-
1Academic Journal
المؤلفون: I. A. Degtyarev, I. A. Fomenko, A. A. Mizheva, E. M. Serba, N. G. Mashentseva, И. А. Дегтярев, И. А. Фоменко, А. А. Мижева, Е. М. Серба, Н. Г. Машенцева
المصدر: Food systems; Vol 6, No 2 (2023); 159-170 ; Пищевые системы; Vol 6, No 2 (2023); 159-170 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-2
مصطلحات موضوعية: рапсовый шрот, protein concentrate, rapeseed cake, amino acid composition, rapeseed meal, белковый концентрат, жмых рапса, аминокислотный состав
وصف الملف: application/pdf
Relation: https://www.fsjour.com/jour/article/view/266/227; Daszkiewicz, T. (2022). Food production in the context of global developmental challenges. Agriculture, 12(6), Article 832. https://doi.org/10.3390/agriculture12060832; Красноштанова, А.А., Шульц, Л.В. (2022). Получение и оценка функциональных свойств белковых изолятов и гидролизатов из растительного сырья. Химия растительного сырья, 4, 299–309. https://doi.org/10.14258/jcprm.20220410952; Колпакова, В.В., Уланова, Р.В., Куликов, Д.С., Гулакова, В.А., Семёнов, Г. В., Шевякова, Л.В. (2022). Показатели качества гороховых и нутовых белковых концентратов. Техника и технология пищевых производств, 52(4), 650–664. https://doi.org/10.21603/2074–9414–2022–4–2394; Arrutia, F., Binner, E., Williams, P., Waldron, K.W. (2020). Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends in Food Science & Technology, 100, 88–102. https://doi.org/10.1016/j.tifs.2020.03.044; Молибога, Е.А., Сухостав, Е.В., Козлова, О.А., Зинич, А.В. (2022). Анализ рынка функционального питания: российский и международный аспект. Техника и технология пищевых производств, 52(4), 775–786. https://doi.org/10.21603/2074–9414–2022–4–2405; Cheng, A., Raai, M.N., Zain, N.A.M., Massawe, F., Singh, A., Wan-Mohtar, W.A.A.Q.I. (2019). In search of alternative proteins: unlocking the potential of underutilized tropical legumes. Food Security, 11, 1205–1215. https://doi.org/10.1007/s12571–019–00977–0; Langyan, S., Yadava, P., Khan, F.N., Dar, Z.A., Singh, R., Kumar, A. (2022). Sustaining protein nutrition through plant-based foods. Frontiers in Nutrition, 8, Article 772573. https://doi.org/10.3389/fnut.2021.772573; Tyndall, S.M., Maloney, G.R., Cole, M.B., Hazell, N.G., Augustin, M.A. (2022). Critical food and nutrition science challenges for plant-based meat alternative products. Critical Reviews in Food Science and Nutrition, 2022, 1–16. https://doi.org/10.1080/10408398.2022.2107994; Монгуш, С.В., Бойцова, Ю.С., Орлова, О.Ю. (2022). Анализ рынка альтернативного мяса в России и за рубежом. Международный журнал гуманитарных и естественных наук, 4–4(67), 95–99. https://doi.org/10.24412/2500–1000–2022–4–4–95–99; Boukid, F., Rosell, C.M., Rosene, S., Bover-Cid, S., Castellari, M. (2022). Non-animal proteins as cutting-edge ingredients to reformulate animalfree foodstuffs: Present status and future perspectives. Critical Reviews in Food Science and Nutrition, 62(23), 6390–6420. https://doi.org/10.1080/10408398.2021.1901649; Gastaldello, A., Giampieri, F., De Giuseppe, R., Grosso, G., Baroni, L., Battino, M. (2022). The rise of processed meat alternatives: A narrative review of the manufacturing, composition, nutritional profile and health effects of newer sources of protein, and their place in healthier diets. Trends in Food Science & Technology, 127, 263–271. https://doi.org/10.1016/j.tifs.2022.07.005; Степанова, О. (2021). Кто в России производит растительное мясо