-
1Academic Journal
المؤلفون: A. D. Makatsariya, V. O. Bitsadze, A. G. Solopova, O. A. Gromova, D. I. Korabelnikov, D. V. Blinov, J. Kh. Khizroeva, N. A. Makatsariya, M. V. Tretyakova, S. A. Akavova, D. M. Ampilogova, А. Д. Макацария, В. О. Бицадзе, А. Г. Солопова, О. А. Громова, Д. И. Корабельников, Д. В. Блинов, Д. Х. Хизроева, Н. А. Макацария, М. В. Третьякова, С. А. Акавова, Д. М. Ампилогова
المساهمون: The work was financially supported by Sanofi pharmaceutical company, Работа выполнена при финансовой поддержке фармацевтической компании Санофи
المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 2 (2024); 218-230 ; Акушерство, Гинекология и Репродукция; Vol 18, No 2 (2024); 218-230 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: витамин B 6, magnesium deficiency, dysmenorrhea, premenstrual syndrome, PMS, polycystic ovarian syndrome, POS, menopause, climacteric syndrome, osteoporosis, oral combined oral contraceptives, COCs, menopausal hormone therapy, MHT, magnesium citrate, pyridoxine, vitamin B 6, дефицит магния, дисменорея, предменструальный синдром, ПМС, синдром поликистозных яичников, СПКЯ, климакс, климактерический синдром, остеопороз, комбинированные оральные контрацептивы, КОК, менопаузальная гормональная терапия, МГТ
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2053/1202; Grober U., Schmidt J., Kisters K. Magnesium in prevention and therapy. Nutrients. 2015;7(9):8199–226. doi:10.3390/nu7095388.; Bertinato J., Wu Xiao C., Ratnayake W.M. et al. Lower serum magnesium concentration is associated with diabetes, insulin resistance, and obesity in South Asian and white Canadian women but not men. Food Nutr Res. 2015;59(1):25974. doi:10.3402/fnr.v59.25974.; Al Alawi M.A., Majoni S.W., Falhammar H. Magnesium and human health: perspectives and research directions. Int J Endocrinol. 2018;2018:9041694. doi:10.1155/2018/9041694.; Громова О.А., Торшин И.Ю., Рудаков К.В. и др. Недостаточность магния – достоверный фактор риска коморбидных состояний: результаты крупномасштабного скрининга магниевого статуса в регионах России. Фарматека. 2013;(6):115–29.; Блинов Д.В., Ушакова Т.И., Макацария Н.А. и др. Гормональная контрацепция и дефицит магния: результаты субанализа исследования MAGYN. Акушерство, Гинекология и Репродукция. 2017;11(1):36–48. doi:10.17749/2313-7347.2017.11.1.036-048.; Блинов Д.В., Зимовина У.В., Джобава Э.М. Ведение беременных с дефицитом магния: фармакоэпидемиологическое исследование. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2014;7(2):23–32.; Makatsariya A.D., Bitsadze V.O, Blinov D.V. et al. Pregnant women with symptoms of magnesium deficiency in Russian Federation: MAGIC 2 study results. Magnes Res. 2016;29(3):81. URL: https://www.researchgate.net/publication/316007448_Pregnant_women_with_symptoms_of_magnesium_deficiency_in_Russian_Federation_MAGIC_2_study_results.; Блинов Д.В., Зимовина У.В., Сандакова Е.А., Ушакова Т.И. Дефицит магния у пациенток с гормонально-зависимыми заболеваниями: фармакоэпидемиологический профиль и оценка качества жизни. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2015;8(2):16–24. URL: https://cyberleninka.ru/article/n/defitsit-magniya-u-patsientok-s-gormonalno-zavisimymi-zabolevaniyami-farmakoepidemiologicheskiy-profil-i-otsenka-kachestva-zhizni.; Schimatschek H.F., Rempis R. Prevalence of hypomagnesemia in an unselected German population of 16,000 individuals. Magnes Res. 2001;14(4):283–90.; De Baaij J.H.F., Hoenderop J.G.J., Bindels R.J.M. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95(1):1–46. doi:10.1152/physrev.00012.2014.; Olza J., Aranceta-Bartrina J., González-Gross M. et al. Reported dietary intake, disparity between the reported consumption and the level needed for adequacy and food sources of calcium, phosphorus, magnesium and vitamin D in the Spanish population: findings from the ANIBES study. Nutrients. 2017;9(2):168. doi:10.3390/nu9020168.; Olza J., Aranceta-Bartrina J., González-Gross M. et al. Reported dietary intake and food sources of zinc, selenium, and vitamins A, E and C in the Spanish population: findings from the ANIBES study. Nutrients. 2017;9(7):697. doi:10.3390/nu9070697.; Jahnen-Dechent W., Ketteler M. Magnesium basics. Clin Kidney J. 2012;5(Suppl 1):i3–i14. doi:10.1093/ndtplus/sfr163.; Danziger J., William J.H., Scott D.J. et al. Proton-pump inhibitor use is associated with low serum magnesium concentrations. Kidney Int. 2013;83(4):692–9. doi:10.1038/ki.2012.452.; Наумов Д.Е. Термочувствительные ионные каналы TRPM8 (oбзор литературы). Бюллетень физиологии и патологии дыхания. 2011;(42):89–96.; Громова О.А., Гоголева И.В. Применение магния в зеркале доказательной медицины и фундаментальных исследований в терапии. Дефицит магния и концепция стресса. Трудный пациент. 2007;5(11):29–38.; Voets T., Nilius B., Hoefs S. et al. TRPM6 Forms the Mg 2+ influx channel involved in intestinal and renal Mg 2+ absorption. J Biol Chem. 2004;279(1):19–25. doi:10.1074/jbc.M311201200.; Schlingmann K.P., Gudermann T. A critical role of TRPM channel-kinase for human magnesium transport. J Physiol. 2005;566(Pt 2):301–8. doi:10.1113/jphysiol.2004.080200.; Pilchova I., Klacanova K., Tatarkova Z. et al. The involvement of Mg 2+ in regulation of cellular and mitochondrial functions. Oxid Med Cell Longev. 2017;2017:6797460. doi:10.1155/2017/6797460.; Sontia B., Touyz R.M. Magnesium transport in hypertension. Pathophysiology. 2007;14(3–4):205–11. doi:10.1016/j.pathophys.2007.09.005.; Mutnuri S., Fernandez I., Kochar T. Suppression of parathyroid hormone in a patient with severe magnesium depletion. Case Rep Nephrol. 2016;2016:2608538. doi:10.1155/2016/2608538.; Viering D.H.H.M., de Baaij J.H.F., Walsh S.B. et al. Genetic causes of hypomagnesemia, a clinical overview. Pediatr Nephrol. 2017;32(7):1123–35. doi:10.1007/s00467-016-3416-3.; Seo J.W., Park T.J. Magnesium metabolism. Electrolyte Blood Press. 2008;6(2):86–95. doi:10.5049/EBP.2008.6.2.86.; Pham P.C.T., Pham P.-A.T., Pham S.V. et al. Hypomagnesemia: a clinical perspective. Int J Nephrol Renovasc Dis. 2014;7:219–30. doi:10.2147/IJNRD.S42054.; Lajer H., Daugaard G. Cisplatin and hypomagnesemia. Cancer Treat Rev. 1999;25(1):47–58. doi:10.1053/ctrv.1999.0097.; Bagnis C.I., Deray G. Amphotericin B nephrotoxicity. Saudi J Kidney Dis Transpl. 2002;13(4):481–91.; Lee C.H., Kim G.-H. Electrolyte and acid-base disturbances induced by clacineurin inhibitors. Electrolyte Blood Press. 2007;5(2):126–30. doi:10.5049/EBP.2007.5.2.126.; Sivakumar J. Proton pump inhibitor-induced hypomagnesaemia and hypocalcaemia : case review. Int J Physiol Pathophysiol Pharmacol. 2016;8(4):169–74.; Atsmon J., Dolev E. Drug-induced hypomagnesaemia: scope and management. Drug Saf. 2005;28(9):763–88. doi:10.2165/00002018-200528090-00003.; Makatsariya A.D., Dzhobava E.M., Bitsadze V.O. et al. Observational study of outpatient women in hormone dependent conditions with magnesium deficiency and receiving Magne B6® Forte in Russia (MAGYN Study). Magnes Res. 2016;29(3):82. URL: https://www.researchgate.net/publication/316007423_Observational_study_of_outpatient_women_in_hormone_dependent_conditions_with_magnesium_deficiency_and_receiving_Magne_B6_Forte_in_Russia_MAGYN_Study.; Ryu A., Kim T.H. Premenstrual syndrome : a mini review. Maturitas. 2015;82(4):436–40. doi:10.1016/j.maturitas.2015.08.010.; Rosenstein D.L., Elin R.J., Hosseini J.M. et al. Magnesium measures across the menstrual cycle in premenstrual syndrome. Biol Psychiatry. 1994;35(8):557–61. doi:10.1016/0006-3223(94)90103-1.; Sherwood R.A., Rocks B.F., Stewart A., Saxton R.S. Magnesium and the premenstrual syndrome. Ann Clin Biochem. 1986;23(Pt 6):667–70. doi:10.1177/000456328602300607.; Muneyyirci-Delale O., Nacharaju V.L., Altura B.M., Altura B.T. Sex steroid hormones modulate serum ionized magnesium and calcium levels throughout the menstrual cycle in women. Fertil Steril. 1998;69(5):958–2. doi:10.1016/S0015-0282(98)00053-3.; Tonick S., Muneyyirci-Delale O. Magnesium in women’s health and gynecology. Open J Obstet Gynecol. 2016;6(5):325–33. doi:10.4236/ojog.2016.65041.; Facchinetti F., Sances G., Borella P. et al. Magnesium prophylaxis of menstrual migraine: effects on intracellular magnesium. Headache. 1991;31(5):298–301. doi:10.1111/j.1526-4610.1991.hed3105298.x.; Walker A.F., De Souza M.C., Vickers M.F. et al. Magnesium supplementation alleviates premenstrual symptoms of fluid retention. J Womens Health. 1998;7(9):1157–65. doi:10.1089/jwh.1998.7.1157.; Quaranta S., Buscaglia M.A., Meroni M.G. et al. Pilot study of the efficacy and safety of a modified-release magnesium 250 mg tablet (Sincromag) for the treatment of premenstrual syndrome. Clin Drug Investig. 2007;27(1):51–8. doi:10.2165/00044011-200727010-00004.; De Souza M.C., Walker A.F., Robinson P.A., Bolland K. A synergistic effect of a daily supplement for 1 month of 200 mg magnesium plus 50 mg vitamin B6 for the relief of anxiety-related premenstrual symptoms: a randomized, double-blind, crossover study. J Womens Health Gend Based Med. 2000;9(2):131–9. doi:10.1089/152460900318623.; Fathizadeh N., Ebrahimi E., Valiani M. et al. Evaluating the effect of magnesium and magnesium plus vitamin B6 supplement on the severity of premenstrual syndrome. Iran J Nurs Midwifery Res. 2010;15(Suppl 1):401–5.; Дадак К., Макацария А.Д., Блинов Д.В., Зимовина У.В. Клинические и биохимические аспекты применения препаратов магния в акушерстве, гинекологии и перинатологии. Акушерство, Гинекология и Репродукция. 2014;8(2):69–78.; Черкасова Н.Ю., Фомина А.В., Филиппова О.В. Анализ рынка лекарственных средств для лечения дисменореи. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2013;6(3):36–9.; Унанян А.Л., Алимов В.А., Аракелов С.Э. и др. Фармакоэпидемиология использования оригинального дротаверина при дисменорее: результаты международного многоцентрового исследования. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2014;7(3):44–50.; Оразов М.Р., Чайка А.В., Носенко Е.Н. Купирование хронической тазовой боли, обусловленной аденомиозом, прогестагенами нового поколения. Акушерство, Гинекология и Репродукция. 2014;8(3):6–10.; Джобава Э.М. Вопросы безопасности применения дротаверина в акушерской практике. Акушерство, Гинекология и Репродукция. 2018;12(1):54–60. doi:10.17749/2313-7347.2018.12.1.054-060.; Proctor M.L., Farquhar C.M. Dysmenorrhoea. BMJ Clin Evid. 2007;2007:0813.; Proctor M., Murphy P. A. Herbal and dietary therapies for primary and secondary dysmenorrhoea. Cochrane Database Syst Rev. 2001;(3):CD002124. doi:10.1002/14651858.CD002124.; Seifert B., Wagler P., Dartsch S. et al. Magnesium – a new therapeutic alternative in primary dysmenorrhea. Zentralbl Gynakol. 1989;111(11):755–60. (In German).; Parazzini F., Di Martino M., Pellegrino P. Magnesium in the gynecological practice : a literature review. Magnes Res. 2017;30(1):1–7. doi:10.1684/mrh.2017.0419.; Fontana-Klaiber H., Hogg B. Therapeutic effects of magnesium in dysmenorrhea. Schweiz Rundsch Med Prax. 1990;79(16):491–4. (In German).; Benassi L., Barletta F.P., Baroncini L. et al. Effectiveness of magnesium pidolate in the prophylactic treatment of primary dysmenorrhea. Clin Exp Obstet Gynecol. 1992;19(3):176–9.; Higdon J. An evidence-based approach to vitamins and minerals: health benefits and intake recommendations. Stuttgart, New York: Thieme, 2012. 282 p.; Olatunji L.A., Oyeyipo I.P., Micheal O.S., Soladoye A.O. Effect of dietary magnesium on glucose tolerance and plasma lipid during oral contraceptive administration in female rats. Afr J Med Med Sci. 2008;37(2):135–9.; Akinloye O., Adebayo T.O., Oguntibeju O.O. et al. Effects of contraceptives on serum trace elements, calcium and phosphorus levels. West Indian Med J. 2011;60(3):308–15.; Muneyyirci-Delale O., Nacharaju V.L., Dalloul M. et al. Divalent cations in women with PCOS: implications for cardiovascular disease. Gynecol Endocrinol. 2001;15(3):198–201. doi:10.1080/gye.15.3.198.201.; Sharifi F., Mazloomi S., Hajihosseini R. et al. Serum magnesium concentrations in polycystic ovary syndrome and its association with insulin resistance. Gynecol Endocrinol. 2012;28(1):7–11. doi:10.3109/09513590.2011.579663.; O’Shaughnessy A., Muneyyirci-Delale O., Nacharaju V.L. et al. Circulating divalent cations in asymptomatic ovarian hyperstimulation and in vitro fertilization patients. Gynecol Obstet Invest. 2001;52(4):237–42. doi:10.1159/000052982.; Bird S.T., Hartzema A.G., Brophy J.M. et al. Risk of venous thromboembolism in women with polycystic ovary syndrome: a population-based matched cohort analysis. CMAJ. 2013;185(2):E115–20. doi:10.1503/cmaj.120677.; Громова О.А., Лиманова О.А., Торшин И.Ю. Систематический анализ фундаментальных и клинических исследований указывает на необходимость совместного использования эстроген-содержащих препаратов с препаратами пиридоксина и магния. Акушерство, Гинекология и Репродукция. 2013;7(3):35–50.; Farsinejad-Marj M., Saneei P., Esmaillzadeh A. Dietary magnesium intake, bone mineral density and risk of fracture : a systematic review and meta-analysis. Osteoporos Int. 2016;27(4):1389–99. doi:10.1007/s00198-015-3400-y.; Gur A., Colpan L., Nas K. et al. The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and a new effect of calcitonin. J Bone Miner Metab. 2002;20(1):39–43. doi:10.1007/s774-002-8445-y.; Brodowski J. Levels of ionized magnesium in women with various stages of postmenopausal osteoporosis progression evaluated on the basis of densitometric examinations. Przegl Lek. 2000;57(12):714–6. (In Polish).; Дефицит магния в акушерстве и гинекологии: результаты национального совещания. Акушерство, Гинекология и Репродукция. 2014;8(2):6–10.; Солопова А.Г., Блинов Д.В., Бегович Ё. и др. Неврологические расстройства после гистерэктомии: от патогенеза к клинике. Эпилепсия и пароксизмальные состояния. 2022;14(1):54–64. doi:10.17749/2077-8333/epi.par.con.2022.115.; Блинов Д.В., Солопова А.Г., Плутницкий А.Н. и др. Организация здравоохранения в сфере реабилитации пациенток с онкологическими заболеваниями репродуктивной системы. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2022;15(1):119–30. URL: https://cyberleninka.ru/article/n/organizatsiya-zdravoohraneniya-v-sfere-reabilitatsii-patsientok-s-onkologicheskimi-zabolevaniyami-reproduktivnoy-sistemy.; Блинов Д.В., Солопова А.Г., Ачкасов Е.Е. и др. Медицинская реабилитация пациенток с климактерическим синдромом и хирургической менопаузой: вклад коррекции дефицита магния. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2022;15(4):478–90. doi:10.17749/2070-4909/farmakoekonomika.2022.159.; Блинов Д.В., Солопова А.Г., Ачкасов Е.Е. и др. Роль коррекции дефицита магния в реабилитации женщин с климактерическим синдромом и хирургической менопаузой: результаты исследования MAGYN. Акушерство, Гинекология и Репродукция. 2022;16(6):676–91. doi:10.17749/2313-7347/ob.gyn.rep.2022.371.; Блинов Д.В., Солопова А.Г., Ачкасов Е.Е. и др. Организация реабилитации пациенток с опухолями яичников: современные подходы и будущие направления. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2023;16(2):303–16. URL: https://www.elibrary.ru/ip_restricted.asp?rpage=https%3A%2F%2Fwww%2Eelibrary%2Eru%2Fitem%2Easp%3Fedn%3Ddcaony.; Блинов Д.В., Солопова А.Г., Ачкасов Е.Е. и др. Алгоритм комплексной психотерапевтической поддержки для женщин с психоневрологическими симптомами в период реабилитации после лечения злокачественных новообразований репродуктивной системы. Эпилепсия и пароксизмальные состояния. 2023;15(3):232–45. doi:10.17749/2077-8333/epi.par.con.2023.168.; Магне B6. Инструкция по медицинскому применению. ЛСР-007053/09. Режим доступа: http://www.grls.rosminzdrav.ru. [Дата доступа: 13. 01. 2024].; Магне B6 Форте. Инструкция по медицинскому применению. ЛСР-007053/09. Режим доступа: http://www.grls.rosminzdrav.ru]. [Дата доступа: 13. 01. 2024].; Дижевская Е.В. Мультидисциплинарный подход к коррекции магний-дефицитных состояний. Акушерство, Гинекология и Репродукция. 2015;9(3):68–85.; Дижевская Е.В. Обмен научными данными и экспертными мнениями по фармакотерапии в течение беременности: традиционные и современные подходы III Международный экспертный совет по проблемам дефицита магния в акушерстве и гинекологии. Акушерство, Гинекология и Репродукция. 2015;9(4):93–101.; О Пленуме Президиума Российского общества акушеров-гинекологов. Акушерство и гинекология. 2015;(5):113–5.; Громова О.А. Дефицит магния как проблема современного питания у детей и подростков. Педиатрическая фармакология. 2014;(1):20–30.; Ranade V.V., Somberg J.C. Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans. Am J Ther. 2001;8(5):345–57. doi:10.1097/00045391-200109000-00008.; https://www.gynecology.su/jour/article/view/2053
-
2Academic Journal
المؤلفون: A. D. Makatsariya, A. V. Vorobev, A. V. Lazarchuk, S. E. Einullaeva, N. A. Gomenko, F. A. Magomedova, V. O. Bitsadze, J. Kh. Khizroeva, N. A. Makatsariya, V. B. Zubenko, M. V. Tretyakova, D. V. Blinov, F. E. Yagubova, N. R. Gashimova, K. N. Grigoreva, M. A. Ponimanskaya, O. N. Li, A. V. Mostovoi, A. L. Karpova, J-C. Gris, I. Elalamy, А. Д. Макацария, А. В. Воробьев, А. В. Лазарчук, С. Э. Эйнуллаева, Н. А. Гоменко, Ф. А. Магомедова, В. О. Бицадзе, Д. Х. Хизроева, Н. А. Макацария, В. Б. Зубенко, М. В. Третьякова, Д. В. Блинов, Ф. Э. Ягубова, Н. Р. Гашимова, К. Н. Григорьева, М. А. Пониманская, О. Н. Ли, А. В. Мостовой, А. Л. Карпова, Ж-К. Гри, И. Элалами
المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 3 (2024); 382-400 ; Акушерство, Гинекология и Репродукция; Vol 18, No 3 (2024); 382-400 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: COVID-19, neonatal thrombosis, neonatal thrombosis risk factors, low molecular weight heparins, anticoagulant therapy, thromboinflammation, неонатальный тромбоз, факторы риска неонатального тромбоза, низкомолекулярные гепарины, антикоагулянтная терапия, тромбовоспаление
