-
1Academic Journal
المؤلفون: A. F. Murtazina, P. N. Tsabay, G. E. Rudenskaya, L. A. Bessonova, F. M. Bostanova, D. M. Guseva, I. V. Sharkova, O. A. Shchagina, A. A. Orlova, O. P. Ryzhkova, T. V. Markova, A. S. Kuchina, S. S. Nikitin, E. L. Dadali, А. Ф. Муртазина, П. Н. Цабай, Г. Е. Руденская, Л. А. Бессонова, Ф. М. Бостанова, Д. М. Гусева, И. В. Шаркова, О. А. Щагина, А. А. Орлова, О. П. Рыжкова, Т. В. Маркова, А. С. Кучина, С. С. Никитин, Е. Л. Дадали
المصدر: Neuromuscular Diseases; Том 13, № 2 (2023); 42-55 ; Нервно-мышечные болезни; Том 13, № 2 (2023); 42-55 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2023-13-2
مصطلحات موضوعية: TRPV4, Charcot–Marie–Tooth disease 2C, scapuloperoneal spinal muscular atrophy, congenital distal spinal muscular atrophy, болезнь Шарко–Мари–Тута 2С, скапуло‑перонеальная спинальная мышечная атрофия, врожденная дистальная спинальная мышечная атрофия
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/542/349; Auer-Grumbach M., Olschewski A., Papic L. et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 2010;42(2): 160–4. DOI:10.1038/ng.508; Zimon M., Baets J., Auer-Grumbach M. et al. Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain 2010;133(Pt 6):1798–809. DOI:10.1093/brain/awq109; Fiorillo C., Moro F., Brisca G. et al. TRPV4 mutations in children with congenital distal spinal muscular atrophy. Neurogenetics 2012;13(3):195–203. DOI:10.1007/s10048-012-0328-7; Chen D.H., Sul Y., Weiss M. et al. CMT2C with vocal cord paresis associated with short stature and mutations in the TRPV4 gene. Neurology 2010;75(22):1968–75. DOI:10.1212/WNL.0b013e3181ffe4bb; Aharoni S., Harlalka G., Offiah A. et al. Striking phenotypic variability in familial TRPV4-axonal neuropathy spectrum disorder. Am J Med Genet A 2011;155A(12):3153–6. DOI:10.1002/ajmg.a.34327; Berciano J., Baets J., Gallardo E. et al. Reduced penetrance in hereditary motor neuropathy caused by TRPV4 Arg269Cys mutation. J Neurol 2011;258(8):1413–21. DOI:10.1007/s00415-011-5947-7; Koutsis G., Lynch D., Manole A. et al. Charco–Marie–Tooth disease type 2C and scapuloperoneal muscular atrophy overlap syndrome in a patient with the R232C TRPV4 mutation. J Neurol 2015;262(8):1972–5. DOI:10.1007/s00415-015-7800-x; Vill K., Kuhn M., Glaser D. et al. Long-term observations in an affected family with neurogenic scapuloperoneal syndrome caused by mutation R269C in the TRPV4 gene. Neuropediatrics 2015;46(4):282–6. DOI:10.1055/s-0035-1554100; Jedrzejowska M., Debek E., Kowalczyk B. et al. The remarkable phenotypic variability of the p.Arg269HiS variant in the TRPV4 gene. Muscle Nerve 2019;59(1):129–33. DOI:10.1002/mus.26346; Garcia-Elias A., Lorenzo I.M., Vicente R. et al. IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli viaa calmodulin-binding site. J Biol Chem 2008;283(46):31284–8. DOI:10.1074/jbc.C800184200; Kottgen M., Buchholz B., Garcia-Gonzalez M.A. et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 2008;182(3):437–47. DOI:10.1083/jcb.200805124; Donate-Macian P., Jungfleisch J., Perez-Vilaro G. et al. The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity. Nat Commun 2018;9(1):2307. DOI:10.1038/s41467-018-04776-7; Arniges M., Fernandez-Fernandez J.M., Albrecht N. et al. Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 2006;281(3):1580–6. DOI:10.1074/jbc.M511456200; Takahashi N., Hamada-Nakahara S., Itoh Y. et al. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P(2). Nat Commun 2014;5:4994. DOI:10.1038/ncomms5994; Strotmann R., Schultz G., Plant T.D. Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem 2003;278(29):26541–9. DOI:10.1074/jbc.M302590200; Stenson P.D., Ball E.V., Mort M. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 2003;21(6):577–81. DOI:10.1002/humu.10212; Deng H.X., Klein C.J., Yan J. et al. Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 2010;42(2):165–9. DOI:10.1038/ng.509; Landoure G., Zdebik A.A., Martinez T.L. et al. Mutations in TRPV4 cause Charcot–Marie–Tooth disease type 2C. Nat Genet 2010;42(2):170–4. DOI:10.1038/ng.512; Fecto F., Shi Y., Huda R. et al. Mutant TRPV4-mediated toxicity is linked to increased constitutive function in axonal neuropathies. J Biol Chem 2011;286(19):17281–91. DOI:10.1074/jbc.M111.237685; Klein C.J., Shi Y., Fecto F. et al. TRPV4 mutations and cytotoxic hypercalcemia in axonal Charcot–Marie–Tooth neuropathies. Neurology 2011;76(10):887–94. DOI:10.1212/WNL.0b013e31820f2de3; Sullivan J.M., Zimanyi C.M., Aisenberg W. et al. Novel mutations highlight the key role of the ankyrin repeat domain in TRPV4-mediated neuropathy. Neurol Genet 2015;1(4):e29. DOI:10.1212/NXG.0000000000000029; Taga A., Peyton M.A., Goretzki B. et al. TRPV4 mutations causing mixed neuropathy and skeletal phenotypes result in severe gain of function. Ann Clin Transl Neurol 2022;9(3):375–91. DOI:10.1002/acn3.51523; Cho T.J., Matsumoto K., Fano V. et al. TRPV4-pathy manifesting both skeletal dysplasia and peripheral neuropathy: a report of three patients. Am J Med Genet A 2012;158A(4):795–802. DOI:10.1002/ajmg.a.35268; Fawcett K.A., Murphy S.M., Polke J.M. et al. Comprehensive analysis of the TRPV4 gene in a large series of inherited neuropathies and controls. J Neurol Neurosurg Psychiatry 2012;83(12):1204–9. DOI:10.1136/jnnp-2012-303055; Drew A.P., Zhu D., Kidambi A. et al. Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol Genet Genomic Med 2015;3(2):143–54. DOI:10.1002/mgg3.126; Uchoa Cavalcanti E.B., Santos S.C.L., Martins C.E.S. et al. Char-cot-Marie-Tooth disease: Genetic profile of patients from a large Brazilian neuromuscular reference center. J Peripher Nerv Syst 2021;26(3):290–7. DOI:10.1111/jns.12458; Volodarsky M., Kerkhof J., Stuart A. et al. Comprehensive genetic sequence and copy number analysis for Charcot–Marie–Tooth disease in a Canadian cohort of 2517 patients. J Med Genet 2021;58(4):284–8. DOI:10.1136/jmedgenet-2019-106641; Dai J., Kim O.H., Cho T.J. et al. Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family. J Med Genet 2010;47(10):704–9. DOI:10.1136/jmg.2009.075358; Маркова Т.В., Кенис В.М., Мельченко Е.В. и др. Клиникогенетические характеристики TRPV4-ассоциированных скелетных дисплазий у российских пациентов. Медицинская генетика 2022;21(4):25–37. DOI:10.25557/2073-7998.2022.04.25-37; Inada H., Procko E., Sotomayor M. et al. Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry 2012;51(31):6195–206. DOI:10.1021/bi300279b; McCray B.A., Diehl E., Sullivan J.M. et al. Neuropathy-causing TRPV4 mutations disrupt TRPV4-RhoA interactions and impair neurite extension. Nat Commun 2021;12(1):1444. DOI:10.1038/s41467-021-21699-y; Dyck P.J., Litchy W.J., Minnerath S. et al. Hereditary motor and sensory neuropathy with diaphragm and vocal cord paresis. Ann Neurol 1994;35(5):608–15. DOI:10.1002/ana.410350515; Deng S., Feely S.M.E., Shi Y. et al. Incidence and clinical features of TRPV4-linked axonal neuropathies in a USA cohort of Char-cot–Marie–Tooth disease type 2. Neuromolecular Med 2020;22(1):68–72. DOI:10.1007/s12017-019-08564-4; Fleury P., Hageman G. A dominantly inherited lower motor neuron disorder presenting at birth with associated arthrogryposis. J Neurol Neurosurg Psychiatry 1985;48(10):1037–48. DOI:10.1136/jnnp.48.10.1037; Van der Vleuten A.J., van Ravenswaaij-Arts C.M., Frijns C.J. et al. Localisation of the gene for a dominant congenital spinal muscular atrophy predominantly affecting the lower limbs to chromosome 12q23–q24. Eur J Hum Genet 1998;6(4):376–82. DOI:10.1038/sj.ejhg.5200229; Echaniz-Laguna A., Dubourg O., Carlier P. et al. Phenotypic spectrum and incidence of TRPV4 mutations in patients with inherited axonal neuropathy. Neurology 2014;82(21):1919–26. DOI:10.1212/WNL.0000000000000450; Rossor A.M., Kalmar B., Greensmith L. et al. The distal hereditary motor neuropathies. J Neurol Neurosurg Psychiatry 2012;83(1): 6–14. DOI:10.1136/jnnp-2011-300952; DeLong R., Siddique T. A large New England kindred with autosomal dominant neurogenic scapuloperoneal amyotrophy with unique features. Arch Neurol 1992;49(9):905–8. DOI:10.1001/archneur.1992.00530330027010; McEntagart M. TRPV4 axonal neuropathy spectrum disorder. J Clin Neurosci 2012;19(7):927–33. DOI:10.1016/j.jocn.2011.12.003; Biasini F., Portaro S., Mazzeo A. et al. TRPV4 related scapuloperoneal spinal muscular atrophy: Report of an Italian family and review of the literature. Neuromuscul Disord 2016;26(4–5):312–5. DOI:10.1016/j.nmd.2016.02.010; Landoure G., Sullivan J.M., Johnson J.O. et al. Exome sequencing identifies a novel TRPV4 mutation in a CMT2C family. Neurology 2012;79(2):192–4. DOI:10.1212/WNL.0b013e31825f04b2; Unger S., Lausch E., Stanzial F. et al. Fetal akinesia in metatropic dysplasia: The combined phenotype of chondrodysplasia and neuropathy? Am J Med Genet A 2011;155A(11):2860–4. DOI:10.1002/ajmg.a.34268; Faye E., Modaff P., Pauli R. et al. Combined phenotypes of spondylometaphyseal dysplasia–Kozlowski type and Charcot–Marie– Tooth disease type 2C secondary to a TRPV4 pathogenic variant. Mol Syndromol 2019;10(3):154–60. DOI:10.1159/000495778; Муртазина А.Ф., Щагина О.А., Никитин С.С. и др. Современные клинико-генетические представления об аутосомно-рецессивных наследственных периферических нейропатиях. Анналы клинической и экспериментальной неврологии 2019;13(1):55–69. DOI:10.25692/ACEN.2019.1.7; https://nmb.abvpress.ru/jour/article/view/542
-
2Academic Journal
المؤلفون: B. D. Chaltsev, A. V. Torgashina, A. M. Lila, T. V. Markova, S. I. Kutsev, O. P. Ryzhkova, A. A. Orlova, A. V. Kokhno, T. I. Solovyova, V. N. Dvirnyk, A. M. Kovrigina, T. N. Obukhova, E. N. Parovichnikova, E. L. Nasonov, Б. Д. Чальцев, А. В. Торгашина, А. М. Лила, Т. В. Маркова, С. И. Куцев, О. П. Рыжкова, А. А. Орлова, А. В. Кохно, Т. И. Соловьева, В. Н. Двирнык, А. М. Ковригина, Т. Н. Обухова, Е. Н. Паровичникова, Е. Л. Насонов
المصدر: Modern Rheumatology Journal; Том 17, № 6 (2023); 92-101 ; Современная ревматология; Том 17, № 6 (2023); 92-101 ; 2310-158X ; 1996-7012
مصطلحات موضوعية: миелодиспластический синдром, macrocytic anemia, vasculitis, relapsing polychondritis, neutrophilic dermatosis, vacuolization of bone marrow cells, myelodysplastic syndrome, макроцитарная анемия, васкулит, рецидивирующий полихондрит, нейтрофильный дерматоз, вакуолизация клеток костного мозга
وصف الملف: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1509/1425; https://mrj.ima-press.net/mrj/article/view/1509/1431; Beck DB, Ferrada MA, Sikora KA, et al. Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease. N Engl J Med. 2020 Dec 31;383(27):2628- 2638. doi:10.1056/NEJMoa2026834. Epub 2020 Oct 27.; Poulter JA, Savic S. Genetics of somatic auto-inflammatory disorders. Semin Hematol. 2021 Oct;58(4):212-217. doi:10.1053/j.seminhematol.2021.10.001. Epub 2021 Oct 9.; Georgin-Lavialle S, Terrier B, Guedon AF, et al. Further characterization of clinical and laboratory features in VEXAS syndrome: large-scale analysis of a multicentre case series of 116 French patients. Br J Dermatol. 2022 Mar; 186(3):564-574. doi:10.1111/bjd.20805. Epub 2021 Nov 28.; Barba T, Jamilloux Y, Durel CA, et al. VEXAS syndrome in a woman. Rheumatology (Oxford). 2021 Nov 3;60(11):e402-e403. doi:10.1093/rheumatology/keab392.; Stubbins RJ, McGinnis E, Johal B, et al. VEXAS syndrome in a female patient with constitutional 45,X (Turner syndrome). Haematologica. 2022 Apr 1;107(4):1011-1013. doi:10.3324/haematol.2021.280238.; Beck DB, Bodian DL, Shah V, et al. Estimated prevalence and clinical manifestations of UBA1 variants associated with VEXAS syndrome in a clinical population. JAMA. 2023 Jan 24;329(4):318-324. doi:10.1001/jama.2022.24836.; Bruno A, Gurnari C, Alexander T, et al; Autoimmune Diseases Working Party of the European Society for Blood and Marrow Transplantation. Autoimmune manifestations in VEXAS: Opportunities for integration and pitfalls to interpretation. J Allergy Clin Immunol. 2023 May;151(5):1204-1214. doi:10.1016/j.jaci.2023.02.017. Epub 2023 Mar 21.; Ferrada MA, Savic S, Cardona DO, et al. Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis. Blood. 2022 Sep 29;140(13):1496-1506. doi:10.1182/blood.2022016985.; Poulter JA, Collins JC, Cargo C, et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood. 2021 Jul 1;137(26):3676-3681. doi:10.1182/blood.2020010286.; Sterling D, Duncan ME, Philippidou M, et al. VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) for the dermatologist. J Am Acad Dermatol. 2023 Dec;89(6):1209-1214. doi:10.1016/j.jaad.2022.01.042. Epub 2022 Feb 2.; Lacombe V, Beucher A, Urbanski G, et al. Distinction between clonal and paraclonal cutaneous involvements in VEXAS syndrome. Exp Hematol Oncol. 2022 Feb 16;11(1):6. doi:10.1186/s40164-022-00262-5.; Zakine E, Schell B, Battistella M, et al. UBA1 Variations in Neutrophilic Dermatosis Skin Lesions of Patients With VEXAS Syndrome. JAMA Dermatol. 2021 Nov 1;157(11): 1349-1354. doi:10.1001/jamadermatol.2021.3344.; Gurnari C, Mannion P, Pandit I, et al. UBA1 Screening in Sweet Syndrome With Hematological Neoplasms Reveals a Novel Association Between VEXAS and Chronic Myelomonocytic Leukemia. Hemasphere. 2022 Sep 27;6(10):e775. doi:10.1097/HS9. 0000000000000775. eCollection 2022 Oct.; Borie R, Debray MP, Guedon AF, et al. Pleuropulmonary Manifestations of Vacuoles, E1 Enzyme, X-Linked, Autoinflammatory, Somatic (VEXAS) Syndrome. Chest. 2023 Mar;163(3):575-585. doi:10.1016/j.chest.2022.10.011. Epub 2022 Oct 20.; Watanabe R, Kiji M, Hashimoto M. Vasculitis associated with VEXAS syndrome: A literature review. Front Med (Lausanne). 2022 Aug 15:9:983939. doi:10.3389/fmed.2022.983939. eCollection 2022.; Kouranloo K, Ashley A, Zhao SS, Dey M. Pulmonary manifestations in VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome: a systematic review. Rheumatol Int. 2023 Jun;43(6):1023-1032. doi:10.1007/s00296-022-05266-2. Epub 2023 Jan 8.; Lacombe V, Kosmider O, Prevost M, et al. Severe Joint Involvement in VEXAS Syndrome: A Case Report. Ann Intern Med. 2021 Jul;174(7):1025-1027. doi:10.7326/L21-0023. Epub 2021 Mar 30.; Magnol M, Couvaras L, Degboe Y, et al. VEXAS syndrome in a patient with previous spondyloarthritis with a favourable response to intravenous immunoglobulin and anti-IL17 therapy. Rheumatology (Oxford). 