يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"А. А. Огиенко"', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The work was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-1086, contract RF --- 193021X0015, 15.IP.21.0015). We are grateful to A.V. Taranin (Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia), V.V. Verkhusha (Albert Einstein College of Medicine, Bronx, NY, USA) and V.S. Fishman (Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia) for providing CHO-S cells, the pRP Exp -mCherryCAG>hyPBase plasmid and assistance in extracting data on the chromatin types of CHO cells, respectively.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 27, № 7 (2023); 906-915 ; Вавиловский журнал генетики и селекции; Том 27, № 7 (2023); 906-915 ; 2500-3259 ; 10.18699/VJGB-23-83

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3993/1779; Akhtar W., de Jong J., Pindyurin A.V., Pagie L., Meuleman W., de Ridder J., Berns A., Wessels L.F.A., van Lohuizen M., van Steensel B. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell. 2013;154(4):914-927. DOI 10.1016/j.cell.2013.07.018; Akhtar W., Pindyurin A.V., de Jong J., Pagie L., ten Hoeve J., Berns A., Wessels L.F.A., van Steensel B., van Lohuizen M. Using TRIP for genome-wide position effect analysis in cultured cells. Nat. Protoc. 2014;9(6):1255-1281. DOI 10.1038/nprot.2014.072; Babenko V.N., Makunin I.V., Brusentsova I.V., Belyaeva E.S., Maksimov D.A., Belyakin S.N., Maroy P., Vasil′eva L.A., Zhimulev I.F. Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome. BMC Genomics. 2010;11: 318. DOI 10.1186/1471-2164-11-318; Chen M., Licon K., Otsuka R., Pillus L., Ideker T. Decoupling epigenetic and genetic effects through systematic analysis of gene position. Cell Rep. 2013;3(1):128-137. DOI 10.1016/j.celrep.2012.12.003; Chen Q., Luo W., Veach R.A., Hickman A.B., Wilson M.H., Dyda F. Structural basis of seamless excision and specific targeting by piggyBac transposase. Nat. Commun. 2020;11(1):3446. DOI 10.1038/s41467-020-17128-1; Dahodwala H., Lee K.H. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr. Opin. Biotechnol. 2019;60:128-137. DOI 10.1016/j.copbio.2019.01.011; Ding S., Wu X., Li G., Han M., Zhuang Y., Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122(3):473-483. DOI 10.1016/j.cell.2005.07.013; Elgin S.C.R., Reuter G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. Biol. 2013;5(8):a017780. DOI 10.1101/cshperspect.a017780; FeichtingerJ., Hernández I., FischerC., Hanscho M., Auer N., Hackl M., Jadhav V., Baumann M., Krempl P.M., Schmidl C., Farlik M., Schuster M., Merkel A., Sommer A., Heath S., Rico D., Bock C., Thallinger G.G., Borth N. Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time. Biotechnol. Bioeng. 2016;113(10):2241-2253. DOI 10.1002/bit.25990; Fraser M.J., Ciszczon T., Elick T., Bauser C. Precise excision of TTAAspecific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 1996;5(2):141-151. DOI 10.1111/j.1365-2583.1996.tb00048.x; Galvan D.L., Nakazawa Y., Kaja A., Kettlun C., Cooper L.J.N., Rooney C.M., Wilson M.H. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J. Immunother. 2009;32(8):837-844. DOI 10.1097/CJI.0b013e3181b2914c; Gierman H.J., Indemans M.H.G., Koster J., Goetze S., Seppen J., Geerts D., van Driel R., Versteeg R. Domain-wide regulation of gene expression in the human genome. Genome Res. 2007;17(9):1286-1295. DOI 10.1101/gr.6276007; Gisler S., Gonçalves J.P., Akhtar W., de Jong J., Pindyurin A.V., Wessels L.F.A., van Lohuizen M. Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency. Nat. Commun. 