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2104/1225; Haley K.M. Neonatal venous thromboembolism. Front Pediatr. 2017;5:136. https://doi.org/10.3389/fped.2017.00136.; Bhat R., Kumar R., Kwon S. et al. Risk factors for neonatal venous and arterial thromboembolism in the neonatal intensive care unit – a case control study. J Pediatr. 2018;195:28–32. https://doi.org/10.1016/j.jpeds.2017.12.015.; van Ommen C.H., Heijboer H., Büller H.R. et al. Venous thromboembolism in childhood: a prospective two-year registry in the Netherlands. J Pediatr. 2001;139(5):676–81. https://doi.org/10.1067/mpd.2001.118192.; Chalmers E.A. Neonatal thrombosis. J Clin Pathol. 2000;53(6):419–23. https://doi.org/10.1136/jcp.53.6.419.; Robinson V., Achey M.A., Nag U.P. et al. Thrombosis in infants in the neonatal intensive care unit: analysis of a large national database. J Thromb Haemost. 2021;19(2):400–7. https://doi.org/10.1111/jth.15144.; Saracco P., Bagna R., Gentilomo C. et al.; Neonatal Working Group of Registro Italiano Trombosi Infantili (RITI). Clinical data of neonatal systemic thrombosis. J Pediatr. 2016;171:60–66.e1. https://doi.org/10.1016/j.jpeds.2015.12.035.; Levy-Mendelovich S., Cohen O., Klang E., Kenet G. 50 years of pediatric hemostasis: knowledge, diagnosis, and treatment. Semin Thromb Hemost. 2023;49(3):217–24. https://doi.org/10.1055/s-0042-1756704.; Makatsariya A., Bitsadze V., Khizroeva J. et al. Neonatal thrombosis. J Matern Fetal Neonatal Med. 2022;35(6):1169–77. https://doi.org/10.1080/14767058.2020.1743668.; Song S., Li Z., Zhao G. et al. Epidemiology and risk factors for thrombosis in children and newborns: systematic evaluation and meta-analysis. BMC Pediatr. 2023;23(1):292. https://doi.org/10.1186/s12887-023-04122-x.; Andrew M., David M., Adams M. et al. Venous thromboembolic complications (VTE) in children: first analyses of the Canadian Registry of VTE. Blood. 1994;83:1251–7.; Schmidt B., Andrew M. Neonatal thrombosis: report of a prospective Canadian and international registry. Pediatrics. 1995;96(5 Pt 1):939–43.; Nowak-Göttl U., von Kries R., Göbel U. Neonatal symptomatic thromboembolism in Germany: two-year survey. Arch Dis Child Fetal Neonatal Ed. 1997;76(3):F163–7. https://doi.org/10.1136/fn.76.3.f163.; Tuckuviene R., Christensen A.L., Helgestad J. et al. Pediatric venous and arterial noncerebral thromboembolism in Denmark: a nationwide population-based study. J Pediatr. 2011;159(4):663–9. https://doi.org/10.1016/j.jpeds.2011.03.052.; Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70(1):165–72.; Achey M.A., Nag U.P., Robinson V.L. et al. The developing balance of thrombosis and hemorrhage in pediatric surgery: clinical implications of age-related changes in hemostasis. Clin Appl Thromb Hemost. 2020;26;1076029620929092. https://doi.org/10.1177/1076029620929092.; Del Vecchio A., Latini G., Henry E., Christensen R.D. Template bleeding times of 240 neonates born at 24 to 41 weeks gestation. J Perinatol. 2008;28(6):427–31. https://doi.org/10.1038/jp.2008.10.; Andrew M., Paes B., Bowker J., Vegh P. Evaluation of an automated bleeding time device in the newborn. Am J Hematol. 1990;35(4):275–7. https://doi.org/10.1002/ajh.2830350411.; Boudewijns M., Raes M., Peeters V. et al. Evaluation of platelet function on cord blood in 80 healthy term neonates using the Platelet Function Analyser (PFA-100); shorter in vitro bleeding times in neonates than adults. Eur J Pediatr. 2003;162(3):212–3. https://doi.org/10.1007/s00431-002-1093-7.; Andrew M., Vegh P., Johnston M. et al. Maturation of the hemostatic system during childhood. Blood. 1992;80(8):1998–2005.; Cvirn G., Gallistl S., Leschnik B., Muntean W. Low tissue factor pathway inhibitor (TFPI) together with low antithrombin allows sufficient thrombin generation in neonates. J Thromb Haemost. 2003;1(2):263–8. https://doi.org/10.1046/j.1538-7836.2003.00081.x.; Cvirn G., Gallistl S., Rehak T. et al. Elevated thrombin-forming capacity of tissue factor-activated cord compared with adult plasma. J Thromb Haemost. 2003;1(8):1785–90. https://doi.org/10.1046/j.1538-7836.2003.00320.x.; Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the healthy premature infant. Blood. 1988;72(5):1651–7.; Neary E., McCallion N., Kevane B. et al. Coagulation indices in very preterm infants from cord blood and postnatal samples. J Thromb Haemost. 2015;13(11):2021–30. https://doi.org/10.1111/jth.13130.; Nako Y., Ohki Y., Harigaya A. et al. Plasma thrombomodulin level in very low birthweight infants at birth. Acta Paediatr. 1997;86(10):1105–9. https://doi.org/10.1111/j.1651-2227.1997.tb14817.x.; Wiedmeier S.E., Henry E., Sola-Visner M.C., Christensen R.D. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol. 2009;29(2):130–6. https://doi.org/10.1038/jp.2008.141.; Sillers L., Van Slambrouck C., Lapping-Carr G. Neonatal thrombocytopenia: etiology and diagnosis. Pediatr Ann. 2015;44(7):e175– 80. https://doi.org/10.3928/00904481-20150710-11.; Bednarek F.J., Bean S., Barnard M.R. et al. The platelet hyporeactivity of extremely low birth weight neonates is age-dependent. Thromb Res. 2009;124(1):42–5. https://doi.org/10.1016/j.thromres.2008.10.004.; Waller A.K., Lantos L., Sammut A. et al. Flow cytometry for near-patient testing in premature neonates reveals variation in platelet function: a novel approach to guide platelet transfusion. Pediatr Res. 2019;85():874–84. https://doi.org/10.1038/s41390-019-0316-9.; Sitaru A.G., Holzhauer S., Speer C.P. et al. Neonatal platelets from cord blood and peripheral blood. Platelets. 2005;16(3–4):203–10. https://doi.org/10.1080/09537100400016862.; Andres O., Schulze H., Speer C.P. Platelets in neonates: Central mediators in haemostasis, antimicrobial defence and inflammation. Thromb Haemost. 2015;113(1):3–12. https://doi.org/10.1160/TH14-05-0476.; Davenport P., Sola-Visner M. Platelets in the neonate: not just a small adult. Res Pract Thromb Haemost. 2022;6(3):e12719. https://doi.org/10.1002/rth2.12719.; Israels S.J., Cheang T., Roberston C. et al. Impaired signal transduction in neonatal platelets. Pediatr Res. 1999;45(5 Pt 1):687–91. https://doi.org/10.1203/00006450-199905010-00014.; Hardy A.T., Palma-Barqueros V., Watson S.K. et al. Significant hyporesponsiveness to GPVI and CLEC-2 agonists in pre-term and full-term neonatal platelets and following immune thrombocytopenia. Thromb Haemost. 2018;118(6):1009–20. https://doi.org/10.1055/s-0038-1646924.; Schlagenhauf A., Schweintzger S., Birner-Grünberger R. et al. Comparative evaluation of PAR1, GPIb-IX-V, and integrin αIIbβ3 levels in cord and adult platelets. Hamostaseologie. 2010;30 Suppl 1:S164–7.; Palma-Barqueros V., Torregrosa J.M., Caparrós-Pérez E. et al. Developmental differences in platelet inhibition response to prostaglandin E1. Neonatology. 2020;117(1):15–23. https://doi.org/10.1159/000504173.; Pelizza M.F., Martinato M., Rosati A. et al. The new Italian registry of infantile thrombosis (RITI): a reflection on its journey, challenges and pitfalls. Front Pediatr. 2023;11:1094246. https://doi.org/10.3389/fped.2023.1094246.; Martinez-Biarge M., Ferriero D.M., Cowan F.M. Perinatal arterial ischemic stroke. Handb Clin Neurol. 2019;162:239–66. https://doi.org/10.1016/B978-0-444-64029-1.00011-4.; Lynch J.K., Hirtz D.G., DeVeber G., Nelson K.B. Report of the National Institute of Neurological Disorders and Stroke workshop on perinatal and childhood stroke. Pediatrics. 2002;109(1):116–23. https://doi.org/10.1542/peds.109.1.116.; Hunt R.W., Inder T.E. Perinatal and neonatal ischaemic stroke: a review. Thromb Res. 2006;118(1):39–48. https://doi.org/10.1016/j.thromres.2004.12.021.; Gacio S., Muñoz Giacomelli F., Klein F. Presumed perinatal ischemic stroke: a review. Arch Argent Pediatr. 2015;113(5):449–55. (English, Spanish). https://doi.org/10.5546/aap.2015.eng.449.; Elbers J., Viero S., MacGregor D. et al. Placental pathology in neonatal stroke. Pediatrics. 2011;127(3):e722–9. https://doi.org/10.1542/peds.2010-1490.; Günther G., Junker R., Sträter R. et al.; Childhood Stroke Study Group. Symptomatic ischemic stroke in full-term neonates: role of acquired and genetic prothrombotic risk factors. Stroke. 2000;31(10):2437–41. https://doi.org/10.1161/01.str.31.10.2437.; Dlamini N., Billinghurst L., Kirkham F.J. Cerebral venous sinus (sinovenous) thrombosis in children. Neurosurg Clin N Am. 2010;21(3):511–27. https://doi.org/10.1016/j.nec.2010.03.006.; deVeber G., Andrew M., Adams C. et al. Cerebral sinovenous thrombosis in children. N Engl J Med. 2001;345():417–23. https://doi.org/10.1056/NEJM200108093450604.; Wasay M., Dai A.I., Ansari M. et al. Cerebral venous sinus thrombosis in children: A multicenter cohort from the United States. J Child Neurol. 2008;23(1):26–31. https://doi.org/10.1177/0883073807307976.; Manco-Johnson M.J. How I treat venous thrombosis in children. Blood. 2006;107(1):21–9. https://doi.org/10.1182/blood-2004-11-4211.; Moharir M.D., Shroff M., Pontigon A.M. et al. A prospective outcome study of neonatal cerebral sinovenous thrombosis. J Child Neurol. 2011;26(9):1137–44. https://doi.org/10.1177/0883073811408094.; Zhu W., Zhang H., Xing Y. Clinical characteristics of venous thrombosis associated with peripherally inserted central venous catheter in premature infants. Children (Basel). 2022;9(8):1126. https://doi.org/10.3390/children9081126.; Ulloa-Ricardez A., Romero-Espinoza L., Estrada-Loza Mde J. et al. Risk factors for intracardiac thrombosis in the right atrium and superior vena cava in critically ill neonates who required the installation of a central venous catheter. Pediatr Neonatol. 2016;57(4):288–94. https://doi.org/10.1016/j.pedneo.2015.10.001.; Cholette J.M., Rubenstein J.S., Alfieris G.M. et al. Elevated risk of thrombosis in neonates undergoing initial palliative cardiac surgery. Ann Thorac Surg. 2007;84(4):1320–5. https://doi.org/10.1016/j.athoracsur.2007.05.026.; Fenton K.N., Siewers R.D., Rebovich B., Pigula F.A. Interim mortality in infants with systemic-to-pulmonary artery shunts. Ann Thorac Surg. 2003;76(1):152–6. https://doi.org/10.1016/s0003-4975(03)00168-1.; Messinger Y., Sheaffer J.W., Mrozek J. et al. Renal outcome of neonatal renal venous thrombosis: review of 28 patients and effectiveness of fibrinolytics and heparin in 10 patients. Pediatrics. 2006;118(5):e1478–84. https://doi.org/10.1542/peds.2005-1461.; Moon C.J., Kwon T.H., Lee H.S. Portal vein thrombosis and food proteininduced allergic proctocolitis in a premature newborn with hypereosinophilia: a case report. BMC Pediatr. 2021;21(1):49. https://doi.org/10.1186/s12887-021-02510-9.; Tsonis O., Gouvias T., Gkrozou F. et al. Neonatal femoral artery thrombosis at the time of birth: a case report. J Pediatr Neonatal Individ Med. 2020;9(2):e090214. https://doi.org/10.7363/090214.; Mahasandana C., Suvatte V., Marlar R.A. et al. Neonatal purpura fulminans associated with homozygous protein S deficiency. Lancet. 1990;335(8680):61–2. https://doi.org/10.1016/0140-6736(90)90201-f.; Hattenbach L.O., Beeg T., Kreuz W., Zubcov A. Ophthalmic manifestation of congenital protein C deficiency. J AAPOS. 1999;3(3):188–90. https://doi.org/10.1016/s1091-8531(99)70066-2.; Chalmers E., Cooper P., Forman K. et al. Purpura fulminans: recognition, diagnosis and management. Arch Dis Child. 2011;96(11):1066–71. https://doi.org/10.1136/adc.2010.199919.; Marlar R.A., Montgomery R.R., Broekmans A.W. Diagnosis and treatment of homozygous protein C deficiency. Report of the Working Party on Homozygous Protein C Deficiency of the Subcommittee on Protein C and Protein S, International Committee on Thrombosis and Haemostasis. J Pediatr. 1989;114(4 Pt 1):528–34. https://doi.org/10.1016/s0022-3476(89)80688-2.; van Ommen C.H., Sol J.J. Developmental hemostasis and management of central venous catheter thrombosis in neonates. Semin Thromb Hemost. 2016;42(7):752–9. https://doi.org/10.1055/s-0036-1592299.; Thornburg C.D., Smith P.B., Smithwick M.L. et al. Association between thrombosis and bloodstream infection in neonates with peripherally inserted catheters. Thromb Res. 2008;122(6):782–5. https://doi.org/10.1016/j.thromres.2007.10.001.; Bhatt M.D., Chan A.K. Venous thrombosis in neonates. Fac Rev. 2021;10;20. https://doi.org/10.12703/r/10-20.; Dubbink-Verheij G.H., Pelsma I.C.M., van Ommen C.H. et al. Femoral vein catheter is an important risk factor for catheter-related thrombosis in (near-)term neonates. J Pediatr Hematol Oncol. 2018;40(2):e64–e68. https://doi.org/10.1097/MPH.0000000000000978.; Amankwah E.K., Atchison C.M., Arlikar S. et al. Risk factors for hospitalassociated venous thromboembolism in the neonatal intensive care unit. Thromb Res. 2014;134(2):305–9. https://doi.org/10.1016/j.thromres.2014.05.036.; Tuckuviene R., Christensen A.L., Helgested J. et al. Infant, obstetrical and maternal characteristics associated with thromboembolism in infancy: a nationwide population-based case-control study. Arch Dis Child Fetal Neonatal Ed. 2012;97(2):F417–22. https://doi.org/10.1136/archdischild-2011-300665.; Bhat R., Kwon S., Zaniletti I. et al. Risk factors associated with venous and arterial neonatal thrombosis in the intensive care unit: a multicentre casecontrol study. Lancet Haematol. 2022;9(3):e200–e207. https://doi.org/10.1016/S2352-3026(21)00399-9.; Vorobev A.V., Bitsadze V.O., Khizroeva J.Kh. et al. Neonatal thrombosis: risk factors and principles of prophylaxis. Obstetrics, Gynecology and Reproduction. 2021;15(4):390–403. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.233.; Walker S.C., Creech C.B., Domenico H.J. et al. A real-time risk-prediction model for pediatric venous thromboembolic events. Pediatrics. 2021;147(6):e2020042325. https://doi.org/10.1542/peds.2020-04232.; Ovesen P.G., Jensen D.M., Damm P. et al. Maternal and neonatal outcomes in pregnancies complicated by gestational diabetes. a nationwide study. J Matern Fetal Neonatal Med. 2015;28(14):1720–4. https://doi.org/10.3109/14767058.2014.966677.; Simchen M.J., Goldstein G., Lubetsky A. et al. Factor v Leiden and antiphospholipid antibodies in either mothers or infants increase the risk for perinatal arterial ischemic stroke. Stroke. 2009;40(1):65–70. https://doi.org/10.1161/STROKEAHA.108.527283.; Kenet G., Lütkhoff L.K., Albisetti M. et al. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: a systematic review and meta-analysis of observational studies. Circulation. 2010;121(16):1838–47. https://doi.org/10.1161/CIRCULATIONAHA.109.913673.; Campos L.M., Kiss M.H., D'Amico E.A., Silva C.A. Antiphospholipid antibodies and antiphospholipid syndrome in 57 children and adolescents with systemic lupus erythematosus. Lupus. 2003;12(11):820–6. https://doi.org/10.1191/0961203303lu471oa.; Kenet G., Aronis S., Berkun Y. et al. Impact of persistent antiphospholipid antibodies on risk of incident symptomatic thromboembolism in children: a systematic review and meta-analysis. Semin Thromb Hemost. 2011;37(7):802–9. https://doi.org/10.1055/s-0031-1297171.; Avcin T., Cimaz R., Meroni P.L. Recent advances in antiphospholipid antibodies and antiphospholipid syndromes in pediatric populations. Lupus. 2002;11(1):4–10. https://doi.org/10.1191/0961203302lu146rr.; Berkun Y., Padeh S., Barash J. et al. Antiphospholipid syndrome and recurrent thrombosis in children. Arthritis Rheum. 2006;55(6):850–5. https://doi.org/10.1002/art.22360.; Berkun Y., Simchen M.J., Strauss T. et al. Antiphospholipid antibodies in neonates with stroke--a unique entity or variant of antiphospholipid syndrome? Lupus. 2014;23(10):986–93. https://doi.org/10.1177/0961203314531842.; Boffa M.C., Lachassinne E. Infant perinatal thrombosis and antiphospholipid antibodies: a review. Lupus. 2007;16(8):634–41. https://doi.org/10.1177/0961203307079039.; Miyakis S., Lockshin M.D., Atsumi T. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295– 306. https://doi.org/10.1111/j.1538-7836.2006.01753.x.; Young G., Albisetti M., Bonduel M. et al. Impact of inherited thrombophilia on venous thromboembolism in children: a systematic review and metaanalysis of observational studies. Circulation. 2008;118(13):1373–82. https://doi.org/10.1161/CIRCULATIONAHA.108.789008.; Nowak-Göttl U., Junker R., Kreuz W. et al.; Childhood Thrombophilia Study Group. Risk of recurrent venous thrombosis in children with combined prothrombotic risk factors. Blood. 2001;97(4):858–62. https://doi.org/10.1182/blood.v97.4.858.; Limperger V., Kenet G., Goldenberg N.A. et al. Impact of high-risk thrombophilia status on recurrence among children with a first non-centralvenous-catheter-associated VTE: an observational multicentre cohort study. Br J Haematol. 2016;175(1):133–40. https://doi.org/10.1111/bjh.14192.; Fletcher-Sandersjöö A., Bellander B.M. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thromb Res. 2020;194:36–41. https://doi.org/; Gashimova N.R., Pankratyeva L.L., Bitsadze V.O. et al. Intrauterine activation of the fetal immune system in response to maternal COVID-19. Obstetrics, Gynecology and Reproduction. 2023;17(2):188–201. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.404.; Bitsadze V.O., Grigoreva K.N., Khizroeva J.K. et al. Novel coronavirus infection and Kawasaki disease. J Matern Fetal Neonatal Med. 2022;35(16):3044–8. https://doi.org/10.1080/14767058.2020.1800633.; Barrero-Castillero A., Beam K.S., Bernardini L.B. et al.; Harvard NeonatalPerinatal Fellowship COVID-19 Working Group. COVID-19: neonatalperinatal perspectives. J Perinatol. 2021;41(5):940–51. https://doi.org/10.1038/s41372-020-00874-x.; Leeman R., Shoag J., Borchetta M. et al. Clinical implications of hematologic and hemostatic abnormalities in children with COVID-19. J Pediatr Hematol Oncol. 2022;44(1):e282–e286. https://doi.org/10.1097/MPH.0000000000002176.; Helms J., Tacquard C., Severac F. et al.; CRICS TRIGGERSEP Group (Clinical research in intensive care and sepsis trial group for global evaluation and research in sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46():1089–98. https://doi.org/10.1007/s00134-020-06062-x.; Campi F., Longo D., Bersani I. et al. Neonatal cerebral venous thrombosis following maternal SARS-CoV-2 infection in pregnancy. Neonatology. 2022;119(2):268–72. https://doi.org/10.1159/00052053.; Baergen R.N., Heller D.S. Placental pathology in COVID-19 positive mothers: preliminary findings. Pediatr Dev Pathol. 2020;23():177–80. https://doi.org/10.1177/1093526620925569.; Dashraath P., Wong J.L.J., Lim M.X.K. et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020;222(6):521–31. https://doi.org/10.1016/j.ajog.2020.03.021.; Stephens A.J., Barton J.R., Bentum N.A. et al. General guidelines in the management of an obstetrical patient on the labor and delivery unit during the COVID-19 pandemic. Am J Perinatol. 2020;37(8):829–36. https://doi.org/10.1055/s-0040-1710308.; Monagle P., Chan A.K.C., Goldenberg N.A. et al. Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians EvidenceBased Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e737S– e801S. https://doi.org/10.1378/chest.11-2308.; Ting J., Yeung K., Paes B. et al.; Thrombosis and Hemostasis in Newborns (THiN) Group. How to use low-molecular-weight heparin to treat neonatal thrombosis in clinical practice. Blood Coagul Fibrinolysis. 2021;32(8):531–8. https://doi.org/10.1097/MBC.0000000000001052.; Kenet G., Cohen O., Bajorat T., Nowak-Göttl U. Insights into neonatal thrombosis. Thromb Res. 2019;181 Suppl 1:S33–S36. https://doi.org/10.1016/S0049-3848(19)30364-0.; Monagle P., Newall F. Management of thrombosis in children and neonates: practical use of anticoagulants in children. Hematol Am Soc Hematol Educ Program. 2018;2018(1):399–404. https://doi.org/10.1182/asheducation-2018.1.399.; Male C., Thom K., O’Brien S.H. Direct oral anticoagulants: what will be their role in children? Thromb Res. 2019;173:178–85. https://doi.org/10.1016/j.thromres.2018.06.021.; Pagowska-Klimek I. Perioperative thromboembolism prophylaxis in children – is it necessary? Anaesthesiol Intensive Ther. 2020;52(4):316– 22. https://doi.org/10.5114/ait.2020.97599.; https://www.gynecology.su/jour/article/view/2104
-
3Academic Journal
المؤلفون: A. V. Vorobev, S. E. Einullaeva, A. S. Borodulin, M. A. Shikina, S. A. Aliev, A. G. Solopova, V. N. Galkin, A. E. Ivanov, V. O. Bitsadze, J. Kh. Khizroeva, D. V. Blinov, J.-C. Gris, I. Elalamy, A. D. Makatsariya, А. В. Воробьев, С. Э. Эйнуллаева, А. С. Бородулин, М. А. Шикина, С. А. Алиев, А. Г. Солопова, В. Н. Галкин, А. Е. Иванов, В. О. Бицадзе, Д. Х. Хизроева, Д. В. Блинов, Ж.-К. Гри, И. Элалами, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 3 (2024); 286-299 ; Акушерство, Гинекология и Репродукция; Vol 18, No 3 (2024); 286-299 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: ССВО, thrombotic complications, oncological diseases, vWF/ADAMTS-13 axis, pulmonary embolism, PE, deep vein thrombosis, DVT, systemic inflammatory response syndrome, SIRS, тромботические осложнения, онкологические заболевания, ось vWF/ADAMTS-13, тромбоэмболия легочной артерии, ТЭЛА, тромбоз глубоких вен, ТГВ, синдром системного воспалительного ответа