2021 Sep 1; 60(9):e314-e315. doi:10.1093/rheumatology/keab211.; Bourbon E, Heiblig M, Gerfaud Valentin M, et al. Therapeutic options in VEXAS syndrome: insights from a retrospective series. Blood. 2021 Jul 1;137(26):3682-3684. doi:10.1182/blood.2020010177.; van der Made CI, Potjewijd J, Hoogstins A, et al. Adult-onset autoinflammation caused by somatic mutations in UBA1: A Dutch case series of patients with VEXAS. J Allergy Clin Immunol. 2022 Jan;149(1): 432-439.e4. doi:10.1016/j.jaci.2021.05.014. Epub 2021 May 25.; Kucharz EJ. VEXAS syndrome: a newly discovered systemic rheumatic disorder. Reumatologia. 2023;61(2):123-129. doi:10.5114/reum/163090. Epub 2023 May 10.; Itagane M, Teruya H, Kato T, et al. Clinical images: VEXAS syndrome presenting as treatment-refractory polyarteritis nodosa. Arthritis Rheumatol. 2022 Nov;74(11): 1863-1864. doi:10.1002/art.42257. Epub 2022 Sep 29.; Muratore F, Marvisi C, Castrignanт P, et al. VEXAS Syndrome: A Case Series From a Single-Center Cohort of Italian Patients With Vasculitis. Arthritis Rheumatol. 2022 Apr;74(4):665-670. doi:10.1002/art.41992. Epub 2022 Mar 3.; Meyts I, Aksentijevich I. Deficiency of Adenosine Deaminase 2 (DADA2): Updates on the Phenotype, Genetics, Pathogenesis, and Treatment. J Clin Immunol. 2018 Jul; 38(5):569-578. doi:10.1007/s10875-018- 0525-8. Epub 2018 Jun 27; Wang Y, Wang F, Zhang X. STING-associated vasculopathy with onset in infancy: a familial case series report and literature review. Ann Transl Med. 2021 Jan;9(2):176. doi:10.21037/atm-20-6198.; Ferrada MA, Sikora KA, Luo Y, et al. Somatic Mutations in UBA1 Define a Distinct Subset of Relapsing Polychondritis Patients With VEXAS. Arthritis Rheumatol. 2021 Oct;73(10):1886-1895. doi:10.1002/art. 41743. Epub 2021 Aug 31.; Khitri MY, Guedon AF, Georgin-Lavialle S, et al. Comparison between idiopathic and VEXAS-relapsing polychondritis: analysis of a French case series of 95 patients. RMD Open. 2022 Jul;8(2):e002255. doi:10.1136/rmdopen-2022-002255.; Vitale A, Caggiano V, Bimonte A, et al. VEXAS syndrome: a new paradigm for adult onset monogenic autoinflammatory diseases. Intern Emerg Med. 2023 Apr;18(3): 711-722. doi:10.1007/s11739-023-03193-z. Epub 2023 Jan 20.; Lucchino B, Finucci A, Ghellere F, et al. Influence of HLA polymorphisms on clinical features of VEXAS syndrome: a potential epistatic mechanism. Rheumatology (Oxford). 2022 Dec 23;62(1):e7-e8. doi:10.1093/rheumatology/keac371.; Al-Hakim A, Savic S. An update on VEXAS syndrome. Expert Rev Clin Immunol. 2023 Feb;19(2):203-215. doi:10.1080/1744666X.2023.2157262. Epub 2022 Dec 26.; Bert-Marcaz C, Briantais A, Faucher B, et al. Expanding the spectrum of VEXAS syndrome: association with acute-onset CIDP. J Neurol Neurosurg Psychiatry. 2022 Jul;93(7): 797-798. doi:10.1136/jnnp-2021-327949. Epub 2021 Dec 6.; Oo TM, Koay JTJ, Lee SF, et al. Thrombosis in VEXAS syndrome. J Thromb Thrombolysis. 2022 May;53(4):965-970. doi:10.1007/s11239-021-02608-y. Epub 2021 Nov 24.; Groarke EM, Dulau-Florea AE, Kanthi Y. Thrombotic manifestations of VEXAS syndrome. Semin Hematol. 2021 Oct;58(4):230-238. doi:10.1053/j.seminhematol.2021.10.006. Epub 2021 Oct 25.; Koster MJ, Kourelis T, Reichard KK, et al. Clinical Heterogeneity of the VEXAS Syndrome: A Case Series. Mayo Clin Proc. 2021 Oct;96(10):2653-2659. doi:10.1016/j.mayocp.2021.06.006. Epub 2021 Sep 3.; Patel BA, Ferrada MA, Grayson PC, Beck DB. VEXAS syndrome: An inflammatory and hematologic disease. Semin Hematol. 2021 Oct;58(4):201-203. doi:10.1053/j.seminhematol.2021.10.005. Epub 2021 Oct 14.; Obiorah IE, Patel BA, Groarke EM, et al. Benign and malignant hematologic manifestations in patients with VEXAS syndrome due to somatic mutations in UBA1. Blood Adv. 2021 Aug 24;5(16):3203-3215. doi:10.1182/bloodadvances.2021004976.; Temple M, Kosmider O. VEXAS syndrome: a novelty in MDS landscape. Diagnostics (Basel). 2022 Jun 29;12(7):1590. doi:10.3390/diagnostics12071590.; Obiorah IE, Beck DB, Wang W, et al. Myelodysplasia and bone marrow manifestations of somatic UBA1 mutated autoinflammatory disease. Blood. 2020;136(S1):20-21.; Tsuchida N, Kunishita Y, Uchiyama Y, et al. Pathogenic UBA1 variants associated with VEXAS syndrome in Japanese patients with relapsing polychondritis. Ann Rheum Dis. 2021 Aug;80(8):1057-1061. doi:10.1136/annrheumdis-2021-220089. Epub 2021 Mar 31.; Lötscher F, Seitz L, Simeunovic H, et al. Case Report: Genetic Double Strike: VEXAS and TET2-Positive Myelodysplastic Syndrome in a Patient With Long-Standing Refractory Autoinflammatory Disease. Front Immunol. 2022 Jan 20:12:800149. doi:10.3389/fimmu.2021.800149. eCollection 2021.; Kusne Y, Fernandez J, Patnaik MM. Clonal hematopoiesis and VEXAS syndrome: survival of the fittest clones? Semin Hematol. 2021 Oct;58(4):226-229. doi:10.1053/j.seminhematol.2021.10.004. Epub 2021 Oct 9.; Gutierrez-Rodrigues F, Kusne Y, Fernandez J, et al. Spectrum of clonal hematopoiesis in VEXAS syndrome. Blood. 2023 Jul 20; 142(3):244-259. doi:10.1182/blood. 2022018774.; Diarra A, Duployez N, Fournier E, et al. Successful allogeneic hematopoietic stem cell transplantation in patients with VEXAS syndrome: a 2-center experience. Blood Adv. 2022 Feb 8;6(3):998-1003. doi:10.1182/bloodadvances.2021004749.; Kao RL, Jacobsen AA, Billington CJ Jr, et al. A case of VEXAS syndrome associated with EBV-associated hemophagocytic lymphohistiocytosis. Blood Cells Mol Dis. 2022 Mar:93:102636. doi:10.1016/j.bcmd.2021.102636. Epub 2021 Nov 30.; Lee SMS, Fan BE, Lim JH, Goh LL, Lee JSS, Koh LW. A case of VEXAS syndrome manifesting as Kikuchi-Fujimoto disease, relapsing polychondritis, venous thromboembolism and macrocytic anaemia. Rheumatology (Oxford). 2021 Sep 1;60(9):e304-e306. doi:10.1093/rheumatology/keab200.; Gurnari C, Pagliuca S, Durkin L, et al. Vacuolization of hematopoietic precursors: an enigma with multiple etiologies. Blood. 2021 Jul 1;137(26):3685-3689. doi:10.1182/blood.2021010811.; Patel N, Dulau-Florea A, Calvo KR. Characteristic bone marrow findings in patients with UBA1 somatic mutations and VEXAS syndrome. Semin Hematol. 2021 Oct;58(4):204-211. doi:10.1053/j.seminhematol.2021.10.007. Epub 2021 Oct 22.; Temple M, Duroyon E, Croizier C, et al. Atypical splice-site mutations causing VEXAS syndrome. Rheumatology (Oxford). 2021 Dec 1; 60(12):e435-e437. doi:10.1093/rheumatology/keab524.; Hines AS, Koster MJ, Rock AR, et al. Targeted testing of bone marrow specimens with cytoplasmic vacuolization to identify previously undiagnosed cases of VEXAS syndrome. Rheumatology (Oxford). 2023 May 25:kead245. doi:10.1093/rheumatology/kead245. Online ahead of print.; Gurnari C, Rogers HJ. Copper Deficiency. N Engl J Med. 2021 Aug 12;385(7): 640. doi:10.1056/NEJMicm2103532. Epub 2021 Aug 7.; Lacombe V, Prevost M, Bouvier A, et al. Vacuoles in neutrophil precursors in VEXAS syndrome: diagnostic performances and threshold. Br J Haematol. 2021 Oct;195(2): 286-289. doi:10.1111/bjh.17679. Epub 2021 Aug 2.; Gurnari C, McLornan DP. Update on VEXAS and role of allogeneic bone marrow transplant: Considerations on behalf of the Chronic Malignancies Working Party of the EBMT. Bone Marrow Transplant. 