilli M., Zerbini A., Orlandini A., Mezzadri S., Sacchelli L. et al. Dysfunction and functional restoration of HCV-specific CD8 responses in chronic hepatitis C virus infection. Hepatology. 2007;45(3):588–601. https://doi.org/10.1002/hep.21541.; Khan O., Giles J.R., McDonald S., Manne S., Ngiow S.F., Patel K.P. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;571(7764):211–218. https://doi.org/10.1038/s41586-019-1325-x.; Alfei F., Kanev K., Hofmann M., Wu M., Ghoneim H.E., Roelli P. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature. 2019;571(7764):265–269. https://doi.org/10.1038/s41586-019-1326-9.; Timm J., Lauer G.M., Kavanagh D.G., Sheridan I., Kim A.Y., Lucas M. et al. CD8 epitope escape and reversion in acute HCV infection. J Exp Med. 2004;200(12):1593–1604. https://doi.org/10.1084/jem.20041006.; Calabrese F., Pontisso P., Pettenazzo E., Benvegnù L., Vario A., Chemello L. et al. Liver cell apoptosis in chronic hepatitis C correlates with histological but not biochemical activity or serum HCV-RNA levels. Hepatology. 2000;31(5):1153–1159. https://doi.org/10.1053/he.2000.7123.; Osuch S., Metzner K.J., Caraballo Cortés K. Reversal of T Cell Exhaustion in Chronic HCV Infection. Viruses. 2020;12(8):799. https://doi.org/10.3390/v12080799.; Shahnazarian V., Ramai D., Reddy M., Mohanty S. Hepatitis C virus genotype 3: clinical features, current and emerging viral inhibitors, future challenges. Annals of Gastroenterology. 2018;31(5):541–551. https://doi.org/10.20524/aog.2018.0281.; Bochud P.Y., Cai T., Overbeck K., Bochud M., Dufour J.F., Müllhaupt B. et al. Genotype 3 is associated with accelerated fibrosis progression in chronic hepatitis C. Journal of Hepatology. 2009;51(4):655–666. https://doi.org/10.1016/j.jhep.2009.05.016.; Kanwal F., Kramer J.R., Ilyas J., Duan Z., El-Serag H.B. HCV genotype 3 is associated with an increased risk of cirrhosis and hepatocellular cancer in a national sample of U.S. Veterans with HCV. Hepatology. 2014;60(1):98–105. https://doi.org/10.1002/hep.27095.; https://www.med-sovet.pro/jour/article/view/7564
-
6Academic Journal
المؤلفون: A. A. Savchenko, I. M. Sukhanov, A. S. Ulitina, O. A. Dravolina, I. V. Belozertseva, A. K. Emelianov, E. E. Zvartau, А. А. Савченко, И. М. Суханов, А. С. Улитина, О. А. Драволина, И. В. Белозерцева, А. К. Емельянов, Э. Э. Звартау
المساهمون: The authors are grateful to R.R. Gainetdinov (the director of the Institute of Translational Biomedicine, St. Petersburg State University) for the kindly provided DAT-KO animals for the start of colony in Pavlov University as well as to the staff of the Department of Psychopharmacology of the Institute of Pharmacology: A.M. Gavrilova, A.V. Ivanov, S.V. Ivanov, M.G. Semina, M.A. Tur, Yu.I. Shevchuk for technical assistance and animal care., Авторы благодарны директору Института трансляционной биомедицины СПбГУ (Санкт-Петербург) Р.Р. Гайнетдинову за любезно предоставленных DAT-KO-животных для создания колонии в ПСПбГМУ им. И.П. Павлова, а также сотрудникам отдела психофармакологии Института фармакологии А.М. Гавриловой, А.В. Иванову, С.В. Иванову, М.Г. Семиной, М.А. Тур, Ю.И. Шевчук за техническую помощь и уход за животными.
المصدر: The Scientific Notes of the Pavlov University; Том 29, № 1 (2022); 18-27 ; Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова; Том 29, № 1 (2022); 18-27 ; 2541-8807 ; 1607-4181 ; 10.24884/1607-4181-2022-29-1
وصف الملف: application/pdf
Relation: https://www.sci-notes.ru/jour/article/view/869/pdf_264; Hegarty S. V., Sullivan A. M., O’Keeffe G. W. Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development // Dev Biol. - 2013. -Vol. 379. - P 123-138. Doi:10.1016/j.ydbio.2013.04.014.; German D. C., Schlusselberg D. S., Woodward D. J. Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: From mouse to man // J Neural Transm. - 1983. - Vol. 57. - P. 243-254. Doi:10.1007/BF01248996.; Pakkenberg B., Moller A., Gundersen H. J. G. et al. The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method // J. Neurol. Neuro-surg. Psychiatry. - 1991. - № 54. - Р. 30-33. Doi:10.1136/jnnp.54.1.30.; Beaulieu J. M., Gainetdinov R. R. The physiology, signaling, and pharmacology of dopamine receptors // Pharmacol Rev. - 2011. - Vol. 63. - P. 182-217. Doi:10.1124/pr.110.002642.; Klein M. O., Battagello D. S., Cardoso A. R. et al. Dopamine: Functions, Signaling, and Association with Neurological Diseases // Cell. Mol. Neurobiol. - 2019. - Vol. 39. -P. 31-59. Doi:10.1007/s10571-018-0632-3.; Featherstone R. E., McDonald R. J. Dorsal striatum and stimulus-response learning: Lesions of the dorsolateral, but not dorsomedial, striatum impair acquisition of a simple discrimination task // Behav. Brain Res. - 2004. - Vol. 150. -P. 15-23. Doi:10.1016/S0166-4328(03)00218-3.; Sarinana J., Tonegawa S. Differentiation of forebrain and hippocampal dopamine 1-class receptors, D1R and D5R, in spatial learning and memory // Hippocampus. - 2016. -Vol. 26. - P. 76-86. Doi:10.1002/hipo.22492.; Gutierrez A., Regan S. L., Hoover C. S. et al. Effects of intrastriatal dopamine D1 or D2 antagonists on methamphetamine-induced egocentric and allocentric learning and memory deficits in Sprague - Dawley rats // Psychopharmacology (Berl). - 2019. - № 236. - P. 2243-2258. Doi:10.1007/s00213-019-05221-3.; Deficit in working memory and abnormal behavioral tactics in dopamine transporter knockout rats during training in the 8-arm maze / N. P. Kurzina, I. Y. Aristova, A. B. Volnova, R. R. Gainetdinov // Behav. Brain Res. - 2020. - P. 390. Doi:10.1016/j.bbr.2020.112642.; Roffman J. L., Tanner A. S., Eryilmaz H. et al. Dopamine D1 signaling organizes network dynamics underlying working memory // Sci Adv. - 2016. - P. 2. Doi:10.1126/sciadv.1501672.; Stefani M. R., Moghaddam B. Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum // J. Neurosci. 2006;(26):8810-8818. Doi:10.1523/JNEUROSCI.1656-06.2006.; Bach M. E., Simpson E. H., Kahn L. et al. Transient and selective overexpression of D2 receptors in the striatum causes persistent deficits in conditional associative learning // Proc Natl Acad Sci USA. - 2008. - Vol. 105. - P. 16027-16032. Doi:10.1073/pnas.0807746105.; Circuit Mechanisms of Sensorimotor Learning / H. Makino, E. J. Hwang, N. G. Hedrick, Komiyama T // Neuron. - 2016. - Vol. 92. - P. 705-721. Doi:10.1016/j.neuron.2016.10.029.; Schultz W. Reward functions of the basal ganglia // J/ Neural/ Transm. - 2016. - Vol. 123. - P. 679-693. Doi:10.1007/s00702-016-1510-0.; Bu M., Farrer M. J., Khoshbouei H. Dynamic control of the dopamine transporter in neurotransmission and homeostasis // Npj Park Dis. - 2021. - P. 7. Doi:10.1038/s41531-021-00161-2.; Purves-Tyson T. D., Owens S. J., Rothmond D. A. et al. Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain // Transl Psychiatry. - 2017. - P. 7. Doi:10.1038/tp.2016.257.; Dresel S., Krause J., Krause K. H. et al. Attention deficit hyperactivity disorder: Binding of 99mTc.TRODAT-1 to the dopamine transporter before and after methylphenidate treatment // Eur. J. Nucl. Med. - 2000. - № 27. - Р. 15181524. Doi:10.1007/s002590000330.; Palermo G., Ceravolo R. Molecular Imaging of the Dopamine Transporter // Cells. - 2019. - P. 8. Doi:10.3390/cells8080872.; Leo D., Sukhanov I., Zoratto F. et al. Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregu-lation in dopamine transporter knock-out rats // J Neurosci. -2018. - Vol. 38. - P. 1959-1972. Doi:10.1523/JNEUROS-CI.1931-17.2018.; Jones S. R., Gainetdinov R. R., Jaber M. et al. Profound neuronal plasticity in response to inactivation of the dopamine transporter // Proc. Natl. Acad. Sci USA. - 1998. -Vol. 95. - P. 4029-4034. Doi:10.1073/pnas.95.7.4029.; Giros B., Jaber M., Jones S. R. et al. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter // Nature. - 1996. - № 379. -Р. 606-612. Doi:10.1038/379606a0.; Rats lacking dopamine transporter display increased vulnerability and aberrant autonomic response to acute stress / P. Illiano, G. E. Bigford, R. R. Gainetdinov, M. Pardo // Biomolecules. - 2020. - P. 10. Doi:10.3390/biom10060842.; A New Paradigm for Training Hyperactive Dopamine Transporter Knockout Rats: Influence of Novel Stimuli on Object Recognition / N. P. Kurzina, A. B. Volnova, I. Y. Aristova, R. R. Gainetdinov // Front Behav. Neurosci. - 2021. -P. 15. Doi:10.3389/fnbeh.2021.654469.; Белозерцева И. В., Драволина О. А., Тур М. А. Руководство по использованию лабораторных животных для научных и учебных целей в ПСПбГМУ им. И. П. Павлова / под ред. Э. Э. Звартау. - СПб.: Изд-во СПбГМУ, 2014. - С. 79.; Choi W. Y., Balsam P. D., Horvitz J. C. Extended habit training reduces dopamine mediation of appetitive response expression // J Neurosci. - 2005. - Vol. 25. - P. 6729-6733. Doi:10.1523/JNEUROSCI.1498-05.2005.; Bespalov A. Y., Harich S., Jongen-Relo A. L. et al. AMPA receptor antagonists reverse effects of extended habit training on signaled food approach responding in rats // Psychopharmacology (Berl). - 2007. - Vol. 195. - P. 11-18. Doi:10.1007/s00213-007-0875-z.; Effects of nimodipine on learning in normotensive and spontaneously hypertensive rats / A. Meneses, J. A. Terron, M. Ibarra, E. Hong // Behav. Brain Res. - 1997. - Vol. 85. -P. 121-5. Doi:10.1016/S0166-4328(97)87580-8.; Olausson P., Jentsch J. D., Taylor J. R. Repeated nicotine exposure enhances responding with conditioned reinforcement // Psychopharmacology (Berl). - 2004. -Vol. 173. - P. 98-104. Doi:10.1007/s00213-003-1702-9.; Yin H. H., Zhuang X., Balleine B. W. Instrumental learning in hyperdopaminergic mice // Neurobiol Learn Mem. - 2006. - Vol. 85. - P. 283-288. Doi:10.1016/j.nlm.2005.12.001.; Phillips G. D., Setzu E., Hitchcott P. K. Facilitation of appetitive pavlovian conditioning by d-amphetamine in the shell, but not the core, of the nucleus accumbens // Behav. Neurosci. - 2003. - Vol. 117. - P. 675-684. Doi:10.1037/0735-7044.117.4.675.; Meneses A. A pharmacological analysis of an associative learning task: 5-HT 1 to 5-HT7 receptor subtypes function on a Pavlovian/instrumental autoshaped memory // Learn Mem. - 2003. - Vol. 10. - P. 363-372. Doi:10.1101/lm.60503.; Flagel S. B., Clark J. J., Robinson T. E. et al. A selective role for dopamine in stimulus-reward learning // Nature. -2011. - Vol. 469. - P. 53-59. Doi:10.1038/nature09588.; Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors / K. M. Fraser, J. L. Haight, E. L. Gardner, S. B. Flagel // Behav. Brain Res. -2016. - Vol. 305. - P. 87-99. Doi:10.1016/j.bbr.2016.02.022.; https://www.sci-notes.ru/jour/article/view/869
-
7Academic Journal
المؤلفون: M. A. Cherepnin, V. V. Tsukanov, A. A. Savchenko, A. V. Vasyutin, E. V. Kasparov, J. L. Tonkikh, A. G. Borisov, М. А. Черепнин, В. В. Цуканов, А. А. Савченко, А. В. Васютин, Э. В. Каспаров, Ю. Л. Тонких, А. Г. Борисов
المصدر: Meditsinskiy sovet = Medical Council; № 7 (2022); 98-103 ; Медицинский Совет; № 7 (2022); 98-103 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: воспалительная активность, genotypes 1 and 3 of HCV, liver fibrosis, viral load, inflammatory activity, 1 и 3 генотипы хронического вирусного гепатита С, фиброз печени, вирусная нагрузка
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/6867/6190; Stanaway J.D., Flaxman A.D., Naghavi M., Fitzmaurice C., Vos T., Abubakar I. et al. The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. Lancet. 2016;388(10049):1081–1088. https://doi.org/10.1016/S0140-6736(16)30579-7.; Spearman C.W., Dusheiko G.M., Hellard M., Sonderup M. Hepatitis C. Lancet. 2019;394(10207):1451–1466. https://doi.org/10.1016/S0140-6736(19)32320-7.; Smith D.B., Bukh J., Kuiken C., Muerhoff A.S., Rice C.M., Stapleton J.T., Simmonds P. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. Hepatology. 2014;59(1):318–327. https://doi.org/10.1002/hep.26744.; Ge D., Fellay J., Thompson A.J., Simon J.S., Shianna K.V., Urban T.J. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461(7262):399–401. https://doi.org/10.1038/nature08309.; Thrift A.P., El-Serag H.B., Kanwal F. Global epidemiology and burden of HCV infection and HCV-related disease. Nat Rev Gastroenterol Hepatol. 2017;14(2):122–132. https://doi.org/10.1038/nrgastro.2016.176.; Бацких С.Н., Морозов С.В., Чуланов В.П., Покровский В.И. Вирус гепатита С 3-го генотипа: такой «простой», такой «сложный». Терапевтический архив. 2012;84(11):4–10. Режим доступа: https://elibrary.ru/item.asp?id=18757889.; Silini E., Bono F., Cividini A., Cerino A., Bruno S., Rossi S. et al. Differential distribution of hepatitis C virus genotypes in patients with and without liver function abnormalities. Hepatology. 1995;21(2):285–290. https://doi.org/10.1002/hep.1840210204.; Щаницына С.Е., Бурневич Э.З., Никулкина Е.Н., Филатова А.Л., Моисеев С.В., Мухин Н.А. Факторы риска неблагоприятного прогноза хронического гепатита С. Терапевтический архив. 2019;91(2):59–66. https://doi.org/10.26442/00403660.2019.02.000082.; Shahnazarian V., Ramai D., Reddy M., Mohanty S. Hepatitis C virus genotype 3: clinical features, current and emerging viral inhibitors, future challenges. Ann Gastroenterol. 2018;31(5):541–551. https://doi.org/10.20524/aog.2018.0281.; McCombs J., Matsuda T., Tonnu-Mihara I., Saab S., Hines P., L’italien G. et al. The risk of long-term morbidity and mortality in patients with chronic hepatitis C: results from an analysis of data from a Department of Veterans Affairs Clinical Registry. JAMA Intern Med. 2014;174(2):204–212. https://doi.org/10.1001/jamainternmed.2013.12505.; Wu N., Rao H.-Y., Yang W.-B., Gao Z.-L., Yang R-.F., Fei R. et al. Impact of hepatitis C virus genotype 3 on liver disease progression in a Chinese national cohort. Chin Med J (Engl). 2020;133(3):253–261. https://doi.org/10.1097/CM9.0000000000000629.; Stanghellini V., Chan F.K., Hasler W.L., Malagelada J.R., Suzuki H., Tack J., Talley N.J. Gastroduodenal Disorders. Gastroenterology. 2016;150(6):1380–1392. https://doi.org/10.1053/j.gastro.2016.02.011.; Lacy B.E., Mearin F., Chang L., Chey W.D., Lembo A.J., Simren M., Spiller R. Bowel Disorders. Gastroenterology. 2016;150(6):1393–1407. https://doi.org/10.1053/j.gastro.2016.02.031.; European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2016. J Hepatol. 2017;66(1):153–194. https://doi.org/10.1016/j.jhep.2016.09.001.; European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2018. J Hepatol. 2018;69(2):461–511. https://doi.org/10.1016/j.jhep.2018.03.026.; Ludwig J. Terminology of chronic hepatitis, hepatic allograft rejection, and nodular lesions of the liver: summary of recommendations developed by an international working party, supported by the World Congresses of Gastroenterology, Los Angeles, 1994. Am J Gastroenterol. 1994;89(8 Suppl):S177– S181. Available at: https://pubmed.ncbi.nlm.nih.gov/8048409/.; Poynard T., Bedossa P., Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet. 1997;349(9055):825–832. https://doi.org/10.1016/s0140-6736(96)07642-8.; Bochud P.Y., Cai T., Overbeck K., Bochud M., Dufour J.-F., Müllhaupt B. et al. Genotype 3 is associated with accelerated fibrosis progression in chronic hepatitis C. J Hepatol. 2009;51(4):655–666. https://doi.org/10.1016/j.jhep.2009.05.016.; Probst A., Dang T., Bochud M., Egger M., Negro F., Bochud P.Y. Role of hepatitis C virus genotype 3 in liver fibrosis progression – a systematic review and meta-analysis. J Viral Hepat. 2011;18(11):745–759. https://doi.org/10.1111/j.1365-2893.2011.01481.x.; Nkontchou G., Ziol M., Aout M., Lhabadie M., Baazia Y., Mahmoudi A. et al. HCV genotype 3 is associated with a higher hepatocellular carcinoma incidence in patients with ongoing viral C cirrhosis. J Viral Hepat. 2011;18(10):e516–e522. https://doi.org/10.1111/j.1365-2893.2011.01441.x.; McMahon B.J., Bruden D., Townshend-Bulson L., Simons B., Spradling P., Livingston S. et al. Infection With Hepatitis C Virus Genotype 3 Is an Independent Risk Factor for End-Stage Liver Disease, Hepatocellular Carcinoma, and Liver-Related Death. Clin Gastroenterol Hepatol. 2017;15(3):431–437.e2. https://doi.org/10.1016/j.cgh.2016.10.012.; Chan A., Patel K., Naggie S. Genotype 3 Infection: The Last Stand of Hepatitis C Virus. Drugs. 2017;77(2):131–144. https://doi.org/10.1007/s40265-016-0685-x.; Zhuang L., Li J., Zhang Y., Ji S., Li Y., Zhao Y. et al. Real-World Effectiveness of Direct-Acting Antiviral Regimens against Hepatitis C Virus (HCV) Genotype 3 Infection: A Systematic Review and Meta-Analysis. Ann Hepatol. 2021;23:100268. https://doi.org/10.1016/j.aohep.2020.09.012.; https://www.med-sovet.pro/jour/article/view/6867