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2088/1216; Thachil J., Khorana A., Carrier M. Similarities and perspectives on the two C’s – Cancer and COVID-19. J Thromb Haemost. 2021;19(5):1161–7. https://doi.org/10.1111/jth.15294.; Sciaudone A., Corkrey H., Humphries F., Koupenova M. Platelets and SARS-CoV-2 during COVID-19: immunity, thrombosis, and beyond. Circ Res. 2023;132(10):1272–89. https://doi.org/10.1161/CIRCRESAHA.122.321930.; Vassiliou A.G., Vrettou C.S., Keskinidou C. et al. Endotheliopathy in acute COVID-19 and long COVID. Int J Mol Sci. 2023;24(9):8237. https://doi.org/10.3390/ijms24098237.; Falanga A., Marchetti M. Cancer-associated thrombosis: enhanced awareness and pathophysiologic complexity. J Thromb Haemost. 2023;21(6):1397–408. https://doi.org/10.1016/j.jtha.2023.02.029.; Chandra A., Chakraborty U., Ghosh S., Dasgupta S. Anticoagulation in COVID-19: current concepts and controversies. Postgrad Med J. 2022;98(1159):395–402. https://doi.org/10.1136/postgradmedj-2021-139923.; Farge D., Frere C., Connors J.M. et al. International Initiative on Thrombosis and Cancer (ITAC) advisory panel. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. Lancet Oncol. 2022;23(7):e334–e347. https://doi.org/10.1016/S1470-2045(22)00160-7.; Lecumberri R., Marcos-Jubilar M., Guillén C. Thromboprophylaxis in patients with cancer and COVID-19. Arch Bronconeumol. 2022;58(11):744–5. https://doi.org/10.1016/j.arbres.2022.08.006.; Gulati S., Hsu C.Y., Shah S. et al. COVID-19 and Cancer Consortium. Systemic anticancer therapy and thromboembolic outcomes in hospitalized patients with cancer and COVID-19. JAMA Oncol. 2023;9(10):1390–400. https://doi.org/10.1001/jamaoncol.2023.2934.; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 7 (03.06.2020). М.: Министерство здравоохранения Российской Федерации, 2020, 166 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/050/584/original/03062020_МR_COVID-19_v7.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 8 (03.09.2020). М.: Министерство здравоохранения Российской Федерации, 2020. 227 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/051/777/original/030902020_COVID-19_v8.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 9 (26.10.2020). М.: Министерство здравоохранения Российской Федерации, 2020. 236 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/550/original/MP_COVID-19_%28v9%29.pdf?1603788097. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 10 (08.02.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 262 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/662/original/Временные_МР_COVID-19_%28v.10%29.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 11 (07.05.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 225 с. Режим доступа: https://rmapo.ru/uploads/korona/МР_COVID-19-v11.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 12 (21.09.2021). М.: Мистерство здравоохранения Российской Федерации, 2021. 232 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/075/original/ВМР_COVID-19_V12.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 13 (14.10.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 237 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/211/original/BMP-13.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 14 (27.12.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 233 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/041/original/ВМР_COVID-19_V14_27-12-2021.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 15 (22.02.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 245 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/ВМР_COVID-19_V15.pdf. [Дата обращения: 15.04.2024].; Временные методические рекомендации Министерства здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 16 (18.08.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 249 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/060/193/original/ВМР_COVID-19_V16.pdf. [Дата обращения: 15.04.2024].; Léonard-Lorant I., Delabranche X., Séverac F. et al. Acute pulmonary embolism in patients with COVID-19 at CT angiography and relationship to d-Dimer levels. Radiology. 2020;296(3):E189–E191. https://doi.org/10.1148/radiol.2020201561.; Brito-Dellan N., Tsoukalas N., Font C. Thrombosis, cancer, and COVID-19. Support Care Cancer. 2022;30(10):8491–500. https://doi.org/10.1007/s00520-022-07098-z.; Yang F., Shi S., Zhu J. et al. Clinical characteristics and outcomes of cancer patients with COVID-19. J Med Virol. 2020;92(10):2067–73. https://doi.org/10.1002/jmv.25972.; Rüthrich M.M., Giessen-Jung C., Borgmann S. et al.; LEOSS Study Group. COVID-19 in cancer patients: clinical characteristics and outcome-an analysis of the LEOSS registry. Ann Hematol. 2021;100(2):383–93. https://doi.org/10.1007/s00277-020-04328-4.; Nopp S., Moik F., Jilma B. et al. Risk of venous thromboembolism in patients with COVID-19: a systematic review and meta-analysis. Res Pract Thromb Haemost. 2020;4(7):1178–91. https://doi.org/10.1002/rth2.12439.; Kuderer N.M., Choueiri T.K., Shah D.P. et al. COVID-19 and Cancer Consortium. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020;395(10241):1907–18. https://doi.org/10.1016/S0140-6736(20)31187-9.; Oken M.M., Creech R.H., Tormey D.C. et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5(6):649–55.; Patell R., Bogue T., Bindal P. et al. Incidence of thrombosis and hemorrhage in hospitalized cancer patients with COVID-19. J Thromb Haemost. 2020;18(9):2349–57. https://doi.org/10.1111/jth.15018.; Fenioux C., Allenbach Y., Vozy A. et al. Differences of characteristics and outcomes between cancer patients and patients with no active cancer hospitalised for a SARS-CoV-2 infection. Bull Cancer. 2021;108(6):581–8. (In French). https://doi.org/10.1016/j.bulcan.2021.03.004.; Obispo B., Rogado J., Muñoz-Rivas N. et al.; Infanta Leonor Thrombosis Research Group. Prevalence of thrombosis in patients with cancer and SARS-CoV-2 infection. Med Clin (Barc). 2022;159(5):234–7. https://doi.org/10.1016/j.medcli.2021.08.002.; Li A., Kuderer N.M., Hsu C.Y. et al.; CCC19 consortium. The CoVID-TE risk assessment model for venous thromboembolism in hospitalized patients with cancer and COVID-19. J Thromb Haemost. 2021;19(10):2522–32. https://doi.org/10.1111/jth.15463.; https://www.gynecology.su/jour/article/view/2088
-
4Academic Journal
المؤلفون: V. О. Bitsadze, Е. V. Slukhanchuk, А. G. Solopova, J. Kh. Khizroeva, F. E. Yakubova, Е. А. Orudzhova, N. D. Degtyareva, Е. S. Egorova, N. А. Makatsariya, N. V. Samburova, V. N. Serov, L. А. Ashrafyan, Z. D. Aslanova, А. V. Lazarchuk, Е. S. Kudryavtseva, А. Е. Solopova, D. L. Kapanadze, J.-C. Gris, I. Elalamy, С. Ay, А. D. Makatsariya, В. О. Бицадзе, Е. В. Слуханчук, А. Г. Солопова, Д. Х. Хизроева, Ф. Э. Якубова, Э. А. Оруджова, Н. Д. Дегтярева, Е. С. Егорова, Н. А. Макацария, Н. В. Самбурова, В. Н. Серов, Л. А. Ашрафян, З. Д. Асланова, А. В. Лазарчук, Е. С. Кудрявцева, А. Е. Солопова, Д. Л. Капанадзе, Ж.-К. Гри, И. Элалами, Д. Ай, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 1 (2024); 96-111 ; Акушерство, Гинекология и Репродукция; Vol 18, No 1 (2024); 96-111 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: метастазирование, TME, tumor progression, tumor growth, cancer, metastasis, МОО, прогрессия опухоли, рост опухоли, рак
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1955/1182; LeBleu V. Imaging the tumor microenvironment. Cancer J. 2015;21(3):174–8. https://doi.org/10.1097/PPO.0000000000000118.; Del Prete A., Schioppa T., Tiberio L. et al. Leukocyte trafficking in tumor microenvironment. Curr Opin Pharmacol. 2017;35:40–7. https://doi.org/10.1016/j.coph.2017.05.004.; Desai A., Small E.J. Treatment of advanced renal cell carcinoma patients with cabozantinib, an oral multityrosine kinase inhibitor of MET, AXL and VEGF receptors. Future Oncol. 2019;15(20):2337–48. https://doi.org/10.2217/fon-2019-0021.; Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. https://doi.org/10.1038/nature07205.; Torre L.A., Bray F., Siegel R.L. et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262.; Hanahan D., Coussens L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309– 22. https://doi.org/10.1016/j.ccr.2012.02.022.; Hinshaw D.C., Shevde L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–66. https://doi.org/10.1158/0008-5472.CAN-18-3962.; Pottier C., Wheatherspoon A., Roncarati P. et al. The importance of the tumor microenvironment in the therapeutic management of cancer. Expert Rev Anticancer Ther. 2015;15(8):943–54. https://doi.org/10.1586/14737140.2015.1059279.; Angell H., Galon J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol. 2013;25(2):261–7. https://doi.org/10.1016/j.coi.2013.03.004.; Wang T., Niu G., Kortylewski M. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10(1):48–54. https://doi.org/10.1038/nm976.; Maimela N.R., Liu S., Zhang Y. Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J. 2019;17:1–13. https://doi.org/10.1016/j.csbj.2018.11.004.; Lv L., Pan K., Li X.-d. et al. The accumulation and prognosis value of tumor infiltrating IL-17 producing cells in esophageal squamous cell carcinoma. PloS One. 2011;6(3):e18219. https://doi.org/10.1371/journal.pone.0018219.; Plitas G., Rudensky A.Y. Regulatory T cells in cancer. Annu Rev Cancer Biol. 2020;4(1):459–77. https://doi.org/10.1146/annurevcancerbio-030419-033428.; Curiel T.J., Coukos G., Zou L. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9. https://doi.org/10.1038/nm1093.; Fozza C., Longinotti M. T-cell traffic jam in Hodgkin's lymphoma: pathogenetic and therapeutic implications. Adv Hematol. 2011;2011:501659. https://doi.org/10.1155/2011/501659.; Koreishi A.F., Saenz A.J., Persky D.O. et al. The role of cytotoxic and regulatory T-cells in relapsed/refractory Hodgkin lymphoma. Appl Immunohistochem Mol Morphol. 2010;18(3):206–11. https://doi.org/10.1097/PAI.0b013e3181c7138b.; Gomes A.Q., Martins D.S., Silva-Santos B. Targeting γδ T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res. 2010;70(24):10024–7. https://doi.org/10.1158/0008-5472.CAN-10-3236.; Tanaka M., Iwakiri Y. The hepatic lymphatic vascular system: structure, function, markers, and lymphangiogenesis. Cell Mol Gastroenterol Hepatol. 2016;2(6):733–49. https://doi.org/10.1016/j.jcmgh.2016.09.002.; Milne K., Köbel M., Kalloger S.E. et al. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PloS One. 2009;4(7):e6412. https://doi.org/10.1371/journal.pone.0006412.; Andreu P., Johansson M., Affara N.I. et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010;17(2):121–34. https://doi.org/10.1016/j.ccr.2009.12.019.; Mauri C., Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41. https://doi.org/10.1146/annurevimmunol-020711-074934.; Horikawa M., Minard-Colin V., Matsushita T., Tedder T. F. Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Invest. 2011;121(11):4268–80. https://doi.org/10.1172/JCI59266.; Sharonov G.V., Serebrovskaya E.O., Yuzhakova D.V. et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. 2020;20(5):294–307. https://doi.org/10.1038/s41577-019-0257-x.; Marcus A., Gowen B. G., Thompson T.W. et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol. 2014;122:91–128. https://doi.org/10.1016/B978-0-12-800267-4.00003-1.; Qian B.-Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014.; Condeelis J., Pollard J.W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6. https://doi.org/10.1016/j.cell.2006.01.007.; Wang S.-C., Hong J.-H., Hsueh C., Chiang C.-S. Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest. 2012;92(1):151–62. https://doi.org/10.1038/labinvest.2011.128.; Franklin R.A., Liao W., Sarkar A. et al. The cellular and molecular origin of tumor-associated macrophages. Science. 2014;344(6186):921–5. https://doi.org/10.1126/science.1252510.; Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68. https://doi.org/10.1038/nri3175.; Meredith M.M., Liu K., Darrasse-Jeze G. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med. 2012;209(6):1153–65. https://doi.org/10.1084/jem.20112675.; Nozawa H., Chiu C., Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A. 2006;103(33):12493–8. https://doi.org/10.1073/pnas.0601807103.; Youn J.-I., Gabrilovich D.I. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40(11):2969–75. https://doi.org/10.1002/eji.201040895.; Erler J.T., Bennewith K.L., Cox T.R. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15(1):35–44. https://doi.org/10.1016/j.ccr.2008.11.012.; Granot Z., Henke E., Comen E.A. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20(3):300–14. https://doi.org/10.1016/j.ccr.2011.08.012.; Walker C., Mojares E., del Río Hernández A. Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 2018;19(10):3028. https://doi.org/10.3390/ijms19103028.; Nieman K.M., Kenny H.A., Penicka C.V. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503. https://doi.org/10.1038/nm.2492.; Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011;17(11):1371–80. https://doi.org/10.1038/nm.2545.; Swartz M.A., Lund A.W. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer. 2012;12(3):210–9. https://doi.org/10.1038/nrc3186.; Erez N., Truitt M., Olson P. et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell. 2010;17(2):135–47. https://doi.org/10.1016/j.ccr.2009.12.041.; Xing F., Saidou J., Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010;15(1):166–79. https://doi.org/10.2741/3613.; Korneev K.V., Atretkhany K.-S. N., Drutskaya M. S. et al. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine. 2017;89:127–35. https://doi.org/10.1016/j.cyto.2016.01.021.; Shiga K., Hara M., Nagasaki T. et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers. 2015;7(4):2443– 58. https://doi.org/10.3390/cancers7040902.; Li B., Wang J. H.-C. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability. 2011;20(4):108–20. https://doi.org/10.1016/j.jtv.2009.11.004.; Kraman M., Bambrough P.J., Arnold J.N. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science. 2010;330(6005):827–30. https://doi.org/10.1126/science.1195300.; Armulik A., Genové G., Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215. https://doi.org/10.1016/j.devcel.2011.07.001.; Cooke V.G., LeBleu V.S., Keskin D.N et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell. 2012;21(1):66–81. https://doi.org/10.1016/j.ccr.2011.11.024.; Turley S.J., Cremasco V., Astarita J.L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15(11):669–82. https://doi.org/10.1038/nri3902.; McAndrews K.M., McGrail D.J., Ravikumar N., Dawson M.R. Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β. Sci Rep. 2015;5(1):16941. https://doi.org/10.1038/srep16941.; Lam P.Y. Biological effects of cancer-secreted factors on human mesenchymal stem cells. Stem Cell Res Ther. 2013;4(6):138. https://doi.org/10.1186/scrt349.; Hu Y., Li D., Wu A. et al. TWEAK-stimulated macrophages inhibit metastasis of epithelial ovarian cancer via exosomal shuttling of microRNA. Cancer Lett. 2017;393:60–7. https://doi.org/10.1016/j.canlet.2017.02.009.; Farnie G., Sotgia F., Lisanti M.P. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget. 2015;6(31):30472–86. https://doi.org/10.18632/oncotarget.5401.; Feig C., Jones J.O., Kraman M. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with antiPD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–7. https://doi.org/10.1073/pnas.1320318110.; Henke E., Nandigama R., Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2020;6:160. https://doi.org/10.3389/fmolb.2019.00160.; Vaupel P., Mayer A. Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv Exp Med Biol. 2014;812:19–24. https://doi.org/10.1007/978-1-4939-0620-8_3.; Elinav E., Garrett W.S., Trinchieri G., Wargo J. The cancer microbiome. Nat Rev Cancer. 2019;19(7):371–6. https://doi.org/10.1038/s41568-019-0155-3.; Hofer H.R., Tuan R.S. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7(1):131. https://doi.org/10.1186/s13287-016-0394-0.; Altman J.B., Benavides A.D., Das R., Bassiri H. Antitumor responses of invariant natural killer T cells. J Immunol Res. 2015;2015:652875. https://doi.org/10.1155/2015/652875.; Keely P.J. Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia. 2011;16(3):205–19. https://doi.org/10.1007/s10911-011-9226-0.; Guan J., Chen J. Mesenchymal stem cells in the tumor microenvironment. Biomed Rep. 2013;1(4):517–21. https://doi.org/10.3892/br.2013.103.; Metzler K.D., Fuchs T.A., Nauseef W.M. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–9. https://doi.org/10.1182/blood2010-06-290171.; Acuff H.B., Carter K.J., Fingleton B. et al. Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res. 2006;66(1):259–66. https://doi.org/10.1158/0008-5472.CAN-05-2502.; Pahler J.C., Tazzyman S., Erez N. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia. 2008;10(4):329–40. https://doi.org/10.1593/neo.07871.; Cools-Lartigue J., Spicer J., McDonald B. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58. https://doi.org/10.1172/JCI67484.; Romson J.L., Hook B., Rigot V. et al. The effect of ibuprofen on accumulation of indium-111-labeled platelets and leukocytes in experimental myocardial infarction. Circulation. 1982;66(5):1002–11. https://doi.org/10.1161/01.cir.66.5.1002.; Goh C.Y., Patmore S., Smolenski A. et al. The role of von Willebrand factor in breast cancer metastasis. Transl Oncol. 2021;14(4):101033. https://doi.org/10.1016/j.tranon.2021.101033.; Price L.C., Wort S.J. Earlier diagnosis and international registries may improve outcomes in pulmonary tumour thrombotic microangiopathy. Eur Respir J. 2016;47(2):690–1. https://doi.org/10.1183/13993003.01736-2015.; Farge D., Bounameaux H., Brenner B. et al. International clinical practice guidelines including guidance for direct oral anticoagulants in the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol. 2016;17(10):e452–e466. https://doi.org/10.1016/S1470-2045(16)30369-2.; Tinholt M., Viken M.K., Dahm A.E. et al. Increased coagulation activity and genetic polymorphisms in the F5, F10 and EPCR genes are associated with breast cancer: a case-control study. BMC Cancer. 2014;14:845. https://doi.org/10.1186/1471-2407-14-845.; Pihusch R., Danzl G., Scholz M. et al. Impact of thrombophilic gene mutations on thrombosis risk in patients with gastrointestinal carcinoma. Cancer. 2002;94(12):3120–6. https://doi.org/10.1002/cncr.10590.; Tavares V., Pinto R., Assis J. et al. Dataset of GWAS-identified variants underlying venous thromboembolism susceptibility and linkage to cancer aggressiveness. Data Brief. 2020;30:105399. https://doi.org/10.1016/j.dib.2020.105399.; Vossen C.Y., Hoffmeister M., Chang-Claude J.C. et al. Clotting factor gene polymorphisms and colorectal cancer risk. J Clin Oncol. 2011;29(13):1722–7. https://doi.org/10.1200/JCO.2010.31.8873.; de Haas E.C., Zwart N., Meijer C. et al. Association of PAI-1 gene polymorphism with survival and chemotherapy-related vascular toxicity in testicular cancer. Cancer. 2010;116(24):5628–36. https://doi.org/10.1002/cncr.25300.; Duffy M.J., McGowan P.M., Harbeck N. et al. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16(4):428. https://doi.org/10.1186/s13058-014-0428-4.; Tavares V., Pinto R., Assis J. et al. Venous thromboembolism GWAS reported genetic makeup and the hallmarks of cancer: Linkage to ovarian tumour behaviour. Biochim Biophys Acta Rev Cancer. 2020;1873(1):188331. https://doi.org/10.1016/j.bbcan.2019.188331.; Vila P., Hernandez M., Lopez-Fernandez M., Batlle J. Prevalence, follow-up and clinical significance of the anticardiolipin antibodies in normal subjects. Thromb Haemost. 1994;72(8):209–13.; Vassalo J., Spector N., de Meis E. et al. Antiphospholipid antibodies in critically ill patients with cancer: a prospective cohort study. J Crit Care. 2014;29(4):533–8. https://doi.org/10.1016/j.jcrc.2014.02.005.; Abdel-Wahab N., Tayar J.H., Fa'ak F. et al. Systematic review of observational studies reporting antiphospholipid antibodies in patients with solid tumors. Blood Adv. 2020;4(8):1746–55. https://doi.org/10.1182/bloodadvances.2020001557.; Cervera R., Rodríguez-Pintó I., Colafrancesco S. et al. 14th international congress on antiphospholipid antibodies task force report on catastrophic antiphospholipid syndrome. Autoimmun Rev. 2014;13(7):699–707. https://doi.org/10.1016/j.autrev.2014.03.002.; https://www.gynecology.su/jour/article/view/1955