и сколько привлекает денег? Электронный ресурс: https://vc.ru/food/272194-kto-v-rossii-proizvodit-rastitelnoe-myaso-i-skolko-privlekaet-deneg? Дата доступа: 16.12.2022.; Ancuța, P., Sonia, A. (2020). Oil press-cakes and meals valorization through circular economy approaches: A review. Applied Sciences, 10(21), Article 7432. https://doi.org/10.3390/app10217432; Fawcett, C.A., Senhorinho, G.N.A., Laamanen, C.A., Scott, J.A. (2022). Microalgae as an alternative to oil crops for edible oils and animal feed. Algal Research, 64, Article 102663. https://doi.org/10.1016/j.algal.2022.102663; USDA. (2022). Oilseeds: World Markets and Trade. Retrieved from https://fas.usda.gov/data/oilseeds-world-markets-and-trade. Accessed December 04, 2022.; Pilorgé, E. (2020). Sunflower in the global vegetable oil system: situation, specificities and perspectives. OCL, 27, Article 34. https://doi.org/10.1051/ocl/2020028; Институт конъюнктуры аграрного рынка. (2022). ИКАР: итоги года — 2021. Масличные. Электронный ресурс: http://ikar.ru/1/lenta/739.Дата доступа 15.12. 2022.; Поморова, Ю.Ю., Пятовский, В.В., Бескоровайный, Д.В., Серова, Ю.М., Болховитина, Ю.С., Шемет, Ю.Ю. (2021). Общий химический и аминокислотный состав семян наиболее распространенных масличных культур семейства brassicaceae (обзор). Масличные культуры, 3(187), 78–90. https://doi.org/10.25230/2412–608X-2021–3–187–78–90; Агровестник. (2022). Рынок рапса по итогам 2021 — тенденции и прогнозы. Электронный ресурс: https://agrovesti.net/lib/industries/oilseeds/rynok-rapsa-po-itogam-2021-tendentsii-i-prognozy.html. Дата доступа 25.12.2022.; Пальчиков, Е.В., Волков, С.А., Щукин, Р.А., Манаенкова, Ю.С., Палфитов, В.Ф. (2022). Сравнительная оценка сортов ярового рапса отечественной селекции по хозяйственно-биологическим признакам. Технологии пищевой и перерабатывающей промышленности АПК — продукты здорового питания, 2, 159–165. https://doi.org/10.24412/2311–6447–2022–2–159–165; Паршуков, Д.В. (2022). Экономическая эффективность и перспективы производства рапса в Красноярском крае. Социально-экономический и гуманитарный журнал, 2(24), 20–34. https://doi.org/10.36718/2500–1825–2022–2–20–34; Гулидова, В.А. (2019). Рапс — высокомаржинальная культура России. Елец: Елецкий государственный университет им. ИА Бунина, 2019.; Бушнев, А.С., Орехов, Г.И., Горлова, Л.А. (2020). Потенциал производства рапса озимого на юге России. Агрофорум, 5, 31–34.; Баюров, Л.И. (2021). Рапс-культура будущего! Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета, 167, 1–19. https://doi.org/10.21515/1990–4665–167–00; Пальчиков, Е.В., Волков, С.А. (2011). Сидерат как дополнительный источник органики. Вестник Мичуринского государственного аграрного университета, 2–1, 128–130.; Ашинова, М.К., Ешугова, С., Кадакоева, Г.В. (2022). Обеспечение продовольственной безопасности в условиях санкционного давления. Новые технологии, 18(3), 134–141. https://doi.org/10.47370/2072–0920–2022–18–3–134–141; Rudoy, E.V., Petukhova, M.S., Petrov, A.F., Kapustyanchik, S. Yu., Ryumkina, I.N., Ryumkin, S.V. (2020). Crop production in Russia 2030: Alternative data of the development scenarios. Data in Brief, 29, Article 105077. https://doi.org/10.1016/j.dib.2019.105077; Borrello, M., Caracciolo, F., Lombardi, A., Pascucci, S., Cembalo, L. (2017). Consumers’ perspective on circular economy strategy for reducing food waste. Sustainability, 9(1), Article 141. https://doi.org/10.3390/su9010141; Sá, A.G.A., da