-
8Academic Journal
المؤلفون: A. A. Savchenko, M. A. Dudina, S. A. Dogadin, A. G. Borisov, I. V. Kudryavtsev, D. V. Fomina, V. D. Belenyuk, А. А. Савченко, М. А. Дудина, С. А. Догадин, А. Г. Борисов, И. В. Кудрявцев, Д. В. Фомина, В. Д. Беленюк
المصدر: Medical Immunology (Russia); Том 24, № 5 (2022); 1007-1016 ; Медицинская иммунология; Том 24, № 5 (2022); 1007-1016 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: болезнь Грейвса, B lymphocytes, phenotype, subsets, radioiodine therapy, autoantibodies, Graves’ disease, В-лимфоциты, фенотип, субпопуляции, радиойодтерапия, аутоантитела
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2530/1585; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2530/9622; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2530/9623; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2530/9624; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2530/9625; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2530/9626; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2530/9627; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2530/9628; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2530/9629; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2530/9630; Belenyuk V.D., Savchenko A.A., Borisov A.G., Kudryavtsev I.V. Features of peripheral blood B-cell subset phenotype are associated with clinical outcome of widespread purulent peritonitis. Russian Journal of Infection and Immunity, 2021, Vol. 11, no. 3, pp. 454-462. (In Russ.). doi:10.15789/2220-7619-CBC-1397.; Corvilain B., Hamy A., Brunaud L., Borson-Chazot F., Orgiazzi J., Bensalem Hachmi L., Semrouni M., Rodien P., Lussey-Lepoutre C. Treatment of adult Graves’ disease. Ann. Endocrinol. (Paris), 2018, Vol. 79, no. 6, pp. 618-635.; Côté-Bigras S., Tran V., Turcotte S., Rola-Pleszczynski M., Verreault J., Rottembourg D. Impaired immune regulation after radioiodine therapy for Graves’ disease and the protective effect of Methimazole. Endocrine, 2016, Vol. 52, no. 3, pp. 587-596.; Davies T.F., Andersen S., Latif R., Nagayama Y., Barbesino G., Brito M., Eckstein A.K., Stagnaro-Green A., Kahaly G.J. Graves’ disease. Nat. Rev. Dis. Primers., 2020, Vol. 6, no. 1, 52. doi:10.1038/s41572-020-0184-y.; Du W., Dong Q., Lu X., Liu X., Wang Y., Li W., Pan Z., Gong Q., Liang C., Gao G. Iodine-131 therapy alters the immune/inflammatory responses in the thyroids of patients with Graves’ disease. Exp. Ther. Med., 2017, Vol. 13, no. 3, pp. 1155-1159.; Engeroff P., Caviezel F., Mueller D., Thoms F., Bachmann M.F., Vogel M. CD23 provides a noninflammatory pathway for IgE-allergen complexes. J. Allergy Clin. Immunol., 2020, Vol. 145, no. 1, pp. 301-311.; Feng C., Li L., Zhou L., Li D., Liu M., Han S., Zheng B. Critical roles of the E3 ubiquitin ligase FBW7 in B-cell response and the pathogenesis of experimental autoimmune arthritis. Immunology, 2021, Vol. 164, no. 3, pp. 617-636.; Gallo D., Piantanida E., Gallazzi M., Bartalena L., Tanda M.L., Bruno A., Mortara L. Immunological drivers in Graves’ Disease: NK Cells as a Master Switcher. Front. Endocrinol. (Lausanne), 2020, Vol. 11, 406. doi:10.3389/fendo.2020.00406.; Giuliani C., Saji M., Bucci I., Napolitano G. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor-LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn. Front. Endocrinol. (Lausanne), 2016, Vol. 7, 103. doi:10.3389/fendo.2016.00103.; Ji X., Wan J., Chen R., Wang H., Huang L., Wang S., Su Z., Xu H. Low frequency of IL-10-producing B cells and high density of ILC2s contribute to the pathological process in Graves’ disease, which may be related to elevated-TRAb levels. Autoimmunity, 2020, Vol. 53, no. 2, pp. 78-85.; Kageyama Y., Katayama N. Ontogeny of human B1 cells. Int. J. Hematol., 2020, Vol. 111, no. 5, pp. 628-633.; Klotz L., Burgdorf S., Dani I., Saijo K., Flossdorf J., Hucke S., Alferink J., Nowak N., Beyer M., Mayer G., Langhans B., Klockgether T., Waisman A., Eberl G., Schultze J., Famulok M., Kolanus W., Glass C., Kurts C., Knolle P.A. The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J. Exp. Med., 2009, Vol. 206, no. 10, pp. 2079-2089.; Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Medical Immunology (Russia), 2015, Vol. 17, no. 1, pp. 19-26. (In Russ.). doi:10.15789/1563-0625-2015-1-19-26.; Li J.F., Xie L.J., Qin L.P., Liu Y.F., Zhang T.J., Huang Y., Cheng M.H. Apoptosis gene reprograming of human peripheral blood mononuclear cells induced by radioiodine-131 ((131)I) irradiation. Indian J. Med. Res., 2019, Vol. 149, no. 5, pp. 627-632.; Lindgren O., Asp P., Sundlöva., Tennvall J., Shahida B., Planck T., Åsman P., Lantz M. The effect of radioiodine treatment on trab, Anti-TPO, and Anti-TG in graves’ disease. Eur. Thyroid J., 2019, Vol. 8, no. 2, pp. 64-69.; Lushova A.A., Zheremyan E.A., Astakhova E.A., Spiridonova A.B., Byazrova M.G., Filatov A.V. B-lymphocyte subsets: functions and molecular markers. Immunologiya, 2019, Vol. 40, no. 6, pp. 63-76. (In Russ.). doi:10.24411/0206-4952-2019-16009.; Mahmoodpoor A., Paknezhad S., Shadvar K., Hamishehkar H., Movassaghpour A.A., Sanaie S., Ghamari A.A., Soleimanpour H. Flow Cytometry of CD64, HLA-DR, CD25, and TLRs for Diagnosis and Prognosis of Sepsis in Critically Ill Patients Admitted to the Intensive Care Unit: A Review Article. Anesth. Pain Med., 2018, Vol. 8, no. 6, e83128. doi:10.5812/aapm.83128.; Riley A.S., McKenzie G.A.G., Green V., Schettino G., England R.J.A., Greenman J. The effect of radioiodine treatment on the diseased thyroid gland. Int. J. Radiat. Biol., 2019, Vol. 95, no. 12, pp. 1718-1727.; Sánchez Á., Contreras-Jurado C., Rodríguez D., Regadera J., Alemany S., Aranda A. Hematopoiesis in aged female mice devoid of thyroid hormone receptors. J. Endocrinol., 2020, Vol. 244, no. 1, pp. 83-94.; Savchenko A.A., Dudina M.A., Borisov A.G., Dogadin S.A., Kudryavtsev I.V., Moshev A.V., Mankovskiy V.А. Effects of helper and regulatory T cells upon phenotypic composition of blood B lymphocytes and thyroid gland in Graves’ disease. Medical Immunology (Russia), 2018, Vol. 20, no. 3, pp. 431-438. (In Russ.). doi:10.15789/1563-0625-2018-3-431-438.; Struja T., Kutz A., Fischli S., Meier C., Mueller B., Recher M., Schuetz P. Is Graves’ disease a primary immunodeficiency? New immunological perspectives on an endocrine disease. BMC Med., 2017, Vol. 15, no. 1, 174. doi:10.1186/s12916-017-0939-9.; Sutherland D.R., Ortiz F., Quest G., Illingworth A., Benko M., Nayyar R., Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B Clin. Cytom., 2018, Vol. 94, no. 4, pp. 637-651.; Sutton B.J., Davies A.M. Structure and dynamics of IgE-receptor interactions: FcεRI and CD23/FcεRII. Immunol. Rev., 2015, Vol. 268, no. 1, pp. 222-235.; Troshina E.A., Sviridenko N.Yu., Vanushko V.E., Rumyantsev P.O., Fadeev V.V., Petunina N.A. Federal clinical recommendations of the Russian Association of Endocrinologists for the diagnosis and treatment of toxic goiter. Clinical and Experimental Thyroidology, 2014, Vol. 10, no. 3, pp. 8-19. (In Russ.).; Wiersinga W.M. Graves’ Disease: Can It Be Cured? Endocrinol. Metab. (Seoul), 2019, Vol. 34, no. 1, pp. 29-38.; Zhang D., Qiu X., Li J., Zheng S., Li L., Zhao H. MiR-23a-3p-regulated abnormal acetylation of FOXP3 induces regulatory T cell function defect in Graves’ disease. Biol. Chem., 2019, Vol. 400, no. 5, pp. 639-650.; Zohouri M., Mehdipour F., Razmkhah M., Faghih Z., Ghaderi A. CD4+ CD25- FoxP3 + T cells: a distinct subset or a heterogeneous population? Int. Rev. Immunol., 2021, Vol. 40, no. 4, pp. 307-316.; https://www.mimmun.ru/mimmun/article/view/2530
-
9Academic Journal
المؤلفون: L. M. Kurtasova, A. A. Savchenko, A. R. Shmidt, Л. М. Kypmacoвa, А. А. Савченко, А. Р. Шмидт
المصدر: PULMONOLOGIYA; № 5 (2003); 47-52 ; Пульмонология; № 5 (2003); 47-52 ; 2541-9617 ; 0869-0189
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/2619/2051; Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М.: Медицина; 1998.; Гущин И.С. Аллергическое воспаление и его фармакологический контроль. М.: Фармарус Принт; 1998.; Кнорре Д .Г., Мызина С.Д. Биологическая химия. М.: Высшая школа, 1998.; Национальная программа "Бронхиальная астма у детей. Стратегия лечения и профилактика". М.: Артинфо Паблишинг; 1997.; Порядин Г.В., Салмаси Ж .М ., Казимирский А.Н. и др. Изучение влияния медиаторов тканевого повреждения на экспрессию поверхностных антигенов лимфоцитов человека in vitro. Бюл. экспер. биол. 1995; 2: 196-199.; Рагимов А.А., Байрамалибейли И.Э. Розеткообразующая способность лимфоцитов периферической крови лиц с дефицитом глюкозо-6-фосфатдегидрогеназы. Лаб. дело 1985; 7: 405-408.; Савченко А.А., Сунцова Л.H. Высокочувствительное определение активности дегидрогеназ в лимфоцитах периферической крови биолюминесцентным методом. Там же 1989; 11: 23-25.; Чучалин А.Г. Бронхиальная астма. М.: Агар; 1997; т.1.; Bakker В .М., Westerhoff H.V., Opperdoes F.R., Michels P.А. Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. Mol. Biochem. Parasitol. 2000; 106 (1): 1-10.; Biagiotti E., Bosch K.S., Ninfali P. et al. Posttranslational regulation of glucose-6-phosphate dehydrogenase activity in tongue epithelium. J. Histochem. Cytochem. 2000; 48 (7): 971-978.; Boya P., de la Pena A., Beloqui O. et al. Antioxidant status and glutathione metabolism in peripheral blood mononuclear cells from patients with chronic hepatitis C. J. Hepatol. 1999; 31 (5): 808-814.; Brosnan J.T. Glutamate, at the interface between amino acid and carbohydrate metabolism. J. Nutr. 2000; 130 (4S, suppl.): 988S-990S.; Burcelin R., del Carmen M noz М ., G illam M .T., Thorens B. Liver hyperplasia and paradoxical regulation of glycogen metabolism and glucose-sensitive gene expression in GLUT2-null hepatocytes. Further evidence for the existence of a membranebased glucose release pathway. J. Biol. Chem. 2000; 275 (15): 10930-10936.; Chakrabarti R., Lee Т.-P., Lin H., Mookerjee B. Changes in glucose transport and transporter isoformes during the activation of human periphral blood lymphocyte by phytohemagglutinin. J. Immunol. 1994; 152 (6): 2660-2668.; Guidi G.M., Goldbeter A. Oscillations and bistability predicted by a model for a cyclical bienzymatic system involving the regulated isocitrate dehydrogenase reaction. Biophys.Chem. 2000; 83 (2): 153-170.; Roth S., Droge W. Glutathione reverses the inhibition of T cell responses by superoptimal numbers of "Nonprofessional"antigen presenting cells. Cell. Immunol. 1994; 155 (1): 183-194.; Tuttle S., Stamato Т., Perez M .L., Biaglow J. Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation. Radiat. Res. 2000; 153 (6): 781-787.; Weiss C., Zeng Y., Huang J. et al. Bovine NAD+-dependent isocitrate dehydrogenase: alternative splicing and tissue-dependent expression of subunit 1. Biochemistry 2000; 39 (7): 1807-1816.; Zatta P., Lain E., Cagnolini C. Effects of aluminum on activity of Krebs cycleenzymes and glutamate dehydrogenase in rat brain homogenate. Eur. J. Biochem. 2000; 267 (10): 3049-3055.; https://journal.pulmonology.ru/pulm/article/view/2619
-
10Academic Journal
المؤلفون: A. A. Savchenko, O. D. Gritsenko, A. G. Borisov, I. V. Kudryavtsev, M. K. Serebriakova, A. A. Masterova, P. A. Shesternya, А. А. Савченко, О. Д. Гриценко, А. Г. Борисов, И. В. Кудрявцев, М. К. Серебрякова, А. А. Мастерова, П. А. Шестерня
المصدر: Medical Immunology (Russia); Том 23, № 6 (2021); 1319-1332 ; Медицинская иммунология; Том 23, № 6 (2021); 1319-1332 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: цитотоксические Т-лимфоциты, T cells, subsets, phenotype, T helpers, cytotoxic T cells, больные анкилозирующим спондилитом, субпопуляции лимфоцитов, фенотип, Т-хелперы