-
5Academic Journal
المؤلفون: F. Е. Yagubova, V. O. Bitsadze, N. V. Samburova, J. Kh. Khizroeva, A. D. Makatsariya, Ф. Э. Ягубова, В. О. Бицадзе, Н. В. Самбурова, Д. Х. Хизроева, А. Д. Макацария
المساهمون: The study was not sponsored, Исследование проведено без финансовой поддержки
المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 2 (2024); 189-199 ; Акушерство, Гинекология и Репродукция; Vol 18, No 2 (2024); 189-199 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: D-димер, twin pregnancy, in vitro fertilization, hemostasis, fibrinogen, activated partial thromboplastin time, APTT, prothrombin time, PT, thrombin time, TT, antithrombin, protein C, platelet aggregation, D-dimer, беременность двойней, экстракорпоральное оплодотворение, ЭКО, гемостаз, фибриноген, активированное частичное тромбопластиновое время, АЧТВ, тромбиновое время, ТВ, протромбиновое время, ПВ, антитромбин, протеин С, агрегация тромбоцитов
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2050/1199; Brenner B. Haemostatic changes in pregnancy. Thromb Res. 2004;114(5–6):409–14. doi:10.1016/j.thromres.2004.08.004.; Cui C., Yang S., Zhang J. et al. Trimester-specific coagulation and anticoagulation reference intervals for healthy pregnancy. Thromb Res. 2017;156:82–6. doi:10.1016/j.thromres.2017.05.021.; Момот А.П., Николаева М.Г., Сердюк Г.В. и др. Оценка состояния гемостаза при физиологически протекающей беременности (методические рекомендации). Российский вестник акушера-гинеколога. 2018;18(3–2):2–37.; Pabinger I. Thrombophilia and its impact on pregnancy. Thromb Res. 2009;123 Suppl 3: S16–S21. doi:10.1016/S0049-3848(09)70128-8.; Хизроева Д.Х., Антонова А.С., Егорова Е.С., Макацария Н.А. Повторные неудачи ЭКО, тромбозы и тромбофилия. Акушерство, Гинекология и Репродукция. 2023;17(6):792–800. doi:10.17749/2313-7347/ob.gyn.rep.2023.467.; Ren K., Wei Y., Qiao R. et al. Changes in coagulation during twin pregnancies. Clin Appl Thromb Hemost. 2020;26:1076029620983898. doi:10.1177/1076029620983898.; Morikawa M., Yamada T., Turega N. et al. Coagulation-fibrinolysis is more enhanced in twin than in singleton pregnancies. J Perinat Med. 2006; 34(5):392–7. doi:10.1515/JPM.2006.078.; Lin L., Yang H., Xu Zh. et al. Explore the impact of abnormal coagulation test results on pregnancy complications and perinatal outcomes by establishing the trimester-specific reference intervals of singleton and twin pregnancies. Clin Chim Acta. 2023;541(Suppl 1):117265. doi:10.1016/j.cca.2023.117265.; Момот А.П., Молчанова И.В., Цывкина Л.П. Изменения системы гемостаза в цикле ЭКО и их влияние на эффективность процедуры. Бюллетень медицинской науки. 2017;4(8):77–81. doi:10.31684/2541-8475.2017.4(8).77-81.; Yang W., Sun Q., Zhou Z. et al. Coagulation parameters predictive of repeated implantation failure in Chinese women: a retrospective study. Medicine. 2020;99(48):e23320. doi:10.1097/MD.0000000000023320.; Westerlund E., Henriksson P., Wallén H. et al. Detection of a procoagulable state during controlled ovarian hyperstimulation for in vitro fertilization with global assays of haemostasis. Thromb Res. 2012;130(4):649–53. doi:10.1016/j.thromres.2011.11.024.; Grandone E., Di Micco P.P., Villani M. et al. Venous thromboembolism in women undergoing assisted reproductive technologies: data from the RIETE Registry. Thromb Haemost. 2018;118(11):1962–8. doi:10.1055/s-0038-1673402.; Rizwan N., Abbasi R.M., Mughal R. Maternal morbidity and perinatal outcome with twin pregnancy. J Ayub Med Coll Abbottabad. 2010;22(2):105–7.; Яковенко Е.М., Яковенко С.А. Экстракорпоральное оплодотворение и другие методы преодоления бесплодия. M., 2016. 280 c.; Liu J., Yuan E., Lee L. Gestational age-specific reference intervals for routine haemostatic assays during normal pregnancy. Clin Chim Acta. 2012;413(1–2):258–61. doi:10.1016/j.cca.2011.09.046.; Bar J., Blickstein D., Hod M. et al. Increased D-dimer levels in twin gestation. Thromb Res. 2000;98(6):485–9. doi:10.1016/s0049-3848(00)00187-0.; Yamada T., Kawaguchi S., Araki N. et al. Difference in the D-dimer rise between women with singleton and multifetal pregnancies. Thromb Res. 2013;131(6):493–6. doi:10.1016/j.thromres.2013.04.029.; Годзоева А.О., Зазерская И.Е., Власов В.С. и др. Оценка фибрин-мономера и D-димера у пациенток с бесплодием в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2020;9:73–81. doi:10.18565/aig.2020.9.73-81.-81.; https://www.gynecology.su/jour/article/view/2050
-
6Academic Journal
المؤلفون: Z. D. Aslanova, J. Kh. Khizroeva, A. G. Solopova, V. A. Solodkiy, A. V. Vorobev, D. V. Blinov, M. D. Aslanova, I. A. Nakaidze, J.-C. Gris, I. Elalamy, A. D. Makatsariya, З. Д. Асланова, Д. Х. Хизроева, А. Г. Солопова, В. А. Солодкий, А. В. Воробьев, Д. В. Блинов, М. Д. Асланова, И. А. Накаидзе, Ж.-К. Гри, И. Элалами, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 6 (2023); 751-768 ; Акушерство, Гинекология и Репродукция; Vol 17, No 6 (2023); 751-768 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: онкологические заболевания, NETs, NETosis, myeloperoxidase, citrullinated histone H3, cancer, oncological diseases, нетоз, миелопероксидаза, цитруллинированный гистон H3, рак
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1856/1162; Beiter T., Fragasso A., HartlD., Nieß A.M. Neutrophil extracellular traps: a walk on the wild side of exercise immunology. Sports Med. 2015;45(5):625–40. https://doi.org/10.1007/s40279-014-0296-1.; Finazzi G. The Italian Registry of antiphospholipid antibodies. Haematologica. 1997;82(1):101–5.; Saffarzadeh M., Juenemann C., Queisser M.A. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PloS One. 2012;7(2):e32366. https://doi.org/10.1371/journal.pone.0032366.; Fine N., Tasevski N., McCulloch C.A. et al. The neutrophil: constant defender and first responder. Front Immunol. 2020;11:571085. https://doi.org/10.3389/fimmu.2020.571085.; Vilen S.-T., Nyberg P., Hukkanen M. et al. Intracellular co-localization of trypsin-2 and matrix metalloprotease-9: possible proteolytic cascade of trypsin-2, MMP-9 and enterokinase in carcinoma. Exp Cell Res. 2008;314(4):914–26. https://doi.org/10.1016/j.yexcr.2007.10.025.; Антонеева И.И. Кислородзависимая антимикробная система нейтрофилов в динамике развития рака яичников. Казанский медицинский журнал. 2008;89(4):476–8.; Schauer C., Janko C., Munoz L.E. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20(5):511–7. https://doi.org/10.1038/nm.3547.; Shi X., Li B., Yuan Y. et al. The possible association between the presence of an MPO -463 G > A (rs2333227) polymorphism and cervical cancer risk. Pathol Res Pract. 2018;8(214):1142–8. https://doi.org/10.1016/j.prp.2018.05.018.; Falanga A., Rickles F.R. Pathophysiology of the thrombophilic state in the cancer patient. Semin Thromb Hemost. 1999;25(2):173–82. https://doi.org/10.1016/10.1055/s-2007-994919.; Fine N., Tasevski N., McCulloch C.A. et al. The neutrophil: constant defender and first responder. Front Immunol. 2020;11:571085. https://doi.org/10.1016/10.3389/fimmu.2020.571085.; Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.; Arazna M., Pruchniak M.P., Zycinska K., Demkow U. Neutrophil extracellular trap in human diseases. Adv Exp Med Biol. 2013;756:1–8. https://doi.org/10.1007/978-94-007-4549-0_1.; Yalavarthi S., Gould T.J., Rao A.N. et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990–3003. https://doi.org/10.1002/art.39247.; Demers M., Wagner D.D. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost. 2014;40(3):277–83. https://doi.org/10.1055/s-0034-1370765.; Malcolm K.C., Worthen G.S. Lipopolysaccharide stimulates p38-dependent induction of antiviral genes in neutrophils independently of paracrine factors. J Biol Chem. 2003;278(18):15693–701. https://doi.org/10.1074/jbc.M212033200.; Perobelli S.M., Galvani R.G., Gonçalves-Silva T. et al. Plasticity of neutrophils reveals modulatory capacity. Braz J Med Biol Res. 2015;48(8):665–75. https://doi.org/10.1590/1414-431X20154524.; Yazdani H.O., Roy E., Comerci A.J. et al. Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth. Cancer Res. 2019;79(21):5626–39. https://doi.org/10.1158/0008-5472.CAN-19-0800.; Yousefi S., Gold J., Andina N. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14(9): 949–53. https://doi.org/10.1038/nm.1855.; Coussens L.M., Tinkle C.L., Hanahan D., Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481–90. https://doi.org/10.1016/s0092-8674(00)00139-2.; Mayadas T.N., Cullere X., Lowell C.A. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218. https://doi.org/10.1146/annurev-pathol-020712-164023.; Al-Benna S., Shai Y., Jacobsen F., Steinstraesser L. Oncolytic activities of host defense peptides. Int J Mol Sci. 2011;12(11):8027–51. https://doi.org/10.3390/ijms12118027.; Cristinziano L., Luca Modestino L., Loffredo S. et al. Anaplastic thyroid cancer cells induce the release of mitochondrial extracellular DNA traps by viable neutrophils. J Immunol. 2020;204(5):1362–72. https://doi.org/10.4049/jimmunol.1900543.; Gupta A.K., Joshi M.B., Philippova M. et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 2010;584(14):3193–7. https://doi.org/10.1016/j.febslet.2010.06.006.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.; Cools-Lartigue J., Spicer J., McDonald B. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58. https://doi.org/10.1172/JCI67484.; Demers M., Krause D.S., Schatzberg D. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076–81. https://doi.org/10.1073/pnas.1200419109.; Hoffmann J.H.O., Enk A.H. Neutrophil extracellular traps in dermatology: caught in the NET. J Dermatol Sci. 2016;84(1):3–10. https://doi.org/10.1016/j.jdermsci.2016.07.001.; Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113. https://doi.org/10.3389/fphys.2018.00113.; Kim J., Bae J.-S. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016;2016:6058147. https://doi.org/10.1155/2016/6058147.; Rayes R.F. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight. 2019;5(16):e128008. https://doi.org/10.1172/jci.insight.128008.; Горудко И.В., Черкалина О.С., Соколов А.В. и др. Новые подходы к определению концентрации и пероксидазной активности миелопероксидазы в плазме крови человека. Биоорганическая химия. 2009;35(5):629–39.; Bromberg M.E., Capello M. Cancer and blood coagulation: molecular aspects. Cancer J Sci Am. 1999;5(3):132–8.; Loreto M.F., De Martinis M., Corsi M.P. et al. Coagulation and cancer: implications for diagnosis and management. Pathol Oncol Res. 2000;6(4):301–12. https://doi.org/10.1007/BF03187336.; Panagopoulos V., Leach D.A., Zinonos I. et al. Inflammatory peroxidases promote breast cancer progression in mice via regulation of the tumour microenvironment. Int J Oncol. 2017;50(4):1191–200. https://doi.org/10.3892/ijo.2017.3883.; Андрюков Б.Г., Сомова Л.М., Дробот Е.И., Матосова Е.В. Защитные стратегии нейтрофильных гранулоцитов от патогенных бактерий. Здоровье. Медицинская экология. Наука. 2017;(1):4–18. https://doi.org/10.5281/zenodo.345606.; Uribe-Querol E., Rosales C. Neutrophils in cancer: two sides of the same coin. J Immunol Res. 2015;2015:983698. https://doi.org/10.1155/2015/983698.; Солопова А.Г., Москвичёва В.С., Блбулян Т.А. и др. Актуальные вопросы профилактики, диагностики и лечения рака вульвы и влагалища. Акушерство, Гинекология и Репродукция. 2018;12(4):62–70. https://doi.org/10.17749/2313-7347.2018.12.4.062-070.; Shaul M.E., Fridlender Z.G. Cancer-related circulating and tumor-associated neutrophils – subtypes, sources and function. FEBS J. 2018;285(23):4316–42. https://doi.org/10.1111/febs.14524.; Merza M., Hartman H., Rahman M. et al. Neutrophil extracellular traps induce trypsin activation, Inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology. 2015;149(7):1920–31.e8. https://doi.org/10.1053/j.gastro.2015.08.026.; Metzler K.D., Fuchs T.A., Nauseef W.M. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–9. https://doi.org/10.1182/blood-2010-06-290171.; Pahler J.C., Tazzyman S., Erez N. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia. 2008;10(4):329–39. https://doi.org/10.1593/neo.07871.; Valadez-Cosmes P., Raftopoulou S., Mihalic Z.N. et al. Myeloperoxidase: growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther. 2022;236:108052. https://doi.org/10.1016/j.pharmthera.2021.108052.; Cai H., Chuang C.Y., Hawkins C.L., Davies M.J. Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification. Sci Rep. 2020;10(1):666. https://doi.org/10.1038/s41598-019-57299-6.; Нестерова И.В., Ковалева С.В., Фомичева Е.В. и др. Клинико-иммунологические параллели при неопластических заболеваниях органов пищеварения: клинические маркеры иммунодефицита и нарушения функционирования микробицидных и цитотоксических механизмов нейтрофильных гранулоцитов. XIV Международный конгресс по реабилитации в медицине и иммунореабилитации: тезисы докладов. Израиль, 2009. 2009;11(1):79a.; de Bont C.M., Eerden N., Boelens W.C., Pruijn G.J.M. Neutrophil proteases degrade autoepitopes of NET-associated proteins. Clin Exp Immunol. 2020;199(1):1–8. https://doi.org/10.1111/cei.13392.; López-Otín C., Matrisian L.M. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7(10):800–8. https://doi.org/10.1038/nrc2228.; Moali C., Hulmes D.J.S. Extracellular and cell surface proteases in wound healing: new players are still emerging. Eur J Dermatol. 2009;19(6):552–64. https://doi.org/10.1684/ejd.2009.0770.; Sanderson R.D., Bandari S.K., Vlodavsky I. Proteases and glycosidases on the surface of exosomes: newly discovered mechanisms for extracellular remodeling. Matrix Biol. 2019;75–76:160–9. https://doi.org/10.1016/j.matbio.2017.10.007.; Nyberg P., Ylipalosaari M., Sorsa T., Salo T. Trypsins and their role in carcinoma growth. Exp Cell Res. 2006;312(8):1219–28. https://doi.org/10.1016/j.yexcr.2005.12.024.; Vilen S.-T., Nyberg P., Hukkanen M. Intracellular co-localization of trypsin-2 and matrix metalloprotease-9: possible proteolytic cascade of trypsin-2, MMP-9 and enterokinase in carcinoma. Exp Cell Res. 2008;314(4):914–26. https://doi.org/10.1016/j.yexcr.2007.10.025.; Morimoto-Kamata R., Yui S. Insulin-like growth factor-1 signaling is responsible for cathepsin G-induced aggregation of breast cancer MCF-7 cells. Cancer Sci. 2017;108(8);1574–83. https://doi.org/10.1111/cas.13286.; Wilson T.J., Nannuru K.C., Futakuchi M. et al. Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand. Cancer Res. 2008;68(14):5803–11. https://doi.org/10.1158/0008-5472.CAN-07-5889.; McLoed A.G., Sherrill T.P., Cheng D.-S. et al. Neutrophil-derived IL-1β impairs the efficacy of NF-κB inhibitors against lung cancer. Cell Rep. 2016;16(1):120–32. https://doi.org/10.1016/j.celrep.2016.05.085.; Clancy D.M., Sullivan G.P., Moran H.B.T. et al. Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell reports. 2018;22(11):2937–50. https://doi.org/10.1016/j.celrep.2018.02.062.; Acuff H.B., Carter K.J., Fingleton B. et al. Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res. 2006;66(1):259–66. https://doi.org/10.1158/0008-5472.CAN-05-2502.; Park J.-H., Rasch M.G., Qiu J. et al. Presence of insulin-like growth factor binding proteins correlates with tumor-promoting effects of matrix metalloproteinase 9 in breast cancer. Neoplasia. 2015;17(5):421–33. https://doi.org/10.1016/j.neo.2015.04.003.; Peng Z., Liu C., Victor A.R. et al. Tumors exploit CXCR4hiCD62Llo aged neutrophils to facilitate metastatic spread. Oncoimmunology. 2021;10(1);1870811. https://doi.org/10.1080/2162402X.2020.1870811.; Yang Q., Mas A., Diamond M.P., Al-Hendy A. The mechanism and function of epigenetics in uterine leiomyoma development. Reprod Sci. 2016;23(2):163–75. https://doi.org/10.1177/1933719115584449.; Audia J.E., Campbell R.M. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8(4):a019521. https://doi.org/10.1101/cshperspect.a019521.; Podaza E., Sabbione F., Risnik D. et al. Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (NETs). Cancer Immunol Immunother. 2017;66(1):77–89. https://doi.org/10.1007/s00262-016-1921-7.; Nie M., Yang L., Bi X. et al. Neutrophil extracellular traps induced by IL8 promote diffuse large B-cell lymphoma progression via the TLR9 signaling. Clin Cancer Res. 2019;25(6):1867–79. https://doi.org/10.1158/1078-0432.CCR-18-1226.; Sun N., Li X., Wang Z. et al. A multiscale TiO2 nanorod array for ultrasensitive capture of circulating tumor cells. ACS Appl Mater Interfaces. 2016;8(20):12638–43. https://doi.org/10.1021/acsami.6b02178.; Mao Z., Zhang J., Shi Y. et al. CXCL5 promotes gastric cancer metastasis by inducing epithelial-mesenchymal transition and activating neutrophils. Oncogenesis. 2020;9(7):63. https://doi.org/10.1038/s41389-020-00249-z.; Teijeira A., Garasa S., Gato M. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52(5):856-871.e8. https://doi.org/10.1016/j.immuni.2020.03.001.; Tohme S., Yazdani H.O., Al-Khafaji A.B. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367–80. https://doi.org/10.1158/0008-5472.CAN-15-1591.; Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5. https://doi.org/10.1073/pnas.1005743107.; Chaffer C.L., Weinberg R.A. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64. https://doi.org/10.1126/science.1203543.; Chen Y., Hu H., Tan S. et al. The role of neutrophil extracellular traps in cancer progression, metastasis and therapy. Exp Hematol Oncol. 2022;11(1):99. https://doi.org/10.1186/s40164-022-00345-3.; Farrera C., Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol. 2013;191(5):2647–56. https://doi.org/10.4049/jimmunol.1300436.; Oklu R., Sheth R.A., Wong K.H.K. et al. Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovasc Diagns Ther. 2017;7(Suppl 3):S140–S149. https://doi.org/10.21037/cdt.2017.08.01.; Li Y., Yang Y., Gan T. et al. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps. Int J Oncol. 2019;55(1):69–80. https://doi.org/10.3892/ijo.2019.4808.; Klebanoff S.J. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598–625. https://doi.org/10.1189/jlb.1204697.; Cools-Lartigue J., Spicer J., Najmeh S., Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci. 2014;71(21):4179–94. https://doi.org/10.1007/s00018-014-1683-3.; Berger-Achituv S., Brinkmann V., Abed U.A. et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol. 2013;4:48. https://doi.org/10.3389/fimmu.2013.00048.; Thalin C., Lundström S., Seignez C. et al. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS One. 2018;13(1):e0191231. https://doi.org/10.1371/journal.pone.0191231.; Cedervall J., Dragomir A., Saupe F. et al. Pharmacological targeting of peptidylarginine deiminase 4 prevents cancer-associated kidney injury in mice. Oncoimmunology. 2017;6(8):e1320009. https://doi.org/10.1080/2162402X.2017.1320009.; Hisada Y., Grover S.P., Maqsood A. et al. Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica. 2020;105(1):218–25. https://doi.org/10.3324/haematol.2019.217083.; Zhu T., Zou X., Yang C. et al. Neutrophil extracellular traps promote gastric cancer metastasis by inducing epithelial-mesenchymal transition. Int J Mol Med. 2021;48(1):127. https://doi.org/10.3892/ijmm.2021.4960.; Volkov D.V., Tetz G.V., Rubtsov Y.P. et al. Neutrophil extracellular traps (NETs): opportunities for targeted therapy. Acta Naturae. 2021;13(3):15–23. https://doi.org/10.32607/actanaturae.11503.; Zhang Y., Chandra V., Sanchez E.R. et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med. 2020:217(12):e20190354. https://doi.org/10.1084/jem.20190354.; Schalper K.A., Carleton M., Zhou M. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat Med. 2020;26(5):688–92. https://doi.org/10.1038/s41591-020-0856-x.; https://www.gynecology.su/jour/article/view/1856