2022 Nov; 57(11):1642-1648. doi:10.1038/s41409-022-01774-8. Epub 2022 Aug 8.; Loschi M, Roux C, Sudaka I, et al. Allogeneic stem cell transplantation as a curative therapeutic approach for VEXAS syndrome: a case report. Bone Marrow Transplant. 2022 Feb;57(2):315-318. doi:10.1038/s41409-021-01544-y. Epub 2022 Jan 9.; Mangaonkar AA, Langer KJ, Lasho TL, et al. Reduced intensity conditioning allogeneic hematopoietic stem cell transplantation in VEXAS syndrome: Data from a prospective series of patients. Am J Hematol. 2023 Feb; 98(2):E28-E31. doi:10.1002/ajh.26786. Epub 2022 Dec 1.; van Leeuwen-Kerkhoff N, de Witte MA, Heijstek MW, Leavis HL. Case report: Up-front allogeneic stem cell transplantation in a patient with the VEXAS syndrome. Br J Haematol. 2022 Nov;199(3):e12-e15. doi:10.1111/bjh.18424. Epub 2022 Aug 29.; Al-Hakim A, Poulter JA, Mahmoud D, et al. Allogeneic haematopoietic stem cell transplantation for VEXAS syndrome: UK experience. Br J Haematol. 2022 Dec;199(5): 777-781. doi:10.1111/bjh.18488. Epub 2022 Oct 2.; Comont T, Heiblig M, Riviere E, et al. Azacitidine for patients with Vacuoles, E1 Enzyme, X-linked, Autoinflammatory, Somatic syndrome (VEXAS) and myelodysplastic syndrome: data from the French VEXAS registry. Br J Haematol. 2022 Feb;196(4): 969-974. doi:10.1111/bjh.17893. Epub 2021 Oct 14.; Raaijmakers MHGP, Hermans M, Aalbers A, et al. Azacytidine Treatment for VEXAS Syndrome. Hemasphere. 2021 Nov 17; 5(12):e661. doi:10.1097/HS9.0000000000000661. eCollection 2021 Dec.; Mekinian A, Zhao LP, Chevret S, et al. A Phase II prospective trial of azacitidine in steroid-dependent or refractory systemic autoimmune/inflammatory disorders and VEXAS syndrome associated with MDS and CMML. Leukemia. 2022 Nov;36(11):2739- 2742. doi:10.1038/s41375-022-01698-8. Epub 2022 Sep 14.; Heiblig M, Patel BA, Groarke EM, et al. Toward a pathophysiology inspired treatment of VEXAS syndrome. Semin Hematol. 2021 Oct;58(4):239-246. doi:10.1053/j.seminhematol.2021.09.001. Epub 2021 Oct 5.; Staels F, Betrains A, Woei-A-Jin FJSH, et al. Case Report: VEXAS Syndrome: From Mild Symptoms to Life-Threatening Macrophage Activation Syndrome. Front Immunol. 2021 Apr 23:12:678927. doi:10.3389/fimmu.2021.678927. eCollection 2021.; Kirino Y, Takase-Minegishi K, Tsuchida N, et al. Tocilizumab in VEXAS relapsing polychondritis: a single-center pilot study in Japan. Ann Rheum Dis. 2021 Nov;80(11):1501-1502. doi:10.1136/annrheumdis-2021-220876. Epub 2021 Jun 21.; Goyal A, Narayanan D, Wong W, et al. Tocilizumab for treatment of cutaneous and systemic manifestations of vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome without myelodysplastic syndrome. JAAD Case Rep. 2022 Mar 2:23: 15-19. doi:10.1016/j.jdcr.2022.02.022. eCollection 2022 May.; Heiblig M, Ferrada MA, Koster MJ, et al. Ruxolitinib is more effective than other JAK inhibitors to treat VEXAS syndrome: a retrospective multicenter study. Blood. 2022 Aug 25;140(8):927-931. doi:10.1182/blood.2022016642; https://mrj.ima-press.net/mrj/article/view/1509
-
3Academic Journal
المؤلفون: Y. Strugar, A. A. Orlova, A. A. Ponkratova, A. K. Whaley, M. N. Povydysh, Й. Стругар, А. А. Орлова, А. О. Понкратова, А. К. Уэйли, М. Н. Повыдыш
المساهمون: Research results were obtained using the equipment of the Center for Collective Use "Analytical Center of Saint-Petersburg State Chemical and Pharmaceutical University" within the framework of agreement No. 075-15-2021-685 dated July 26, 2021 with the financial support of the Ministry of Education and Science of Russia., Результаты работы получены с использованием оборудования ЦКП «Аналитический центр ФГБОУ ВО СПХФУ Минздрава России» в рамках соглашения № 075-15-2021-685 от 26 июля 2021 года при финансовой поддержке Минобрнауки России.
المصدر: Drug development & registration; Том 11, № 4 (2022); 177-184 ; Разработка и регистрация лекарственных средств; Том 11, № 4 (2022); 177-184 ; 2658-5049 ; 2305-2066
مصطلحات موضوعية: флавоноиды, marsh cinquefoil, secondary metabolites, polyphenols, flavonoids, сабельник болотный, вторичные метаболиты, полифенолы
وصف الملف: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/1375/1050; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1375/1434; Sasidharan S., Chen Y., Saravanan D., Sundram K., Latha L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African journal of traditional, complementary and alternative medicines. 2010;8(1):1–10.; Лужанин В. Г., Уэйли А. К., Понкратова А. О., Новикова В. В., Безверхняя Е. А. Противомикробная активность соединений полифенольной природы. Разработка и регистрация лекарственных средств. 2022;11(2):65–72. DOI:10.33380/2305-2066-2022-11-2-65-72.; Богоутдинова А. М., Уэйли А. К., Понкратова А. О., Орлова А. А., Гончаров М. Ю., Шпакова В. С., Фарманова Н. Т., Нуруллаева Д. Х., Шарипов А. Т., Гамбарян С. П., Повыдыш М. Н. Выделения формононетин-7-О-β-D-глюкопиранозида из травы стальника полевого (Ononis arvensis L.) и оценка его влияния на индуцированную активацию тромбоцитов. Разработка и регистрация лекарственных средств. 2021;10(4–1):14–19. DOI:10.33380/2305-2066-2021-10-4(1)-14-19.; Peddoju A., Singh S., Mca S. Review: Medicinal Plant use for the treatment of Diabetes. SSRN. 2019;6(2):968–975.; Salleh N. H., Zulkipli I. N., Yasin H. M., Jaafar F., Ahmad N., Ahmad W. A. N. W., Ahmad S. R. Systematic review of medicinal plants used for treatment of diabetes in human clinical trials: an ASEAN perspective. Evidence-based complementary and alternative medicine. 2021;2021:1–10.; Pranskuniene Z., Balciunaite R., Simaitiene Z., Bernatoniene J. Herbal medicine uses for respiratory system disorders and possible trends in new herbal medicinal recipes during COVID-19 in pasvalys district, Lithuania. Environmental research and public health. 2022;19:8905.; Ray S., Saini M. K. Cure and prevention of cardiovascular diseases: herbs for heart. Clinical Phytoscience. 2021;7:64.; Singh S., Singh T. G., Mahajan K., Dhiman S. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. Journal of Pharmacy and Pharmacology. 2020;72(10):1306–1327.; Buzuk G. N., Lovkova M. Y., Ershik O. A., Sokolova S. M. A new source of Proanthocyanidins with antiarthritic activity: Purple marshlocks (Comarum palustre L.) rhizome and roots. Doklady Biochemistry and Biophysics. 2008;421(1):211–213.; Shirinsky I. V., Kalinovskaya N. Y., Filatova K., Shirinsky V. S. Pleiotropic effects of Comarum palustre L. in patients with osteoarthritis and diabetes mellitus with high comorbidity burden: an exploratory study. Alternative Therapies in Health and Medicine. 2021;27(S1):80–84.; Стругар Й., Повыдыш М. Н. Химические компоненты Comarum palustre L. и их биологическая активность. Медико-фармацевтический журнал «Пульс». 2020;22(12):126–140.; Yorshik O. A., Buzuk G. N. Antiviral activity of proanthocyanidins in the western marsh cinquefoil. Bulletin of the Vitebsk State Medical University. 2015;14(2):107–112.; Ovodova R. G., Popov S. V., Bushneva O. A., Golovchenko V. V., Chizhov A. O., Klinov D. V., Ovodov Y. S. Branching of the galacturonan backbone of comaruman, a pectin from the marsh cinquefoil Comarum palustre L. Biochemistry. 