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2349/1487; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2349/8251; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2349/8252; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2349/8253; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2349/8254; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2349/8255; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2349/8256; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2349/8257; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2349/8258; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2349/8259; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2349/8260; Ахунова Р.Р., Ахунова Г.Р. Комплексный подход к терапии анкилозирующего спондилита с позиции международной классификации функционирования // Архивъ внутренней медицины, 2020. Т. 10, № 1. С. 5-9.; Воронина Е.В., Лобанова Н.В., Яхин И.Р., Романова Н.А., Серегин Ю.А. Роль фактора некроза опухолей-альфа в иммунопатогенезе заболеваний различной этиологии и его значимость в развитии антицитокиновой терапии моноклональными антителами // Медицинская иммунология, 2018. Т. 20, № 6. С. 797-806. doi:10.15789/1563-0625-2018-6-797-806.; Зурочка А.В., Хайдуков С.В., Кудрявцев И.В., Черешнев В.А. Проточная цитометрия в биомедицинских исследованиях. Екатеринбург: Уральское отделение РАН, 2018. 720 с.; Козлов В.А., Савченко А.А., Кудрявцев И.В., Козлов И.Г., Кудлай Д.А., Продеус А.П., Борисов А.Г. Клиническая иммунология: практическое пособие для врачей. Красноярск: Поликор, 2020. 386 с.; Кудрявцев И.В., Борисов А.Г., Васильева Е.В., Кробинец И.И., Савченко А.А., Серебрякова М.К., Тотолян Арег А. Фенотипическая характеристика цитотоксических Т-лимфоцитов: регуляторные и эффекторные молекулы» // Медицинская иммунология, 2018. Т. 20, № 2. С. 227-240. doi:10.15789/1563-0625-2018-2-227-240.; Кудрявцев И.В., Борисов А.Г., Кробинец И.И., Савченко А.А., Серебрякова М.К. Определение основных субпопуляций цитотоксических Т-лимфоцитов методом многоцветной проточной цитометрии // Медицинская иммунология, 2015. Т. 17, № 6. С. 525-538. doi:10.15789/1563-0625-2015-6-525-538.; Насонов Е.Л., Коротаева Т.В., Дубинина Т.В., Лила А.М. Ингибиторы ИЛ23/ИЛ17 при иммуновоспалительных ревматических заболеваниях: новые горизонты // Научно-практическая ревматология, 2019. Т. 57, № 4. С. 400-406.; Эрдес Ш.Ф. Интерлейкин 17А – новая мишень антицитокиновой терапии анкилозирующего спондилита // Научно-практическая ревматология, 2016. Т. 54, № 1S. С. 60-66.; Abdal S.J., Yesmin S., Shazzad M.N., Azad M.A.K., Shahin M.A., Choudhury M.R., Islam M.N., Haq S.A. Development of a Bangla version of the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and the Bath Ankylosing Spondylitis Functional Index (BASFI). Int. J. Rheum. Dis., 2021, Vol. 24, no. 1, pp. 74-80.; Ahmadi M., Hajialilo M., Dolati S., Eghbal-Fard S., Heydarlou H., Ghaebi M., Ghassembaglou A., AghebatiMaleki L., Samadi Kafil H., Kamrani A., Rahnama B., Rikhtegar R., Yousefi M. The effects of nanocurcumin on Treg cell responses and treatment of ankylosing spondylitis patients: A randomized, double-blind, placebo-controlled clinical trial. J. Cell. Biochem., 2020, Vol. 121, no. 1, pp. 103-110.; Al-Mossawi M.H., Chen L., Fang H., Ridley A., de Wit J., Yager N., Hammitzsch A., Pulyakhina I., Fairfax B.P., Simone D., Yi Y., Bandyopadhyay S., Doig K., Gundle R., Kendrick B., Powrie F., Knight J.C., Bowness P. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat. Commun., 2017, Vol. 8, no. 1, 1510. doi:10.1038/s41467-017-01771-2.; Chen B., Li J., He C., Li D., Tong W., Zou Y., Xu W. Role of HLA-B27 in the pathogenesis of ankylosing spondylitis (Review). Mol. Med. Rep., 2017, Vol. 15, no. 4, pp. 1943-1951.; Chen L., Liu L., Xie Z.Y., Wang F., Sinkemani A., Zhang C., Wang X.H., Wang K., Hong X., Wu X.T. Endoplasmic reticulum stress facilitates the survival and proliferation of nucleus pulposus cells in TNF-α Stimulus by activating unfolded protein response. DNA Cell Biol., 2018, Vol. 37, no. 4, pp. 347-358.; Faist B., Schlott F., Stemberger C., Dennehy K.M., Krackhardt A., Verbeek M., Grigoleit G.U., Schiemann M., Hoffmann D., Dick A., Martin K., Hildebrandt M., Busch D.H., Neuenhahn M. Targeted in-vitro-stimulation reveals highly proliferative multi-virus-specific human central memory T cells as candidates for prophylactic T cell therapy. PLoS One, 2019, Vol. 14, no. 9, e0223258. doi:10.1371/journal.pone.0223258.; Feng X., Yang Q., Wang C., Tong W., Xu W. Punicalagin exerts protective effects against ankylosing spondylitis by regulating NF-κB-TH17/JAK2/STAT3 signaling and oxidative stress. Biomed. Res. Int., 2020, Vol. 2020, 4918239. doi:10.1155/2020/4918239.; Gupta S., Su H., Narsai T., Agrawal S. SARS-CoV-2-Associated T-Cell responses in the presence of humoral immunodeficiency. Int. Arch. Allergy Immunol., 2021, Vol. 182, no. 3, pp. 195-209.; Koch S., Larbi A., Derhovanessian E., Ozcelik D., Naumova E., Pawelec G. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun. Ageing, 2008, Vol. 5, 6. doi:10.1186/1742-4933-5-6.; Lee S., Eun Y., Kim H., Cha H.S., Koh E.M., Lee J. Machine learning to predict early TNF inhibitor users in patients with ankylosing spondylitis. Sci. Rep., 2020, Vol. 10, no. 1, 20299. doi:10.1038/s41598-020-75352-7.; Libri V., Azevedo R.I., Jackson S.E., Di Mitri D., Lachmann R., Fuhrmann S., Vukmanovic-Stejic M., Yong K., Battistini L., Kern F., Soares M.V., Akbar A.N. Cytomegalovirus infection induces the accumulation of short-lived, multifunctional CD4+CD45RA+CD27+ T cells: the potential involvement of interleukin-7 in this process. Immunology, 2011, Vol. 132, no. 3, pp. 326-339.; Lovšin N., Marc J. Glucocorticoid receptor regulates TNFSF11 transcription by binding to glucocorticoid responsive element in TNFSF11 proximal promoter region. Int. J. Mol. Sci., 2021, Vol. 22, no. 3, 1054. doi:10.3390/ijms22031054.; Ma S.Y., Wang Y., Xu J.Q., Zheng L. Cupping therapy for treating ankylosing spondylitis: The evidence from systematic review and meta-analysis. Complement Ther. Clin. Pract., 2018, Vol. 32, pp. 187-194.; Machado P.M., Landewé R., Heijde D.V.; Assessment of SpondyloArthritis international Society (ASAS). Ankylosing Spondylitis Disease Activity Score (ASDAS): 2018 update of the nomenclature for disease activity states. Ann. Rheum. Dis., 2018, Vol. 77, no. 10, pp. 1539-1540.; Maneiro J.R., Souto A., Salgado E., Mera A., Gomez-Reino J.J. Predictors of response to TNF antagonists in patients with ankylosing spondylitis and psoriatic arthritis: systematic review and meta-analysis. RMD Open, 2015, Vol. 1, no. 1, e000017. doi:10.1136/rmdopen-2014-000017.; Miao J., Zhu P. Functional defects of treg cells: new targets in rheumatic diseases, including ankylosing spondylitis. Curr. Rheumatol. Rep., 2018, Vol. 20, no. 5, 30. doi:10.1007/s11926-018-0729-1.; Miossec P. Local and systemic effects of IL-17 in joint inflammation: a historical perspective from discovery to targeting. Cell Mol. Immunol., 2021, Vol. 18, no. 4, pp. 860-865.; Nagai S., Azuma M. The CD28-B7 family of co-signaling molecules. Adv. Exp. Med. Biol., 2019, Vol. 1189, pp. 25-51.; Nam E.J., Lee W.K. Early achievement of ASDAS clinical response is associated with long-term improvements in metrological outcomes in patients with ankylosing spondylitis treated with TNF-α blockers. Medicine (Baltimore), 2020, Vol. 99, no. 41, e22668. doi:10.1097/MD.0000000000022668.; Ortolan A., Ramiro S., van Gaalen F., Kvien T.K., Landewe R.B.M., Machado P.M., Ruyssen-Witrand A., van Tubergen A., Bastiaenen C., van der Heijde D. Development and validation of an alternative ankylosing spondylitis disease activity score when patient global assessment is unavailable. Rheumatology (Oxford), 2021, Vol. 60, no. 2, pp. 638-648.; Pedersen S.J., Maksymowych W.P. The Pathogenesis of ankylosing spondylitis: an update. Curr. Rheumatol. Rep., 2019, Vol. 21, no. 10, 58. doi:10.1007/s11926-019-0856-3.; Qiu J., Zhou F., Li X., Zhang S., Chen Z., Xu Z., Lu G., Zhu Z., Ding N., Lou J., Ye Z., Qian Q. Changes and clinical significance of detailed peripheral lymphocyte subsets in evaluating the immunity for cancer patients. Cancer Manag. Res., 2020, Vol. 12, pp. 209-219.; Russell T., Bridgewood C., Rowe H., Altaie A., Jones E., McGonagle D. Cytokine “fine tuning” of enthesis tissue homeostasis as a pointer to spondyloarthritis pathogenesis with a focus on relevant TNF and IL-17 targeted therapies. Semin. Immunopathol., 2021, Vol. 43, no. 2, pp. 193-206.; Shimizu Y., Tsukada T., Sakata-Haga H., Sakai D., Shoji H., Saikawa Y., Hatta T. Exposure to maternal immune activation causes congenital unfolded protein response defects and increases the susceptibility to postnatal inflammatory stimulation in offspring. J. Inflamm. Res., 2021, Vol. 14, pp. 355-365.; Tahir H., Moorthy A., Chan A. Impact of secukinumab on patient-reported outcomes in the treatment of ankylosing spondylitis: current perspectives. Open Access Rheumatol., 2020, Vol. 12, pp. 277-292.; van der Linden S., Valkenburg H.A., Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum., 1984, Vol. 27, no. 4, pp. 361-368.; Vargas-Franco J.W., Castaneda B., Gama A., Mueller C.G., Heymann D., Rédini F., Lézot F. Geneticallyachieved disturbances to the expression levels of TNFSF11 receptors modulate the effects of zoledronic acid on growing mouse skeletons. Biochem. Pharmacol., 2019, Vol. 168, pp. 133-148.; Walsh M.C., Choi Y. Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG. J. Bone Miner. Metab., 2021, Vol. 39, no. 1, pp. 54-63.; Watad A., Bridgewood C., Russell T., Marzo-Ortega H., Cuthbert R., McGonagle D. The early phases of ankylosing spondylitis: emerging insights from clinical and basic science. Front. Immunol., 2018, Vol. 9, 2668. doi:10.3389/fimmu.2018.02668.; Xu F., Guanghao C., Liang Y., Jun W., Wei W., Baorong H. Treg-promoted new bone formation through suppressing TH17 by secreting Interleukin-10 in ankylosing spondylitis. Spine (Phila Pa 1976), 2019, Vol. 44, no. 23, pp. E1349-E1355.; https://www.mimmun.ru/mimmun/article/view/2349
-
11Academic Journal
المؤلفون: A. A. Savchenko, A. G. Borisov, I. V. Kudryavtsev, A. V. Moshev, А. А. Савченко, А. Г. Борисов, И. В. Кудрявцев, А. В. Мошев
المساهمون: The study was performed as part of the project «Mechanisms of metabolic reprogramming of the innate immune cells during tumor growth» was funded by Krasnoyarsk Regional Fund of Science, Данная работа выполнена при финансовой поддержке Краевого государственного автономного учреждения «Красноярский краевой фонд поддержки научной и научно-технической деятельности» (проект «Механизмы метаболического репрограммирования клеток врожденного иммунитета при опухолевом росте»)
المصدر: Medical Immunology (Russia); Том 22, № 2 (2020); 347-356 ; Медицинская иммунология; Том 22, № 2 (2020); 347-356 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: респираторный взрыв, Tregulatory cells, kidney cancer, phenotype, chemiluminescent activity, respiratory burst, регуляторные Т-лимфоциты, рак почки, фенотип, хемилюминесцентная активность
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1890/1252; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1890/5458; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1890/5459; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1890/5460; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1890/5461; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1890/5462; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1890/5463; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1890/5464; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1890/5465; Akinrinmade O.A., Chetty S., Daramola A.K., Islam M.U., Thepen T., Barth S. CD64: an attractive immunotherapeutic target for m1-type macrophage mediated chronic inflammatory diseases. Biomedicines, 2017, Vol. 5, no. 3, pii: E56. doi:10.3390/biomedicines5030056.; Bharat A., McQuattie-Pimentel A.C., Budinger G.R.S. Non-classical monocytes in tissue injury and cancer. Oncotarget, 2017, Vol. 8, no. 63, pp. 106171-106172.; Biller J.D., Takahashi L.S. Oxidative stress and fish immune system: phagocytosis and leukocyte respiratory burst activity. An. Acad. Bras. Cienc., 2018, Vol. 90, no. 4, pp. 3403-3414.; Buscher K., Marcovecchio P., Hedrick C.C., Ley K. Patrolling mechanics of non-classical monocytes in vascular inflammation. Front. Cardiovasc. Med., 2017, Vol. 4, 80. doi:10.3389/fcvm.2017.00080.; Cranford T.L., Velazquez K.T., Enos R.T., Bader J.E., Carson M.S., Chatzistamou I., Nagarkatti M., Murphy E.A. Loss of monocyte chemoattractant protein-1 expression delays mammary tumorigenesis and reduces localized inflammation in the C3(1)/SV40Tag triple negative breast cancer model. Cancer Biol. Ther., 2017, Vol. 18, no. 2, pp. 85-93.; Fridman WH. From cancer immune surveillance to cancer immunoediting: birth of modern immuno-oncology. J. Immunol., 2018, Vol. 201, no. 3, pp. 825-826.; Gordon S. Targeting a monocyte subset to reduce inflammation. Circ. Res., 2012, Vol. 110, no. 12, pp. 1546-1548.; Jan H.C., Yang W.H., Ou C.H. Combination of the Preoperative systemic immune-inflammation index and monocyte-lymphocyte ratio as a novel prognostic factor in patients with upper-tract urothelial carcinoma. Ann. Surg. Oncol., 2019, Vol. 26, no. 2, pp. 669-684.; Jones M.B., Alvarez C.A., Johnson J.L., Zhou J.Y., Morris N., Cobb B.A. CD45Rb-low effector T cells require IL-4 to induce IL-10 in FoxP3 Tregs and to protect mice from inflammation. PLoS ONE, 2019, Vol. 14, no. 5, e0216893. doi:10.1371/journal.pone.0216893; Juhas U., Ryba-Stanislawowska M., Brandt-Varma A., Mysliwiec M., Mysliwska J. Monocytes of newly diagnosed juvenile DM1 patients are prone to differentiate into regulatory IL-10(+) M2 macrophages. Immunol. Res., 2019, Vol. 67, no. 1, pp. 58-69.; Komala A.S., Rachman A. Association of peripheral monocyte count with soluble P-selectin and advanced stages in nasopharyngeal carcinoma. Adv. Hematol., 2018, Vol. 2018, 3864398. doi:10.1155/2018/3864398.; Komura T., Sakai Y., Harada K., Kawaguchi K., Takabatake H., Kitagawa H., Wada T., Honda M., Ohta T., Nakanuma Y., Kaneko S. Inflammatory features of pancreatic cancer highlighted by monocytes/macrophages and CD4+ T cells with clinical impact. Cancer Sci., 2015, Vol. 106, no. 6, pp. 672-686.; Kong B.S., Kim Y., Kim G.Y., Hyun J.W, Kim S.H., Jeong A., Kim H.J. Increased frequency of IL-6-producing non-classical monocytes in neuromyelitis optica spectrum disorder. J. Neuroinflammation, 2017, Vol. 14, no. 1, 191. doi:10.1186/s12974-017-0961-z.; Kudryavtsev I.V, Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Medical Immunology (Russia), 2015, Vol. 17, no. 1, pp. 19-26. doi:10.15789/1563-0625-2015-1-19-26.; Li X., Chen Y., Liu X., Zhang J., He X., Teng G., Yu D. Tim3/Gal9 interactions between T cells and monocytes result in an immunosuppressive feedback loop that inhibits Th1 responses in osteosarcoma patients. Int. Immunopharmacol., 2017, Vol. 44, pp. 153-159.; Maecker H., McCoy P., Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat. Rev. Immunol., 2012, Vol. 12, pp. 191-200.; Mahmoodpoor A., Paknezhad S., Shadvar K., Hamishehkar H., Movassaghpour A.A., Sanaie S., Ghamari A.A., Soleimanpour H. Flow сytometry of CD64, HLA-DR, CD25, and TLRs for diagnosis and prognosis of sepsis in critically Ill patients admitted to the intensive care unit: a review article. Anesth. Pain Med., 2018, Vol. 8, no. 6, e83128. doi:10.5812/aapm.83128.; Moreau R., Perianin A., Arroyo V. Review of defective NADPH oxidase activity and myeloperoxidase release in neutrophils from patients with cirrhosis. Front. Immunol., 2019, Vol. 10, 1044. doi:10.3389/fimmu.2019.01044.; Mukherjee R., Kanti Barman P., Kumar Thatoi P., Tripathy R., Kumar Das B., Ravindran B. Non-Classical monocytes display inflammatory features: validation in sepsis and systemic lupus erythematous. Sci. Rep., 2015, Vol. 5, 13886. doi:10.1038/srep13886.; Naranjo-Gomez J.S., Castillo J.A., Rojas M., Restrepo B.N., Diaz FJ., Velilla P.A., Castano D. Different phenotypes of non-classical monocytes associated with systemic inflammation, endothelial alteration and hepatic compromise in patients with dengue. Immunology, 2019, Vol. 156, no. 2, pp. 147-163.; Narasimhan P.B., Marcovecchio P., Hamers A.A.J., Hedrick C.C. Nonclassical monocytes in health and disease. Annu. Rev. Immunol., 2019, Vol. 37, pp. 439-456.; O’Donnell J.S., Teng M.W.L., Smyth M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol., 2019, Vol. 16, no. 3, pp. 151-167.; Pence B.D., Yarbro J.R. Classical monocytes maintain ex vivo glycolytic metabolism and early but not later inflammatory responses in older adults. Immun. Ageing, 2019, Vol. 16, 3. doi:10.1186/s12979-019-0143-1.; Pohar J., Simon Q., Fillatreau S. Antigen-specificity in the thymic development and peripheral activity of CD4(+)FOXP3(+) T regulatory cells. Front. Immunol., 2018, Vol. 9, 1701. doi:10.3389/fimmu.2018.01701.; Ramello M.C., Tosello Boari J., Canale F.P., Mena H.A., Negrotto S., Gastman B., Gruppi A., Acosta Rodriguez E.V., Montes C.L. Tumor-induced senescent T cells promote the secretion of pro-inflammatory cytokines and angiogenic factors by human monocytes/macrophages through a mechanism that involves Tim-3 and CD40L. Cell Death Dis, 2014, Vol. 5, e1507. doi:10.1038/cddis.2014.451.; Romano E., Kusio-Kobialka M., Foukas P.G., Baumgaertner P., Meyer C., Ballabeni P., Michielin O., Weide B., Romero P., Speiser D.E. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl. Acad. Sci. USA, 2015, Vol. 112, no. 19, pp. 6140-6145.; Sabir F., Farooq R.K., Asim Ur. Rehman, Ahmed N. Monocyte as an emerging tool for targeted drug delivery: a review. Curr. Pharm. Des., 2018, Vol. 24, no. 44, pp. 5296-5312.; Salminen A., Kauppinen A., Kaarniranta K. Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology, 2018, Vol. 19, no. 5, pp. 325-339.; Savchenko A.A., Borisov A.G., Modestov A.A., Moshev A.V., Kudryavtsev I.V., Tonacheva O.G., Koshcheev V.N. Monocytes subpopulations and chemiluminescent activity in patients with renal cell carcinoma. Medical Immunology (Russia), 2015, Vol. 17, no. 2, pp. 141-150. doi:10.15789/1563-0625-2015-2-141-150.; Savchenko A.A., Kudryavtsev I.V., Borisov A.G. Methods of estimation and the role of respiratory burst in the pathogenesis of infectious and inflammatory diseases. Russian Journal of Infection and Immunity, 2017, Vol. 7, no. 4, pp. 327-340. doi:10.15789/2220-7619-2017-4-327-340.; Savchenko A.A., Zdzitovetskii D.E., Borisov A.G., Luzan N.A. Chemiluminescent and enzyme activity of neutrophils in patients with widespread purulent peritonitis depending on the outcome of disease. Annals of the Russian Academy of Medical Sciences, 2014, Vol. 69, no. 5-6, pp. 23-28.; Schierer S., Ostalecki C., Zinser E., Lamprecht R., Plosnita B., Stich L., Dbrrie J., Lutz M.B., Schuler G., Baur A.S. Extracellular vesicles from mature dendritic cells (DC) differentiate monocytes into immature DC. Life Sci. Alliance, 2018, Vol. 1, no. 6, e201800093. doi:10.26508/lsa.201800093.; Shevach E.M. Foxp3(+) T Regulatory cells: still many unanswered questions - a perspective after 20 years of study. Front. Immunol., 2018, Vol. 9, 1048. doi:10.3389/fimmu.2018.01048.; Stansfield B.K., Ingram D.A. Clinical significance of monocyte heterogeneity. Clin. Transl. Med., 2015, Vol. 4, 5. doi:10.1186/s40169-014-0040-3.; van de Geer A., Cuadrado E., Slot M.C., van Bruggen R., Amsen D., Kuijpers T.W. Regulatory T cell features in chronic granulomatous disease. Clin. Exp. Immunol., 2019, Vol. 197, no. 2, pp. 222-229.; Wagner M., Koyasu S. Cancer immunoediting by innate lymphoid cells. Trends Immunol., 2019, Vol. 40, no. 5, pp. 415-430.; Wouters K., Gaens K., Bijnen M., Verboven K., Jocken J., Wetzels S., Wijnands E., Hansen D., van Greevenbroek M., Duijvestijn A., Biessen E.A., Blaak E.E., Stehouwer C.D., Schalkwijk C.G. Circulating classical monocytes are associated with CD11c(+) macrophages in human visceral adipose tissue. Sci. Rep., 2017, Vol. 7, 42665. doi:10.1038/srep42665.; Yu C.X., Bai L.Y., Lin J.J., Li S.B., Chen J.Y., He W.J., Yu X.M., Cui X.P., Wang H.L., Chen Y.Z., Zhu L. rhPLD2 inhibits airway inflammation in an asthmatic murine model through induction of stable CD25(+) Foxp3(+) Tregs. Mol. Immunol., 2018, Vol. 101, pp. 539-549.; Zarif J.C., Hernandez J.R., Verdone J.E., Campbell S.P., Drake C.G., Pienta K.J. A phased strategy to differentiate human CD14+ monocytes into classically and alternatively activated macrophages and dendritic cells. Biotechniques, 2016, Vol. 61, no. 1, pp. 33-41.; Zhuang Y., Peng H., Chen Y., Zhou S., Chen Y. Dynamic monitoring of monocyte HLA-DR expression for the diagnosis, prognosis, and prediction of sepsis. Front. Biosci. (Landmark Ed.), 2017, Vol. 22, pp. 1344-1354.; https://www.mimmun.ru/mimmun/article/view/1890
-
12Academic Journal
المؤلفون: V. A. Kozlov, A. G. Borisov, A. A. Savchenko, A. E. Kondakov, I. V. Kudryavtsev, В. А. Козлов, А. Г. Борисов, А. А. Савченко, А. Е. Кондаков, И. В. Кудрявцев
المصدر: Medical Immunology (Russia); Том 22, № 4 (2020); 785-790 ; Медицинская иммунология; Том 22, № 4 (2020); 785-790 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: пробиотик, T helpers, cytotoxic T lymphocytes, B lymphocytes, immunoglobulins, probiotic “Provag”, Т-хелперы, цитотоксические Т-лимфоциты, В-лимфоциты, иммуноглобулины
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1572/1296; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1572/3820; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1572/3821; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1572/3822; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1572/3823; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1572/3824; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1572/3825; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1572/3826; Анненков В.В., Лещук С.И., Круглова В.А., Мазяр Н.Л., Попкова С.М., Шмелева Е.А. Способ приготовления эритроцитарного антигенного диагностикума. Патент РФ № 2202801. Опубл. 20.04.2003. Бюл. № 11. 6 с.; Борисов А.Г., Савченко А.А., Тихонова Е.П., Сергеева И.В., Каспаров Э.В., Кудрявцев И.В., Арутюнян С.С. Состояние иммунной системы при использовании пробиотических лактобактерий в комплексной терапии папилломавирусной инфекции // Казанский медицинский журнал, 2017. Т. 98, № 1. С. 20-26.; Караулов А.В., Афанасьев С.С., Алешкин В.А., Воропаева Е.А., Афанасьев М.С., Несвижский Ю.В., Алешкин А.В., Метельская В.А., Гречишниква О.Г., Байракова А.Л., Егорова Е.А., Урбан Ю.Н., Евсегнеева И.В. Микрофлора, колонизационная резистентность слизистых и мукозальный иммунитет // Иммунология, 2015. Т. 36, № 5. С. 290-295.; Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шести-цветного цитофлуоримерического анализа // Медицинская иммунология, 2015. Т. 17, № 1. С. 19-26. doi:10.15789/1563-0625-2015-1-19-26.; Новокшонов А.А., Соколова Н.В. Физиологические функции лактобактерий в организме и эффективность их применения в составе пробиотиков в педиатрической практике // Эффективная фармакотерапия, 2012. № 53. С. 52-57.; Kandasamy S., Chattha K.S., Vlasova A.N., Rajashekara G., Saif L.J. Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model. Gut Microbes, 2014, Vol. 5, no. 5, pp. 639-651.; Luider J., Cyfra M., Johnson P., Auer I. Impact of the new Beckman Coulter Cytomics FC 500 5-color flow cytometer on a regional flow cytometry clinical laboratory service. Lab. Hematol., 2004, Vol. 10, pp. 102-108.; Maecker H., McCoy P., Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat. Rev. Immunol., 2012, Vol. 12, pp. 191-200.; Mathias A., Pais B., Favre L., Benyacoub J., Corthésy B. Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes, 2014, Vol. 5, no. 6, pp. 688-695.; Segal J.P., Oke S., Hold G.L., Clark S.K., Faiz O.D., Hart A.L. Systematic review: ileoanal pouch microbiota in health and disease. Aliment Pharmacol. Ther., 2018, Vol. 47, no. 4, pp. 466-477.; Suzuki T., Ainai A., Hasegawa H. Functional and structural characteristics of secretory IgA antibodies elicited by mucosal vaccines against influenza virus. Vaccine, 2017, Vol. 35, no. 39, pp. 5297-5302.; Tan Y., Leonhard M., Moser D., Ma S., Schneider-Stickler B. Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non-albicans Candida species biofilm. Arch. Oral. Biol., 2018, Vol. 85, pp. 40-45.; Taverniti V., Guglielmetti S. Health-promoting properties of Lactobacillus helveticus. Front. Microbiol., 2012, Vol. 3, pp. 392.; van Pijkeren J.P., Barrangou R. Genome editing of food-grade lactobacilli to develop therapeutic probiotics. Microbiol. Spectr., 2017, Vol. 5, no. 5.; Wen K., Li G., Zhang W., Azevedo M.S., Saif L.J., Liu F., Bui T., Yousef A., Yuan L. Development of γδ T cell subset responses in gnotobiotic pigs infected with human rotaviruses and colonized with probiotic lactobacilli. Vet. Immunol. Immunopathol., 2011, Vol. 141, no. 3-4, pp. 267-275.; https://www.mimmun.ru/mimmun/article/view/1572
-
13Academic Journal
المؤلفون: A. A. Savchenko, A. G. Borisov, I. V. Kudryavtsev, I. I. Gvozdev, A. V. Moshev, А. А. Савченко, А. Г. Борисов, И. В. Кудрявцев, И. И. Гвоздев, А. В. Мошев
المساهمون: The study was performed as part of the project «Mechanisms of metabolic reprogramming of the innate immune cells during tumor growth» was funded by Krasnoyarsk Regional Fund of Science., Данная работа выполнена при финансовой поддержке Краевого государственного автономного учреждения «Красноярский краевой фонд поддержки научной и научно-технической деятельности» (проект «Механизмы метаболического репрограммирования клеток врожденного иммунитета при опухолевом росте»)
المصدر: Medical Immunology (Russia); Том 22, № 5 (2020); 887-896 ; Медицинская иммунология; Том 22, № 5 (2020); 887-896 ; 2313-741X ; 1563-0625
مصطلحات موضوعية: рак почки, phenotype, antigens, metabolism, enzyme activity, kidney cancer, фенотип, антигены, метаболизм, активность ферментов
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2037/1307; Bao Y., Ledderose C., Seier T., Graf A.F., Brix B., Chong E., Junger W.G. Mitochondria regulate neutrophil activation by generating ATP for autocrine purinergic signaling. J. Biol. Chem., 2014, Vol. 289, no. 39, pp. 26794-26803.; Bednarska K., Klink M., Wilczyński J.R., Szyłło K., Malinowski A., Sułowska Z., Nowak M. Heterogeneity of the Mac-1 expression on peripheral blood neutrophils in patients with different types of epithelial ovarian cancer. Immunobiology, 2016, Vol. 221, no. 2, pp. 323-332.; Brandau S., Dumitru C.A., Lang S. Protumor and antitumor functions of neutrophil granulocytes. Semin. Immunopathol., 2013, Vol. 35, no. 2, pp. 163-176.; da Silva K.D., Caldeira P.C., Alves A.M., Vasconcelos A.C.U., Gomes A.P.N., de Aguiar M.C.F., Tarquinio S.B.C. High CD3(+) lymphocytes, low CD66b(+) neutrophils, and scarce tumor budding in the invasive front of lip squamous cell carcinomas. Arch. Oral. Biol., 2019, Vol. 104, pp. 46-51.; Dahlgren C., Gabl M., Holdfeldt A., Winther M., Forsman H. Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem. Pharmacol., 2016, Vol. 114, pp. 22-39.; Delebarre M., Dessein R., Lagrée M., Mazingue F., Sudour-Bonnange H., Martinot A., Dubos F. Differential risk of severe infection in febrile neutropenia among children with blood cancer or solid tumor. J. Infect., 2019, Vol. 79, no. 2, pp. 95-100.; Fan H.J., Tan Z.B., Wu Y.T., Feng X.R., Bi Y.M., Xie L.P., Zhang W.T., Ming Z., Liu B., Zhou Y.C. The role of ginsenoside Rb1, a potential natural glutathione reductase agonist, in preventing oxidative stress-induced apoptosis of H9C2 cells. J. Ginseng. Res., 2020, Vol. 44, no. 2, pp. 258-266.; Gatti A., Ceriani C., De Paschale M., Magnani C., Villa M., Viganò P., Clerici P., Brando B. Quantification of neutrophil and monocyte CD64 expression: a predictive biomarker for active tuberculosis. Int. J. Tuberc. Lung Dis., 2020, Vol. 24, no. 2, pp. 196-201.; Giese M.A., Hind L.E., Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood, 2019, Vol. 133, no. 20, pp. 2159-2167.; Goto K., Matsuyama R., Suwa Y., Arisaka S., Kadokura T., Sato M., Mori R., Kumamoto T., Taguri M., Endo I. The maximum chemiluminescence intensity predicts severe neutropenia in gemcitabine-treated patients with pancreatic or biliary tract cancer. Cancer Chemother. Pharmacol., 2018, Vol. 82, no. 6, pp. 953-960.; Granot Z. Neutrophils as a therapeutic target in cancer. Front. Immunol., 2019, Vol. 10, 1710. doi:10.3389/fimmu.2019.01710.; Kelm M., Lehoux S., Azcutia V., Cummings R.D., Nusrat A., Parkos C.A., Brazil J.C. Regulation of neutrophil function by selective targeting of glycan epitopes expressed on the integrin CD11b/CD18. FASEB J., 2020, Vol. 34, no. 2, pp. 2326-2343.; Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Medical Immunology (Russia), 2015, Vol. 17, no. 1, pp. 19-26. doi:10.15789/1563-0625-2015-1-19-26.; Kumar S., Dikshit M. Metabolic insight of neutrophils in health and disease. Front. Immunol., 2019, Vol. 10, 2099. doi:10.3389/fimmu.2019.02099.; Kurtasova L.M., Savchenko A.A., Shkapova E.A. Clinical aspects of functional disorders of neutrophilic granulocytes in oncopathology. Novosibirsk: Nauka, 2009. 183 p.; Lokwani R., Wark P.A., Baines K.J., Fricker M., Barker D., Simpson J.L. Blood Neutrophils In COPD But Not Asthma Exhibit A Primed Phenotype With Downregulated CD62L Expression. Int. J. Chron. Obstruct. Pulmon. Dis., 2019, Vol. 14, pp. 2517-2525.; Maecker H., McCoy P., Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat. Rev. Immunol., 2012, Vol. 12, pp. 191-200.; Mahmoodpoor A., Paknezhad S., Shadvar K., Hamishehkar H., Movassaghpour A.A., Sanaie S., Ghamari A.A., Soleimanpour H. Flow cytometry of CD64, HLA-DR, CD25, and TLRs for diagnosis and prognosis of sepsis in critically ill patients admitted to the intensive care unit: a review article. Anesth. Pain. Med., 2018, Vol. 8, no. 6, e83128. doi:10.5812/aapm.83128.; Matlung H.L., Babes L., Zhao X.W., van Houdt M., Treffers L.W., van Rees D.J., Franke K., Schornagel K., Verkuijlen P., Janssen H., Halonen P., Lieftink C., Beijersbergen R.L., Leusen J.H.W., Boelens J.J., Kuhnle I., van der Werff Ten Bosch J., Seeger K., Rutella S., Pagliara D., Matozaki T., Suzuki E., Menke-van der Houven van Oordt C.W., van Bruggen R., Roos D., van Lier R.A.W., Kuijpers T.W., Kubes P., van den Berg T.K. Neutrophils Kill antibodyopsonized cancer cells by trogoptosis. Cell Rep., 2018, Vol. 23, no. 13, pp. 3946-3959.; Mishalian I., Granot Z., Fridlender Z.G. The diversity of circulating neutrophils in cancer. Immunobiology, 2017, Vol. 222, Iss. 1, pp. 82-88.; Pan Z., Zhang L., Liu C., Huang X., Shen S., Lin X., Shi C. Cisplatin or carboplatin? Neutrophil to lymphocyte ratio may serve as a useful factor in small cell lung cancer therapy selection. Oncol. Lett., 2019, Vol. 18, no. 2, pp. 1513-1520.; Pirozzolo G., Gisbertz S.S., Castoro C., van Berge Henegouwen M.I., Scarpa M. Neutrophil-to-lymphocyte ratio as prognostic marker in esophageal cancer: a systematic review and meta-analysis. J. Thorac. Dis., 2019, Vol. 11, no. 7, pp. 3136-3145.; Rice C.M., Davies L.C., Subleski J.J., Maio N., Gonzalez-Cotto M., Andrews C., Patel N.L., Palmieri E.M., Weiss J.M., Lee J.M., Annunziata C.M., Rouault T.A., Durum S.K., McVicar D.W. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat. Commun., 2018, Vol. 9, no. 1, 5099. doi:10.1038/s41467-018-07505-2.; Richer B.C., Salei N., Laskay T., Seeger K. Changes in neutrophil metabolism upon activation and aging. Inflammation, 2018, Vol. 41, no. 2, pp. 710-721.; Savchenko A.A. Evaluation of NAD(P)-dependent dehydrogenase activities in neutrophilic granulocytes by the bioluminescent method. Bulletin of Experimental Biology and Medicine (Russia), 2015, Vol. 159, no. 5, pp. 692-695.; Savchenko A.A., Zdzitovetskii D.E., Borisov A.G., Luzan N.A. Chemiluminescent and enzyme activity of neutrophils in patients with widespread purulent peritonitis depending on the outcome of disease. Annals of the Russian Academy of Medical Sciences, 2014, Vol. 69, no. 5-6, pp. 23-28.; Savchenko А.А., Borisov A.G., Cherdancev D.V., Pervova O.V., Kudryavtsev I.V., Gvozdev I.I., Moshev A.V. Features of the phenotype and NAD(P)-dependent dehydrogenases activity in neutrophil by patients with widespread purulent peritonitis in prognosis for sepsis development. Russian Journal of Infection and Immunity, 2018, Vol. 8, no. 3, pp. 369-376.; Shkapova E.A., Kurtasova L.M., Savchenko A.A. Lucigenin- and luminol-dependent chemiluminescence of blood neutrophils in patients with renal cancer. Bulletin of Experimental Biology and Medicine, 2010, Vol. 149, no. 2, pp. 239-241.; Sica A., Guarneri V., Gennari A. Myelopoiesis, metabolism and therapy: a crucial crossroads in cancer progression. Cell Stress, Vol. 3, no. 9, pp. 284-294.; Sumida K., Wakita D., Narita Y., Masuko K., Terada S., Watanabe K., Satoh T., Kitamura H., Nishimura T. Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses. Eur. J. Immunol., 2012, Vol. 42, no. 8, pp. 2060-2072.; Tan C., Gu J., Chen H., Li T., Deng H., Liu K., Liu M., Tan S., Xiao Z., Zhang H., Xiao X. Inhibition of aerobic glycolysis promotes neutrophil to influx to the infectious site via CXCR2 in sepsis. Shock, 2020, Vol. 53, no. 1, pp. 114-123.; Thwe P.M., Ortiz D.A., Wankewicz A.L., Hornak J.P., Williams-Bouyer N., Ren P. Closing the Brief case: recurrent chromobacterium violaceum bloodstream infection in a glucose-6-phosphate dehydrogenase (G6PD)- deficient patient with a severe neutrophil defect. J. Clin. Microbiol., 2020, Vol. 58, no. 2, pii: e00314-19. doi:10.1128/JCM.00314-19.; Veglia F., Perego M., Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat. Immunol., 2018, Vol. 19, no. 2, pp. 108-119.; Veglia F., Tyurin V.A., Blasi M., De Leo A., Kossenkov A.V., Donthireddy L., To T.K.J., Schug Z., Basu S., Wang F., Ricciotti E., DiRusso C., Murphy M.E., Vonderheide R.H., Lieberman P.M., Mulligan C., Nam B., Hockstein N., Masters G., Guarino M., Lin C., Nefedova Y., Black P., Kagan V.E., Gabrilovich D.I. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature, 2019, Vol. 569, no. 7754, pp. 73-78.; Won W.J., Deshane J.S., Leavenworth J.W., Oliva C.R., Griguer C.E. Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma. Cell Stress, 2019, Vol. 3, no. 2, pp. 47-65.; Wu L., Saxena S., Awaji M., Singh R.K. Tumor-associated neutrophils in cancer: Going Pro. Cancers (Basel), 2019, Vol. 11, no. 4, E564. doi:10.3390/cancers11040564.; Zeindler J., Angehrn F., Droeser R., Däster S., Piscuoglio S., Ng C.K.Y., Kilic E., Mechera R., Meili S., Isaak A., Weber W.P., Muenst S., Soysal S.D. Infiltration by myeloperoxidase-positive neutrophils is an independent prognostic factor in breast cancer. Breast Cancer Res. Treat., 2019, Vol. 177, no. 3, pp. 581-589.; https://www.mimmun.ru/mimmun/article/view/2037
-
14Academic Journal
المؤلفون: Andrey A. Savchenko, Yuriy I. Grinshteyn, Anastasiya S. Drobysheva, А. А. Савченко, Ю. И. Гринштейн, А. С. Дробышева
المصدر: PULMONOLOGIYA; Том 29, № 2 (2019); 167-174 ; Пульмонология; Том 29, № 2 (2019); 167-174 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2019-29-2
مصطلحات موضوعية: ферменты, pneumonia, respiratory burst, metabolism, enzymes, пневмония, респираторный взрыв, метаболизм
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/1142/906; Колосов В.П., Кочегарова Е.Ю., Нарышкина С.В. Внебольничная пневмония (клиническое течение, прогнозирование исходов). Благовещенск: АГМА; 2012.; Чучалин А.Г., ред. Пульмонология. Национальное руководство. М.: ГЭОТАР-Медиа; 2016.; Cataudella E., Giraffa C.M., Di Marca S. et al. Neutrophil-to-lymphocyte ratio: an emerging marker predicting prognosis in elderly adults with community-acquired pneumonia. J. Am. Geriatr. Soc. 2017; 65 (8): 1796–1801. DOI:10.1111/jgs.14894.; Kartal O., Kartal A.T. Value of neutrophil to lymphocyte and platelet to lymphocyte ratios in pneumonia. Bratisl. Lek. Listy. 2017; 118 (9): 513–516. DOI:10.4149/BLL_2017_099.; Parenti A., Indorato B., Paccosi S. Minocycline affects human neutrophil respiratory burst and transendothelial migration. Inflamm. Res. 2017; 66 (2): 107–109. DOI:10.1007/s00011-016-0999-x.; Stålhammar M.E., Douhan Håkansson L., Sindelar R. Bacterial N-formyl peptides reduce PMA- and Escherichia coli-induced neutrophil respiratory burst in term neonates and adults. Scand. J. Immunol. 2017; 85 (5): 365–371. DOI:10.1111/sji.12537.; Владимиров Ю.А., Проскурнина Е.В. Свободные радикалы и клеточная хемилюминесценция. Успехи биологической химии. 2009; 49: 341–388.; Beutler B. Innate immunity: an overview. Mol. Immunol. 2004; 40: 845–859. DOI:10.1016/j.molimm.2003.10.005.; Соодаева С.К., Климанов И.А., Никитина Л.Ю. Нитрозивный и оксидативный стресс при заболеваниях органов дыхания. Пульмонология. 2017; 27 (2): 262–273. DOI:10.18093/0869-0189-2017-27-2-262-273.; Савченко А.А., Здзитовецкий Д.Э., Борисов А.Г., Лузан Н.А. Хемилюминесцентная и энзиматическая активность нейтрофильных гранулоцитов у больных распространенным гнойным перитонитом в зависимости от исхода заболевания. Вестник РАМН. 2014; 69 (5-6): 23–28. DOI:10.15690/vramn.v69i5-6.1039.; Walmsley S.R., Whyte M.K. Neutrophil energetics and oxygen sensing. Blood. 2014; 123 (18): 2753–2754. DOI:10.1182/blood-2014-03-560409.; Чучалин А.Г., Синопальников А.И., Козлов Р.С. и др. Российское респираторное общество (РРО) Межрегиональная ассоциация по клинической микробиологии и антимикробной химиотерапии (МАКМАХ) Клинические рекомендации по диагностике, лечению и профилактике тяжелой внебольничной пневмонии у взрослых. Пульмонология. 2014; (4): 13–48. DOI:10.18093/0869-0189-2014-0-4-13-48.; Чучалин А.Г., Синопальников А.И., Козлов Р.С. и др. Клинические рекомендации по диагностике, лечению и профилактике тяжелой внебольничной пневмонии у взрослых. Клиническая микробиология антимикробная химиотерапия. 2015; 17 (2): 84–126.; Дворецкий Л.И. Внебольничная пневмония: взгляд терапевта. Consilium Medicum. 2008; 10 (3): 34–40.; Савченко А.А. Определение активности NAD(P)-зависимых дегидрогеназ в нейтрофильных гранулоцитах биолюминесцентным методом. Бюллетень экспериментальной биологии и медицины. 2015; 159 (5) 656–660. DOI:10.1007/s10517-015-3049-8.; Nguyen G.T., Green E.R., Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH oxidase activation and bacterial resistance. Front. Cell. Infect. Microbiol. 2017; 7: 373. DOI:10.3389/fcimb.2017.00373.; Zhang L., Wu J., Duan X. et al. NADPH oxidase: A potential target for treatment of stroke. Oxid. Med. Cell. Longev. 2016; 2016: 5026984. DOI:10.1155/2016/5026984.; Kőszegi T., Sali N., Raknić M. et al. A novel luminol-based enhanced chemiluminescence antioxidant capacity microplate assay for use in different biological matrices. J. Pharmacol. Toxicol. Methods. 2017; 88 (Pt 2): 153–159. DOI:10.1016/j.vascn.2017.09.256.; Bao Y., Ledderose C., Graf A.F. et al. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J. Cell Biol. 2015; 210 (7): 1153–1164. DOI:10.1083/jcb.201503066.; Milot E., Filep J.G. Regulation of neutrophil survival /apoptosis by Mcl-1. Sci. World J. 2011; 11: 1948–1962. DOI:10.1100/2011/131539.; Lu L., Wang M., Liao X. et al. Manganese influences the expression of fatty acid synthase and malic enzyme in cultured primary chicken hepatocytes. Br. J. Nutr. 2017; 118 (11): 881–888. DOI:10.1017/S0007114517002987.; Cai T., Kuang Y., Zhang C. et al. Glucose-6-phosphate dehydrogenase and NADPH oxidase 4 control STAT3 activity in melanoma cells through a pathway involving reactive oxygen species, c-SRC and SHP2. Am. J. Cancer Res. 2015; 5 (5): 1610–1620.; https://journal.pulmonology.ru/pulm/article/view/1142
-
15Academic Journal
المؤلفون: A. A. Savchenko, A. G. Borisov, I. V. Kudryavtsev, A. V. Moshev, А. А. Савченко, А. Г. Борисов, И. В. Кудрявцев, А. В. Мошев
المساهمون: Данная работа выполнена при финансовой поддержке Краевого государственного автономного учреждения «Красноярский краевой фонд поддержки научной и научно-технической деятельности» (проект «Механизмы метаболического репрограммирования клеток врожденного иммунитета при опухолевом росте»).
المصدر: Medical Immunology (Russia); Том 21, № 4 (2019); 689-702 ; Медицинская иммунология; Том 21, № 4 (2019); 689-702 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2019-4
مصطلحات موضوعية: презентация антигена, monocytes, kidney cancer, phenotype, costimulatory molecules, antigen presentation, моноциты, рак почки, фенотип, костимулирующие молекулы
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1652/1166; Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шести-цветного цитофлуоримерического анализа // Медицинская иммунология.–2015.–Т. 17, № 1.–С. 19-26. doi:10.15789/1563-0625-2015-1-19-26.; Леплина О.Ю., Старостина Н.М., Блинова Д.Д., Желтова О.И., Олейник Е.А., Тыринова Т.В., Останин А.А., Черных Е.Р. Результаты пилотного клинического исследования вакцин на основе дендритных клеток в лечении рецидивирующей герпесвирусной инфекции // Медицинская иммунология.-2016.-Т. 18, № 5.-Р. 425-436. doi:10.15789/1563-0625-2016-5-425-436.; Назаркина Ж.К., Заякина А.В., Лактионов П.П. Влияние условий созревания и способа нагрузки антигенами на получение иммунологически активных дендритных клеток // Молекулярная биология.-2018.-Т. 52, № 2.-С. 257-269. doi:10.1134/S0026893317050132.; Савченко А.А., Борисов А.Г., Кудрявцев И.В., Гвоздев И.И., Мошев А.В. Особенности фенотипа дендритных клеток, дифференцированных из моноцитов крови, у больных раком почки // Медицинская иммунология.-2018.-Т. 20, № 2.-С. 215-226. doi:10.15789/1563-0625-2018-2-215-226.; Савченко А.А., Борисов А.Г., Модестов А.А., Мошев А.В., Кудрявцев И.В., Тоначева О.Г., Кощеев В.Н. Фенотипический состав и хемилюминесцентная активность моноцитов у больных почечноклеточным раком // Медицинская иммунология.-2015.-Т. 17, № 2.-С. 141-150. doi:10.15789/1563-0625-2015-2-141-150.; Тыринова Т.В., Мишинов С.В., Леплина О.Ю., Альшевская А.А., Курочкина Ю.Д., Олейник Е.А., Калиновский А.В., Лопатникова Ю.А., Чернов С.В., Ступак В.В., Сенников С.В., Останин А.А., Черных Е.Р. Роль TNFα/TNF-R1-сигнального пути в реализации цитотоксического эффекта дендритных клеток против глиобластомных линий // Медицинская иммунология.-2018.-Т. 20, № 3.-С. 353-364. doi:10.15789/1563-0625-2018-3-353-364.; Bai W.K., Zhang W., Hu B. Vascular endothelial growth factor suppresses dendritic cells function of human prostate cancer. Onco. Targets Ther., 2018, Vol. 11, pp. 1267-1274. doi:10.2147/OTT.S161302.; Bennaceur K., Popa I., Chapman J.A., Migdal C., Péguet-Navarro J., Touraine J.L., Portoukalian J. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells. Glycobiology, 2009, Vol. 19, no. 6, pp. 576-582. doi:10.1093/glycob/cwp015.; Chen X., Hao S., Zhao Z., Liu J., Shao Q., Wang F., Sun D., He Y., Gao W., Mao H. Interleukin 35: Inhibitory regulator in monocyte-derived dendritic cell maturation and activation. Cytokine, 2018, Vol. 108, pp. 43-52. doi:10.1016/j.cyto.2018.03.008.; de Goeje P.L., Klaver Y., Kaijen-Lambers M.E.H., Langerak A.W., Vroman H., Kunert A., Lamers C.H.J., Aerts J.G.J.V., Debets R., Hendriks R.W. Autologous Dendritic Cell Therapy in Mesothelioma Patients Enhances Frequencies of Peripheral CD4 T Cells Expressing HLA-DR, PD-1, or ICOS. Front Immunol., 2018, Vol. 9, pp. 2034. doi:10.3389/fimmu.2018.02034.; Deicher A., Andersson R., Tingstedt B, Lindell G, Bauden M, Ansari D. Targeting dendritic cells in pancreatic ductal adenocarcinoma. Cancer Cell Int., 2018, Vol. 18, pp. 85. doi:10.1186/s12935-018-0585-0.; Finak G., Langweiler M., Jaimes M., Malek M., Taghiyar J., Korin Y., Raddassi K., Devine L., Obermoser G., Pekalski M.L., Pontikos N., Diaz A., Heck S., Villanova F., Terrazzini N., Kern F., Qian Y., Stanton R., Wang K., Brandes A., Ramey J., Aghaeepour N., Mosmann T., Scheuermann R.H., Reed E., Palucka K., Pascual V., Blomberg B.B., Nestle F., Nussenblatt R.B., Brinkman R.R., Gottardo R., Maecker H., McCoy J.P. Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium. Sci. Rep., 2016, Vol. 6, pp. 20686. doi:10.1038/srep20686.; Han Y., Chen Z., Yang Y., Jiang Z., Gu Y., Liu Y., Lin C., Pan Z., Yu Y., Jiang M., Zhou W., Cao X. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology, 2014, Vol. 59, no. 2, pp. 567-579. doi:10.1002/hep.26694.; Hsu J.L., Bryant C.E., Papadimitrious M.S., Kong B., Gasiorowski R.E., Orellana D., McGuire H.M., Groth B.F.S., Joshua D.E., Ho P.J., Larsen S., Iland H.J., Gibson J., Clark G.J., Fromm P.D., Hart D.N. A blood dendritic cell vaccine for acute myeloid leukemia expands anti-tumor T cell responses at remission. Oncoimmunology, 2018, Vol. 7, no. 4, e1419114. doi:10.1080/2162402X.2017.1419114.; Ki K.K., Faddy H.M., Flower R.L., Dean M.M. Packed Red Blood Cell Transfusion Modulates Myeloid Dendritic Cell Activation and Inflammatory Response In Vitro. J. Interferon & Cytokine Res., 2018, Vol. 38, no. 3, pp. 111-121. doi:10.1089/jir.2017.0099.; Kwong C., Gilman-Sachs A., Beaman K. An independent endocytic pathway stimulates different monocyte subsets by the a2 N-terminus domain of vacuolar-ATPase. Oncoimmunology, 2013, Vol. 2, no. 1, e22978. doi:10.4161/onci.22978.; Li J.G., Du Y.M., Yan Z.D., Yan J., Zhuansun Y.X., Chen R., Zhang W., Feng S.L., Ran P.X. CD80 and CD86 knockdown in dendritic cells regulates Th1/Th2 cytokine production in asthmatic mice. Exp. Ther. Med., 2016, Vol. 11, no. 3, pp. 878-884. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774365/pdf/etm-11-03-0878.pdf.; Lim T.S., Goh J.K.H., Mortellaro A., Lim C.T., Hämmerling G.J., Ricciardi-Castagnoli P. CD80 and CD86 differentially regulate mechanical interactions of t-cells with antigen-presenting dendritic cells and b-cells. PLoS One, 2012, Vol. 7, nj. 9, e45185. https://doi.org/10.1371/journal. pone.0045185; Loughland J.R., Minigo G., Burel J., Tipping P.E., Piera K.A., Amante F.H., Engwerda C.R., Good M.F., Doolan D.L., Anstey N.M., McCarthy J.S., Woodberry T. Profoundly Reduced CD1c+ Myeloid Dendritic Cell HLA-DR and CD86 Expression and Increased Tumor Necrosis Factor Production in Experimental Human Blood-Stage Malaria Infection. Infect. Immun., 2016, Vol. 84, no. 5, pp. 1403-1412. doi:10.1128/IAI.01522-15.; Ning Y., Shen K., Wu Q., Sun X., Bai Y., Xie Y., Pan J., Qi C. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol. Lett., 2018, Vol. 199, pp. 36-43. doi:10.1016/j.imlet.2018.05.002.; Qian C., Cao X. Dendritic cells in the regulation of immunity and inflammation. Semin. Immunol., 2018, Vol. 35, pp. 3-11. doi:10.1016/j.smim.2017.12.002.; Sansom D.M., Manzotti C.N., Zheng Y. What's the difference between CD80 and CD86? Trends Immunol., 2003, Vol. 24, no. 6, pp. 314-319. doi:10.1016/S1471-4906(03)00111-X.; Shang N., Figini M., Shangguan J., Wang B., Sun C., Pan L., Ma Q., Zhang Z. Dendritic cells based immunotherapy. Am. J. Cancer Res., 2017, Vol. 7, no. 10, pp. 2091-2102. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665855/pdf/ajcr0007-2091.pdf.; Song X., Ding Y., Liu G., Yang X., Zhao R., Zhang Y., Zhao X., Anderson G.J., Nie G. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases. J. Biol. Chem., 2016, Vol. 291, no. 16, pp. 8453-8464. doi:10.1074/jbc.M116.716316.; Song X., Zhang Y., Zhang L., Song W., Shi L. Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells. Oncotarget, 2018, Vol. 9, no. 14, pp. 11572-11580. doi:10.18632/oncotarget.24098.; Souto G.R., Matias M.D.P., Nunes L.F.M., Ferreira R.C., Mesquita R.A. Mature dendritic cell density is affected by smoking habit, lesion size, and epithelial dysplasia in oral leukoplakia samples. Arch. Oral. Biol., 2018, Vol. 95, pp. 51-57. doi:10.1016/j.archoralbio.2018.07.008; Suryatenggara J., Wibowo H., Atmodjo W.L., Mathew G. Characterization of alpha-fetoprotein effects on dendritic cell and its function as effector immune response activator. J. Hepatocell. Carcinoma., 2017, Vol. 4, pp. 139-151. doi:10.2147/JHC.S139070.; Sutherland D.R., Ortiz F., Quest G., Illingworth A., Benko M., Nayyar R., Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B Clin Cytom., 2018, Vol. 94, no. 1, pp. 1-15. doi:10.1002/cyto.b.21626.; Wang C., Pu J., Yu H., Liu Y., Yan H., He Z., Feng X. A Dendritic Cell Vaccine Combined With Radiotherapy Activates the Specific Immune Response in Patients With Esophageal Cancer. J. Immunother., 2017, Vol. 40, no. 2, pp. 71-76. doi:10.1097/CJI.0000000000000155.; Wu M.R., Zhang T., DeMars L.R., Sentman C.L. B7H6-specific chimeric antigen receptors lead to tumor elimination and host antitumor immunity. Gene Ther., 2015, Vol. 22, no. 8, pp. 675-684. doi:10.1038/gt.2015.29.; Yanagisawa R., Koizumi T., Koya T., Sano K., Koido S., Nagai K., Kobayashi M., Okamoto M., Sugiyama H., Shimodaira S. WT1-pulsed Dendritic Cell Vaccine Combined with Chemotherapy for Resected Pancreatic Cancer in a Phase I Study. Anticancer Res., 2018, Vol. 38, no. 4, pp. 2217-2225. doi:10.21873/anticanres.12464.; https://www.mimmun.ru/mimmun/article/view/1652
-
16Academic Journal
المؤلفون: A. A. Savchenko, A. G. Borisov, I. V. Kudryavtsev, I. I. Gvozdev, A. V. Moshev, А. А. Савченко, А. Г. Борисов, И. В. Кудрявцев, И. И. Гвоздев, А. В. Мошев
المصدر: Medical Immunology (Russia); Том 20, № 2 (2018); 215-226 ; Медицинская иммунология; Том 20, № 2 (2018); 215-226 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2018-2
مصطلحات موضوعية: презентация антигена, monocytes, kidney cancer, phenotype, costimulatory molecules, antigen presentation, моноциты, рак почки, фенотип, костимулирующие молекулы
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1487/1023; Кескинов А.А., Щурин М.Р., Бухман В.М., Шпрах З.С. Влияние секретируемых опухолью веществ на дендритные клетки при раке // Российский биотерапевтический журнал, 2017. Т. 16, № 1. С. 12-23. [Keskinov A.A., Shhurin M.R., Buhman V.M., Shprah Z.S. Impact of tumor-derived factors on dendritic cells in cancer. Rossiyskiy bioterapevticheskiy zhurnal = Russian Biotherapeutic Journal, 2017, Vol. 16, no. 1, pp. 12-23. (In Russ.)]; Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шести-цветного цитофлуоримерического анализа // Медицинская иммунология, 2015. Т. 17, № 1. С. 19-26. [Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, Vol. 17, no. 1, pp. 19-26. (In Russ.)] doi:10.15789/1563-0625-2015-1-19-26.; Леплина О.Ю., Тихонова М.А., Тыринова Т.В., Алямкина Е.А., Богачев С.С., Останин А.А., Черных Е.Р. Функциональная активность IFNα- и IL-4-индуцированных дендритных клеток человека: сравнительное исследование // Медицинская иммунология, 2014. Т. 16, № 1. С. 43-52. [Leplina O.Yu., Tikhonova M.A., Tyrinova T.V., Alyamkina E.A., Bogachev S.S., Ostanin A.A., Chernykh E.R. Functional activity of IFNα- and IL-4- induced human dendritic cells: a comparative study. Meditsinskaya immunologiya = Medical Immunology (Russia), 2014, Vol. 16, no. 1, pp. 43-52. (In Russ.)] doi:10.15789/1563-0625-2014-1-43-52.; Савченко А.А., Борисов А.Г., Модестов А.А., Мошев А.В., Кудрявцев И.В., Тоначева О.Г., Кощеев В.Н. Фенотипический состав и хемилюминесцентная активность моноцитов у больных почечноклеточным раком // Медицинская иммунология, 2015. Т. 17, № 2. С. 141-150. [Savchenko A.A., Borisov A.G., Modestov A.A., Moshev A.V., Kudryavtsev I.V., Tonacheva O.G., Koshcheev V.N. Monocytes subpopulations and chemiluminescent activity in patients with renal cell carcinoma. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, Vol. 17, no. 2, pp. 141-150. (In Russ.)] doi:10.15789/1563-0625-2015-2-141-150.; Савченко А.А., Модестов А.А., Мошев А.В., Тоначева О.Г., Борисов А.Г. Цитометрический анализ NK- и NKT-клеток у больных почечноклеточным раком // Российский иммунологический журнал, 2014. Т. 8 (17), № 4. С. 1012-1018. [Savchenko A.A., Modestov A.A., Moshev A.V., Tonacheva O.G., Borisov A.G. Cytometric analysis of NK- and NKT-cells in patients with renal cell carcinoma. Rossiyskiy immunologicheskiy zhurnal = Russian Immunological Journal, 2014, Vol. 8 (17), no. 4, pp. 1012-1018. (In Russ.)]; Bari R., Hartford C., Chan W.K., Vong Q., Li Y., Gan K., Zhou Y., Cheng C., Kang G., Shurtleff S., Turner V., Pui C.H., Downing J.R., Leung W. Genome-wide single-nucleotide polymorphism analysis revealed SUFU suppression of acute graft-versus-host disease through downregulation of HLA-DR expression in recipient dendritic cells. Sci. Rep., 2015, Vol. 5, p. 11098.; Battaglia S., Muhitch J.B. Unmasking targets of antitumor immunity via high-throughput antigen profiling. Curr. Opin. Biotechnol., 2016, Vol. 42, pp. 92-97.; Ciudad M.T., Sorvillo N., van Alphen F.P., Catalán D., Meijer A.B., Voorberg J., Jaraquemada D. Analysis of the HLA-DR peptidome from human dendritic cells reveals high affinity repertoires and nonconventional pathways of peptide generation. J. Leukoc. Biol., 2017, Vol. 101, no. 1, pp. 15-27.; da Cunha A., Antoniazi Michelin M., Cândido Murta E.F. Phenotypic profile of dendritic and T cells in the lymph node of Balb/C mice with breast cancer submitted to dendritic cells immunotherapy. Immunol. Lett., 2016, Vol. 177, pp. 25-37.; Di Pucchio T., Lapenta C., Santini S.M., Logozzi M., Parlato S., Belardelli F. CD2+/CD14+ monocytes rapidly differentiate into CD83+ dendritic cells. Eur. J. Immunol., 2003, Vol. 33, no. 2, pp. 358-367.; Gardner A., Ruffell B. Dendritic cells and cancer immunity. Trends Immunol., 2016, Vol. 37, no. 12, pp. 855-865.; Grange C., Tapparo M., Tritta S., Deregibus M.C., Battaglia A., Gontero P., Frea B., Camussi G. Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation. BMC Cancer, 2015, Vol. 15, p. 1009.; Jakubzick C.V., Randolph G.J., Henson P.M. Monocyte differentiation and antigen-presenting functions. Nat. Rev. Immunol., 2017, Vol. 17, no. 6, pp. 349-362.; Jia J., Wang Z., Li X., Wang Z., Wang X. Morphological characteristics and co-stimulatory molecule (CD80, CD86, CD40) expression in tumor infiltrating dendritic cells in human endometrioid adenocarcinoma. Eur. J. Obstet. Gynecol. Reprod. Biol., 2012, Vol. 160, no. 2, pp. 223-227.; Wang Y. Immune tolerance of mice allogenic tooth transplantation induced by immature dendritic cells. Int. J. Clin. Exp. Med., 2015, Vol. 8, no. 4, pp. 5254-5262.; Liu W.H., Liu J.J., Wu J., Zhang L.L., Liu F., Yin L., Zhang M.M., Yu B. Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathway. PLoS ONE, 2013, Vol. 8, no. 1, e55487. doi:10.1371/journal.pone.0055487.; Luider J.1., Cyfra M., Johnson P., Auer I. Impact of the new Beckman Coulter Cytomics FC 500 5-color flow cytometer on a regional flow cytometry clinical laboratory service. Lab. Hematol., 2004, Vol. 10, pp. 102-108.; Macri C., Dumont C., Johnston A.P., Mintern J.D. Targeting dendritic cells: a promising strategy to improve vaccine effectiveness. Clin. Transl. Immunology, 2016, Vol. 5, no. 3, p. e66.; Maecker H., McCoy P., Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat. Rev. Immunol., 2012, Vol. 12, pp. 191-200.; Maglioco A., Machuca D.G., Badano M.N., Nannini P., Camerano G.V., Costa H., Meiss R., Ruggiero R.A., Giordano M., Dran G.I. B cells inhibit the antitumor immunity against an established murine fibrosarcoma. Oncol. Lett., 2017, Vol. 13, no. 5, pp. 3225-3232.; Ni Y.H., Wang Z.Y., Huang X.F., Shi P.H., Han W., Hou Y.Y., Hua Z.C., Hu A.Q. Effect of siRNA-mediated downregulation of VEGF in Tca8113 cells on the activity of monocyte-derived dendritic cells. Oncol. Lett., 2012, Vol. 3, no. 4, pp. 885-892.; Okamoto M., Kobayashi M., Yonemitsu Y., Koido S., Homma S. Dendritic cell-based vaccine for pancreatic cancer in Japan. World J. Gastrointest. Pharmacol. Ther., 2016, Vol. 7, no. 1, pp. 133-138.; Oreshkova N., Wichgers Schreur P.J., Spel L., Vloet R.P., Moormann R.J., Boes M., Kortekaas J. Nonspreading rift valley fever virus infection of human dendritic cells results in downregulation of CD83 and full maturation of bystander cells. PLoS ONE, 2015, Vol. 10, no. 11, e0142670. doi:10.1371/journal.pone.0142670.; Pfirschke C., Siwicki M., Liao H.W., Pittet M.J. Tumor microenvironment: no effector T сells without dendritic cells. Cancer Cell, 2017, Vol. 31, no. 5, pp. 614-615.; Prechtel A.T., Steinkasserer A. CD83: an update on functions and prospects of the maturation marker of dendritic cells. Arch. Dermatol. Res., 2007, Vol. 299, no. 2, pp. 59-69.; Reardon D.A., Mitchell D.A. The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin. Immunopathol., 2017, Vol. 39, no. 2, pp. 225-239.; Seyfizadeh N., Muthuswamy R., Mitchell D.A., Nierkens S., Seyfizadeh N. Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit. Rev. Oncol. Hematol., 2016, Vol. 107, pp. 100-110.; Tan P., He L., Han G., Zhou Y. Optogenetic immunomodulation: shedding light on antitumor immunity. Trends Biotechnol., 2017, Vol. 35, no. 3, pp. 215-226.; Veglia F., Gabrilovich D.I. Dendritic cells in cancer: the role revisited. Curr. Opin. Immunol., 2017, Vol. 45, pp. 43-51.; Xie J., Lin Y.K., Wang K., Che B., Li J.Q., Xu X., Han F., Liang D.H. Induced immune tolerance of autoantigen loaded immature dendritic cells in homogenic lupus mice. Genet. Mol. Res., 2014, Vol. 13, no. 1, pp. 1251-1262.; Yan F., Cai L., Hui Y., Chen S., Meng H., Huang Z. Tolerogenic dendritic cells suppress murine corneal allograft rejection by modulating CD28/CTLA-4 expression on regulatory T cells. Cell. Biol. Int., 2014, Vol. 38, no. 7, pp. 835-848.; Zhang H., Xie Y., Li W., Chibbar R., Xiong S., Xiang J. CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell. Mol. Immunol., 2011, Vol. 8, no. 1, pp. 23-30.; Zhang L., Xia C.Q. PD-1/PD-L1 Interaction maintains allogeneic immune tolerance induced by administration of ultraviolet B-irradiated immature dendritic cells. J. Immunol. Res., 2016, 2419621. doi:10.1155/2016/2419621.; https://www.mimmun.ru/mimmun/article/view/1487
-
17Academic Journal
المؤلفون: I. V. Kudryavtsev, A. G. Borisov, E. V. Vasilyeva, I. I. Krobinets, A. A. Savchenko, M. K. Serebriakova, A. Totolian Areg, И. В. Кудрявцев, А. Г. Борисов, Е. В. Васильева, И. И. Кробинец, А. А. Савченко, М. К. Серебрякова, А. Тотолян Арег
المصدر: Medical Immunology (Russia); Том 20, № 2 (2018); 227-240 ; Медицинская иммунология; Том 20, № 2 (2018); 227-240 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2018-2
مصطلحات موضوعية: ингибиторные рецепторы, multicolor immunophenotyping, cytotoxic T cell subsets, CD3+CD8+ maturation, effector molecules, inhibitory receptors, многоцветный анализ, цитотоксические Т-лимфоциты, дифференцировка, маркеры эффекторных клеток