Silva, D.C., Pacheco, M.T.B., Moreno, Y.M.F., Carciofi, B.A.M. (2021). Oilseed by-products as plant-based protein sources: Amino acid profile and digestibility. Future Foods, 3, Article 100023. https://doi.org/10.1016/j.fufo.2021.100023; Carré, P., Citeau, M., Robin, G., Estorges, M. (2016). Hull content and chemical composition of whole seeds, hulls and germs in cultivars of rapeseed (Brassica napus). OCL, 23(3), Article A302. https://doi.org/10.1051/ocl/2016013; Kaiser, F., Harbach, H., Schulz, C. (2022). Rapeseed proteins as fishmeal alternatives: A review. Reviews in Aquaculture, 14(4), 1887–1911. https://doi.org/10.1111/raq.12678; Muttagi, G.C., Joshi, N. (2020). Physico-chemical composition of selected sunflower seed cultivars. International Journal of Chemical Studies, 8, 2095–2100. https://doi.org/10.22271/chemi.2020.v8.i4w.9936; Lomascolo, A., Uzan-Boukhris, E., Sigoillot, J.C., Fine, F. (2012). Rapeseed and sunflower meal: a review on biotechnology status and challenges. Applied Microbiology and Biotechnology, 95(5), 1105–1114. https://doi.org/10.1007/s00253–012–4250–6; Sibt-e-Abbas, M., Butt, M.S., Khan, M.R., Sultan, M.T., Saddique, M.S., Shahid, M. (2020). Nutritional and functional characterization of defatted oilseed protein isolates. Pakistan Journal of Agricultural Sciences, 57(1), 219–228.; Kotecka-Majchrzak, K., Sumara, A., Fornal, E., Montowska, M. (2020). Oilseed proteins–properties and application as a food ingredient. Trends in Food Science & Technology, 106, 160–170. https://doi.org/10.1016/j.tifs.2020.10.004; Hosur, K.H., Betha, U.K., Yadav, K.K., Mekapogu, M., Kashyap, B.K. (2020). Byproduct valorization of vegetable oil industry through biotechnological approach. Chapter in a book: Waste to Energy: Prospects and Applications. Springer, Singapore, 2020. https://doi.org/10.1007/978–981–33–4347–4_8; Wanasundara, J.P.D., Tan, S., Alashi, A.M., Pudel, F., Blanchard, C. (2017). Proteins from canola/rapeseed: Current status. Chapter in a book: Sustainable protein sources, Academic Press, 2017. https://doi.org/10.1016/B978–0–12–802778–3.00018–4; Chmielewska, A., Kozłowska, M., Rachwał, D., Wnukowski, P., Amarowicz, R., Nebesny, E. et al. (2021). Canola/rapeseed protein — nutritional value, functionality and food application: a review. Critical Reviews in Food Science and Nutrition, 61(22), 3836–3856. https://doi.org/10.1080/10408398.2020.1809342; Shen, P., Yang, J., Nikiforidis, C.V., Mocking-Bode, H.C.M., Sagis, L.M.C. (2023). Cruciferin versus napin — Air-water interface and foam stabilizing properties of rapeseed storage proteins. Food Hydrocolloids, 136, Article 108300. https://doi.org/10.1016/j.foodhyd.2022.108300; Wanasundara, J.P.D, McIntosh, T.C., Perera, S.P., Withana-Gamage, T.S., Mitra, P. (2016). Canola/rapeseed protein-functionality and nutrition. OCl, 23(4), Article D407. https://doi.org/10.1051/ocl/2016028; Ottens, M., Chilamkurthi, S. (2013). Advances in process chromatography and applications in the food, beverage and nutraceutical industries. Chapter in a book: Separation, extraction and concentration processes in the food, beverage and nutraceutical industries. Woodhead Publishing Limited, 2013. https://doi.org/10.1533/9780857090751.1.109; Aider, M., Barbana, C. (2011). Canola proteins: composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity — A practical and critical review. Trends in Food Science & Technology, 22(1), 