-
7Academic Journal
المؤلفون: N. A. Makatsariya, V. O. Bitsadze, J. Kh. Khizroeva, F. A. Chervenak, A. D. Makatsariya, Н. А. Макацария, В. О. Бицадзе, Д. Х. Хизроева, Ф. Э. Червенак, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 3 (2023); 376-381 ; Акушерство, Гинекология и Репродукция; Vol 17, No 3 (2023); 376-381 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: жизнь и смерть, mother's death, life and death, смерть матери
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1716/1124; https://www.gynecology.su/jour/article/view/1716/1213; Эдвард Мунк. М.: Изд-во Третьяковская Галерея, 2019. 264 с.; Reinhold H. Munch: His Life and Work. London: Murray, 1984. 240 р.; Прокофьев В.Н. Феномен Пикассо. В кн.: Прокофьев В.Н. Об искусстве и искусствознании: Статьи разных лет. М.: Советский художник, 1985. 304 с.; Wilson S. Egon Schiele. Oxford, 1980. 80 р.; Kallir J. Egon Schiele, the complete works. New York: H.N. Abrams, 1990. 687 p.; Prignitz-Poda H. Frida Kahlo: Life and Work. New York: Schirmer/Mosel, 2007. 259 p.; Астахов Ю.А. Густав Климт. Живопись и графика. М.: Изд-во Белый город, 2018. 240 с.; Карез П. Климт: Эпоха и жизнь венского художника. Роман-биография. М.: Молодая гвардия, 2019. 671 с.; https://www.gynecology.su/jour/article/view/1716
-
8Academic Journal
المؤلفون: K. N. Grigoreva, N. R. Gashimova, V. O. Bitsadze, L. L. Pankratyeva, J. Kh. Khizroeva, M. V. Tretyakova, V. I. Tsibizova, N. D. Degtyareva, A. V. Mulenkova, J.-C. Gris, M. V. Kvaratskheliia, E. Grandone, F. E. Yakubova, D. V. Blinov, A. D. Makatsariya, К. Н. Григорьева, Н. Р. Гашимова, В. О. Бицадзе, Л. Л. Панкратьева, Д. Х. Хизроева, М. В. Третьякова, В. И. Цибизова, Н. Д. Дегтярева, А. В. Муленкова, Ж.-К. Гри, М. В. Кварацхелия, Э. Грандоне, Ф. Э. Якубова, Д. В. Блинов, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 2 (2023); 221-230 ; Акушерство, Гинекология и Репродукция; Vol 17, No 2 (2023); 221-230 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: vWF, pregnancy, gestation, von Willebrand factor, беременность, гестация, фактор фон Виллебранда
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1655/1108; https://www.gynecology.su/jour/article/view/1655/1214; Moake J.L., Rudy C.K., Troll J.H. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;(23)307:1432–5. https://doi.org/10.1056/NEJM198212023072306.; Tsai H.M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87(10):4235–44.; Furlan M., Robles R., Lammle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223–34.; Zhou Y.-F., Eng E.T., Zhu J. et al. Sequence and structure relationships within von Willebrand factor. Blood. 2012;120(2):449–58. https://doi.org/10.1182/blood-2012-01-405134.; Lenting P.J., Christophe O.D., Denis CV. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015;125(13):2019–28. https://doi.org/10.1182/blood-2014-06-528406.; De Ceunynck K., De Meyer S.F., Vanhoorelbeke K. Unwinding the von Willebrand factor strings puzzle. Blood. 2013;121(2):270–7. https://doi.org/10.1182/blood-2012-07-442285.; Grandone E., Vimercati A., Sorrentino F. et al. Obstetric outcomes in pregnant COVID-19 women: the imbalance of von Willebrand factor and ADAMTS13 axis. BMC Pregnancy Childbirth. 2022;22(1):142. https://doi.org/10.1186/s12884-022-04405-8.; English F.A., Kenny L.C., McCarthy F.P. Risk factors and effective management of preeclampsia. Integr Blood Press Control. 2015;8:7–12. https://doi.org/10.2147/IBPC.S50641.; Gris J.-C., Bouvier S., Cochery-Nouvellon E. et al. The role of haemostasis in placenta-mediated complications. Thromb Res. 2019;181 Suppl 1:S10–S14. https://doi.org/10.1016/S0049-3848(19)30359-7.; Drury-Stewart D., Lannert K., Chung D. et al. Complex changes in von Willebrand factor-associated parameters are acquired during uncomplicated pregnancy. PLoS One. 2014;9(11):e112935. https://doi.org/10.1371/journal.pone.0112935.; Chen Y., Huang P., Han C. et al. Association of placenta-derived extracellular vesicles with pre-eclampsia and associated hypercoagulability: A clinical observational study. BJOG. 2020;128(6):1037–46. https://doi.org/10.1111/1471-0528.16552.; Gadisseur A., Berneman Z., Schroyens W., Michiels J.J. Laboratory diagnosis of von Willebrand disease type 1/2E (2A subtype IIE), type 1 Vicenza and mild type 1 caused by mutations in the D3, D4, B1-B3 and C1-C2 domains of the von Willebrand factor gene. Role of von Willebrand factor multimers and the von Willebrand factor propeptide/antigen ratio. Acta Haematol. 2009;121(2–3):128–38. https://doi.org/10.1159/000214853.; Hulstein J., Heimel P., Franx A. et al. Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. J Thromb Haemost. 2006;4(12):2569–75. https://doi.org/10.1111/j.1538-7836.2006.02205.x.; Stepanian A., Cohen-Moatti M., Sanglier T. et al. Von Willebrand factor and ADAMTS13: a candidate couple for preeclampsia pathophysiology. Arterioscler Thromb Vasc Biol. 2011;31(7):1703–9. https://doi.org/10.1161/ATVBAHA.111.223610.; Ramadan M., Badr D., Hubeish M. et al. HELLP syndrome, thrombotic thrombocytopenic purpura or both: appraising the complex association and proposing a stepwise practical plan for differential diagnosis. J Hematol. 2018;7(1):32–7. https://doi.org/10.14740/jh347w.; Sánchez-Luceros A., Farías C., Amaral M. et al. von Willebrand factor-cleaving protease (ADAMTS13) activity in normal non-pregnant women, pregnant and post-delivery women. Thromb Haemost. 2004;92(6):1320–6. https://doi.org/10.1160/TH03-11-0683.; Molvarec A., Rigó J., Bõze T. et al. Increased plasma von Willebrand factor antigen levels but normal von Willebrand factor cleaving protease (ADAMTS13) activity in preeclampsia. Thromb Haemost. 2009;101(2):305–11.; Joly B.S., Darmon M., Dekimpe C. et al. Imbalance of von Willebrand factor and ADAMTS13 axis is rather a biomarker of strong inflammation and endothelial damage than a cause of thrombotic process in critically ill COVID-19 patients. J Thromb Haemost. 2021;19(9):2193–8. https://doi.org/10.1111/jth.15445.; Favaloro E.J., Henry B.M., Lippi G. Increased VWF and decreased ADAMTS-13 in COVID-19: creating a milieu for (micro)thrombosis. Semin Thromb Hemost. 2021;47(4):400–18. https://doi.org/10.1055/s-0041-1727282.; Doevelaar A., Bachmann M., Hölzer B. et al. COVID-19 is associated with relative ADAMTS13 deficiency and VWF multimer formation resembling TTP (Preprint). medRxiv. August 25, 2020. https://doi.org/10.1101/2020.0.; https://www.gynecology.su/jour/article/view/1655
-
9Academic Journal
المؤلفون: V. O. Bitsadze, M. S. Zainulina, J. Kh. Khizroeva, M. G. Nikolaeva, A. D. Makatsariya, В. О. Бицадзе, М. С. Зайнулина, Д. Х. Хизроева, М. Г. Николаева, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 4 (2023); 533-545 ; Акушерство, Гинекология и Репродукция; Vol 17, No 4 (2023); 533-545 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: биоаналоги, VTEs, low molecular weight heparins, LMWHs, Fraxiparine, dosage, biosimilars, ВТЭО, клинические рекомендации, низкомолекулярные гепарины, НМГ, фраксипарин, дозы
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1770/1139; Surveillance of maternal deaths in the UK 2011-13 and lessons learned to inform maternity care from the UK and Ireland Confidential Enquiries into Maternal Deaths and Morbidity 2009-13. MBRRACE-UK, 2015. 116 р. Available at: https://maternalmentalhealthalliance.org/wp-content/uploads/MBRRACE-UK-Maternal-Report-2015-3.pdf.; Здравоохранение в России. Статистический сборник. М.: Федеральная служба государственной статистики (Росстат), 2019. 171 с. Режим доступа: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2019.pdf.; Gris J.-C., Aoun J., Rzaguliyeva L. et al. Risk assessment and management of venous thromboembolism in women during pregnancy and puerperium (SAVE): an international, cross-sectional study. TH Open. 2018;2(2):e116–e130. https://doi.org/10.1055/s-0038-1635573.; Anderson F.A., Spencer F.A. Risk factors for venous thromboembolism. Circulation. 2003;107(23 Suppl 1):9–16. https://doi.org/10.1161/01.CIR.0000078469.07362.E6.; Royal College of Obstetricians and Gynaecologists. Reducing the Risk of Venous Thromboembolism during Pregnancy and the Puerperium. Green-top Guideline No. 37a. London: RCOG, 2015. Available at: https://www.rcog.org.uk/globalassets/documents/guidelines.; Клинические рекомендации – Венозные осложнения во время беременности и послеродовом периоде. Акушерская тромбоэмболия – 2022-2023-2024 (14.02.2022). М.: Министерство здравоохранения Российской Федерации, 2022. 66 с. Режим доступа: http://disuria.ru/_ld/11/1153_kr22O22MZ.pdf.; Федеральный закон РФ от 29.11.2010 N 326-ФЗ – Об обязательном медицинском страховании в РФ – Действующая последняя редакция от 24.02.2021 – Редакция N 35 – В действии с 24.02.2021. 87 c. Режим доступа: http://disuria.ru/_ld/0/62_326FZ29112010.pdf.; Greer I.A., Nelson-Piercy С. Low molecular weight heparins for thromboprophylaxis and treatment of venous thromboembolism in pregnancy: a systematic review of safety and efficacy. Blood. 2005;106(2):401–7. https://doi.org/10.1182/blood-2005-02-0626.; Simeone R., Giacomello R., Bruno G. et al. Thrombogenesis in thrombophilic pregnancy: evaluation of low-molecular-weight heparin prophylaxis. Acta Haematol. 2017;137(4):201–6. https://doi.org/10.1159/000467385.; ACOG Practice Bulletin No. 197: Inherited Thrombophilias in Pregnancy. Obstet Gynecol. 2018;132(1):e18–e34. https://doi.org/10.1097/AOG.0000000000002703.; Bates S.M., Middeldorp S., Rodger M. et al. Guidance for the treatment and prevention of obstetric-associated venous thromboembolism. J Thromb Thrombolysis. 2016;41(1):92–128. https://doi.org/10.1007/s11239-015-1309-0.; Henriksson P., Westerlund E., Wallén H. et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilisation: cross sectional study. BMJ. 2013;346:e8632. https://doi.org/10.1136/bmj.e8632.; Hansen A.T., Kesmodel U.S., Juul S., Hvas A.M. Increased venous thrombosis incidence in pregnancies after in vitro fertilization. Hum Reprod. 2014;29(3):611–7. https://doi.org/10.1093/humrep/det458.; Olausson N., Discacciati A., Nyman A.I. et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilization with fresh respectively frozen-thawed embryo transfer: Nationwide cohort study. J Thromb Haemost. 2020;18(8):1965–73. https://doi.org/10.1111/jth.14840.; Arya R., Shehata H.A., Patel R.K. et al. Internal jugular vein thrombosis after assisted conception therapy. Br J Haematol. 2001;115(1):153–5. https://doi.org/10.1046/j.1365-2141.2001.03081.x.; Rova K., Henrik Passmark H., Lindqvist P.G. Venous thromboembolism in relation to in vitro fertilization: an approach to determining the incidence and increase in risk in successful cycles. Fertil Steril. 2012;97(1):95–100. https://doi.org/10.1016/j.fertnstert.2011.10.038.; Grandone E., Di Micco P.P., Villani M. et al.; RIETE Investigators. Venous thromboembolism in women undergoing assisted reproductive technologies: data from the RIETE Registry. Thromb Haemost. 2018;118(11):1962–8. https://doi.org/10.1055/s-0038-1673402.; van Lennep J.E.R., Meijer E., Klumper F.J.C.M et al. Low-molecularweight-heparin and pregnancy, when the dose does it: a nephrologist’s opinion: reply to a rebuttal. J Thromb Haemost. 2011;9(10):2129–30. https://doi.org/10.1111/j.1538-7836.2011.04441.x.; Bleker S.M., Buchmüller A., Chauleur C. et al. Low-molecular-weight heparin to prevent recurrent venous thromboembolism in pregnancy: Rationale and design of the Highlow study, a randomised trial of two doses. Thromb Res. 2016;144:62–6. https://doi.org/10.1016/j.thromres.2016.06.001.; Bistervels I.M., Buchmüller A., Wiegers H.M.G. et al. Intermediate-dose versus low-dose low-molecular-weight heparin in pregnant and postpartum women with a history of venous thromboembolism (Highlow study): an open-label, multicentre, randomised, controlled trial. Lancet. 2022;400(10365):1777–87. https://doi.org/10.1016/S0140-6736(22)02128-6.; Шмаков Р.Г., Вавилова Т.В, Николаева М.Г. и др. Краткие алгоритмы диагностики, профилактики и лечения венозных тромбоэмболических осложнений во время беременности. Акушерство и гинекология. 2022;12 (приложение):4–12.; van der Wall S.J., Klok F.A., den Exter P.L. et al. Higher adherence to treatment with low-molecular-weight-heparin Nadroparin than Enoxaparin because of side effects in cancer-associated venous thromboembolism. Hemasphere. 2018;2(1):e19. https://doi.org/10.1097/HS9.0000000000000019.; Mismetti P., Laporte S., Darmon J.Y. et al. Meta-analysis of low molecular weight heparin in the prevention of venous thromboembolism in general surgery. Br J Surg. 2001;88(7):913–30. https://doi.org/10.1046/j.0007-1323.2001.01800.x; Snijder C.A., Cornette J.M.W., Hop W.C.J. et al. Thrombophylaxis and bleeding complications after cesarean section. Acta Obstet Gynecol Scand. 2012;91(5):560–56. https://doi.org/10.1111/j.1600-0412.2012.01351.x.; Бицадзе В.О., Слуханчук Е.В., Хизроева Д.Х. и др. Антикоагулянтные, противовоспалительные, противовирусные и противоопухолевые свойства гепаринов. Акушерство, Гинекология и Репродукция. 2021;15(3):295–312. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.216.; Antman E.M., Hand M., Armstrong P.W. et al. 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2008;117:296–329. https://doi.org/10.1161/CIRCULATIONAHA.107.188209.; Hirsh J., Bauer K.A., Donati M.B. et al. Parenteral anticoagulants: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133(6 Suppl):141S–159S. https://doi.org/10.1378/chest.08-0689.; Fareed J., Walenga J.M., Hoppensteadt D. et al. Biochemical and pharmacologic inequivalence of low molecular weight heparins. Ann N Y Acad Sci. 1989;556:333–53. https://doi.org/10.1111/j.1749-6632.1989.tb22515.x.; Ofosu F.A. Differences in the safety profiles of two low-molecular-weight heparins. Thromb Haemost. 2008;99(6):989–90. https://doi.org/10.1160/TH08-05-0274.; Nenci G.G. Low molecular weight heparins: are they interchangeable? No.J Thromb Haemost. 2003;1:12–3.; van der Heijden J.F., Prins M.H., Büller H.R. Low molecular weight heparins: are they interchangeable? Haemostasis. 2000;30 Suppl 2:148– 57. https://doi.org/10.1159/000054183.; Kistler U., Kramers-de Quervain I., Munzinger U., Kucher N. Bleeding complications after systemic switch of routine prophylaxis for major orthopedic surgery. Thromb Haemost. 2008;99(6):1049–52. https://doi.org/10.1160/TH08-01-0019.; Maddineni J., Walenga J.M., Jeske W.P. et al. Product individuality of commercially available low-molecular-weight heparins and their generic versions: therapeutic implications. Clin Appl Thromb Hemost. 2006;12(3):267–76. https://doi.org/10.1177/1076029606291434.; U.S. Identifies Tainted Heparin in 11 Countries. The New York Times. April 22, 2008. Available at: https://www.nytimes.com/2008/04/22/health/policy/22fda.html.; Stevenson J.G. Clinical Data and Regulatory Issues of Biosimilar Products. Am J Manag Care. 2016;21(16 Suppl):s320–s330.; Gray E., Rigsby P., Behr-Gross M.-E. Collaborative study to establish the low-molecular-mass heparin for assay – European Pharmacopoeia Biological Reference Preparation. Pharmeuropa Bio. 2004;2004(1):59–76.; Harenberg J., Kakkar A., Bergqvist D. et al.; Subcommittee on Control of Anticoagulation of the SSC of the ISTH. Recommendations on biosimilar low-molecular-weight heparins. J Thromb Haemost. 2009;7(7):1222–5. https://doi.org/10.1111/j.1538-7836.2009.03349.x.; https://www.gynecology.su/jour/article/view/1770
-
10Academic Journal
المؤلفون: E. V. Slukhanchuk, V. O. Bitsadze, A. G. Solopova, J. Kh. Khizroeva, J.-K. Gris, I. Elalamy, N. D. Degtyareva, M. A. Gileva, N. V. Samburova, D. V. Shcherbakov, F. E. Yakubova, M. E. Zelepukhina, D. V. Blinov, A. D. Makatsariya, Е. В. Слуханчук, В. О. Бицадзе, А. Г. Солопова, Д. Х. Хизроева, Ж.-К. Гри, И. Элалами, Н. Д. Дегтярева, М. А. Гилева, Н. В. Самбурова, Д. В. Щербаков, Ф. Э. Якубова, М. Е. Зелепухина, Д. В. Блинов, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 4 (2023); 420-432 ; Акушерство, Гинекология и Репродукция; Vol 17, No 4 (2023); 420-432 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: резистентность к терапии, chemotherapy, neutrophil extracellular traps, NETs, thrombosis, resistance to therapy, химиотерапия, внеклеточные ловушки нейтрофилов, тромбоз