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1485/1021; Кудрявцев И.В. Т-клетки памяти: основные популяции и стадии дифференцировки // Российский иммунологический журнал, 2014. Т. 8, № 4 (17). С. 947-964. [Kudryavtsev I.V. Memory T cells: major populations and stages of differentiation. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2014, Vol. 8, no. 4, pp. 947-964. (In Russ.)].; Кудрявцев И.В., Борисов А.Г., Волков А.Е., Савченко А.А., Серебрякова М.К., Полевщиков А.В. Анализ уровня экспрессии CD56 и CD57 цитотоксическими Т-лимфоцитами различного уровня дифференцировки // Тихоокеанский медицинский журнал, 2015. № 2. С. 47-52. [Kudryavtsev I.V., Borisov A.G., Volkov A.E., Savchenko A.A., Serebryakova M.K., Polevschikov A.V. CD56 and CD57 expression by distinct populations of human cytotoxic CD8+ T-lymphocytes. Tikhookeanskiy meditsinskiy zhurnal = Pacific Medical Journal, 2015, no. 2, pp. 30-35. (In Russ.)].; Кудрявцев И.В., Борисов А.Г., Кробинец И.И., Савченко А.А., Серебрякова М.К. Определение основных субпопуляций цитотоксических Т-лимфоцитов методом многоцветной проточной цитометрии. Медицинская иммунология, 2015. Т. 17, № 6. С. 525-538. [Kudryavtsev I.V., Borisov A.G., Krobinets I.I., Savchenko A.A., Serebryakova M.K. Multicolor flow cytometric analysis of cytotoxic T cell subsets. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, Vol. 17, no. 6, pp. 525-538. (In Russ.)] doi:10.15789/1563-0625- 2015-6-525-538.; Кудрявцев И.В., Елезов Д.С. Анализ основных популяций цитотоксических Т-лимфоцитов периферической крови на основании уровня экспрессии CD27, CD28, CD45R0 и CD62L // Российский иммунологический журнал, 2013. Т. 7 (16), № 2-3 (1). С. 57-61. [Kudryavtsev I.V., Elezov D.S. Analysis of the main populations of cytotoxic T lymphocytes of peripheral blood on the basis level or the expression of CD27, CD28, CD45R0 and CD62L. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2013, Vol. 7 (16), no. 2-3 (1), pp. 57-61. (In Russ.)]; Кудрявцев И.В., Савицкий В.П. Многоцветный анализ основных субпопуляций Т-хелперов и цитотоксических Т-клеток методом проточной цитофлуориметрии // Российский иммунологический журнал, 2012. Т. 6, №3 (1) (14). С. 94-97. [Kudryavtsev I.V., Savitsky V.P. Multicolor flow cytometric analysis of the main subpopulations of T-helpers and cytotoxic T-cells from peripheral blood. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2012, Vol. 6, no. 3 (1) (14), pp. 94-99. (In Russ.)]; Сохоневич Н.А., Хазиахматова О.Г., Юрова К.А., Шуплетова В.В., Литвинова Л.С. Фенотипическая характеристика и функциональные особенности Т- и В-клеток иммунной памяти // Цитология, 2015. Т. 57, № 5. С. 311-318. [Sokhonevich N.A., Khaziakhmatova O.G., Yurova K.A., Shupletsova V.V., Litvinova L.S. Phenotypic characterization and functional features of memory T- and B-cells. Tsitologiya = Cytology, 2015, Vol. 57, no. 5, pp. 311-318. (In Russ.)]; Хайдуков С.В., Байдун Л.А., Зурочка А.В., Тотолян Арег А. Стандартизованная технология «Исследование субпопуляционного состава лимфоцитов периферической крови с применением проточных цитофлюориметров-анализаторов» (Проект) // Медицинская иммунология, 2012. Т. 14, № 3. С. 255- 268. [Khaydukov S.V., Baydun L.A., Zurochka A.V., Totolian Areg A. Standardized technology “Research of lymphocytes subpopulation composition in peripheral blood using flow cytometry analyzers” (Draft). Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, Vol. 14, no. 3, pp. 255-268. (In Russ.)]. doi:10.15789/1563- 0625-2012-3-255-268.; Akbar A.N., Henson S.M. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol., 2011, Vol. 11, no. 4, pp. 289-295.; Appay V., van Lier R.A., Sallusto F., Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A, 2008, Vol. 73, no. 11, pp. 975-983.; Barry M., Bleackley R.C. Cytotoxic T lymphocytes: all roads lead to death. Nat. Rev. Immunol., 2002, Vol. 2, no. 6, pp. 401-409.; Bengsch B., Seigel B., Ruhl M., Timm J., Kuntz M., Blum H.E., Pircher H., Thimme R. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog., 2010, Vol. 6, no. 6, e1000947. doi:10.1371/journal.ppat.1000947.; Chattopadhyay P.K., Betts M.R., Price D.A., Gostick E., Horton H., Roederer M., De Rosa S.C. The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J. Leukoc. Biol., 2009, Vol. 85, no. 1, pp. 88-97.; Chlewicki L.K., Velikovsky C.A., Balakrishnan V., Mariuzza R.A., Kumar V. Molecular basis of the dual functions of 2B4 (CD244). J. Immunol., 2008, Vol. 180, no. 12, pp. 8159-8167.; Colonna M. Cytolytic responses: cadherins put out the fire. J. Exp. Med., 2006, Vol. 203, no. 2, pp. 261-264.; Duraiswamy J., Ibegbu C.C., Masopust D., Miller J.D., Araki K., Doho G.H., Tata P., Gupta S., Zilliox M.J., Nakaya H.I., Pulendran B., Haining W.N., Freeman G.J., Ahmed R. Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults. J. Immunol., 2011, Vol. 186, no. 7, pp. 4200-4212.; Gattinoni L., Lugli E., Ji Y., Pos Z., Paulos C.M., Quigley M.F., Almeida J.R., Gostick E., Yu Z., Carpenito C., Wang E., Douek D.C., Price D.A., June C.H., Marincola F.M., Roederer M., Restifo N.P. A human memory T cell subset with stem cell-like properties. Nat. Med., 2011, Vol. 17, pp. 1290-1297.; Ibegbu C.C., Xu Y.X., Harris W., Maggio D., Miller J.D., Kourtis A.P. Expression of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T lymphocytes during active, latent, and resolved infection and its relation with CD57. J. Immunol., 2005, Vol. 174, no. 10, pp. 6088-6094.; Kaech S.M., Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol., 2012, Vol. 11, pp. 749-761.; Keir M.E., Butte M.J., Freeman G.J., Sharpe A.H. PD-1 and its ligands in tolerance and immunity. Ann. Rev. Immunol., 2008, Vol. 26, pp. 677-704.; Kim J.S., Cho B.A., Sim J.H., Shah K., Woo C.M., Lee E.B., Lee D.S., Kang J.S., Lee W.J., Park C.G., Craft J., Kang I., Kim H.R. IL-7Rαlow memory CD8+ T cells are significantly elevated in patients with systemic lupus erythematosus. Rheumatology (Oxford), 2012, Vol. 51, no. 9, pp. 1587-1594.; Kis-Toth K., Comte D., Karampetsou M.P., Kyttaris V.C., Kannan L., Terhorst C., Tsokos G.C. Selective loss of signaling lymphocytic activation molecule family member 4-positive CD8+ T cells contributes to the decreased cytotoxic cell activity in systemic lupus erythematosus. Arthritis Rheumatol., 2016, Vol. 68, no. 1, pp. 164-173.; Kuchroo V.K., Anderson A.C., Petrovas C. Coinhibitory receptors and CD8 T cell exhaustion in chronic infections. Curr. Opin. HIV AIDS, 2014, Vol. 9, no. 5, pp. 439-445.; Mahnke Y.D., Brodie T.M., Sallusto F., Roederer M., Lugli E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol., 2013, Vol. 43, no. 11, pp. 2797-2809.; Perfetto S.P., Chattopadhyay P.K., Roederer M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol., 2004, Vol. 4, no. 8, pp. 648-655.; Petrovas C., Chaon B., Ambrozak D.R., Price D.A., Melenhorst J.J., Hill B.J., Geldmacher C., Casazza J.P., Chattopadhyay P.K., Roederer M., Douek D.C., Mueller Y.M., Jacobson J.M., Kulkarni V., Felber B.K., Pavlakis G.N., Katsikis P.D., Koup R.A. Differential association of programmed death-1 and CD57 with ex vivo survival of CD8+ T cells in HIV infection. J. Immunol., 2009, Vol. 183, no. 2, pp. 1120-1132.; Rosshart S., Hofmann M., Schweier O., Pfaff A.K., Yoshimoto K., Takeuchi T., Molnar E., Schamel W.W., Pircher H. Interaction of KLRG1 with E-cadherin: new functional and structural insights. Eur. J. Immunol., 2008, Vol. 38, no. 12, pp. 3354-3364.; Sallusto F., Lenig D., Forster R., Lipp M., Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 1999, Vol. 401, no. 6754, pp. 708-712.; Schlaphoff V., Lunemann S., Suneetha P.V., Jaroszewicz J., Grabowski J., Dietz J., Helfritz F., Bektas H., Sarrazin C., Manns M.P., Cornberg M., Wedemeyer H. Dual function of the NK cell receptor 2B4 (CD244) in the regulation of HCV-specific CD8+ T cells. PLoS Pathog., 2011, Vol. 7, no. 5, e1002045. doi:10.1371/journal. ppat.1002045.; Schreiner J., Thommen D.S., Herzig P., Bacac M., Klein C., Roller A., Belousov A., Levitsky V., Savic S., Moersig W., Uhlenbrock F., Heinzelmann-Schwarz V.A., Umana P., Pisa P., Lardinois D., Müller P., Karanikas V., Zippelius A. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor. Oncoimmunology, 2015, Vol. 5, no. 2, e1062969. doi:10.1080/2162402X.2015.1062969.; Sperling A.I., Auger J.A., Ehst B.D., Rulifson I.C., Thompson C.B., Bluestone J.A. CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J. Immunol., 1996, Vol. 157, no, 9, pp. 3909-3917.; Takata H., Takiguchi M. Three memory subsets of human CD8+ T cells differently expressing three cytolytic effector molecules. J. Immunol., 2006, Vol. 177, no. 7, pp. 4330-4340.; van Aalderen M.C., Remmerswaal E.B., Verstegen N.J., Hombrink P., ten Brinke A., Pircher H., Kootstra N.A., ten Berge I.J., van Lier R.A. Infection history determines the differentiation state of human CD8+ T cells. J. Virol., 2015, Vol. 89, no. 9, pp. 5110-5123.; Voehringer D., Koschella M., Pircher H. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectin-like receptor G1 (KLRG1). Blood, 2002, Vol. 100, no. 10, pp. 3698-3702.; Yamamoto T., Price D.A., Casazza J.P., Ferrari G., Nason M., Chattopadhyay P.K., Roederer M., Gostick E., Katsikis P.D., Douek D.C., Haubrich R., Petrovas C., Koup R.A. Surface expression patterns of negative regulatory molecules identify determinants of virus-specific CD8+ T-cell exhaustion in HIV infection. Blood, 2011, Vol. 117, no. 18, pp. 4805-4815.; Yamanaka Y.J., Gierahn T.M., Love J.C. The dynamic lives of T cells: new approaches and themes. Trends Immunol., 2013, Vol. 34, no. 2, pp. 59-66.; Zhang J.Y., Zhang Z., Wang X., Fu J.L., Yao J., Jiao Y., Chen L., Zhang H., Wei J., Jin L., Shi M., Gao G.F., Wu H., Wang F.S. PD-1 up-regulation is correlated with HIV-specific memory CD8+ T-cell exhaustion in typical progressors but not in long-term nonprogressors. Blood, 2007, Vol. 109, no. 11, pp. 4671-4678.; https://www.mimmun.ru/mimmun/article/view/1485
-
18Academic Journal
المؤلفون: A. A. Savchenko, A. G. Borisov, D. E. Zdzitovetskiy, I. V. Kudryavtsev, A. Yu. Medvedev, I. I. Gvozdev, A. V. Moshev, А. А. Савченко, А. Г. Борисов, Д. Э. Здзитовецкий, И. В. Кудрявцев, А. Ю. Медведев, И. И. Гвоздев, А. В. Мошев
المصدر: Medical Immunology (Russia); Том 20, № 4 (2018); 551-560 ; Медицинская иммунология; Том 20, № 4 (2018); 551-560 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2018-4
مصطلحات موضوعية: респираторный взрыв, neutrophils, hemostasis, functional activity, phagocytosis, respiratory burst, нейтрофилы, гемостаз, функциональная активность, фагоцитоз
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1563/1050; Багненко С.Ф., Толстой А.Д., Краснорогов В.Б., Курыгин А.А., Гринев М.В., Лапшин В.Н., Гольцов В.Р. Острый панкреатит (Протоколы диагностики и лечение) // Анналы хирургической гепатологии, 2006. Т. 11, № 1. С. 60-66. [Bagnenko S.F., Tolstoy A.D., Krasnorogov V.B., Kurygin A.A., Grinev M.V., Lapshin V.N., Goltsov V.R. Acute pancreatitis (diagnostic protocols and treatment). Annaly khirurgicheskoy gepatologii = Annals of Surgical Hepatology, 2006, Vol. 11, no. 1, pp. 60-66. (In Russ.)]; Дарвин В.В., Онищенко С.В., Краснов Е.А., Васильев В.В., Лысак М.М., Климова Н.В. Острый деструктивный панкреатит: современное хирургическое лечение // Анналы хирургической гепатологии, 2014. Т. 19, № 4. С. 76-82. [Darvin V.V., Onishhenko S.V., Krasnov E.A., Vasilyev V.V., Lysak M.M., Klimova N.V. Acute destructive pancreatitis: current surgical treatment. Annaly khirurgicheskoy gepatologii = Annals of Surgical Hepatology, 2014, Vol. 19, no. 4, pp. 76-82. (In Russ.)]; Мазуров Д.В., Пинегин Б.В. Применение проточной цитометрии для оценки поглотительной и бактерицидной функций гранулоцитов и моноцитов периферической крови // Аллергия, астма и клиническая иммунология, 1999. № 9. С. 154-156. [Mazurov D.V., Pinegin B.V. Application of flow cytometry for evaluating the absorbency and the antibacterial functions of granulocytes and monocytes of peripheral blood. Allergiya, astma i klinicheskaya immunologiya = Allergy, Asthma and Clinical Immunology, 1999, no. 9, pp. 154-156. (In Russ.)]; Савченко А.А., Здзитовецкий Д.Э., Борисов А.Г., Лузан Н.А. Хемилюминесцентная активность нейтрофильных гранулоцитов и уровни концентрации цитокинов у больных распространенным гнойным перитонитом // Цитокины и воспаление, 2013. Т. 12, № 1-2. С. 115-119. [Savchenko A.A., Zdzitovetskiy D.E., Borisov A.G., Luzan N.A. Neutrophil chemiluminescent activity and cytokine concentration levels in patients with extensive purulent peritonitis. Tsitokiny i vospalenie = Cytokines and Inflammation, 2013, Vol. 12, no. 1-2, pp. 115-119. (In Russ.)]; Шкапова Е.А., Куртасова Л.М., Савченко А.А. Показатели люцигенин- и люминол-зависимой хемилюминесценции нейтрофилов крови у больных раком почки // Бюллетень экспериментальной биологии и медицины, 2010. Т. 149, № 2. С. 201-203. [Shkapova E.A., Kurtasova L.M., Savchenko A.A. The indicatoуrs of the lucigenin- and luminol-dependent chemiluminescence of blood neutrophils by the patients with kidney cancer. Byulleten eksperimental`noy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, Vol. 149, no. 2, pp. 201-203. (In Russ.)]; Andreassen S.M., Berg L.C., Nielsen S.S., Kristensen A.T., Jacobsen S. mRNA expression of genes involved in inflammation and haemostasis in equine fibroblast-like synoviocytes following exposure to lipopolysaccharide, fibrinogen and thrombin. BMC Vet. Res., 2015, Vol. 11, p. 141.; Bone R.S., Balk R.A., Cerra F.B., Dellinger R.P., Fein A.M., Knaus W.A., Schein R.M., Sibbald W.J. American college of Chest Physicians. Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guide lines for the use of innovative therapies in sepsis. Crit. Care Med., 1992, Vol. 20, no. 6, pp. 864-874.; Dick J.F. 3rd, Gardner T.B., Merrens E.J. Acute pancreatitis: New developments and strategies for the hospitalist. J. Hosp. Med., 2016, Vol. 11, no. 10, pp. 724-729.; El-Benna J., Hurtado-Nedelec M., Marzaioli V., Marie J.C., Gougerot-Pocidalo M.A., Dang P.M. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol. Rev., 2016, Vol. 273, no. 1, pp. 180-193.; Hoppe B. Fibrinogen and factor XIII at the intersection of coagulation, fibrinolysis and inflammation. Thromb. Haemost., 2014, Vol. 112, no. 4, pp. 649-658.; Iba T., Gando S., Saitoh D., Wada H., Di Nisio M., Thachil J. Antithrombin supplementation and risk of bleeding in patients with sepsis-associated disseminated intravascular coagulation. Thromb. Res., 2016, Vol. 145, pp. 46-50.; Kovács I., Horváth M., Kovács T., Somogyi K., Tretter L., Geiszt M., Petheő G.L. Comparison of proton channel, phagocyte oxidase, and respiratory burst levels between human eosinophil and neutrophil granulocytes. Free Radic. Res., 2014, Vol. 48, no. 10, pp. 1190-1199.; le Gall J.-R., Lemeshow S., Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA, 1993, Vol. 270, pp. 2957-2963.; Lisman T., Porte R.J. Activation and regulation of hemostasis in acute liver failure and acute pancreatitis. Semin. Thromb. Hemost., 2010, Vol. 36, no. 4, pp. 437-443.; Maheshwari R., Subramanian R.M. Severe acute pancreatitis and necrotizing pancreatitis. Crit. Care Clin., 2016, Vol. 32, no. 2, pp. 279-290.; Okamura D., Starr M.E., Lee E.Y., Stromberg A.J., Evers B.M., Saito H. Age-dependent vulnerability to experimental acute pancreatitis is associated with increased systemic inflammation and thrombosis. Aging Cell, 2012, Vol. 11, no. 5, pp. 760-769.; Singh P., Garg P.K. Pathophysiological mechanisms in acute pancreatitis: Current understanding. Indian J. Gastroenterol., 2016, Vol. 35, no. 3, pp. 153-166.; Trujillo M. Analysis of the immunity-related oxidative bursts by a luminol-based assay. Methods Mol. Biol., 2016, Vol. 1398, pp. 323-329.; van Bijnen S.T., Wouters D., van Mierlo G.J., Muus P., Zeerleder S. Neutrophil activation and nucleosomes as markers of systemic inflammation in paroxysmal nocturnal hemoglobinuria: effects of eculizumab. J. Thromb. Haemost., 2015, Vol. 13, no. 11, pp. 2004-2011.; Vincent J.L., Moreno R., Takala J., Willatts S., De Mendonca A., Bruining H., Reinhart C.K., Suter P.M., Thijs L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med., 1996, Vol. 22, no. 7, pp. 707-710.; Vinokurov M.M., Saveliev V.V., Gogolev N.M., Yalynskya T.V. Immunomodulation and treatment of acute destructive pancreatitis in a multidisciplinary surgical hospital. Wiad. Lek., 2015, Vol. 68, no. 4, pp. 582-586.; Yasuda N., Goto K., Ohchi Y., Abe T., Koga H., Kitano T. The efficacy and safety of antithrombin and recombinant human thrombomodulin combination therapy in patients with severe sepsis and disseminated intravascular coagulation. J. Crit. Care., 2016, Vol. 36, pp. 29-34.; Zonneveld R., Molema G., Plötz F.B. Measurement of functional and morphodynamic neutrophil phenotypes in systemic inflammation and sepsis. Crit. Care., 2016, Vol. 20, p. 235.; https://www.mimmun.ru/mimmun/article/view/1563