2019;10(1):1598. DOI 10.1038/s41467-019-09551-w; Gupta K., Modi D., Jain R., Dandekar P. A stable CHO K1 cell line for producing recombinant monoclonal antibody against TNF-α. Mol. Biotechnol. 2021;63(9):828-839. DOI 10.1007/s12033-021-00329-4; Huang X., Guo H., Tammana S., Jung Y.-C., Mellgren E., Bassi P., Cao Q., Tu Z.J., Kim Y.C., Ekker S.C., Wu X., Wang S.M., Zhou X. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol. Ther. 2010;18(10):1803-1813. DOI 10.1038/mt.2010.141; Kim J.Y., Kim Y.-G., Lee G.M. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl. Microbiol. Biotechnol. 2012;93(3):917-930. DOI 10.1007/s00253-011-3758-5; Lalonde M.-E., Durocher Y. Therapeutic glycoprotein production in mammalian cells. J. Biotechnol. 2017;251:128-140. DOI 10.1016/j.jbiotec.2017.04.028; Lebedev M.O., Yarinich L.A., Ivankin A.V., Pindyurin A.V. Generation of barcoded plasmid libraries for massively parallel analysis of chromatin position effects. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(2):203-211. DOI 10.18699/VJ19.483; Li M.A., Pettitt S.J., Eckert S., Ning Z., Rice S., Cadiñanos J., Yusa K., Conte N., Bradley A. The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol. Cell. Biol. 2013;33(7):1317-1330. DOI 10.1128/MCB.00670-12; Orlova N.A., Kovnir S.V., Hodak J.A., Vorobiev I.I., Gabibov A.G., Skryabin K.G. Improved elongation factor-1 alpha-based vectors for stable high-level expression of heterologous proteins in Chinese hamster ovary cells. BMC Biotechnol. 2014;14:56. DOI 10.1186/1472-6750-14-56; O’Shea J.P., Chou M.F., Quader S.A., Ryan J.K., Church G.M., Schwartz D. pLogo: a probabilistic approach to visualizing sequence motifs. Nat. Methods. 2013;10(12):1211-1212. DOI 10.1038/nmeth.2646; Ritacco F.V., Wu Y., Khetan A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol. Prog. 2018; 34(6):1407-1426. DOI 10.1002/btpr.2706; Ruf S., Symmons O., Uslu V.V., Dolle D., Hot C., Ettwiller L., Spitz F. Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat. Genet. 2011;43(4): 379-386. DOI 10.1038/ng.790; Running Deer J., Allison D.S. High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1α gene. Biotechnol. Prog. 2004;20(3):880-889. DOI 10.1021/bp034383r; Stach C.S., McCann M.G., O′Brien C.M., Le T.S., Somia N., Chen X., Lee K., Fu H.Y., Daoutidis P., Zhao L., Hu W.S., Smanski M. Modeldriven engineering of N-linked glycosylation in Chinese hamster ovary cells. ACS Synth. Biol. 2019;8(11):2524-2535. DOI 10.1021/acssynbio.9b00215; Wang X., Xu Z., Tian Z., Zhang X., Xu D., Li Q., Zhang J., Wang T. The EF-1α promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells. J. Cell. Mol. Med. 2017;21(11):3044-3054. DOI 10.1111/jcmm.13216; Wilson M.H., Coates C.J., George A.L., Jr. PiggyBac transposon-mediated gene transfer in human cells. Mol. Ther. 2007;15(1):139-145. DOI 10.1038/sj.mt.6300028; Xu W.-J., Lin Y., Mi C.-L., Pang J.-Y., Wang T.-Y. Progress in fed-batch culture for recombinant protein production in CHO cells. Appl. Microbiol. Biotechnol. 2023;107(4):1063-1075. DOI 10.1007/s00253-022-12342-x; https://vavilov.elpub.ru/jour/article/view/3993

  2. 2
    Academic Journal