2006;71(5):538–542.; Bikmulina G. A., Popova N. A. Study of the pharmacotherapeutic efficacy of the dry extract of the marsh cinquefoil in postischemic nephropathy in white rats. Acta Biomedica Scientifica. 2008;3(61):47.; Скляревская Н. В. Фармакогностическое изучение надземной части сабельника болотного (Comarum palustre L.), произрастающего на Северо-Западе России. Дис. . канд. фарм. наук. Санкт-Петербург; 2009. Доступно по: https://www.dissercat.com/content/farmakognosticheskoe-izuchenie-nadzemnoi-chasti-sabelnika-bolotnogo-comarum-palustre-l-proiz. Ссылка активна на 06.09.2022.; Стругар Й., Орлова А. А., Повыдыш М. Н. Сравнительный ГХ-МС анализ состава метаболитов надземной и подземной части сабельника болотного (Comarum palustre L.). Разработка и регистрация лекарственных средств. 2021;10(4):95–103. DOI:10.33380/2305-2066-2021-10-4(1)-95-103.; Yoshida T., Amakura Y., Liu Y. Z., Okuda T. Tannins and related polyphenols of Euphorbiaceous Plants. XI. Three new hydrolyzable tannins and a polyphenol glucoside from Euphorbia humifusa. Chemical & pharmaceutical bulletin. 1994;42(9):1803–1807.; Уэйли А. К., Понкратова А. О., Орлова А. А., Серебряков Е. Б., Смирнов С. Н., Прокш П., Ионов Н. С., Поройков В. В., Лужанин В. Г. Фитохимический анализ вторичных метаболитов полифенольной природы в листьях морошки обыкновенной (Rubus chamaemorus L.). Химико-фармацевтический журнал. 2021;55(3):22–27.; Olennikov D. N. Ellagitannins and other phenolic compounds from Comarum palustre. Chemistry of Natural Compounds. 2016;52(4):721–723.; Cho, Y. H., Kim N. H., Khan I., Yu J. M., Jung H. G., Kim H. H., An B. J. Anti-inflammatory potential of Quercetin-3-O-β-D-(“2”-galloyl)-glucopyranoside and Quercetin isolated from Diospyros kakicalyx via suppression of MAP signaling molecules in LPS-induced RAW 264.7 Macrophages. Journal of Food Science. 2016;81(10):C2447–C2456.; Zaman S., Hye M. A., Taher M. A., Ali M. Y., Ali M. U. Isolation of (+)-Catechin from Acacia Catechu (Cutch Tree) by a Convenient Method. Journal of Scientific Research. 2009;1(2):300–305.; https://www.pharmjournal.ru/jour/article/view/1375
-
4Academic Journal
المؤلفون: A. A. Orlova, E. A. Kondrat'eva, Ya. A. Dubrovskii, N. V. Dryagina, E. V. Verbitskaya, S. A. Kondratev, A. A. Kostareva, A. N. Kondratev, А. А. Орлова, Е. А. Кондратьева, Я. А. Дубровский, Н. В. Дрягина, Е. В. Вербицкая, С. А. Кондратьев, А. А. Костарева, А. Н. Кондратьев
المساهمون: The study was supported by the Russian Foundation for Basic Research under Scientific Project No. 19-29-01066, Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-29-01066
المصدر: General Reanimatology; Том 18, № 2 (2022); 22-36 ; Общая реаниматология; Том 18, № 2 (2022); 22-36 ; 2411-7110 ; 1813-9779
مصطلحات موضوعية: мультидисциплинарный подход, vegetative state, unresponsive wakefulness syndrome, minimal consciousness state, metabolomics, metabolomic profile, blood-brain barrier, circadian rhythm, glymphatic system, prediction of consciousness recovery, multidisciplinary approach, вегетативное состояние, синдром ареактивного бодрствования, состояние минимального сознания, метаболомика, метаболомный профиль, гематоэнцефалический барьер, циркадианный ритм, глимфатическая система, прогнозирование восстановления сознания
وصف الملف: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/2210/1600; https://www.reanimatology.com/rmt/article/view/2210/1609; Пирадов М. А. Российская рабочая группа по проблемам хронических нарушений сознания. Хронические нарушения сознания: терминология и диагностические критерии. Результаты первого заседания Российской рабочей группы по проблемам хронических нарушений сознания / М. А. Пирадов [и др.] // Анналы клинической и экспериментальной неврологии. – 2020. – 14 (1): 5–16. DOI:10.25692/ACEN.2020.1.1.; Giacino J. T. The vegetative and minimally conscious states: consensus-based criteria for establishing diagnosis and prognosis. NeuroRehabilitation. 2004; 19 (4): 293–298. PMID: 15671583.; Giacino J. T., Katz D. I., Schiff N. D., Whyte J., Ashman E. J., Ashwal S., Barbano R., Hammond F. M., Laureys S., Ling G. S. F., Nakase-Richardson R., Seel R. T., Yablon S., Getchius T. S. D., Gronseth G. S., Armstrong M. J. Practice guideline update recommendations summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology. 2018; 91 (10): 450–460. DOI:10.1212/WNL.0000000000005926. PMID: 30089618; PMCID: PMC6139814.; Kondziella D., Bender A., Diserens K., van Erp W., Estraneo A., Formisano R., Laureys S., Naccache L., Ozturk S., Rohaut B., Sitt J. D., Stender J., Tiainen M., Rossetti A. O., Gosseries O., Chatelle C. EAN panel on coma, disorders of consciousness. european academy of neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020 May; 27 (5): 741–756. DOI:10.1111/ene.14151. PMID: 32090418.; Luppi A. I., Cain J., Spindler L. R. B., Górska U. J., Toker D., Hudson A. E., Brown E. N., Diringer M. N., Stevens R. D., Massimini M., Monti M. M., Stamatakis E. A., Boly M. & Curing Coma Campaign and Its Contributing Collaborators. Mechanisms underlying disorders of consciousness: bridging gaps to move toward an integrated translational science. Neurocrit Care. 2021; 35 (Suppl 1): 37–54. DOI:10.1007/s12028-021-01281-6. PMID: 34236622; PMCID: PMC8266690.; Iliff J. J., Wang M., Liao Y., Plogg B.A., Peng W., Gundersen G. A., Benveniste H., Vates G. E., Deane .R, Goldman S. A., Nagelhus E. A., Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Translational Medicine. 2012; 4 (147): 147ra111. DOI:10.1126/scitranslmed.3003748.; Кондратьев А. Н. Глимфатическая система мозга: строение и практическая значимость / А. Н. Кондратьев, Л. М. Ценципер // Анестезиология и реаниматология. – 2019. – 6: 72–80. DOI:10.17116/anaesthesiology201906172.; Lundgaard I., Lu M. L., Yang E., Peng W., Mestre H., Hitomi E., Deane R., Nedergaard M. Glymphatic clearance controls state-dependent changes in brain lactate concentration. Journal of Cerebral Blood Flow and Metabolism. 2017; 37 (6): 2112–2124. DOI:10.1177/0271678X16661202. PMID: 27481936 PMCID: PMC5464705.; Lundgaard I., Li B., Xie L., Kang H., Sanggaard S., Haswell J. D. R., Sun W., Goldman S., Blekot S., Nielsen M., Takano T., Deane R., Nedergaard M. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications. 2015; 6: 7807. DOI:10.1038/ncomms7807.; Hayton S., Maker G. L., Mullaney I., Trengove R. D. Experimental design and reporting standards for metabolomics studies of mammalian cell lines. Cell Mol Life Sci 2017; 74 (24): 4421–4441. DOI:10.1007/s00018-017-2582-1. PMID: 28669031.; Fukuda A. M., Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation. 2012; 9: 279. DOI:10.1186/1742-2094-9-279 PMCID: PMC3552817. PMID: 23270503.; Gonzalez-Riano, C., Saiz, J., Barbas, C., Bergareche A., Huerta J. M., Ardanaz E., Konjevod M., Mondragon E., Erro M. E., Chirlaque M. D., Abilleira E., Goñi-Irigoyen F., Amiano P. Prognostic biomarkers of Parkinson’s disease in the Spanish EPIC cohort: a multiplatform metabolomics approach. npj Parkinsons Dis. 2021; 7 (1): 73 (2021). DOI:10.1038/s41531-021-00216-4. PMID: 34400650. PMCID: PMC8368017.; Qureshi M. I., Vorkas P. A., Coupland A. P., Jenkins I. H., Holmes E., Davies A. H. Lessons from metabonomics on the neurobiology of stroke. Neuroscientist. 