-
19Academic Journal
المؤلفون: P. N. Likhutin, A. A. Savchenko, П. Н. Лихутин, А. А. Савченко
المصدر: Vestnik NSUEM; № 1 (2017); 146-161 ; Вестник НГУЭУ; № 1 (2017); 146-161 ; 2073-6495
مصطلحات موضوعية: типология, DuPont Model, decomposition, rate of increase, return on equity (ROE), typology, модель Дюпон, декомпозиция, темп прироста, рентабельность собственного капитала
وصف الملف: application/pdf
Relation: https://nsuem.elpub.ru/jour/article/view/963/615; Арасланов Т.Н. Анализ путей повышения эффективности деятельности сервисных предприятий на основе модели «Dupont» // Международный научно-исследовательский журнал. 2016. № 9. С. 15–18.; Афанасьева А.Н. Анализ эффективности использования собственного и заемного капитала. Расширенная модель «Дюпон» // Российский журнал менеджмента. 2004. № 4. С. 104–109.; Бондаренко М.Д. Особенности использования Модели «Dupont» при анализе процесса формирования рентабельности банков // Статистика и экономика. 2014. № 4. С. 24–29.; Бородин А.И. Модель контроля финансовых результатов предприятия // Ученые записки Петрозаводского государственного университета. 2013. № 3. С. 96–100.; Булатова У., Магомедова З.О. Анализ доходности собственного капитала на основе модели Дюпона // Экономическая наука в 21 веке: вопросы теории и практики: сб. статей. Махачкала, 2013. С. 36–40.; Глинский В.В. Статистические методы поддержки управленческих решений. Новосибирск: НГУЭУ, 2008. 256 с.; Гуляева Л.П. Экономическая эффективность банков и факторы ее формирования в нынешней обстановке // Труд и социальные отношения. 2012. № 3. С. 101–113.; Ковалев В.В. Финансовый менеджмент: теория и практика / 2-е изд., перераб. и доп. М.: Изд-во «Проспект», 2009. 1024 с.; Короткова Т.Л. Целевая модель проекта повышения рентабельности // Экономические и социально-гуманитарные исследования. 2015. № 3. C. 13–18.; Кругликов Р.К., Лысова Н.А. Формирование методики оценки эффективности управления имуществом акционерных обществ с долями города Москвы // Имущественные отношения в Российской Федерации. 2009. № 10. C. 39–48.; Лазарев А.В., Пострелова А.В. Ставка дисконтирования с учетом риска и методы ее определения // Молодой ученый. 2013. № 6. C. 373–376.; Лимитовский М.А. Устойчивый рост компании и эффект левериджа // Российский журнал менеджмента. 2010.Т. 8. № 2. C. 35–49.; Марсагишвили Т.Г. Влияние использования заемного капитала на эффективность деятельности компаний // Вестник Северо-Осетинского государственного университета имени Коста Левановича Хетагурова. 2015. № 4. C. 262–265.; Просвирина У.А. Проблема выбора ставки дисконтирования в инвестиционных проектах // Экономика и управление: проблемы, решения. 2015. № 10. C. 5–8.; Сайфуллина А.Р. Ограничения в использовании показателя рентабельности собственного капитала // Экономика и управление в 21 веке: тенденции развития. 2016. № 29. C. 188–192.; Саяхов Т.Р.Анализ рентабельности собственного капитала // Экономика и предпринимательство. 2014. № 11. C. 918–921.; Филатов Е.А., Нечаев В.Б. Модификации методов детерминированного факторного анализа модели Дюпона // Вестник Иркутского государственного технического университета. 2015. № 5. С. 285–292.; Финансовый менеджмент: учебник / коллектив авторов; под ред. Н.И. Берзона, Т.В.Тепловой. М.: КНОРУС, 2014. С. 654.; Burja C. Factors Influencing the Companies’ Profitability. Annales Universitatis Apulensis Series Oeconomica. 13 (2). 2011. P. 215–224.; Burja V., Mărginean R. The Study of Factors that may Influence the Performance by the Dupont Analysis in the Furniture Industry. Procedia Economics and Finance. 2014. 16. P. 213–223.; Delen D., Kuzey C., Uyar A. Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications. 2013. 40 (10). P. 3970–3980.; Kaya E.Ö. The effects of Firm-Specific Factors on the Profitability of Non-Life Insurance Companies in Turkey. International Journal of Financial Studies. 2015. 3. ISSN: 2227-7072. P. 510–529.; Padake V., Soni R. Measurement of Efficiency of Top 12 Banks in India Using DuPont Analysis. IUP Journal of Bank Management. 2015. 14 (4). P. 59–68.; Saleem Q., Rehman R.U. Impact of Liquidity Ratios on Profitability. Interdisciplinary Journal of Research in Business. 2011. 1 (7). P. 95–98.; Губина О.В., Рязанцева Т.В. Диагностика финансовой деятельности и прогнозирование перспектив развития бизнеса на основе многофакторных моделей рентабельности. [Электронный ресурс]. 2012. URL: http://www.orelgiet.ru/docs/pdf/7_10_12_12.pdf.; Двойченков П.Н. Управление портфелем девелоперских проектов по модели «Dupont» на примере компании СКМ Групп. [Электронный ресурс] // Экономика и менеджмент инновационных технологий. Электрон. журн. Москва, 2015. № 5. URL: http://ekonomika.snauka.ru/2015/05/8942.; Трясцина Н.Ю., Трясцин Н.А. Факторный анализ финансовых результатов как инструмент управления организацией. [Электронный ресурс], 2015. URL: http://qje.su/finansy/tryastsina-n-yu-tryastsin-n-a-faktornyj-analiz-finansovyh-rezultatovkak-instrument-upravleniya-organizatsiej/.; Liesz T.J. Really modified Du Pont analysis: Five ways to improve return on equity. SBIDA Conference Proceedings. 2002. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.610.5026&rep=rep1&type=pdf.; Li M., Nissim D., Penman S.H. Profitability decomposition and operating risk. 2014. Retrieved from https://carlsonschool.umn.edu/file/13416/download?token=A4tP-JRS.; https://nsuem.elpub.ru/jour/article/view/963
-
20Academic Journal
المؤلفون: A. A. Savchenko, A. G. Borisov, D. E. Zdzitovetskiy, I. V. Kudryavtsev, A. Yu. Medvedev, A. V. Moshev, I. I. Gvozdev, А. А. Савченко, А. Г. Борисов, Д. Э. Здзитовецкий, И. В. Кудрявцев, А. Ю. Медведев, А. В. Мошев, И. И. Гвоздев
المصدر: Medical Immunology (Russia); Том 19, № 1 (2017); 45-54 ; Медицинская иммунология; Том 19, № 1 (2017); 45-54 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2017-1
مصطلحات موضوعية: активные формы кислорода, post-surgical period, neutrophils, phagocytosis, respiratory burst, reactive oxygen species, динамика послеоперационного периода, нейтрофилы, фагоцитоз, респираторный взрыв
وصف الملف: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1164/901; Багненко С.Ф., Толстой А.Д., Краснорогов В.Б., Курыгин А.А., Гринев М.В., Лапшин В.Н., Гольцов В.Р. Острый панкреатит (Протоколы диагностики и лечение) // Анналы хирургической гепатологии, 2006. Т. 11, № 1. С. 60-66. [Bagnenko S.F., Tolstoy A.D., Krasnorogov V.B., Kurygin A.A., Grinev M.V., Lapshin V.N., Gol’tsov V.R. Acute pancreatitis (diagnostic protocols and treatment). Annaly khirurgicheskoy gepatologii = Annals of Surgical Hepatology, 2006, Vol. 11, no. 1, pp. 60-66. (In Russ.)]; Багненко С.Ф., Гольцов В.Р., Савелло В.Е., Вашетко Р.В. Классификация острого панкреатита: современное состояние проблемы // Вестник хирургии им. И.И. Грекова, 2015. Т. 174, № 5. С. 86-92. [Bagnenko S.F., Gol’tsov V.R., Savello V.E., Vashetko R.V. Classification of acute pancreatitis: modern state of the problem. Vestnik khirurgii im. I.I. Grekova = Grekov Clinical Surgery Bulletin, 2015, Vol. 174, no. 5, pp. 86-92. (In Russ.)]; Головкин А.С., Матвеева В.Г., Кудрявцев И.В., Григорьев Е.В., Великанова Е.А., Байракова Ю.В. Субпопуляции моноцитов крови при неосложненном течении периоперационного периода коронарного шунтирования // Медицинская иммунология, 2012. Т. 14, № 4-5. С. 305-312. [Golovkin A.S., Matveeva V.G., Kudryavtsev I.V., Grigoriev E.V., Velikanova E.A., Bairakova Y.V. Blood monocyte subpopulations during uncomplicated coronary artery bypass surgery. Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, Vol. 14, no. 4-5, pp. 305-312. (In Russ.)] http://dx.doi.org/10.15789/1563-0625-2012-4-5-305-312; Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шестицветного цитофлуоримерического анализа // Медицинская иммунология, 2015. Т. 17, № 1. С. 19-26. [Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, Vol. 17, no. 1, pp. 19-26. (In Russ.)] http://dx.doi.org/10.15789/1563-0625-2015-1-19-26; Мазуров Д.В., Пинегин Б.В. Применение проточной цитометрии для оценки поглотительной и бактерицидной функций гранулоцитов и моноцитов периферической крови // Аллергия, астма и клиническая иммунология, 1999. № 9. С. 154-156. [Mazurov D.V., Pinegin B.V. Application of flow cytometry for evaluating the absorbency and the antibacterial functions of granulocytes and monocytes of peripheral blood. Allergiya, astma i klinicheskaya immunologiya = Allergy, Asthma and Clinical Immunology, 1999, no. 9, pp. 154-156. (In Russ.)]; Савченко А.А., Борисов А.Г., Модестов А.А., Мошев А.В., Кудрявцев И.В., Тоначева О.Г., Кощеев В.Н. Фенотипический состав и хемилюминесцентная активность моноцитов у больных почечно-клеточным раком // Медицинская иммунология, 2015. Т. 17, № 2. С. 141-150. [Savchenko A.A., Borisov A.G., Modestov A.A., Moshev A.V., Kudryavtsev I.V., Tonacheva O.G., Koshcheev V.N. Monocytes subpopulations and chemiluminescent activity in patients with renal cell carcinoma. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, Vol. 17, no. 2, pp. 141-150. (In Russ.)] http://dx.doi.org/10.15789/1563-0625-2015-2-141-150; Хайдуков С.В., Байдун Л.А., Зурочка А.В., Тотолян Арег А. Стандартизованная технология «Исследование субпопуляционного состава лимфоцитов периферической крови с применением проточных цитофлюориметров-анализаторов» (Проект) // Медицинская иммунология, 2012, Т. 14, № 3. С. 255-268. [Khaydukov S.V., Baydun L.A., Zurochka A.V., Totolian Areg A. Standardized technology «Research of lymphocytes subpopulation composition in peripheral blood using flow cytometry analyzers» (Draft). Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, Vol. 14, no. 3, pp. 255-268. (In Russ.)] http://dx.doi.org/10.15789/1563-0625-2012-3-255-268; Шкапова Е.А., Куртасова Л.М., Савченко А.А. Показатели люцигенин- и люминол-зависимой хемилюминесценции нейтрофилов крови у больных раком почки // Бюллетень экспериментальной биологии и медицины, 2010. Т. 149, № 2. С. 201-203. [Shkapova E.A., Kurtasova L.M., Savchenko A.A. The indicators of the lucigenin- and luminol-dependent chemiluminescence of blood neutrophils by the patients with kidney cancer. Byulleten` eksperimental`noy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, Vol. 149, no. 2, pp. 201-203. (In Russ.)]; Appleby L.J., Nausch N., Midzi N., Mduluza T., Allen J.E., Mutapi F. Sources of heterogeneity in human monocyte subsets. Immunol. Lett., 2013, Vol. 152, no. 1, pp. 32-41.; Benbarek H., Ayad A., Deby-Dupont G., Boukraa L., Serteyn D. Modulatory effects of non-steroidal antiinflammatory drugs on the luminol and lucigenin amplified chemiluminescence of equine neutrophils. Vet. Res. Commun., 2012, Vol. 36, no. 1, pp. 29-33.; Bone R.S., Balk R.A., Cerra F.B., Dellinger R.P., Fein A.M., Knaus W.A., Schein R.M., Sibbald W.J. American college of Chest Physicians. Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guide lines for the use of innovative therapies in sepsis. Crit. Care Med., 1992, Vol. 20, no. 6, pp. 864-874.; Cen Y., Liu C., Li X., Yan Z., Kuang M., Su Y., Pan X., Qin R., Liu X., Zheng J., Zhou H. Artesunate ameliorates severe acute pancreatitis (SAP) in rats by inhibiting expression of pro-inflammatory cytokines and Tolllike receptor 4. Int. Immunopharmacol., 2016, Vol. 38, pp. 252-260.; Choi S.B., Bae G.S., Jo I.J., Wang S., Song H.J., Park S.J. Berberine inhibits inflammatory mediators and attenuates acute pancreatitis through deactivation of JNK signaling pathways. Mol. Immunol., 2016, Vol. 74, pp. 27-38.; Gordon S. Targeting a monocyte subset to reduce inflammation. Circ. Res., 2012, Vol. 110, no. 12. pp. 1546-1548.; Hristov M., Schmitz S., Nauwelaers F., Weber C. A flow cytometric protocol for enumeration of endothelial progenitor cells and monocyte subsets in human blood. J. Immunol. Methods, 2012, Vol. 381, no. 1-2, pp. 9-13.; Lauvau G., Loke P., Hohl T.M. Monocyte-mediated defense against bacteria, fungi, and parasites. Semin. Immunol., 2015, Vol. 27, no. 6, pp. 397-409.; Le Gall J.-R., Lemeshow S., Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA, 1993, Vol. 270, pp. 2957-2963.; Lundberg S., Lundahl J., Gunnarsson I., Jacobson S.H. Atorvastatin-induced modulation of monocyte respiratory burst in vivo in patients with IgA nephropathy: a chronic inflammatory kidney disease. Clin. Nephrol., 2010, Vol. 73, no. 3, pp. 221-228.; Maecker H., McCoy P., Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat. Rev. Immunol., 2012, Vol. 12, pp. 191-200.; Maheshwari R., Subramanian R.M. Severe Acute Pancreatitis and Necrotizing Pancreatitis. Crit. Care Clin., 2016, Vol. 32, no. 2, pp. 279-290.; Sato K., Monden K., Ueki T., Tatsukawa M., Sadamori H., Sakaguchi K., Takakura N. A case of pancreatic arteriovenous malformation identified by investigating the cause of upper abdominal pain associated with acute pancreatitis. Nihon Shokakibyo Gakkai Zasshi, 2016, Vol. 113, no. 7, pp. 1223-1229.; Schmidt A.I., Seifert G.J., Lauch R., Wolff-Vorbeck G., Chikhladze S., Hopt U.T., Wittel U.A. Organ-specific monocyte activation in necrotizing pancreatitis in mice. J. Surg. Res., 2015, Vol. 197, no. 2, pp. 374-381.; Singh P., Garg P.K. Pathophysiological mechanisms in acute pancreatitis: Current understanding. Indian J. Gastroenterol., 2016, Vol. 35, no. 3, pp. 153-166.; Vincent J.L., Moreno R., Takala J., Willatts S., De Mendonca A., Bruining H., Reinhart C.K., Suter P.M., Thijs L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med., 1996, Vol. 22, no. 7, pp. 707-710.; Yang Z.W., Meng X.X., Xu P. Central role of neutrophil in the pathogenesis of severe acute pancreatitis. J. Cell Mol. Med., 2015, Vol. 19, no. 11, pp. 2513-2520.; Ziegler-Heitbrock L. Monocyte subsets in man and other species. Cell Immunol., 2014, Vol. 289, no. 1-2, pp. 135-139.; https://www.mimmun.ru/mimmun/article/view/1164