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1762/1130; van Es N., Sturk A., Middeldorp S., Nieuwland R. Effects of cancer on platelets. Semin Oncol. 2014;41(3):311–8. https://doi.org/10.1053/j.seminoncol.2014.04.015.; Thaler J., Pabinger I., Sperr W.R., Ay C. Clinical evidence for a link between microparticle-associated tissue factor activity and overt disseminated intravascular coagulation in patients with acute myelocytic leukemia. Thromb Res. 2014;133(3):303–5. https://doi.org/10.1016/j.thromres.2013.12.029.; Swystun L.L., Mukherjee S., Liaw P.C. Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J Thromb Haemost. 2011;9(11):2313–21. https://doi.org/10.1111/j.1538-7836.2011.04465.x.; Schwarzenbach H., Hoon D.S., Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37. https://doi.org/10.1038/nrc3066.; Lee Y.J., Yoon K.-A., Han J.-Y. et al. Circulating cell-free DNA in plasma of never smokers with advanced lung adenocarcinoma receiving gefitinib or standard chemotherapy as first-line therapy circulating DNA in prognosis of advanced NSCLC. Clin Cancer Res. 2011;17(15):5179–87. https://doi.org/10.1158/1078-0432.CCR-11-0400.; Demers M., Krause D.S., Schatzberg D. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancerassociated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076– 81. https://doi.org/10.1073/pnas.1200419109.; Cools-Lartigue J., Spicer J., Najmeh S., Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci. 2014;71(21):4179–94. https://doi.org/10.1007/s00018-014-1683-3.; Holdenrieder S., Stieber P., von Pawel J. et al. Circulating nucleosomes predict the response to chemotherapy in patients with advanced non–small cell lung cancer. Clin Cancer Res. 2004;10(18 Pt):5981–7. https://doi.org/10.1158/1078-0432.CCR-04-0625.; Fuchs T.A., Kremer Hovinga J.A., Schatzberg D. et al. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood. 2012;120(6):1157–64. https://doi.org/10.1182/blood-2012-02-412197.; Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7. https://doi.org/10.1038/nature01322.; Gonzalez H., Hagerling C., Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19– 20):1267–84. https://doi.org/10.1101/gad.314617.118.; Shaul M.E., Fridlender Z.G. Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol. 2019;16(10):601–20. https://doi.org/10.1038/s41571-019-0222-4.; Burn G.L., Foti A., Marsman G. et al. The neutrophil. Immunity. 2021;54(7):1377–91. https://doi.org/10.1016/j.immuni.2021.06.006.; Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134. https://doi.org/10.1038/nri.2017.105.; Huang H., Zhang H., Onuma A.E., Tsung A. Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment. Adv Exp Med Biol. 2020;1263:13–23. https://doi.org/10.1007/978-3-030-44518-8_2.; Garley M., Jabłońska E., Dąbrowska D. NETs in cancer. Tumor Biol. 2016;37(11):14355–61. https://doi.org/10.1007/s13277-016-5328-z.; Bianchi M., Niemiec M.J., Siler U. et al. Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. J Allergy Clin Immunol. 2011;127(5):1243–52.e7. https://doi.org/10.1016/j.jaci.2011.01.021.; Wang S., Li Y., Xing C. et al. Tumor microenvironment in chemoresistance, metastasis and immunotherapy of pancreatic cancer. Am J Cancer Res. 2020;10(7):1937–53.; Hedrick C.C., Malanchi I. Neutrophils in cancer: heterogeneous and multifaceted. Nat Rev Immunol. 2022;22(3):173–87. https://doi.org/10.1038/s41577-021-00571-6.; Kan M., Imaoka H., Watanabe K. et al. Chemotherapy-induced neutropenia as a prognostic factor in patients with pancreatic cancer treated with gemcitabine plus nab-paclitaxel: a retrospective cohort study. Cancer Chemother Pharmacol. 2020;86(2):203–10. https://doi.org/10.1007/s00280-020-04110-3.; Kasi P.M., Grothey A. Chemotherapy-induced neutropenia as a prognostic and predictive marker of outcomes in solid-tumor patients. Drugs. 2018;78(7):737–45. https://doi.org/10.1007/s40265-018-0909-3; Zhang Y., Guoqiang L., Sun M., Lu X. Targeting and exploitation of tumorassociated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol Med. 2020;17(1):32–43. https://doi.org/10.20892/j.issn.2095-3941.2019.0372.; Vossenaar E.R., Zendman A.J., van Venrooij W.J., Pruijn G.J. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays. 2003;25(11):1106–18. https://doi.org/10.1002/bies.10357.; Hensen S.M., Pruijn G.J. Methods for the detection of peptidylarginine deiminase (PAD) activity and protein citrullination. Mol Cel Proteomics. 2014;13(2):388–96. https://doi.org/10.1074/mcp.R113.033746.; van Beers J.J., Zendman A.J., Raijmakers R. et al. Peptidylarginine deiminase expression and activity in PAD2 knock-out and PAD4-low mice. Biochimie. 2013;95(2):299–308. https://doi.org/10.1016/j.biochi.2012.09.029.; Lewis H.D., Liddle J., Coote J.E. et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol. 2015;11(3):189–91. https://doi.org/10.1038/nchembio.1735.; Martinod K., Demers M., Fuchs T.A. et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110(21):8674–9. https://doi.org/10.1073/pnas.1301059110.; Lysov Z., Dwivedi D.J., Gould T.J., Liaw P.C. Procoagulant effects of lung cancer chemotherapy: impact on microparticles and cell-free DNA. Blood Coagul Fibrinolysis. 2017;28(1):72–82. https://doi.org/10.1097/MBC.0000000000000546.; Lysov Z., Swystun L.L., Kuruvilla S. et al. Lung cancer chemotherapy agents increase procoagulant activity via protein disulfide isomerasedependent tissue factor decryption. Blood Coagul Fibrinolysis. 2015;26(1):36–45. https://doi.org/10.1097/MBC.0000000000000145.; Wang H.-J., Huang H., Chuang Y.-C., Huang H.-C. Paclitaxel induces up-regulation of tissue factor in human aortic endothelial cells. Int Immunopharmacol. 2009;9(1):144–7. https://doi.org/10.1016/j.intimp.2008.10.003.; Hakkim A., Fürnrohr B.G., Amann K. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A. 2010;107(21):9813–18. https://doi.org/10.1073/pnas.0909927107.; Farrera C., Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol. 2013;191(5):2647–56. https://doi.org/10.4049/jimmunol.1300436; Stoetzer O.J., Fersching D.M., Salat C. et al. Prediction of response to neoadjuvant chemotherapy in breast cancer patients by circulating apoptotic biomarkers nucleosomes, DNAse, cytokeratin-18 fragments and survivin. Cancer Lett. 2013;336(1):140–8. https://doi.org/10.1016/j.canlet.2013.04.013.; Longstaff C., Varjú I., Sótonyi P. et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem. 2013;288(10):6946–56. https://doi.org/10.1074/jbc.M112.404301.; Varjú I., Longstaff C., Szabó L. et al. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thromb Haemost. 2015;113(6):1289–98. https://doi.org/10.1160/TH14-08-0669.; Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5. https://doi.org/10.1073/pnas.1005743107.; Schiff P.B., Fant J., Horwitz S.B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277(5698):665–7. https://doi.org/10.1038/277665a0.; Nogales E., Grayer Wolf S., Khan I.A. et al. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature. 1995;375(6530):424–7. https://doi.org/10.1038/375424a0.; Nogales E. Structural insights into microtubule function. Annu Rev Biochem. 2000;69:277–302. https://doi.org/10.1146/annurev.biochem.69.1.277.; Schiff P.B., Horwitz S.B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980;77(3):1561–5. https://doi.org/10.1073/pnas.77.3.1561.; Marupudi N.I., Han J.E., Li K.W. et al. Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf. 2007;6(5):609–21. https://doi.org/10.1517/14740338.6.5.609.; Knox R.J., Friedlos F., Lydall D.A., Roberts J.J. Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloroplatinum (II) and cis-diammine-(1,1-cyclobutanedicarboxylato) platinum (II) differ only in the kinetics of their interaction with DNA. Cancer Res.1986;46(4 Pt):1972–9.; Zhang Y., Chandra V., Riquelme Sanchez E. et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med. 2020;217(12):e20190354. https://doi.org/10.1084/jem.20190354.; Teijeira Á., Garasa S., Gato M. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52(5):856– 71.e8. https://doi.org/10.1016/j.immuni.2020.03.001.; Zhu T., Zou X., Yang C. et al. Neutrophil extracellular traps promote gastric cancer metastasis by inducing epithelial-mesenchymal transition. Int J Mol Med. 2021;48(1):127. https://doi.org/10.3892/ijmm.2021.4960.; Ribatti D., Tamma R., Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Trans Oncol. 2020;13(6):100773. https://doi.org/10.1016/j.tranon.2020.100773.; Cabral-Pacheco G.A., Garza-Veloz I., Castruita-De la Rosa C. et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739. https://doi.org/10.3390/ijms21249739.; Gao H., Lan X., Li S., Xue Y. Relationships of MMP-9, E-cadherin, and VEGF expression with clinicopathological features and response to chemosensitivity in gastric cancer. Tumor Biol. 2017;39(5):1010428317698368. https://doi.org/10.1177/1010428317698368.; Viallard C., Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20(4):409–26. https://doi.org/10.1007/s10456-017-9562-9.; Rayes R.F., Vourtzoumis P., Rjeily M.B. et al. Neutrophil extracellular trapassociated CEACAM1 as a putative therapeutic target to prevent metastatic progression of colon carcinoma. J Immunol. 2020;204:(8)2285–94. https://doi.org/10.4049/jimmunol.1900240.; Wherry E.J. T cell exhaustion. Nat Immunol. 2011;12(6):492–9. https://doi.org/10.1038/ni.2035.; Jiang W., He Y., He W. et al. Exhausted CD8+ T cells in the tumor immune microenvironment: new pathways to therapy. Front Immunol. 2021;11:622509. https://doi.org/10.3389/fimmu.2020.622509.; Kaltenmeier C., Yazdani H.O., Morder K. et al. Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front Immunol. 2021;12:785222. https://doi.org/10.3389/fimmu.2021.785222.; https://www.gynecology.su/jour/article/view/1762
-
11Academic Journal
المؤلفون: V. O. Bitsadze, E. V. Slukhanchuk, A. G. Solopova, J. Kh. Khizroeva, D. V. Shcherbakov, F. E. Yakubova, J.-C. Gris, I. Elalamy, N. D. Degtyareva, A. V. Lazarchuk, M. A. Gileva, N. V. Samburova, Z. D. Aslanova, D. V. Blinov, A. S. Shkoda, A. D. Makatsariya, В. О. Бицадзе, Е. В. Слуханчук, А. Г. Солопова, Д. Х. Хизроева, Д. В. Щербаков, Ф. Э. Якубова, Ж.-К. Гри, И. Элалами, Н. Д. Дегтярева, А. В. Лазарчук, М. А. Гилева, Н. В. Самбурова, З. Д. Асланова, Д. В. Блинов, А. С. Шкода, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 4 (2023); 390-401 ; Акушерство, Гинекология и Репродукция; Vol 17, No 4 (2023); 390-401 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: фолатный цикл, homocysteine, HC, hyperhomocysteinemia, HHC, oncothrombosis, folic acid, folate cycle, гомоцистеин, ГЦ, гипергомоцистеинемия, ГГЦ, онкотромбозы, фолиевая кислота
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1761/1129; Alcalay A., Wun T., Khatri V. et al. Venous thromboembolism in patients with colorectal cancer: incidence and effect on survival. J Clin Oncol. 2006;24(7):1112–8. https://doi.org/10.1200/JCO.2005.04.2150.; Khorana A.A., Francis C.W., Culakova E. et al. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer. 2007;110(10):2339–46. https://doi.org/10.1002/cncr.23062.; Sharma G.S., Kumar T., Dar T.A., Singh L.R. Protein N-homocysteinylation: From cellular toxicity to neurodegeneration. Biochim Biophys Acta. 2015;1850:2239–45. https://doi.org/10.1016/j.bbagen.2015.08.013.; Brustolin S., Giugliani R., Felix T.M. Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res. 2010;43(1):1–7. https://doi.org/10.1590/s0100-879x2009007500021.; Seshadri S. Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer's disease? J Alzheimer's Dis. 2006;9(4):393–8. https://doi.org/10.3233/jad-2006-9404.; Mancardi D., Penna C., Merlino A. et al. Physiological and pharmacological features of the novel gasotransmitter: hydrogen sulfide. Biochim Biophys Acta. 2009;1787(7):864–72. https://doi.org/10.1016/j.bbabio.2009.03.005.; Wu L.L., Wu J.T. Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta. 2002;322(1–2):21–8. https://doi.org/10.1016/s0009-8981(02)00174-2.; Seshadri S., Beiser A., Selhub J. et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med. 2002;346(7):476–83. https://doi.org/10.1056/NEJMoa011613.; Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19:217–46. https://doi.org/10.1146/annurev.nutr.19.1.217.; Jacques P.F., Bostom A.G., Williams R.R. et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation. 1996;93(1):7–9. https://doi.org/10.1161/01.cir.93.1.7.; Williams K.T., Schalinske K.L. New insights into the regulation of methyl group and homocysteine metabolism. J Nutr. 2007;137(2):311–4. https://doi.org/10.1093/jn/137.2.311.; Locasale J.W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13(8):572–83. https://doi.org/10.1038/nrc3557.; Zhang S.M., Willett W.C., Selhub J. et al. Plasma folate, vitamin B6, vitamin B12, homocysteine, and risk of breast cancer. J Natl Cancer Inst. 2003;95(5):373–80. https://doi.org/10.1093/jnci/95.5.373.; Siniscalchi A., Mancuso F., Gallelli L. et al. Increase in plasma homocysteine levels induced by drug treatments in neurologic patients Pharmacol Res. 2005;52(5):367–75. https://doi.org/10.1016/j.phrs.2005.05.013.; Hjelt K., Brynskov J., Hippe E. et al. Oral contraceptives and the cobalamin (vitamin B12) metabolism. Acta Obstet Gynecol Scand. 1985;64(1):59–63. https://doi.org/10.3109/00016348509154689.; Matsuo K., Hamajima N., Hirai T. et al. Methionine synthase reductase gene A66G polymorphism is associated with risk of colorectal cancer. Asian Pac J Cancer Prev. 2002;3(4):353–9.; Obwegeser R., Hohlagschwandtner M., Sinzinger H. Homocysteine – a pathophysiological cornerstone in obstetrical and gynaecological disorders? Hum Reprod Update. 1999;5(1):64–72. https://doi.org/10.1093/humupd/5.1.64.; Montfort W.R., Perry K.M., Fauman E.B. et al. Structure, multiple site binding, and segmental accommodation in thymidylate synthase on binding dUMP and an anti-folate. Biochemistry. 1990;29(30):6964–77. https://doi.org/10.1021/bi00482a004.; Blount B.C., Mack M.M., Wehr C.M. et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A. 1997;94(7):3290–5. https://doi.org/10.1073/pnas.94.7.3290.; Hay R.K., Park J.-G., Gazdar A. Atlas of human tumor cell lines. Academic Press, 2013. 490; Crider K.S., Yang T.P., Berry R.J., Bailey L.B. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv Nutr. 2012;3(1):21–38. https://doi.org/10.3945/an.111.000992.; Hall L.E., Mitchell S.E, O’Neill R.J. Pericentric and centromeric transcription: a perfect balance required. Chromosome Res. 2012;20(5):535–46. https://doi.org/10.1007/s10577-012-9297-9.; Ehrlich M. DNA hypomethylation, cancer, the immunodeficiency, centromeric region instability, facial anomalies syndrome and chromosomal rearrangements. J Nutr. 2002;132(8 Suppl):2424S–2429S. https://doi.org/10.1093/jn/132.8.2424S.; Zhang D., Wen X., Wu W. et al. Elevated homocysteine level and folate deficiency associated with increased overall risk of carcinogenesis: metaanalysis of 83 case-control studies involving 35,758 individuals. PLoS One. 2015;10(5):e0123423. https://doi.org/10.1371/journal.pone.0123423.; Stathopoulou A., Vlachonikolis I., Mavroudis D. et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: Evaluation of their prognostic significance. J Clin Oncol. 2002;20(16):3404–12. https://doi.org/10.1200/JCO.2002.08.135.; Mcdonald L., Bray C., Field C. et al. Homocystinuria, thrombosis, and the blood-platelets. Lancet. 1964;1(7336):745–6. https://doi.org/10.1016/s0140-6736(64)92852-1.; Tonetti C., Amiel J., Munnich A., Zittoun J. Impact of new mutations in the methylenetetrahydrofolate reductase gene assessed on biochemical phenotypes: a familial study. J Inherit Metab Dis. 2001;24(8):833–42. https://doi.org/10.1023/a:1013988123902.; Sibani S., Christensen B., O'Ferrall E. et al. Characterization of six novel mutations in the methylenetetrahydrofolate reductase (MTHFR) gene in patients with homocystinuria. Hum Mutat. 2000;15(3):280–7. https://doi.org/10.1002/(SICI)1098-1004(200003)15:33.0.CO;2-I.; Kluijtmans L.A., Wendel U., Stevens E. et al. Identification of four novel mutations in severe methylenetetrahydrofolate reductase deficiency. Eur J Hum Genet. 1998;6(3):257–65. https://doi.org/10.1038/sj.ejhg.5200182.; Brezovska-Kavrakova J., Krstevska M., Bosilkova G. et al. Hyperhomocysteinemia and of methylenetetrahydrofolate reductase (C677T) genetic polymorphism in patients with deep vein thrombosis. Mater Sociomed. 2013;25(3):170–4. https://doi.org/10.5455/msm.2013.25.170-174.; van der Put N.M., Steegers-Theunissen R.P., Frosst P. et al. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet. 1995;346(8982):1070–1. https://doi.org/10.1016/s0140-6736(95)91743-8.; Robien K., Ulrich C.M. 5, 10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am J Epidemiol. 2003;157(7):571–82. https://doi.org/10.1093/aje/kwg024.; Weisberg I.S., Jacques P.F., Selhub J. et al. The 1298A→ C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis. 2001;156(2):409–15. https://doi.org/10.1016/s0021-9150(00)00671-7.; Alberg A.J., Selhub J., Shah K.V. et al. The risk of cervical cancer in relation to serum concentrations of folate, vitamin B12, and homocysteine. Cancer Epidemiol Biomarkers Prev. 2000;9(7):761–4.; Powers H.J. Interaction among folate, riboflavin, genotype, and cancer, with reference to colorectal and cervical cancer. J Nutr. 2005;135(12 Suupl):2960S–2966S. https://doi.org/10.1093/jn/135.12.2960S.; Gatt A., Makris A., Cladd H. et al. Hyperhomocysteinemia in women with advanced breast cancer. Int J Lab Hematol. 2007;29(6):421–5. https://doi.org/10.1111/j.1751-553X.2007.00907.x.; Heit J.A., O'Fallon W.M., Petterson T.M. et al. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a populationbased study. Arch Intern Med. 2002;162(11):1245–8. https://doi.org/10.1001/archinte.162.11.1245.; Welch G.N., Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998;338(15):1042–50. https://doi.org/10.1056/NEJM199804093381507.; Sharma G.S., Kumar T., Singh L.R. N-homocysteinylation induces different structural and functional consequences on acidic and basic proteins. PLoS One. 2014;9:e116386. https://doi.org/10.1371/journal.pone.0116386.; Kumar T., Sharma G.S., Singh L.R. Homocystinuria: therapeutic approach. Clin Chim Acta. 2016;458:55–62. https://doi.org/10.1016/j.cca.2016.04.002.; Lentz S.R., Sobey C.G., Piegors D.J. et al. Vascular dysfunction in monkeys with diet-induced hyperhomocyst (e) inemia. J Clin Invest. 1996;98(1):24–9. https://doi.org/10.1172/JCI118771.; FitzGerald G.A. Parsing an enigma: the pharmacodynamics of aspirin resistance. Lancet. 2003;361(9357):542–4. https://doi.org/10.1016/S0140-6736(03)12560-3.; Sibrian-Vazquez M., Escobedo J.O., Lim S. et al. Homocystamides promote free-radical and oxidative damage to proteins. Proc Natl Acad Sci U S A. 2010;107(2):551–4. https://doi.org/10.1073/pnas.0909737107.; Zhang J.-.W, Yan R., Tang Y.-S. et al. Hyperhomocysteinemia-induced autophagy and apoptosis with downregulation of hairy enhancer of split 1/5 in cortical neurons in mice. Int J Immunopathol Pharmacol. 2017;30(4):371–82. https://doi.org/10.1177/0394632017740061.; Škovierová H., Vidomanová E., Mahmood S. et al. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci. 2016;17(10):1733. https://doi.org/10.3390/ijms17101733.; Biron F., Rousseau J., Baulin J. et al. Thromboembolic event and metabolic hyperhomocysteinemia: A case report and review of literature. Ann Cardiol Angeiol (Paris). 2021;70(3):177–82. (In French). https://doi.org/10.1016/j.ancard.2021.01.008.; Aday A.W., Duran E.K, Van Denburgh M. et al. Homocysteine is associated with future venous thromboembolism in 2 prospective cohorts of women. Arterioscler Thromb Vasc Biol. 2021;41(7):2215–24. https://doi.org/10.1161/ATVBAHA.121.316397.; https://www.gynecology.su/jour/article/view/1761
-
12Academic Journal
المؤلفون: V. O. Bitsadze, J. Kh. Khizroeva, A. G. Solopova, M. V. Kvaratskheliia, D. Yu. Zabolotnaya, Z. Xiaoxia, M. V. Tretyakova, V. I. Tsibizova, N. R. Gashimova, K. N. Grigoreva, M. A. Gileva, A. S. Shkoda, J.-Ch. Gris, A. D. Makatsariya, В. О. Бицадзе, Д. Х. Хизроева, А. Г. Солопова, М. В. Кварацхелия, Д. Ю. Заболотная, Ч. Сяося, М. В. Третьякова, В. И. Цибизова, Н. Р. Гашимова, К. Н. Григорьева, М. А. Гилева, А. С. Шкода, Ж.-К. Гри, А. Д. Макацария
المساهمون: The paper was prepared and submitted with financial support from LLC Primafarm (Russia)., Подготовка и размещение статьи финансировались ООО Примафарм (Россия).