    المصدر: Vavilov Journal of Genetics and Breeding; Том 23, № 2 (2019); 190-198 ; Вавиловский журнал генетики и селекции; Том 23, № 2 (2019); 190-198 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1935/1199; Biedka S., Micic J., Wilson D., Brown H., Diorio-Toth L., Wool- ford J.L., Jr. Hierarchical recruitment of ribosomal proteins and as-sembly factors remodels nucleolar pre-60S ribosomes. J. Cell Biol. 2018;217(7):2503-2518. DOI 10.1083/jcb.201711037.; Bischof J., Maeda R.K., Hediger M., Karch F., Basler K. An optimized transgenesis system for Drosophila using germ-line-specific фС31 integrases. Proc. Natl. Acad. Sci. USA. 2007;104(9):3312-3317. DOI 10.1073/pnas.06115nm4.; Bonaccorsi S., Giansanti M.G., Gatti M. Spindle assembly in Dro-sophila neuroblasts and ganglion mother cells. Nat. Cell Biol. 2000; 2(1):54-56. DOI 10.1038/71378.; Chalkley G.E., Verrijzer C.P. Immuno-depletion and purification strate¬gies to study chromatin-remodeling factors in vitro. Methods En- zymol. 2004;377:421-442. DOI 10.1016/S0076-6879(03)77028-1.; Cui Z., DiMario P.J. RNAi knockdown of Nopp140 induces Minute-like phenotypes in Drosophila. Mol. Biol. Cell. 2007;18(6):2179- 2191. DOI 10.1091/mbc.e07-01-0074.; Draptchinskaia N., Gustavsson P., Andersson B., Pettersson M., Wil- lig T.N., Dianzani I., Ball S., Tchernia G., Klar J., Matsson H., Tentler D., Mohandas N., Carlsson B., Dahl N. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet. 1999;21(2):169-175. DOI 10.1038/5951.; Farley-Barnes K.I., McCann K.L., Ogawa L.M., Merkel J., Surov- tseva Y.V., Baserga S.J. Diverse regulators of human ribosome bio¬genesis discovered by changes in nucleolar number. Cell Rep. 2018; 22(7):1923-1934. DOI 10.1016/j.celrep.2018.01.056.; Fisher E.M.C., Beer-Romero P, Brown L.G., Ridley A., McNeil J.A., Lawrence J.B., Willard H.F., Bieber F.R., Page D.C. Homologous ribosomal protein genes on the human X and Y chromosomes: escape from X inactivation and possible implications for Turner syndrome. Cell. 1990;63(6):1205-1218.; Genuth N.R., Barna M. The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life. Mol. Cell. 2018;71(3):364-374. DOI 10.1016/j.molcel.2018.07.018.; Goudarzi K.M., Lindstrom M.S. Role of ribosomal protein mutations in tumor development. Int. J. Oncol. 2016;48(4):1313-1324. DOI 10.3892/ijo.2016.3387.; Gramates L.S., Marygold S.J., Santos G.D., Urbano J.M., Antonazzo G., Matthews B.B., Rey A.J., Tabone C.J., Crosby M.A., Emmert D.B., Falls K., Goodman J.L., Hu Y., Ponting L., Schroeder A.J., Stre¬lets V.B., Thurmond J., Zhou P., the FlyBase Consortium. FlyBase at 25: looking to the future. Nucleic Acids Res. 2017;45(D1):D663- D671. DOI 10.1093/nar/gkw1016.; Gupta V, Warner J.R. Ribosome-omics of the human ribosome. RNA. 2014;20(7):1004-1013. DOI 10.1261/rna.043653.113.; Henras A.K., Plisson-Chastang C., O’Donohue M.F., Chakraborty A., Gleizes P.E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA. 2015;6(2):225-242. DOI 10.1002/wrna.1269.; Hoskins R.A., Carlson J.W., Wan K.H., Park S., Mendez I., Galle S.E., Booth B.W., Pfeiffer B.D., George R.A., Svirskas R., Krzywinski M., Schein J., Accardo M.C., Damia E., Messina G., Mendez-Lago M., de Pablos B., Demakova O.V., Andreyeva E.N., Boldyreva L.V., Marra M., Carvalho A.B., Dimitri P., Villasante A., Zhimulev I.F., Rubin G.M., Karpen G.H., Celniker S.E. The Release 6 reference sequence of the Drosophila melanogaster genome. Genome Res. 2015;25(3):445-458. DOI 10.1101/gr.185579.114.; Huang W., Massouras A., Inoue Y., Peiffer J., Ramia M., Tarone A.M., Turlapati L., Zichner T., Zhu D., Lyman R.F., Magwire M.M., Blankenburg K., Carbone M.A., Chang K., Ellis L.L., Fernan¬dez S., Han Y., Highnam G., Hjelmen C.E., Jack J.R., Javaid M., Jayaseelan J., Kalra D., Lee S., Lewis L., Munidasa M., Ongeri F., Patel S., Perales L., Perez A., Pu L., Rollmann S.M., Ruth R., Saa- da N., Warner C., Williams A., Wu Y.Q., Yamamoto A., Zhang Y., Zhu Y., Anholt R.R., Korbel J.O., Mittelman D., Muzny D.M., Gibbs R.A., Barbadilla A., Johnston J.S., Stone E.A., Richards S., Deplancke B., Mackay T.F.C. Natural variation in genome architec¬ture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res. 2014;24(7):1193-1208. DOI 10.1101/gr.171546. 