2017; 23 (4): 374–382. DOI:10.1177/1073858416673327. PMID: 28345376.; Zheng F., Zhou Y. T, Li P. F., Hu E., Li T., Tang T., Luo J. K., Zhang W., Ding C. S., Wang Y. Metabolomics analysis of hippocampus and cortex in a rat model of traumatic brain injury in the subacute phase. Front Neurosci. 2020; 14: 876. DOI:10.3389/fnins.2020.00876. PMID: 33013291. PMCID: PMC7499474.; Bernard C., Ktorza A., Gautier J. F., Ferré P., Bourron O., Foufelle F. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia. 2018; 61 (2): 399–412. DOI:10.1007/s00125-017-4462-5. PMID: 28988346.; Eberlin L. S., Gabay M., Fan A. C., Gouw A. M., Tibshirani R. J., Felsher D. W., Zare R. N. Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Natl Acad Sci USA. 2014; 111 (29): 10450–10455. DOI:10.1073/pnas.1409778111. PMCID: PMC4115527. PMID: 24994904.; Chen M., Zhang J., Sampieri K., Clohessy J. G., Mendez L., Gonzalez-Billalabeitia E., Liu X. S., Lee Y. R., Fung J., Katon J. M., Menon A. V., Webster K. A., Ng C., Palumbieri M. D., Diolombi M. S., Breitkopf S. B., Teruya-Feldstein J., Signoretti S., Bronson R. T., Asara J. M., Castillo-Martin M., Cordon-Cardo C., Pandolfi P. P. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat Genet. 2018; 50 (2): 206–218. DOI:10.1038/s41588-017-0027-2. PMID: 29335545. PMCID: PMC6714980.; Xiong N., Gao X., Zhao H., Cai F., Zhang F. C., Yuan Y., Liu W., He F., Zacharias L. G., Lin H., Vu H. S., Xing C., Yao D. X., Chen F., Luo B., Sun W., De Berardinis R. J., Xu H., Ge W. P. Using arterial-venous analysis to characterize cancer metabolic consumption in patients. Nat Commun. 2020; 11 (1): 3169. DOI:10.1038/s41467-020-16810-8. PMID: 32576825. PMCID: PMC7311411.; Chong J., Wishart D. S., Xia J. Using Metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Current Protocols in Bioinformatics. 2019; 68 (1): e86. DOI:10.1002/cpbi.86. PMID: 31756036.; Xia J., Wishart D. S. Metabolomic data processing, analysis, and interpretation using metaboanalyst. Current Protocols in Bioinformatics. 2011; 34 (1): 14.10.1–14.10.48. DOI:10.1002/0471250953.bi1410s34.; Yu J., Meng F., He F., Chen F., Bao W., Yu Y., Zhou J., Gao J., Li J., Yao Y., Ge W. P., Luo B. Metabolic abnormalities in patients with chronic disorders of consciousness. Aging and disease. 2021; 12 (2): 386–403. DOI:10.14336/AD.2020.0812.; Proitsi P., Kim M., Whiley L., Simmons A., Sattlecker M., Velayudhan L., Lupton M. K., Soininen H., Kloszewska I., Mecocci P., Tsolaki M., Vellas B., Lovestone S., Powell J. F., Dobson R. J. B., Legido-Quigley C. Association of blood lipids with Alzheimer’s disease: a comprehensive lipidomics analysis. Alzheimers Dement, 2017; 13 (2): 140–151. DOI:10.1016/j.jalz.2016.08.003. PMID: 27693183.; Chitturi J., Li Y., Santhakumar V., Kannurpatti S. S. Early behavioral and metabolomic change after mild to moderate traumatic brain injury in the developing brain. Neurochem Int. 2018; 120: 75–86. DOI:10.1016/j.neuint.2018.08.003. PMID: 30098378. PMCID: PMC6257993.; Zheng F., Xia Z. A., Zeng Y. F., Luo J. K., Sun P., Cui H. J., Wang Y., Tang T., Zhou Y. T. Plasma metabolomics profiles in rats with acute traumatic brain injury. PLoS One. 2017; 12 (8), e0182025. DOI:10.1371/journal.pone.0182025. PMID: 28771528. PMCID: PMC5542452.; Dawiskiba, T., Wojtowicz, W., Qasem, B., Tukaszewski M., Mielko K. A., Dawiskiba A., Banasik M., Skóra J.P., Janczak D., Młynarz P. Braindead and coma patients exhibit different serum metabolic profiles: preliminary investigation of a novel diagnostic approach in neurocritical care. Sci Rep. 2021; 11 (1): 15519. DOI:10.1038/s41598-021-94625-3. PMID: 34330941. PMCID: PMC8324823.; Tsai I. L., Kuo T. C., Ho T. J., Harn Y. C., Wang S. Y., Fu W. M., Kuo C. H., Tseng Y. J. Metabolomic dynamic analysis of hypoxia in MDA-MB-231 and the comparison with inferred metabolites from transcriptomics data. Cancers (Basel). 2013; 5 (2): 491–510. DOI:10.3390/cancers5020491. PMCID: PMC3730319. PMID: 24216987.; Solberg R., Kuligowski J., Pankratov L., Escobar J., Quintás G., Lliso I., Sánchez-Illana A., Saugstad O. D., Vento M. Changes of the plasma metabolome of newly born piglets subjected to postnatal hypoxia and resuscitation with air. Pediatr Res. 2016; 80 (2): 284–292. DOI:10.1038/pr.2016.66. PMID: 27055187.; Baranovicova E., Grendar M., Kalenska D., Tomascova A., Cierny D., Lehotsky J. NMR metabolomic study of blood plasma in ischemic and ischemically preconditioned rats: an increased level of ketone bodies and decreased content of glycolytic products 24 h after global cerebral ischemia. J. Physiol. Biochem. 2018; 74 (3): 417–429. DOI:10.1007/s13105-018-0632-2. PMID: 29752707.; Liu P., Li .R, Antonov A. A., Wang L., Li W., Hua Y., Guo H., Wang L., Liu P., Chen L., Tian Y., Xu F., Zhang Z., Zhu Y., Huang Y. Discovery of metabolite biomarkers for acute ischemic stroke progression. J. Proteome Res. 2017; 16 (2): 773–779. DOI:10.1021/acs.jproteome.6b00779. PMID: 28092160.; Wang D., Kong J., Wu J., Wang X., Lai M. GC–MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neurosci. Lett. 2017; 642: 7–13. DOI:10.1016/j.neulet.2017.01.039 PMID: 28111353.; Wang Y., Wang Y. G., Ma T. F., Li M., Gu S. L. Dynamic metabolites profile of cerebral ischemia/reperfusion revealed by (1)H NMR-based metabolomics contributes to potential biomarkers. Int. J. Clin. Exp. Pathol. 2014; 7 (7): 4067–4075. PMID: 25120785. PMCID: PMC4129020.; Fiehn O. Metabolomics: The link between genotypes and phenotypes. Plant Mol. Biol. 2002; 48 (1–2): 155–171. DOI:10.1023/A:1013713905833. PMID: 11860207.; Wishart, D. S., Feunang Y. D., Marcu A., Guo A. C., Liang K., Vázquez-Fresno R., Sajed T., Johnson D., Li C., Karu N., Sayeeda Z., Lo E., Assempour N., Berjanskii M., Singhal S., Arndt D., Liang Y., Badran H., Grant J., Serra-Cayuela A., Liu Y., Mandal R., Neveu V., Pon A., Knox C., Wilson M., Manach C., Scalbert A. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018; 46 (D1)D608–D617. DOI:10.1093/nar/gkx1089. PMID: 29140435. PMCID: PMC5753273.; Дрягина Н. В. Метаболом головного мозга / Н. В. Дрягина и [др.] // Российский неврологический журнал. – 2020. – 25 (1): 4–12. DOI 10.30629/2658-7947-2020-25-1-4-12.; Лохов П. Г. Метаболомный анализ крови: назначение, реализация, интерпретация данных / П. Г. Лохов, А. В. Лисица, А. И. Арчаков // Биомедицинская химия. – 2017. – 63 (3): 232–240. DOI:10.18097/PBMC20176303232. PubMed: 28781256.; Черневская Е. А. Микробиота кишечника при критических состояниях (обзор) / Е. А. Черневская, Н. В. Белобородова. – Общая реаниматология. – 2018. – 14 (5): 96–119. DOI:10.15360/1813-9779-2018-5-96-119.; Nicholson J. K., Lindon J. C. & Holmes E. «Metabonomics»: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999; 29 (11): 1181–1189. DOI:10.1080/004982599238047. PMID: 10598751.; Nicholson J. K., Holmes E., Kinross J. M., Darzi A. W., Takats Z., Lindon J. C. Metabolic phenotyping in clinical and surgical environments. Nature. 2012; 491 (7424): 384–392. DOI:10.1038/nature11708. PMID: 23151581.; Trifonova O. P., Maslov D. L., Balashova E. E., Lokhov P. G. Mass spectrometry-based metabolomics diagnostics — myth or reality? Expert Review of Proteomics. 2021; 18: 7–12. DOI:10.1080/14789450.2021.1893695.; https://www.reanimatology.com/rmt/article/view/2210