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 3 (2023); 332-342 ; Акушерство, Гинекология и Репродукция; Vol 17, No 3 (2023); 332-342 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: безопасность, COCs, venous thromboembolism, VTE, needs, efficacy, safety, КОК, венозные тромбоэмболии, ВТЭ, потребности, эффективность
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1714/1120; Liao P.V., Dollin J. Half a century of the oral contraceptive pill: historical review and view to the future. Can Fam Physician. 2012;58(12):e757–60.; Regidor P.A. The clinical relevance of progestogens in hormonal contraception: Present status and future developments. Oncotarget. 2018;9(77):34628–38. https://doi.org/10.18632/oncotarget.26015.; Bateson D., Butcher B.E., Donovan C. et al. Risk of venous thromboembolism in women taking the СОСs: A systematic review and meta-analysis. Aust Fam Physician. 2016;45(1):59–64.; De Leo V., Musacchio M.C., Cappelli V. et al. Hormonal contraceptives: pharmacology tailored to women's health. Hum Reprod Update. 2016;22(5):634–46. https://doi.org/10.1093/humupd/dmw016.; Дикке Г.Б. Просто «таблетка». Шестьдесят лет открытий и достижений, которые изменили мир. Часть I. Гормональная контрацепция: от идеи к совершенству. Фарматека. 2019;27(6):38–45. https://doi.org/10.18565/pharmateca.2020.6.10-17.; Fait T., Buryak D., Cirstoiu M.-M. et al. Needs and preferences of women users of oral contraceptives in selected countries in Central and Eastern Europe. Drugs Context. 2018;7:212510. https://doi.org/10.7573/dic.212510.; van Vlijmen E.F., Wiewel-Verschueren S., Monster T.B., Meijer K. Combined oral contraceptives, thrombophilia and the risk of venous thromboembolism: a systematic review and meta-analysis. J Thromb Haemost. 2016;14(7):1393–403. https://doi.org/10.1111/jth.13349.; Morimont L., Haguet H., Dogné J.M. et al. Combined oral contraceptives and venous thromboembolism: Review and perspective to mitigate the risk. Front Endocrinol (Lausanne). 2021;12:769187. https://doi.org/10.3389/fendo.2021.769187.; Михайлова О.И., Мирзабекова Д.Д., Тютюнник В.Л., Кан Н.Е. Выбор метода контрацепции в послеродовом периоде. Зарождение жизни. 2022;(1):40–4. https://doi.org/10.46393/27826384_2022_1_40.; Guang-Sheng F., Mei-Lu B., Li-Nan C. et al. Efficacy and safety of the combined oral contraceptive ethinylestradiol/drospirenone (Yasmin) in healthy Chinese women: a randomized, open-label, controlled, multicentre trial. Clin Drug Investig. 2010;30(6):387–96. https://doi.org/10.1007/BF03256908.; Caprio M., Antelmi A., Chetrite G. et al. Antiadipogenic effects of the mineralocorticoid receptor antagonist drospirenone: potential implications for the treatment of metabolic syndrome. Endocrinology. 2011;152(1):113–25. https://doi.org/10.1210/en.2010-0674.; Wallwiener C.W., Wallwiener L.-M., Seeger H. et al. Prevalence of sexual dysfunction and impact of contraception in female German medical students. J Sex Med. 2010;7(6):2139–48. https://doi.org/10.1111/j.1743-6109.2010.01742.x.; Higgins J.A., Hoffman S., Graham S.A., Sanders S.A. Relationships between condoms, hormonal methods, and sexual pleasure and satisfaction: an exploratory analysis from the Women's Well-Being and Sexuality Study. Sex Health. 2008;5(4):321–3. https://doi.org/10.1071/sh08021.; Здравомыслов В.И., Анисимова З.Е., Либих С.С. Функциональная женская сексопатология. Пермь: ТОО фирма «Репринт», 1994. 272 с.; Sanders S.A., Graham C.A, Bass J.L., Bancroft J. A prospective study of the effects of oral contraceptives on sexuality and well-being and their relationship to discontinuation. Contraception. 2001;64(1):51–8. https://doi.org/10.1016/s0010-7824(01)00218-9.; Shamseddin M., De Martino F., Constantin C. et al. Contraceptive progestins with androgenic properties stimulate breast epithelial cell proliferation. EMBO Mol Med. 2021;13(7):e14314. https://doi.org/10.15252/emmm.202114314.; Мусина Е.В., Коган И.Ю., Тарасова М.А. Лечебное действие дезогестрела при масталгии у женщин с фиброзно-кистозной болезнью молочных желез. Проблемы репродукции. 2013;(5):42–6.; Жуковская И.Г., Хузина Л.Ф. Некоторые аспекты приверженности к комбинированной гормональной контрацепции у молодых женщин. Медицинский совет. 2022;16(16):93–8. https://doi.org/10.21518/2079-701X-2022-16-16-93-98.; Ebede T.L., Arch E.L., Berson D. Hormonal treatment of acne in women. J Clin Aesthet Dermatol. 2009;2(12):16–22.; Mueck A.O., Sitruk-Ware R. Nomegestrol acetate, a novel progestogen for oral contraception. Steroids. 2011;76(6):531–9. https://doi.org/10.1016/j.steroids.2011.02.002.; Nappi R.E., Albani F., Tonani S. et al. Psychosexual well-being in women using oral contraceptives containing drospirenone. Funct Neurol. 2009;24(2):71–5.; Ndefo U.A., Eaton A., Green M.R. Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. P T. 2013;38(6):336–55.; Amiri M., Kabir A., Nahidi F. et al. Effects of combined oral contraceptives on the clinical and biochemical parameters of hyperandrogenism in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Eur J Contracept Reprod Health Care. 2018;23(1):64–77. https://doi.org/10.1080/13625187.2018.1435779.; Ehrhart-Bornstein M., Lamounier-Zepter V., Schraven A. et al. Human adipocytes secrete mineralcorticoid-releasing factors. Proc Natl Acad Sci USA. 2003;100(24):14211–6. https://doi.org/10.1073/pnas.2336140100.; Bird S.T., Hartzema A.G., Brophy J.M et al. Risk of venous thromboembolism in women with polycystic ovary syndrome: a population-based matched cohort analysis. CMAJ. 2013;185(2):E115–20. https://doi.org/10.1503/cmaj.120677.; Dinger J.C., Heinemann L.A.J., Kühl-Habich D. The safety of a drosperinone-containing oral contraceptive: final results from the European Active Surveillance study on oral contraceptives based on 142,475 women-years of observation. Contraception. 2007;75(5):344–54. https://doi.org/10.1016/j.contraception.2006.12.019.; https://www.gynecology.su/jour/article/view/1714
-
13Academic Journal
المؤلفون: K. N. Grigoreva, N. R. Gashimova, V. O. Bitsadze, L. L. Pankratyeva, J. Kh. Khizroeva, M. V. Tretyakova, J.-C. Gris, A. E. Malikova, D. V. Blinov, V. I. Tsibizova, N. D. Degtyareva, S. V. Martirosyan, A. D. Makatsariya, К. Н. Григорьева, Н. Р. Гашимова, В. О. Бицадзе, Л. Л. Панкратьева, Д. Х. Хизроева, М. В. Третьякова, Ж.-К. Гри, А. Е. Маликова, Д. В. Блинов, В. И. Цибизова, Н. Д. Дегтярева, С. В. Мартиросян, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 1 (2023); 127-137 ; Акушерство, Гинекология и Репродукция; Vol 17, No 1 (2023); 127-137 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: беременность, von Willebrand factor, vWF, ADAMTS-13/vWF axis, preeclampsia, PE, pregnancy, фактор фон Виллебранда, ось ADAMTS-13/vWF, преэклампсия, ПЭ
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1554/1079; Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc NY Pathol Soc. 1924;24:21–4.; Moschowitz E. An acute febrile pleiochromic anemia with hyaline thrombosis of the terminal arterioles and capillaries: an undescribed disease. Arch Intern Med. 1925;36(1):89–93.; Singer K., Bornstein F.P., Wile S.A. Thrombotic thrombocytopenic purpura; hemorrhagic diathesis with generalized platelet thromboses. Blood. 1947;2(6):542–54.; Amorosi E., Ultmann J. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45(2):139–60. https://doi.org/10.1097/00005792-196603000-00003.; Moake J.L., Rudy C.K., Troll J.H. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;307(23):1432–5. https://doi.org/10.1056/NEJM198212023072306.; Furlan M., Robles R., Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223–34.; Tsai H.M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87(10):4235–44.; Gerritsen H.E., Robles R., Lämmle B., Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood. 2001;98(6):1654–61. https://doi.org/10.1182/blood.v98.6.1654.; McGrath R.T., McKinnon T.A.J., Byrne B. et al. Expression of terminal alpha2-6-linked sialic acid on von Willebrand factor specifically enhances proteolysis by ADAMTS13. Blood. 2010;115(13):2666–73. https://doi.org/10.1182/blood-2009-09-241547.; Schaller M., Studt J.-D., Voorberg J., Hovinga J.A.K. Acquired thrombotic thrombocytopenic purpura. Development of an autoimmune response. Hamostaseologie. 2013;33(2):121–30. https://doi.org/10.5482/HAMO-12-12-0023.; Jian C., Xiao J., Gong L. et al. Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Blood. 2012;119(16):3836–43. https://doi.org/10.1182/blood-2011-12-399501.; Gao W., Anderson P.J., Majerus E.M. et al. Exosite interactions contribute to tension-induced cleavage of von Willebrand factor by the antithrombotic ADAMTS13 metalloprotease. Proc Natl Acad Sci U S A. 2006;103(50):19099–104. https://doi.org/10.1073/pnas.0607264104.; Voorberg J., Verbij F.C., Fijnheer R. Disappearing acts of ADAMTS13. EBioMedicine. 2015;2(8):800–1. https://doi.org/10.1016/j.ebiom.2015.07.013.; Zhou W., Inada M., Lee T.-P. et al. ADAMTS13 is expressed in hepatic stellate cells. Lab Invest. 2005;85(6):780–8. https://doi.org/10.1038/labinvest.3700275.; Turner N., Nolasco L., Tao Z. et al. Human endothelial cells synthesize and release ADAMTS-13. J Thromb Haemost. 2006;4(6):1396–404. https://doi.org/10.1111/j.1538-7836.2006.01959.x.; Shen L., Lu G., Dong N. et al. Simvastatin increases ADAMTS13 expression in podocytes. Thromb Res. 2013;132(1):94–9. https://doi.org/10.1016/j.thromres.2013.05.02.; Tauchi R., Imagama S., Ohgomori T. et al. ADAMTS-13 is produced by glial cells and upregulated after spinal cord injury. Neurosci Lett. 2012;517(1):1–6. https://doi.org/10.1016/j.neulet.2012.03.002.; Zeng M., Chen Q., Liang W. et al. Predictive value of ADAMTS-13 on concealed chronic renal failure in COPD patients. Int J Chron Obstruct Pulmon Dis. 2017;12:3495–501. https://doi.org/10.2147/COPD.S151983.; Singh K., Kwong A.C., Madarati H. et al. Characterization of ADAMTS13 and von Willebrand factor levels in septic and non-septic ICU patients. PLoS One. 2021;16(2):e0247017. https://doi.org/10.1371/journal.pone.0247017.; Moller C., Schutte A.E., Smith W., Botha-Le Roux S. Von Willebrand factor, its cleaving protease (ADAMTS13), and inflammation in young adults: the African-PREDICT study. Cytokine. 2020;136:155265. https://doi.org/10.1016/j.cyto.2020.155265.; Langholm L.L., Rønnow S.R., Sand J.M.B. et al. Increased von Willebrand factor processing in COPD, reflecting lung epithelium damage, is associated with emphysema, exacerbations and elevated mortality risk. Int J Chron Obstruct Pulmon Dis. 2020;15:543–52. https://doi.org/10.2147/COPD.S235673.; Frentzou G., Bradford C., Harkness KA. et al. IL-1beta down-regulates ADAMTS-13 mRNA expression in cells of the central nervous system. J Mol Neurosci. 2012;46(2):343–51. https://doi.org/10.1007/s12031-011-9591-6.; Shen L., Lu G., Dong N. et al. Simvastatin increases ADAMTS13 expression in podocytes. Thromb Res. 2013;132(1):94–9. https://doi.org/10.1016/j.thromres.2013.05.024.; Springer T.A. Biology and physics of von Willebrand factor concatamers. J Thromb Haemost. 2011;9 Suppl 1(0 1):130–43. https://doi.org/10.1111/j.1538-7836.2011.04320.x.; Hobbs W.E., Moore E.E., Penkala R.A. et al. Cocaine and specific cocaine metabolites induce von Willebrand factor release from endothelial cells in a tissue-specific manner. Arterioscler Thromb Vasc Biol. 2013;33(6):1230–7. https://doi.org/10.1161/ATVBAHA.113.301436.; Chang J.C. TTP-like syndrome: novel concept and molecular pathogenesis of endotheliopathy-associated vascular microthrombotic disease. Thromb J. 2018;16:20. https://doi.org/10.1186/s12959-018-0174-4.; Sadler J.E. Von Willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura. Blood. 2008;112(1):11–8. https://doi.org/10.1182/blood-2008-02-078170.; Eischer L., Kammer M., Traby L. et al. Risk of cancer after anticoagulation in patients with unprovoked venous thromboembolism: an observational cohort study. J Thromb Haemost. 2017;15(7):1368–74. https://doi.org/10.1111/jth.13702.; George J.N. The association of pregnancy with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Curr Opin Hematol. 2003;10(5):339–44. https://doi.org/10.1097/00062752-200309000-00003.; Tsai H.M. Thrombotic thrombocytopenic purpura: a thrombotic disorder caused by ADAMTS13 deficiency. Hematol Oncol Clin North Am. 2007;21(4):609–32. https://doi.org/10.1016/j.hoc.2007.06.003.; Sakai K., Fujimura Y., Nagata Y. et al. Success and limitations of plasma treatment in pregnant women with congenital thrombotic thrombocytopenic purpura. J Thromb Haemost. 2020;18(11):2929–41. https://doi.org/10.1111/jth.15064.; Nonaka T., Yamaguch, M., Nishijima K. et al. A successfully treated case of an acute presentation of congenital thrombotic thrombocytopenic purpura (Upshaw-Schulman syndrome) with decreased ADAMTS13 during late stage of pregnancy. J Obstet Gynaecol Res. 2021;47(5):1892– 7. https://doi.org/10.1111/jog.14737.; Roose E., Tersteeg C., Demeersseman R. et al. Anti-ADAMTS13 antibodies and a novel heterozygous p.R1177Q mutation in a case of pregnancyonset immune-mediated thrombotic thrombocytopenic purpura. TH Open. 2018;2(1):e8–e15. https://doi.org/10.1055/s-0037-1615252.; Al-Husban N., Al-Kuran O. Post-partum thrombotic thrombocytopenic purpura (TTP) in a patient with known idiopathic (immune) thrombocytopenic purpura: a case report and review of the literature. J Med Case Rep. 2018;12(1):147. https://doi.org/10.1186/s13256-018-1692-1.; Ferrari B., Peyvandi F. How I treat thrombotic thrombocytopenic purpura in pregnancy. Blood. 2020;136(19):2125–32. https://doi.org/10.1182/blood.2019000962.; Sié P., Caron C., Azam J. et al. Reassessment of von Willebrand factor (VWF), VWF propeptide, factor VIII:C and plasminogen activator inhibitors 1 and 2 during normal pregnancy. Br J Haematol. 2003;121(6):897–903. https://doi.org/10.1046/j.1365-2141.2003.04371.x.; Drury-Stewart D.N., Lannert K.W., Chung D. et al. Complex changes in von Willebrand factor-associated parameters are acquired during uncomplicated pregnancy. PLoS One. 2014;9(11):e112935. https://doi.org/10.1371/journal.pone.0112935.; Chen Y., Huang P., Han C. et al. Association of placenta-derived extracellular vesicles with pre-eclampsia and associated hypercoagulability: A clinical observational study. BJOG. 2020;128(6):1037–46. https://doi.org/10.1111/1471-0528.16552.; Yoshida Y., Matsumoto M., Yagi H. et al. Severe reduction of free-form ADAMTS13, unbound to von Willebrand factor, in plasma of patients with HELLP syndrome. Blood Adv. 2017;1(20):1628–31. https://doi.org/10.1182/bloodadvances.2017006767.; Molvarec A., Rigó J., Bõze T. et al. Increased plasma von Willebrand factor antigen levels but normal von Willebrand factor cleaving protease (ADAMTS13) activity in preeclampsia. Thromb Haemost. 2009;101(2):305–11.; Ramadan M., Badr D., Hubeish M. et al. HELLP Syndrome, thrombotic thrombocytopenic purpura or both: appraising the complex association and proposing a stepwise practical plan for differential diagnosis. J Hematol. 2018;7(1):32–7. https://doi.org/10.14740/jh347w.; Sánchez-Luceros A., Farías C.E., Amaral M.M. et al. von Willebrand factorcleaving protease (ADAMTS13) activity in normal non-pregnant women, pregnant and post-delivery women. Thromb Haemost. 2004;92(6):1320– 6. https://doi.org/10.1160/TH03-11-0683.; Ramlakhan K.P., Johnson M.R., Roos-Hesselink J.W. Pregnancy and cardiovascular disease. Nat Rev Cardiol. 2020;17(11):718–31. https://doi.org/10.1038/s41569-020-0390-z.; Aref S., Goda H. Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology. 2013;18(4):237–41. https://doi.org/10.1179/1607845412Y.0000000070.; Regal J.F., Gilbert J.S., Burwick R.M. The complement system and adverse pregnancy outcomes. Mol Immunol. 2015;67(1):56–70. https://doi.org/10.1016/j.molimm.2015.02.030.; Opichka M., Rappelt M., Gutterman D.D. et al. Vascular dysfunction in preeclampsia. Cells. 2021;10(11):3055. https://doi.org/10.3390/cells10113055.; Sánchez-Aranguren L.C., Prada C.E., Riaño-Medina C.E., Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol. 2014;5:372. https://doi.org/10.3389/fphys.2014.00372.; Lamarca B. Endothelial dysfunction. An important mediator in the pathophysiology of hypertension during pre-eclampsia. Minerva Ginecol. 2012;64(4):309–20.; Gadisseur A., Berneman Z., Schroyens W., Michiels J.J. Laboratory diagnosis of von Willebrand disease type 1/2E (2A subtype IIE), type 1 Vicenza and mild type 1 caused by mutations in the D3, D4, B1-B3 and C1-C2 domains of the von Willebrand factor gene. Role of von Willebrand factor multimers and the von Willebrand factor propeptide/antigen ratio. Acta Haematol. 2009;121(2–3):128–38. https://doi.org/10.1159/000214853.; Hulstein J.J.J., Heimel P.J.V.R., Franx A. et al. Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. J Throm. Haemost. 2006;4(12):2569–75. https://doi.org/10.1111/j.1538-7836.2006.02205.x.; Stepanian A., Cohen-Moatti M., Sanglier T. et al.Von Willebrand factor and ADAMTS13: a candidate couple for preeclampsia pathophysiology. Arter Thromb Vasc Biol. 2011;31(7):1703–9. https://doi.org/10.1161/ATVBAHA.111.223610.; Sabau L.,Terriou L., Provot F. et al. Are there any additional mechanisms for haemolysis in HELLP syndrome? Thromb Res. 2016;142:40-3. https://doi.org/10.1016/j.thromres.2016.03.014.; Krogh A.-S., Hovinga J.A.K., Romundstad P.R. et al. ADAMTS13 gene variants and function in women with preeclampsia: a population-based nested case-control study from the HUNT Study. Thromb Res. 2015;136(2):282–8. https://doi.org/10.1016/j.thromres.2015.06.022.; Ehrenforth S., Junker R., Koch H.G. et al. Multicentre evaluation of combined prothrombotic defects associated with thrombophilia in childhood. Childhood Thrombophilia Study Group. Eur J Pediatr. 1999;158 Suppl 3:S97–104. https://doi.org/10.1007/pl00014359.; Lisman T., Platto M., Meijers J.C.M. et al. The hemostatic status of pediatric recipients of adult liver grafts suggests that plasma levels of hemostatic proteins are not regulated by the liver. Blood. 2011;117(6):2070–2. https://doi.org/10.1182/blood-2010-08-300913.; Strauss T., Elisha N., Ravid B. et al. Activity of Von Willebrand factor and levels of VWF-cleaving protease (ADAMTS13) in preterm and full term neonates. Blood Cells Mol Dis. 2017;67:14–7. https://doi.org/10.1016/j.bcmd.2016.12.013.; Hunt R., Hoffman C.M., Emani S. et al. Elevated preoperative von Willebrand factor is associated with perioperative thrombosis in infants and neonates with congenital heart disease. J Thromb Haemost. 2017;15(12):2306–16. https://doi.org/10.1111/jth.13860.; Kulkarni A.A., Osmond M., Bapir M. et al. The effect of labour on the coagulation system in the term neonate. Haemophilia. 2013;19(4):533–8. https://doi.org/10.1111/hae.12115.; Kavakli K., Canciani M.T., Mannucci P.M. Plasma levels of the von Willebrand factor-cleaving protease in physiological and pathological conditions in children. Pediatr Hematol Oncol. 2002;19(7):467–73. https://doi.org/10.1080/08880010290097288.; Feys H.B., Canciani M.T., Peyvandi F. et al. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br J Haematol. 2007;138(4):534–40. https://doi.org/10.1111/j.1365-2141.2007.06688.x; Schmugge M., Dunn M.S., Amankwah K.S. et al. The activity of the von Willebrand factor cleaving protease ADAMTS-13 in newborn infants. J Thromb Haemost. 2004;2(2):228–33. https://doi.org/10.1046/j.1538-7933.2003.00575.x.; Tsai H.M., Sarode R., Downes K.A. Ultralarge von Willebrand factor multimers and normal ADAMTS13 activity in the umbilical cord blood. Thromb Res. 2002;108(2–3):121–5. https://doi.org/10.1016/s0049-3848(02)00396-1.; Thomas K.B., Sutor A.H., Altinkaya N. et al. von Willebrand factor-collagen binding activity is increased in newborns and infants. Acta Paediatr. 1995;84(6):697–9. https://doi.org/10.1111/j.1651-2227.1995.tb13733.x.; Blasi A., von Meijenfeldt F.A., Adelmeijer J. et al. In vitro hypercoagulability and ongoing in vivo activation of coagulation and fibrinolysis in COVID-19 patients on anticoagulation. J Thromb Haemost. 2020;18(10):2646–53. https://doi.org/10.1111/jth.15043.; von Meijenfeldt F.A., Havervall S., Adelmeijer J. et al. Prothrombotic changes in patients with COVID-19 are associated with disease severity and mortality. Res Pract Thromb Haemost. 2021;5(1):132–41. https://doi.org/10.1002/rth2.12462.; Sui J., Noubouossie D.F., Gandotra S., Cao L. Elevated plasma fibrinogen is associated with excessive inflammation and disease severity in COVID19 patients. Front Cell Infect Microbiol. 2021;11:734005. https://doi.org/10.3389/fcimb.2021.734005.; Lopez-Castaneda S., García-Larragoiti N., Cano-Mendez A. et al. Inflammatory and prothrombotic biomarkers associated with the severity of COVID-19 infection. Clin Appl Thromb Hemost. 2021;27:107602962199909. https://doi.org/10.1177/1076029621999099.; Hanff T.C., Mohareb A.M., Giri J. et al. Thrombosis in COVID-19. Am J Hematol. 2020;95(12):1578–89. https://doi.org/10.1002/ajh.25982.; Malas M.B., Naazie I.N., Elsayed N. et al. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: a systematic review and meta-analysis. EClinicalMedicine. 2020;29:100639. https://doi.org/10.1016/j.eclinm.2020.100639.; Bazzan M., Montaruli B., Sciascia S. et al. Low ADAMTS 13 plasma levels are predictors of mortality in COVID-19 patients. Intern Emerg Med. 2020;15(5):861–3. https://doi.org/10.1007/s11739-020-02394-0.; Huisman A., Beun R., Sikma M. et al. Involvement of ADAMTS13 and von Willebrand factor in thromboembolic events in patients infected with SARS-CoV-2. Int J Lab Hematol. 2020;42(5):e211–e212. https://doi.org/10.1111/ijlh.13244.; Favaloro E.J., Henry B.M., Lippi G. Increased VWF and decreased ADAMTS-13 in COVID-19: creating a milieu for (micro)thrombosis. Semin Thromb Hemost. 2021;47(4):400–18. https://doi.org/10.1055/s-0041-1727282.; Xu X., Feng Y., Jia Y. et al. Prognostic value of von Willebrand factor and ADAMTS13 in patients with COVID-19: A systematic review and metaanalysis. Thromb Res. 2022;218:83–98. https://doi.org/10.1016/j.thromres.2022.08.017.; Bitsadze V.O., Khizroeva J.K., Gris J. et al. Pathogenetic and prognostic significance of inflammation and altered ADAMTS-13/vWF axis in patients with severe COVID-19. Obstetrics, Gynecology and Reproduction. 2022;16(3):228–43. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.327.; Seth R., McKinnon T.A.J., Zhang X.F. Contribution of the von Willebrand factor/ADAMTS13 imbalance to COVID-19 coagulopathy. Am J Physiol Heart Circ Physiol. 2022;322(1):H87–H93. https://doi.org/10.1152/ajpheart.00204.2021.; Latimer G., Corriveau C., DeBiasi R.L. et al. Cardiac dysfunction and thrombocytopenia-associated multiple organ failure inflammation phenotype in a severe paediatric case of COVID-19. Lancet Child Adolesc Health. 2020;4(7):552–4. https://doi.org/10.1016/S2352-4642(20)30163-2.; Doevelaar A., Bachmann M., Hölzer B. et al. COVID-19 is associated with relative ADAMTS13 deficiency and VWF multimer formation resembling TTP (Preprint). medRxiv. August 25, 2020. https://doi.org/10.1101/2020.08.23.20177824.; https://www.gynecology.su/jour/article/view/1554