113.; Kearse M.G., Chen A.S., Ware V.C. Expression of ribosomal protein L22e family members in Drosophila melanogaster: rpL22-like is differentially expressed and alternatively spliced. Nucleic Acids Res. 2011;39(7):2701-2716. DOI 10.1093/nar/gkq1218.; Kongsuwan K., Yu Q., Vincent A., Frisardi M.C., Rosbash M., Len- gyel J.A., Merriam J. A Drosophila Minute gene encodes a ribo-somal protein. Nature. 1985;317(6037):555-558.; Kressler D., Hurt E., Bafiler J. A puzzle of life: crafting ribosomal sub¬units. Trends Biochem. Sci. 2017;42(8):640-654. DOI 10.1016/j. tibs.2017.05.005.; Lopes A.M., Miguel R.N., Sargent C.A., Ellis P.J., Amorim A., Af- fara N.A. The human RPS4 paralogue on Yq11.223 encodes a structurally conserved ribosomal protein and is preferentially ex-pressed during spermatogenesis. BMC Mol. Biol. 2010;11:33. DOI 10.1186/1471-2199-11-33.; Mackay T.F., Richards S., Stone E.A., Barbadilla A., Ayroles J.F., Zhu D., Casillas S., Han Y., Magwire M.M., Cridland J.M., Richard¬son M.F., Anholt R.R., Barron M., Bess C., Blankenburg K.P., Carbone M.A., Castellano D., Chaboub L., Duncan L., Harris Z., Javaid M., Jayaseelan J.C., Jhangiani S.N., Jordan K.W., Lara F., Lawrence F., Lee S.L., Librado P, Linheiro R.S., Lyman R.F., Mac¬key A.J., Munidasa M., Muzny D.M., Nazareth L., Newsham I., Pe¬rales L., Pu L.L., Qu C., Ramia M., Reid J.G., Rollmann S.M., Ro¬zas J., Saada N., Turlapati L., Worley K.C., Wu Y.Q., Yamamoto A., Zhu Y., Bergman C.M., Thornton K.R., Mittelman D., Gibbs R.A. The Drosophila melanogaster Genetic Reference Panel. Nature. 2012;482(7384):173-178. DOI 10.1038/nature10811.; Markstein M., Pitsouli C., Villalta C., Celniker S.E., Perrimon N. Ex-ploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat. Genet. 2008;40(4):476- 483. DOI 10.1038/ng.101.; Marygold S.J., Coelho C.M.A., Leevers S.J. Genetic analysis of RpL38 and RpL5, two Minute genes located in the centric hetero-chromatin of chromosome 2 of Drosophila melanogaster. Genetics. 2005;169(2):683-695. DOI 10.1534/genetics.104.034124.; Marygold S.J., Roote J., Reuter G., Lambertsson A., Ashburner M., Millburn G.H., Harrison P.M., Yu Z., Kenmochi N., Kaufman T.C., Leevers S.J., Cook K.R. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol. 2007;8(10):R216. DOI 10.1186/gb-2007-8-10-r216.; Mills E.W., Green R. Ribosomopathies: there’s strength in numbers. Science. 2017;358(6363):eaan2755. DOI 10.1126/science.aan2755.; Morata G., Ripoll P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 1975;42(2):211-221.; Moutinho-Pereira S., Stuurman N., Afonso O., Hornsveld M., Aguiar P., Goshima G., Vale R.D., Maiato H. Genes involved in centrosome- independent mitotic spindle assembly in Drosophila S2 cells. Proc. Natl. Acad. Sci. USA. 2013;110(49):19808-19813. DOI 10.1073/ pnas.1320013110.; Narla A., Ebert B.L. Ribosomopathies: human disorders of ribo¬some dysfunction. Blood. 2010;115(16):3196-3205. DOI 10.1182/ blood-2009-10-178129.; Neumuller R.A., Gross T., Samsonova A.A., Vinayagam A., Buck¬ner M., Founk K., Hu Y., Sharifpoor S., Rosebrock A.P., Andrews B., Winston F., Perrimon N. Conserved regulators of nucleolar size re¬vealed by global phenotypic analyses. Sci. Signal. 2013;6(289):ra70. DOI 10.1126/scisignal.2004145.; NMez Villacis L., Wong M.S., Ferguson L.L., Hein N., George A.J., Hannan K.M. New roles for the nucleolus in health and disease. BioEssays. 2018;40(5):e1700233. DOI 10.1002/bies.201700233.; O’Brochta D.A., Gomez S.P., Handler A.M. P element excision in Dro¬sophila melanogaster and related drosophilids. Mol. Gen. Genet. 