-
5Academic Journal
المؤلفون: A. O. Ponkratova, A. K. Whaley, A. A. Orlova, S. N. Smirnov, E. B. Serebryakov, V. G. Luzhanin, А. О. Понкратова, А. К. Уэйли, А. А. Орлова, С. Н. Смирнов, Е. Б. Серебряков, В. Г. Лужанин
المصدر: Drug development & registration; Том 10, № 2 (2021); 80-86 ; Разработка и регистрация лекарственных средств; Том 10, № 2 (2021); 80-86 ; 2658-5049 ; 2305-2066
مصطلحات موضوعية: вторичные метаболиты, Empetrum nigrum, condensed tannins, A-type proanthocyanidins, secondary metabolites, конденсированные танины, проантоцианидины типа А
وصف الملف: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/918/828; https://www.pharmjournal.ru/jour/article/downloadSuppFile/918/434; https://www.pharmjournal.ru/jour/article/downloadSuppFile/918/435; https://www.pharmjournal.ru/jour/article/downloadSuppFile/918/436; https://www.pharmjournal.ru/jour/article/downloadSuppFile/918/437; https://www.pharmjournal.ru/jour/article/downloadSuppFile/918/438; https://www.pharmjournal.ru/jour/article/downloadSuppFile/918/439; https://www.pharmjournal.ru/jour/article/downloadSuppFile/918/525; Kubitzki K., ed. Flowering Plants. Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales. V. 6. In: The families and genera of vascular plants. Berlin: Springer; 2004. Р. 145–194. DOI:10.1007/978-3-662-07257-8.; Huttunen S., Toivanen M., Arkko S., Ruponen M., Tikkanen-Kaukanen C. Inhibition activity of wild berry juice fractions against Streptococcus pneumoniae binding to human bronchial cells. Phytotherapy Research. 2011;25(1):122–127. DOI:10.1002/ptr.3240.; Kim K. C., Lee I. K., Kang K. A., Kim B. J., Kim D., Moon J. Y., Yoo B. S., Hyun J. W. Empetrum nigrum var. japonicum extract suppresses γ-ray radiation-induced cell damage via inhibition of oxidative stress. The American Journal of Chinese Medicine. 2011;39(1):161–170. DOI:10.1142/S0192415X11008725.; Nohynek L. J., Alakomi H.-L., Kähkönen M. P., Heinonen M., Helander I. M., Oksman-Caldentey K.-M., Puupponen-Pimiä R. H. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and Cancer. 2006;54(1):18–32. DOI:10.1207/s15327914nc5401_4.; Hyun T. K., Kim H.-C., Ko Y.-J., Kim J.-S. Antioxidant, α-glucosidase inhibitory and anti-inflammatory effects of aerial parts extract from Korean crowberry (Empetrum nigrum var. japonicum). Saudi Journal of Biological Sciences.2016;23(2):181–188. DOI:10.1016/j.sjbs.2015.02.008.; Matsuura H., Saxena G., Farmer S., Hancock R., Towers G. Antibacterial and antifungal compounds from Empetrum nigrum. Planta Medica. 1995;61(6):580. DOI:10.1055/s-2006-959382.; Moerman D. E. Native American Medicinal Plants: An Ethnobotanical Dictionary. Timber Press: Portland; 2009. 799 p.; Jurikova T., Mlcek J., Skrovankova S., Balla S., Sochor J., Baron M., Sumczynski D. Black crowberry (Empetrum nigrum L.) flavonoids and their health promoting activity. Molecules. 2016;21(12):1685. DOI:10.3390/molecules21121685.; Ponkratova A. O., Whaley A. K., Balabas O. A., Smirnov S. N., Proksch P., Luzhanin V. G. A New Bibenzyl and 9,10-Dihydrophenanthrene Derivative from aerial parts of crowberry (Empetrum nigrum L.). Phytochemistry Letters. 2021;42:15–17. DOI:10.1016/j.phytol.2021.01.001.; Jarevång T., Nilsson M.-Ch., Wallstedt A., Oldham G., Sterner O. A bibenzyl from Empetrum nigrum. Phytochemistry. 1998;48(5):893–896. DOI:10.1016/S0031-9422(97)00955-2.; Wollenweber E., Dörr M., Stelzer R., Arriaga-Giner F. Lipophilic phenolics from the leaves of Empetrum nigrum – chemical structures and exudate localization. Botanica Acta. 1992;105(4):300–305. DOI:10.1111/j.1438-8677.1992.tb00302.x.; Kellogg J., Wang J., Flint C., Ribnicky D., Kuhn P., de Mejia E. G., Raskin I., Lila M. А. Alaskan wild berry resources and human health under the cloud of climate change. Journal of Agricultural and Food Chemistry. 2010;58(7):3884–3900. DOI:10.1021/jf902693r.; Öztürk R., Murt A. Epidemiology of urological infections: a global burden. World Journal of Urology. 2020;38(11):2669–2679. DOI:10.1007/s00345-019-03071-4.; Stamm W. E., Norrby S. R. Urinary tract infections: disease panorama and challenges. The Journal of Infections Disease. 2001;183(1):S1–S4. DOI:10.1086/318850.; Каухова И. Е., Новикова Е. К., Чачин Д. А. Разработка условий экстрагирования череды трехраздельной травы, золотарника канадского травы, репешка обыкновенного травы. Разработка и регистрация лекарственных средств. 2018;3(24):64–67.; Howell A. B. Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Molecular Nutrition and Food Research. 2007;51(6):732–737. DOI:10.1002/mnfr.200700038.; Howell A. B. Cranberry proanthocyanidins and the maintenance of urinary tract health. Critical Reviews in Food Science and Nutrition. 2002;42(3):273–278. DOI:10.1080/10408390209351915.; Dizaye K. Antihyperuricemic and diuretic effects of Procyanidins extracted from Crataegus monogyna. Journal of Medical Sciences. 2011;15(1):53–59. DOI:10.15218/zjms.2011.0009.; Bagchi D., Bagchi M., Stohs S. J., Das D. K., Ray S. D., Kuszynski C. A., Joshi S. S., Pruess H. G. Free radical and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology. 2000;148(2-3):187–197. DOI:10.1016/s0300-483x(00)00210-9.; Shan B., Cai Y.-Z., Brooks J. D., Corke H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. Journal of Agricultural and Food Chemistry. 2007;55(14):5484–5490. DOI:10.1021/jf070424d.; Torras M. A. C., Faura C. A., Schönlau F., Rohdewald P. Antimicrobial activity of Pycnogenol®. Phytotherapy Research. 2005;19(7):647–648. DOI:10.1002/ptr.1662.; Лужанин В. Г., Уэйли А. К., Понкратова А. О., Гришукова Е. А., Сулоев И. С., Смирнов С. Н., Серебряков Е. Б. Выделение индивидуальных соединений из надземной части стальника полевого (Ononis arvensis L.) и золотарника канадского (Solidago canadensis L.). Разработка и регистрация лекарственных средств. 2021;10(1):83–89. DOI:10.33380/2305-2066-2021-10-1-83-89.; Porter L. J., Ma Z., Chan B. G. Cacao procyanidins: major flavonoids and identification of some minor metabolites. Phytochemistry. 1991;30(5):1657–1663. DOI:10.1016/0031-9422(91)84228-k.; Lou H., Yamazaki Y., Sasaki T., Uchida M., Tanaka H., Oka S. A-type proanthocyanidins from peanut skins. Phytochemistry. 1999;51(2):297–308. DOI:10.1016/S0031-9422(98)00736-5.; https://www.pharmjournal.ru/jour/article/view/918
-
6Academic Journal
المؤلفون: O. A. Shchagina, O. P. Ryzhkova, A. L. Chukhrova, T. V. Milovidova, P. Gundorova, O. L. Mironovich, A. A. Orlova, M. D. Orlova, A. V. Poliakov, О. А. Щагина, О. П. Рыжкова, А. Л. Чухрова, Т. Б. Миловидова, П. Гундорова, О. Л. Миронович, А. А. Орлова, М. Д. Орлова, А. В. Поляков
المصدر: Neuromuscular Diseases; Том 10, № 4 (2020); 12-26 ; Нервно-мышечные болезни; Том 10, № 4 (2020); 12-26 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2020-10-4