21–39. https://doi.org/10.1016/j.tifs.2010.11.002; Gaber, M.A.F.M., Tujillo, F.J., Mansour, M.P., Juliano, P. (2018). Improving oil extraction from canola seeds by conventional and advanced methods. Food Engineering Reviews, 10, 198–210. https://doi.org/10.1007/s12393–018–9182–1; Fetzer, A., Müller, K., Schmid, M., Eisner, P. (2020). Rapeseed proteins for technical applications: Processing, isolation, modification and functional properties — A review. Industrial Crops and Products, 158, Article 112986. https://doi.org/10.1007/s12393–018–9182–1; Kraljić, K., Škevin, D., Pospišil, M., Obranović, M., Neđeral, S., Bosolt, T. (2013). Quality of rapeseed oil produced by conditioning seeds at modest temperatures. Journal of the American Oil Chemists’ Society, 90(4), 589–599. https://doi.org/10.1007/s11746–012–2195–7; Fetzer, A., Herfellner, T., Stäbler, A., Menner, M., Eisner, P. (2018). Influence of process conditions during aqueous protein extraction upon yield from pre-pressed and cold-pressed rapeseed press cake. Industrial Crops and Products, 112, 236–246. https://doi.org/10.1016/j.indcrop.2017.12.011; Uquiche, E., Romero, V., Ortiz, J., del Valle, J.M. (2012). Extraction of oil and minor lipids from cold-press rapeseed cake with supercritical CO2. Brazilian Journal of Chemical Engineering, 29(3), 585–597. https://doi.org/10.1590/S0104–66322012000300016; Boutin, O., Badens, E. (2009). Extraction from oleaginous seeds using supercritical CO 2: Experimental design and products quality. Journal of Food Engineering, 92(4), 396–402. https://doi.org/10.1016/j.jfoodeng.2008.12.007; Tian, L., Ren, Y., Yang, R., Zhao, Q., Zhang, W. (2019). Combination of thermal pretreatment and alcohol-assisted aqueous processing for rapeseed oil extraction. Journal of the Science of Food and Agriculture, 99(7), 3509–3516. https://doi.org/10.1002/jsfa.9570; Citeau, M., Slabi, S.A., Joffre, F., Carré, P. (2018). Improved rapeseed oil extraction yield and quality via cold separation of ethanol miscella. OCL, 25(2), Article D207. https://doi.org/10.1051/ocl/2018012; Zhang, S.B., Wang, Z., Xu, S.Y. (2007). Downstream processes for aqueous enzymatic extraction of rapeseed oil and protein hydrolysates. Journal of the American Oil Chemists’ Society, 84, 693–700. https://doi.org/10.1007/s11746–007–1080–2; Fetzer, A., Herfellner, T., Eisner, P. (2019). Rapeseed protein concentrates for non-food applications prepared from pre-pressed and cold-pressed press cake via acidic precipitation and ultrafiltration. Industrial Crops and Products, 132, 396–406. https://doi.org/10.1016/j.indcrop.2019.02.039; Щеколдина, Т.В. (2015). Технологии получения белоксодержащего сырья из продуктов переработки семян подсолнечника. Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета, 109, 360–378.; Wanasundara, J.P. (2011). Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Critical Reviews in Food Science and Nutrition, 51(7), 635–677. https://doi.org/10.1080/10408391003749942; Rodrigues, I.M., Coelho, J.F.J, Carvalho, M.G.V.S. (2012). Isolation and valorisation of vegetable proteins from oilseed plants: Methods, limitations and potential. Journal of Food Engineering, 109(3), 337–346. https://doi.org/10.1016/j.jfoodeng.2011.10.027; Tan, S.H., Mailer, R.J., Blanchard, C.L., Agboola, S.O. (2011). Canola proteins for human consumption: extraction, profile, and functional properties. Journal of Food Science, 