1991;225(3):387-394.; Ogienko A.A., Yarinich L.A., Fedorova E.V., Lebedev M.O., Andrey-eva E.N., Pindyurin A.V., Baricheva E.M. New slbo-Gal4 driver lines for the analysis of border cell migration during Drosophi¬la oogenesis. Chromosoma. 2018;127(4):475-487. DOI 10.1007/ s00412-018-0676-7.; Olson M.O.J. Sensing cellular stress: another new function for the nucleolus? Sci. STKE. 2004;2004(224):pe10. DOI 10.1126/stke. 2242004pe10.; Pederson T. The plurifunctional nucleolus. Nucleic Acids Res. 1998; 26(17):3871-3876.; Robertson H.M., Preston C.R., Phillis R.W., Johnson-Schlitz D.M., Benz W.K., Engels W.R. A stable genomic source ofP element trans- posase in Drosophilamelanogaster. Genetics. 1988;118(3):461-470.; Rodriguez-Corona U., Sobol M., Rodriguez-Zapata L.C., Hozak P., Castano E. Fibrillarin from Archaea to human. Biol. Cell. 2015; 107(6):159-174. DOI 10.1111/boc.201400077.; Shi Z., Barna M. Translating the genome in time and space: spe-cialized ribosomes, RNA regulons, and RNA-binding proteins. Annu. Rev. Cell Dev. Biol. 2015;31:31-54. DOI 10.1146/annurev- cellbio-100814-125346.; Somma M.P., Ceprani F., Bucciarelli E., Naim V., De Arcangelis V., Piergentili R., Palena A., Ciapponi L., Giansanti M.G., Pellacani C., Petrucci R., Cenci G., Verni F., Fasulo B., Goldberg M.L., Di Cun- to F., Gatti M. Identification of Drosophila mitotic genes by com-bining co-expression analysis and RNA interference. PLoS Genet. 2008;4(7):e1000126. DOI 10.1371/journal.pgen.1000126.; Somma M.P., Fasulo B., Cenci G., Cundari E., Gatti M. Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Mol. Biol. Cell. 2002;13(7):2448-2460. DOI 10.1091/mbc.01- 12-0589.; Stage D.E., Eickbush T.H. Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res. 2007;17(12):1888- 1897. DOI 10.1101/gr.6376807.; Strunov A., Boldyreva L.V., Pavlova G.A., Pindyurin A.V., Gatti M., Kiseleva E. A simple and effective method for ultrastructural analy¬sis of mitosis in Drosophila S2 cells. MethodsX. 2016;3:551-559. DOI 10.1016/j.mex.2016.10.003.; Tavares A.A.M., Glover D.M., Sunkel C.E. The conserved mitotic ki-nase polo is regulated by phosphorylation and has preferred microtubule-associated substrates in Drosophila embryo extracts. EMBO J. 1996;15(18):4873-4883.; Tutuncuoglu B., Jakovljevic J., Wu S., Gao N., Woolford J.L., Jr. The N-terminal extension of yeast ribosomal protein L8 is involved in two major remodeling events during late nuclear stages of 60S ri- bosomal subunit assembly. RNA. 2016;22(9):1386-1399. DOI 10.1261/rna.055798.115.; van Nues R.W., Watkins N.J. Unusual C'/D' motifs enable box C/D snoRNPs to modify multiple sites in the same rRNA target region. Nucleic Acids Res. 2017;45(4):2016-2028.; Wehner K.A., Baserga S.J. The o70-like motif: a eukaryotic RNA binding domain unique to a superfamily of proteins required for ribosome biogenesis. Mol. Cell. 2002;9(2):329-339. DOI 10.1016/ S1097-2765(02)00438-0.; Xue S., Barna M. Specialized ribosomes: a new frontier in gene regula¬tion and organismal biology. Nat. Rev. Mol. Cell Biol. 2012;13(6): 355-369. DOI 10.1038/nrm3359.; Yang X., Mao F., Lv X., Zhang Z., Fu L., Lu Y., Wu W., Zhou Z., Zhang L., Zhao Y. Drosophila Vps36 regulates Smo trafficking in Hedgehog signaling. J. Cell Sci. 2013;126(Pt.18):4230-4238. DOI 10.1242/jcs.128603.; Zhang J., Harnpicharnchai P., Jakovljevic J., Tang L., Guo Y., Oeffin- ger M., Rout M.P., Hiley S.L., Hughes T., Woolford J.L., Jr. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev. 2007;21(20):2580- 2592. DOI 10.1101/gad.1569307.; https://vavilov.elpub.ru/jour/article/view/1935