مصطلحات موضوعية: наследственная периферическая нейропатия, HMSN, Charcot–Marie–Tooth disease, CMT, whole exome sequencing, WES, inherited peripheral neuropathy, болезнь Шарко–Мари–Тута, полноэкзомное секвенирование
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/404/279; Barreto L.C.L.S., Oliveira F.S., Nunes P.S. et al. Epidemiologic study of Charcot–Marie–Tooth disease: a systematic review. Neuroepidemiology 2016;46(3):157–65. DOI:10.1159/000443706. PMID: 26849231.; Baets J., Timmerman V. Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain 2011;134(6):1587–90. DOI:10.1093/brain/awr114.; Drew A.P., Zhu D., Kidambi A. et al. Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol Genet Genomic Med 2015;3(2):143–54. DOI:10.1002/mgg3.126. PMID: 25802885.; Hartley T., Wagner J.D., WarmanChardon J. et al. Whole-exome sequencing is a valuable diagnostic tool for inherited peripheral neuropathies: Outcomes from a cohort of 50 families. Clin Genet 2018;93(2):301–9. DOI:10.1111/cge.13101. PMID: 28708278.; Schabhüttl M., Wieland T., Senderek J. et al. Whole-exome sequencing in patients with inherited neuropathies: outcome and challenges. J Neurol 2014;(261):970–82. DOI:10.1007/s00415-014-7289-8. PMID: 24627108.; Gonzaga-Jauregui C., Harel T., Gambin T. et al. Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep 2015;12(7):1169–83. DOI:10.1016/j.celrep.2015.07.023. PMID: 26257172.; Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;(17):405–23. DOI:10.1038/gim.2015.30. PMID: 25741868.; Щагина О.А., Дадали Е.Л., Федотов В.П., Поляков А.В. Спектр мутаций в гене MFN2 у больных наследственной моторно-сенсорной нейропатией II А типа. Медицинская генетика 2006;5(9):21–6.; Дадали Е.Л., Щагина О.А., Федотов В.П. Клинико-генетические особенности моторно-сенсорной нейропатии IIА типа. Анналы клинической и экспериментальной неврологии 2007;1(4):10–5.; Миловидова Т.Б., Дадали Е.Л., Федотов В.П. и др. Клинико-генетичекие корреляции при наследственной моторно-сенсорной нейропатии, вызванной мутациями в гене МРZ (P0). Журнал неврологии и психиатрии им. С.С. Корсакова 2011;111(12):48–55.; Latour P., Thauvin-Robinet C., BaudeletMéry C. et al. A major determinant for binding and aminoacylation of tRNAAla in cytoplasmic alanyl-trna synthetase is mutated in dominant axonal charcotmarie-tooth disease. Am J Hum Genet 2010;86(1):77–82. DOI:10.1016/j.ajhg.2009.12.005. PMID: 20045102.; Shchagina O.A., Milovidova T.B., Murtazina A.F. et al. HINT1 gene pathogenic variants: the most common cause of recessive hereditary motor and sensory neuropathies in Russian patients. Mol Biol Rep 2020;(47):1331–7. DOI:10.1007/s11033-019-05238-z.; Дадали Е.Л., Никитин С.С., Курбатов С.А. и др. Клинико-генетические характеристики аутосомно-рецессивной аксональной нейропатии с нейромиотонией у больных из России. Нервно-мышечные болезни 2017;7(3): 47–55. DOI:10.17650/2222-8721-2017-7-3-47-55.; https://nmb.abvpress.ru/jour/article/view/404
-
7Academic Journal
المؤلفون: A. F. Murtazina, T. V. Markova, A. A. Orlova, O. P. Ryzhkova, O. A. Shchagina, E. L. Dadali, А. Ф. Муртазина, Т. В. Маркова, А. А. Орлова, О. П. Рыжкова, О. А. Щагина, Е. Л. Дадали
المصدر: Neuromuscular Diseases; Том 11, № 4 (2021); 48-54 ; Нервно-мышечные болезни; Том 11, № 4 (2021); 48-54 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2021-11-4
مصطلحات موضوعية: спастическая атаксия, POLR3A, spastic ataxia
وصف الملف: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/468/309; Pouwels P.J., Vanderver A., Bernard G. et al. Hypomyelinating leukodystrophies: translational research progress and prospects. Ann Neurol 2014;76(1):5–19. DOI:10.1002/ana.24194.; Timmons M., Tsokos M., Asab M.A. et al. Peripheral and central hypomyelination with hypogonadotropic hypogonadism and hypodontia. Neurology 2006;67:2066–9. DOI:10.1212/01.wnl.0000247666.28904.35.; Wolf N.I., Vanderver A., van Spaendonk R.M. et al. Clinical spectrum of 4H leukodystrophy caused by POLR3A and POLR3B mutations. Neurology 2014;83:1898–905. DOI:10.1212/WNL.0000000000001002.; Atrouni S., Daraze A., Tamraz J. et al. Leukodystrophy associated with oligodontia in a large inbred family: Fortuitous association or new entity? Am J Med Genet A 2003;118A:76–81. DOI:10.1002/ajmg.a.10019.; Bernard G., Chouery E., Putorti M.L. et al. Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy [published correction appears in Am J Hum Genet 2012;91(5):972]. Am J Hum Genet 2011;89(3):415–23. DOI:10.1016/j.ajhg.2011.07.014.; Choquet K., Forget D., Meloche E. et al. Leukodystrophy-associated POLR3A mutations down-regulate the RNA polymerase III transcript and important regulatory RNA BC200. J Biol Chem 2019;294:7445–59. DOI:10.1074/jbc.RA118.006271.; Thiffault I., Wolf N.I., Forget D. et al. Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nat Commun 2015;6:7623. DOI:10.1038/ncomms8623.; Bernard G., Thiffault I., Tetreault M. et al. Tremor-ataxia with central hypomyelination (TACH) leukodystrophy maps to chromosome 10q22.3-10q23.31. Neurogenetics 2010;11:457–64. DOI:10.1007/s10048-010-0251-8.; La Piana R., Cayami F.K., Tran L.T. et al. Diffuse hypomyelination is not obligate for POLR3-related disorders. Neurology 2016;86(17):1622–6. DOI:10.1212/WNL.0000000000002612.; Perrier S., Gauquelin L., Fallet-Bianco C. et al. Expanding the phenotypic and molecular spectrum of RNA polymerase III-related leukodystrophy. Neurol Genet. 2020;6(3):e425. DOI:10.1212/NXG.0000000000000425.; Minnerop M., Kurzwelly D., Wagner H. et al. Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain 2017;140(6):1561–78. DOI:10.1093/brain/awx095.; Ruggiero L., Iovino A., Dubbioso R. et al. Multimodal evaluation of an Italian family with a hereditary spastic paraplegia and POLR3A mutations. Ann Clin Transl Neurol 2020;7(11):2326–331. DOI:10.1002/acn3.51221.; Wambach J.A., Wegner D.J., Patni N. et al. Bi-allelic POLR3A loss-of-function variants cause autosomal-recessive Wiedemann–Rautenstrauch syndrome. Am J Hum Genet 2018;103(6):968–75. DOI:10.1016/j.ajhg.2018.10.010.; Bernard G., Vanderver A. POLR3-Related Leukodystrophy. 2012. In: GeneReviews®. Eds.: Adam M.P., Ardinger H.H., Pagon R.A. et al. Seattle: University of Washington, 1993–2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK99167/.; Harting I., Al-Saady M., Krageloh-Mann I. et al. POLR3A variants with striatal involvement and extrapyramidal movement disorder. Neurogenetics. 2020;21(2):121–33. DOI:10.1007/s10048-019-00602-4.; Hiraide T., Kubota K., Kono Y. et al. POLR3A variants in striatal involvement without diffuse hypomyelination. Brain Dev 2020;42(4):363–8. DOI:10.1016/j.braindev.2019.12.012.; Infante J., Serrano-Cárdenas K.M., Corral-Juan M. et al. POLR3A-related spastic ataxia: new mutations and a look into the phenotype. J Neurol 2020;2.67(2):324–30. DOI:10.1007/s00415-019-09574-9.; https://nmb.abvpress.ru/jour/article/view/468
-
8Academic Journal
المؤلفون: Орлова;а. А., Орлова;а. А.
المصدر: Scientific Journal of Chernihiv State Institute of Economics & Management. Series 1, Economics. 2013, Issue 1, p188-188. 2/3p.