76(1), R16–R28. https://doi.org/10.1111/j.1750–3841.2010.01930.x; Milanova, R., Murray, E.D., Westdal, P.S. (2006). U. S. Patent No. 6,992,173. Washington, DC: U. S. Patent and Trademark Office.; Ghodsvali, A., Khodaparast, M.H.H., Vosoughi, M., Diosady, L.L. (2005). Preparation of canola protein materials using membrane technology and evaluation of meals functional properties. Food Research International, 38(2) 223–231. https://doi.org/10.1016/j.foodres.2004.10.007; Momen, S., Alavi, F., Aider, M. (2021). Alkali-mediated treatments for extraction and functional modification of proteins: Critical and application review. Trends in Food Science & Technology, 110, 778–797. https://doi.org/10.1016/j.tifs.2021.02.052; Gao, Z., Shen, P., Lan, Y., Cui, L., Ohm, J.-B., Chen, B. et al. (2020). Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate. Food Research International, 131, Article 109045. https://doi.org/10.1016/j.foodres.2020.109045; Ruiz, G.A., Xiao, W., van Boekel, M., Minor, M., Stieger, M. (2016). Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd). Food Chemistry, 209, 203–210. https://doi.org/10.1016/j.foodchem.2016.04.052; Zhu, X., Wang, L., Zhang, Z., Ding, L., Hang, S. (2021). Combination of fiberdegrading enzymatic hydrolysis and lactobacilli fermentation enhances utilization of fiber and protein in rapeseed meal as revealed in simulated pig digestion and fermentation in vitro. Animal Feed Science and Technology, 278, Article 115001. https://doi.org/10.1016/j.anifeedsci.2021.115001; Rakita, S., Kokić, B., Manoni, M., Mazzoleni, S., Lin, P., Luciano, A. et al. (2023). Cold-Pressed Oilseed Cakes as Alternative and Sustainable Feed Ingredients: A Review. Foods, 12(3), Article 432. https://doi.org/10.3390/foods12030432; Alexandrino, T.D., Ferrari, R.A., de Oliveira, L.M., Rita de Cássia, S.C., Pacheco, M.T.B. (2017). Fractioning of the sunflower flour components: Physical, chemical and nutritional evaluation of the fractions. LWT, 84, 426–432. https://doi.org/10.1016/j.lwt.2017.05.062; Yang, B., Dai, Z., Ding, S.Y., Wyman, C.E. (2011). Enzymatic hydrolysis of cellulosic biomass. Biofuels, 2(4), 421–449. https://doi.org/10.4155/bfs.11.116; Castañeda-Pérez, E., Jiménez-Morales, K., Castellanos-Ruelas, A., ChelGuerrero, L., Betancur-Ancona, D. (2021). Antidiabetic potential of protein hydrolysates and peptide fractions from lima bean (Phaseolus lunatus L): An in vitro study. International Journal of Peptide Research and Therapeutics, 27(3), 1979–1988. https://doi.org/10.1007/s10989–021–10226–8; Nadar, S.S., Rao, P., Rathod, V.K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 108, 309–330. https://doi.org/10.1016/j.foodres.2018.03.006; Cheng, M.H., Rosentrater, K.A., Sekhon, J., Wang, T., Jung, S., Johnson, L.A. (2019). Economic feasibility of soybean oil production by enzymeassisted aqueous extraction processing. Food and Bioprocess Technology, 12, 539–550. https://doi.org/10.1007/s11947–018–2228–9; Nasrabadi, M.N., Doost, A.S., Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, Article 106789. https://doi.org/10.1016/j.foodhyd.2021.106789; Chalamaiah, M., Rao, G.N., Rao, D.G., Jyothirmayi, T. (2010). Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chemistry, 120(3), 652–657. https://doi.org/10.1016/j.foodchem.2009.10.057; Esfandi, R., Willmore, W.G., Tsopmo, A. (2019). Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chemistry, 279, 49–57. https://doi.org/10.1016/j.foodchem.2018.11.110; Gençdağ, E., Görgüç, A., Yılmaz, F.M. (2021). Recent advances in the recovery techniques of plant-based proteins from agro-industrial by-products. Food Reviews International, 37(4), 447–468. https://doi.org/10.1080/87559129.2019.1709203; Filiatrault-Chastel, C., Heiss-Blanquet, S., Margeot, A., Berrin, J.-G. (2021). From fungal secretomes to enzymes cocktails: The path forward to bioeconomy. Biotechnology Advances, 52, Article 107833. https://doi.org/10.1016/j.biotechadv.2021.107833; Latif, S., Anwar, F. (2009). Effect of aqueous enzymatic processes on sunflower oil quality. Journal of the American Oil Chemists’ Society, 86(4), 393–400. https://doi.org/10.1007/s11746–009–1357–8; Perović, M.N., Jugović, Z.D.K., Antov, M.G. (2020). Improved recovery of protein from soy grit by enzyme-assisted alkaline extraction. Journal of Food Engineering, 276, Article 109894. https://doi.org/10.1016/j.jfoodeng.2019.109894; Rosset, M., Acquaro, V.R., Beléia, A.D.P. (2014). Protein extraction from defatted soybean flour with Viscozyme L Pretreatment. Journal of Food Processing and Preservation, 38(3), 784–790. https://doi.org/10.1111/jfpp.12030; Wei, C.-L., Lu, W., Yang, J., Wang, M.-P., Yang, X.-Q., Wang, J.-M. (2018). Physicochemical properties of soy protein prepared by enzyme-assisted countercurrent extraction. International Journal of Food Science & Technology, 53(6), 1389–1396. https://doi.org/10.1111/ijfs.13716; Zhao, Y., Tian, R., Xu, Z., Jiang, L., Sui, X. (2023). Recent advances in soy protein extraction technology. Journal of the American Oil Chemists’ Society, 100(3), 187–195. https://doi.org/10.1002/aocs.12676; Sari Y. W., Sanders J. P.M., Bruins M.E (9–10 October 2015). Technoeconomical evaluation of protein extraction for microalgae biorefinery. IOP Conference Series: Earth and Environmental Science. — IOP Publishing. Bogor, Indonesia, 31(1), Article 012034. https://doi.org/10.1088/1755–1315/31/1/012034; Kleekayai, T., Khalesi, M., Amigo-Benavent, M., Cermeño, M., Harnedy-Rothwell, P., FitzGerald, R.J. (2023). Enzyme-assisted extraction of plant proteins. Chapter in a book: Green Protein Processing Technologies from Plants. Cham: Springer International Publishing, 2023. https://doi.org/10.1007/978–3–031–16968–7_6; Mendez, R.L., Kwon, J.Y. (2021). Effect of extraction condition on protein recovery and phenolic interference in Pacific dulse (Devaleraea mollis). Journal of Applied Phycology, 33(4), 2497–2509. https://doi.org/10.1007/s10811–021–02467–3; GRAS Notice 327. (2010). GRAS notification for crucifeirn-rich and napinrich protein isolates derived from canola/rapeseed (Puratein® and Supertein™. Retrieved from https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=GRASNotices&id=327&sort=GRN_No&order=DESC&startrow=1&type=basic&search=rapeseed. Accessed December 23, 2022.; Campbell, L., Rempel, C.B., Wanasundara, J.P. (2016). Canola/Rapeseed protein: Future opportunities and directions-workshop proceedings of IRC2015. Plants, 5(2), Article 17. https://doi.org/10.3390/plants5020017; EFSA. (2013). Scientific Opinion on the safety of “rapeseed protein isolate” as a Novel Food ingredient. EFSA Journal, 11(10), Article 3420. https://doi.org/10.2903/j.efsa.2013.3420; Von Der Haar, D., Müller, K., Bader-Mittermaier, S., Eisner, P. (2014). Rapeseed proteins–Production methods and possible application ranges. OCL, 21(1), Article D104. https://doi.org/10.1051/ocl/2013038; https://www.fsjour.com/jour/article/view/266