-
14Academic Journal
المؤلفون: N. R. Gashimova, K. N. Grigoreva, V. O. Bitsadze, L. L. Pankratyeva, J. Kh. Khizroeva, M. V. Tretyakova, Ya. M. Shammut, E. Iu. Iupatov, V. I. Tsibizova, J.-K. Gris, D. V. Blinov, A. D. Makatsariya, Н. Р. Гашимова, К. Н. Григорьева, В. О. Бицадзе, Л. Л. Панкратьева, Д. Х. Хизроева, М. В. Третьякова, Я. М. Шаммут, Е. Ю. Юпатов, В. И. Цибизова, Ж.-К. Гри, Д. В. Блинов, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 1 (2023); 8-17 ; Акушерство, Гинекология и Репродукция; Vol 17, No 1 (2023); 8-17 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: vWF, COVID-19, ADAMTS-13, von Willebrand factor, фактор фон Виллебранда
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1560/1085; https://www.gynecology.su/jour/article/view/1560/1095; Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497– 506. https://doi.org/10.1016/S0140-6736(20)30183-5.; Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9. https://doi.org/10.1001/jama.2020.1585.; Kollias A., Kyriakoulis K.G., Dimakakos E. et al. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br J Haematol. 2020;189(5):846–7. https://doi.org/10.1111/bjh.16727.; Гашимова Н.Р., Бицадзе В.О., Панкратьева Л.Л. и др. Дисрегуляция функции тромбоцитов у больных COVID-19. Акушерство, Гинекология и Репродукция. 2022;16(6):692–705. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.372.; Бицадзе В.О., Слуханчук Е.В., Хизроева Д.Х. и др. Внеклеточные ловушки нейтрофилов (NETs) в патогенезе тромбоза и тромбовоспалительных заболеваний. Вестник РАМН. 2021;76(1):75–85. https://doi.org/10.15690/vramn1395.; Gibson P.G., Qin L., Puah S.H. COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID19 ARDS. Med J Aust. 2020;213(2):54–56.e1. https://doi.org/10.5694/mja2.50674.; Ribes A., Vardon-Bounes F., Mémier V. et al. Thromboembolic events and Сovid-19. Adv Biol Regul. 2020;77:100735. https://doi.org/10.1016/j.jbior.2020.100735.; Cardona-Perez ́ J.A., Villegas-Mota I., Helguera-Repetto A.C. et al. Prevalence, clinical features, and outcomes of SARS-CoV-2 infection in pregnant women with or without mild/moderate symptoms: results from universal screening in a tertiary care center in Mexico City, Mexico. PLoS One. 2021;16(4):e0249584. https://doi.org/10.1371/journal.pone.0249584.; Martinelli I., Ferrazzi E., Ciavarella A. et al. Pulmonary embolism in a young pregnant woman with COVID-19. Thromb Res. 2020;191:36–7. https://doi.org/10.1016/j.thromres.2020.04.022.; Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–8. https://doi.org/10.1016/S0140-6736(20)30937-5.; Makatsariya A.D., Slukhanchuk E.V., Bitsadze V.O. et al. Thrombotic microangiopathy, DIC-syndrome and COVID-19: link with pregnancy prothrombotic state. J Matern Neonatal Med. 2022;35(13):2536–44. https://doi.org/10.1080/14767058.2020.1786811.; Tiscia G., Favuzzi G., De Laurenzo A. et al. The prognostic value of adamts-13 and von willebrand factor in covid-19 patients: prospectiveevaluation by care setting. Diagnostics (Basel). 2021;11(9):1648. https://doi.org/10.3390/diagnostics11091648.; Бицадзе В.О., Хизроева Д.Х., Гри Ж. и др. Патогенетическое и прогностическое значение воспаления и нарушений в оси ADAMTS-13/vWF у больных тяжелой формой COVID-19. Акушерство, Гинекология и Репродукция. 2022;16(3):228–243. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.327.; Fogarty H., Townsend L., Morrin H. et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19(10):2546–53. https://doi.org/10.1111/jth.15490.; Bonaventura A., VecchiéA., Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319–29. https://doi.org/10.1038/s41577-021-00536-9.; Grandone E., Vimercati A., Sorrentino F. et al. Obstetric outcomes in pregnant COVID-19 women: the imbalance of von Willebrand factor and ADAMTS13 axis. BMC Pregnancy Childbirth. 2022;22(1):142. https://doi.org/10.1186/s12884-022-04405-8.; https://www.gynecology.su/jour/article/view/1560
-
15Academic Journal
المؤلفون: E. V. Slukhanchuk, V. O. Bitsadze, A. G. Solopova, J. Kh. Khizroeva, N. D. Degtyareva, D. V. Shcherbakov, J.-C. Gris, I. Elalamy, A. D. Makatsariya, Е. В. Слуханчук, В. О. Бицадзе, А. Г. Солопова, Д. Х. Хизроева, Н. Д. Дегтярева, Д. В. Щербаков, Ж.-К. Гри, И. Элалами, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 17, No 1 (2023); 53-64 ; Акушерство, Гинекология и Репродукция; Vol 17, No 1 (2023); 53-64 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: рак, neutrophil extracellular traps, NETs, myeloperoxidase, MPO, D-dimer, citrullinated histone H3, citH3, cancer, внеклеточные ловушки нейтрофилов, миелопероксидаза, МПО, D-димер, цитруллинированный гистон Н3
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1566/1091; https://www.gynecology.su/jour/article/view/1566/1096; Timp J.F., Braekkan S.K., Versteeg H.H., Cannegieter S.C. Epidemiology of cancer-associated venous thrombosis. Blood. 2013;122(10):1712–23. https://doi.org/10.1182/blood-2013-04-460121.; Klerk C.P., Smorenburg S.M., Otten H.-M. et al. The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol. 2005;23(10):2130–5. https://doi.org/10.1200/JCO.2005.03.134.; Akl E.A., Schünemann H.J. Routine heparin for patients with cancer? One answer, more questions. N Engl J Med. 2012;366(7):661–2. https://doi.org/10.1056/NEJMe1113672.; Stakos D.A., Kambas K., Konstantinidis T. et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J. 2015;36(22):1405–14. https://doi.org/10.1093/eurheartj/ehv007.; Gould T.J., Vu T.T., Swystun L.L. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and plateletindependent mechanisms. Arterioscler Thromb Vasc Biol. 2014;34(9):1977–84. https://doi.org/10.1161/ATVBAHA.114.304114.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.; Demers M., Krause D.S., Schatzberg D. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancerassociated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076– 81. https://doi.org/10.1073/pnas.1200419109.; Cedervall J., Zhang Y., Huang H. et al. Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals. Cancer Res. 2015;75(13):2653–62. https://doi.org/10.1158/0008-5472.CAN-14-3299.; Nierodzik M.L., Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 2006;10(5):355–62. https://doi.org/10.1016/j.ccr.2006.10.002.; Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.; Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–47. https://doi.org/10.1038/nri.2017.105.; Wong S.L., Demers M., Martinod K. et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815–9. https://doi.org/10.1038/nm.3887.; Schauer C., Janko C., Munoz L.E. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20(5):511–7. https://doi.org/10.1038/nm.3547.; El-Shebini E.M., Shoeib S.A., Elghotmy A.H. Neutrophil extracellular traps in systemic lupus erythematosus. Menoufia Med J. 2020;33(3):729–32. https://doi.org/10.4103/mmj.mmj_431_18.; Manneras-Holm L., Baghaei F., Holm G. et al. Coagulation and fibrinolytic disturbances in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2011;96(4):1068–76. https://doi.org/10.1210/jc.2010-2279.; Gray R.D., Hardisty G., Regan K.H. et al. Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis. Thorax. 2018;73(2):134–44. https://doi.org/10.1136/thoraxjnl-2017-210134.; Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5. https://doi.org/10.1073/pnas.1005743107.; Wang L., Zhou X., Yin Y. et al. Hyperglycemia induces neutrophil extracellular traps formation through an NADPH oxidase-dependent pathway in diabetic retinopathy. Front Immunol. 2019;9:3076. https://doi.org/10.3389/fimmu.2018.03076.; Warnatsch A., Ioannou M., Wang Q., Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349(6245):316–20. https://doi.org/10.1126/science.aaa8064.; Gould T., Lysov Z., Liaw P. Extracellular DNA and histones: double-edged swords in immunothrombosis. J Thromb Haemost. 2015;13 Suppl 1:S82– S91. https://doi.org/10.1111/jth.12977.; Demers M., Wagner D.D. Neutrophil extracellular traps: A new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology. 2013;2(2):e22946. https://doi.org/10.4161/onci.22946.; Delabranche X., Helms J., Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care. 2017;7():117. https://doi.org/10.1186/s13613-017-0339-5.; Naudin C., Burillo E., Blankenberg S. et al. Factor XII contact activation. Semin Thromb Hemost. 2017;43(8):814–26. https://doi.org/10.1055/s-0036-1598003.; Vu T.T., Leslie B.A., Stafford A.R. et al. Histidine-rich glycoprotein binds DNA and RNA and attenuates their capacity to activate the intrinsic coagulation pathway. Thromb Haemost. 2016;115(1):89–98. https://doi.org/10.1160/TH15-04-0336.; Noubouossie D.F., Whelihan M.F., Yu Y.-B. et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129(8):1021–9. https://doi.org/10.1182/blood-2016-06-722298.; Komissarov A.A., Florova G., Idell S. Effects of extracellular DNA on plasminogen activation and fibrinolysis. J Biol Chem. 2011;286(49):41949–62. https://doi.org/10.1074/jbc.M111.301218.; Varjú I., Longstaff C., Szabó L. et al. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thromb Haemost. 2015;113(6):1289–98. https://doi.org/10.1160/TH14-08-0669.; Longstaff C., Varjú I., Sótonyi P. et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem. 2013;288(10):6946–56. https://doi.org/10.1074/jbc.M112.404301.; Qi H., Yang S., Zhang L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Front Immunol. 2017;8:928. https://doi.org/10.3389/fimmu.2017.00928.; Xu J., Zhang X., Pelayo R. et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318–21. https://doi.org/10.1038/nm.2053.; Saffarzadeh M., Juenemann C., Queisser M.A. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 2012;7(2):e32366. https://doi.org/10.1371/journal.pone.0032366.; Fuchs T.A., Abed U., Goosmann C. et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41. https://doi.org/10.1083/jcb.200606027.; Barranco-Medina S., Pozzi N., Vogt A.D., Di Cera E. Histone H4 promotes prothrombin autoactivation. J Biol Chem. 2013;288(50):35749–57. https://doi.org/10.1074/jbc.M113.509786.; Ammollo C.T., Semeraro F., Xu J. et al. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost. 2011;9(9):1795–803. https://doi.org/10.1111/j.1538-7836.2011.04422.x.; Gould T.J., Vu T.T., Stafford A.R. et al. Cell-free DNA modulates clot structure and impairs fibrinolysis in sepsis. Arterioscler Thromb Vasc Biol. 2015;35(12):2544–53. https://doi.org/10.1161/ATVBAHA.115.306035.; Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. https://doi.org/10.1038/nature07205.; Metzler K.D., Fuchs T.A., Nauseef W.M. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–9. https://doi.org/10.1182/blood2010-06-290171.; Al-Benna S., Shai Y., Jacobsen F., Steinstraesser L. Oncolytic activities of host defense peptides. Int J Mol Sci. 2011;12(11):8027–51. https://doi.org/10.3390/ijms12118027.; Acuff H.B., Carter K.J., Fingleton B. et al. Matrix metalloproteinase-9 from bone marrow–derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res. 2006;66(1):259– 66. https://doi.org/10.1158/0008-5472.CAN-05-2502.; Masson V., De La Ballina L.R., Munaut C. et al. Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J. 2005;19(2):234–6. https://doi.org/10.1096/fj.04-2140fje.; Pahler J.C., Tazzyman S., Erez N. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia. 2008;10(4):329–40. https://doi.org/10.1593/neo.07871.; Berger-Achituv S., Brinkmann V., Abu-Abed U. et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Iimmunol. 2013;4:48. https://doi.org/10.3389/fimmu.2013.00048.; Cools-Lartigue J., Spicer J., McDonald B. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58. https://doi.org/10.1172/JCI67484.; Gregory A.D., Houghton A.M. Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res. 2011;71()7:2411–6. https://doi.org/10.1158/0008-5472.CAN-10-2583.; https://www.gynecology.su/jour/article/view/1566
-
16Academic Journal
المؤلفون: E. V. Slukhanchuk, V. O. Bitsadze, J. Kh. Khizroeva, M. V. Tretyakova, A. S. Shkoda, D. V. Blinov, V. I. Tsibizova, Z. Jinbo, S. Sheena, S. Sсhulman, J.-K. Gris, I. Elalamy, A. D. Makatsariya, Е. В. Слуханчук, В. О. Бицадзе, Д. Х. Хизроева, М. В. Третьякова, А. С. Шкода, Д. В. Блинов, В. И. Цибизова, Ч. Цзиньбо, С. Шина, С. Шульман, Ж.-К. Гри, И. Элалами, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 16, No 6 (2022); 718-731 ; Акушерство, Гинекология и Репродукция; Vol 16, No 6 (2022); 718-731 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: COVID-19, severe acute respiratory syndrome, SARS-CoV-2, antithrombotic therapy, antiaggregants, anticoagulants, тяжелый острый респираторный синдром, антитромботическая терапия, антиагреганты, антикоагулянты
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1521/1072; Schulman S., Sholzberg M., Spyropoulos A.C. et al. ISTH guidelines for antithrombotic treatment in COVID-19. J Thromb Haemost. 2022;20(10):2214–25. https://doi.org/10.1111/jth.15808.; Spyropoulos A.C., Connors J.M., Douketis J.D. et al. Good practice statements for antithrombotic therapy in the management of COVID-19: Guidance from the SSC of the ISTH. J Thromb Haemost. 2022;20(10):2226–36. https://doi.org/10.1111/jth.15809.; Piazza G., Campia U., Hurwitz S. et al. Registry of arterial and venous thromboembolic complications in patients with COVID-19. J Am Coll Cardiol. 2020;76(18):2060–72. https://doi.org/10.1016/j.jacc.2020.08.070.; Giannis D., Barish M.A., Goldin M. et al. Incidence of venous thromboembolism and mortality in patients with initial presentation of COVID-19. J Thromb Thrombolysis. 2021;51(4):897–901. https://doi.org/10.1007/s11239-021-02413-7.; Ilowite J., Lisker G., Greenberg H. Digital health technology and telemedicine-based hospital and home programs in pulmonary medicine during the COVID-19 pandemic. Am J Ther. 2021;28(2):e217–e223. https://doi.org/10.1097/MJT.0000000000001342.; Jnr B.A. Use of telemedicine and virtual care for remote treatment in response to COVID-19 pandemic. J Med Syst. 2020;44(7):132. https://doi.org/10.1007/s10916-020-01596-5.; Connors J.M., Brooks M.M., Sciurba F.C. et al. Effect of antithrombotic therapy on clinical outcomes in outpatients with clinically stable symptomatic COVID-19: the ACTIV-4B randomized clinical trial. JAMA. 2021;326(17):1703–12. https://doi.org/10.1001/jama.2021.17272.; Gonzalez-Ochoa A.J., Raffetto J.D., Hernández A.G. et al. Sulodexide in the treatment of patients with early stages of COVID-19: a randomized controlled trial. Thromb Haemost. 2021;121(7):944–54. https://doi.org/10.1055/a-1414-5216.; Hozayen S.M., Zychowski D., Benson S. et al. Outpatient and inpatientanticoagulation therapy and the risk for hospital admission and death among COVID-19 patients. EClinicalMedicine. 2021;41:101139. https://doi.org/10.1016/j.eclinm.2021.101139.; Flam B., Wintzell V., Ludvigsson J.F. et al. Direct oral anticoagulant use and risk of severe COVID-19. J Intern Med. 2021;289(3):411–9. https://doi.org/10.1111/joim.13205.; Rivera-Caravaca J.M., Buckley B.J., Harrison S.L. et al. Direct-acting oral anticoagulants use prior to COVID-19 diagnosis and associations with 30-day clinical outcomes. Thromb Res. 2021;205:1–7. https://doi.org/10.1016/j.thromres.2021.06.014.; Kleindorfer D.O., Towfighi A., Chaturvedi S. et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke. 2021;52(7):e364–e467. https://doi.org/STR.0000000000000375.; Rentsch C.T., Beckman J.A., Tomlinson L. et al. Early initiation of prophylactic anticoagulation for prevention of coronavirus disease 2019 mortality in patients admitted to hospital in the United States: cohort study. BMJ. 2021;372:n311. https://doi.org/10.1136/bmj.n311.; Richardson S., Hirsch J.S., Narasimhan M. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–9. https://doi.org/10.1001/jama.2020.6775.; Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.; Tritschler T., Mathieu M.-E., Skeith L. et al. Anticoagulant interventions in hospitalized patients with COVID-19: A scoping review of randomized controlled trials and call for international collaboration. J Thromb Haemost. 2020;18(11):2958–67. https://doi.org/10.1111/jth.15094.; ATTACC Investigators; ACTIV-4a Investigators; REMAP-CAP Investigators; Patrick R Lawler P.R., Goligher E.C., Berger J.S. et al. Therapeutic anticoagulation with heparin in noncritically ill patients with Covid-19. N Engl J Med. 2021;385(9):790–802. https://doi.org/10.1056/NEJMoa2105911.; Spyropoulos A.C., Goldin M., Giannis D. et al. Efficacy and safety of therapeutic-dose heparin vs standard prophylactic or intermediate-dose heparins for thromboprophylaxis in high-risk hospitalized patients with COVID-19: the HEP-COVID randomized clinical trial. JAMA Intern Med. 2021;181(12):1612–20. https://doi.org/10.1001/jamainternmed.2021.6203.; Sholzberg M., Tang G.H., Rahhal H. et al. Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with covid-19 admitted to hospital: RAPID randomised clinical trial. BMJ. 2021;375:n2400. https://doi.org/10.1136/bmj.n2400.; Battistoni I., Francioni M., Morici N. et al. Pre- and in-hospital anticoagulation therapy in coronavirus disease 2019 patients: a propensity-matched analysis of in-hospital outcomes. J Cardiovasc Med (Hagerstown). 2022;23(4):264–71. https://doi.org/10.2459/JCM.0000000000001284.; Cohen S.L., Gianos E., Barish M.A. et al. Prevalence and predictors of venous thromboembolism or mortality in hospitalized COVID-19 patients. Thromb Haemost. 2021;121(8):1043–53. https://doi.org/10.1055/a-1366-9656.; Di Castelnuovo A., Costanzo S., Antinori A. et al. Heparin in COVID-19 patients is associated with reduced in-hospital mortality: the multicenter Italian CORIST study. Thromb Haemost. 2021;121(8):1054–65. https://doi.org/10.1055/a-1347-6070.; Ionescu F., Jaiyesimi I., Petrescu I. et al. Association of anticoagulation dose and survival in hospitalized COVID-19 patients: A retrospective propensity score-weighted analysis. Eur J Haematol. 2021;106(2):165–74. https://doi.org/10.1111/ejh.13533.; Sholzberg M., da Costa B.R., Tang G.H. et al. Randomized trials of therapeutic heparin for COVID-19: a meta-analysis. Res Pract Thromb Haemost. 2021;5(8):e12638. https://doi.org/10.1002/rth2.12638.; Gonzalez-Porras J.R., Belhassen-Garcia M., Lopez-Bernus A. et al. Low molecular weight heparin is useful in adult COVID-19 inpatients. Experience during the first Spanish wave: observational study. Sao Paulo Med J. 2021;140(1):123–33. https://doi.org/10.1590/1516-3180.2021.0098.R1.08062021.; Meizlish M.L., Goshua G., Liu Y. et al. Intermediate-dose anticoagulation, aspirin, and in-hospital mortality in COVID-19: a propensity scorematched analysis. Am J Hematol. 2021;96(4):471–9. https://doi.org/10.1002/ajh.26102.; Morici N., Podda G., Birocchi S. et al. Enoxaparin for thromboprophylaxis in hospitalized COVID-19 patients: The X-COVID-19 Randomized Trial. Eur J Clin Invest. 2022;52(5):e13735. https://doi.org/10.1111/eci.13735.; Smadja D.M., Bonnet G., Gendron N. et al. Intermediate- vs. standarddose prophylactic anticoagulation in patients with COVID-19 admitted in medical ward: A propensity score-matched cohort study. Front Med (Lausanne). 2021;8:747527. https://doi.org/10.3389/fmed.2021.747527.; Lopes R.D., de Barros E. Silva P.G.M., Furtado R.H.M. et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): an open-label, multicentre, randomised, controlled trial. Lancet. 2021;397(10291):2253–63. https://doi.org/10.1016/S0140-6736(21)01203-4.; RECOVERY Collaborative Group. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2022;399(10320):143–51. https://doi.org/10.1016/S0140-6736(21)01825-0.; Berger J.S., Kornblith L.Z., Gong M.N.et al. Effect of P2Y12 inhibitors on survival free of organ support among non-critically ill hospitalized patients with COVID-19: a randomized clinical trial. JAMA. 2022;327(3):227–36. https://doi.org/10.1001/jama.2021.23605.; Shen L., Qiu L., Liu D. et al. The association of low molecular weight heparin use and in-hospital mortality among patients hospitalized with COVID-19. Cardiovasc Drugs Ther. 2022;36(1):113–20. https://doi.org/10.1007/s10557-020-07133-3.; Poli D., Antonucci E., Ageno W. et al. Low in-hospital mortality rate in patients with COVID-19 receiving thromboprophylaxis: data from the multicentre observational START-COVID Register. Intern Emerg Med. 2022;17(4):1013–21. https://doi.org/10.1007/s11739-021-02891-w.; Zinellu A., Paliogiannis P., Carru C., Mangoni A.A. INR and COVID-19 severity and mortality: A systematic review with meta-analysis and metaregression. Adv Med Sci. 2021;66(2):372–80. https://doi.org/10.1016/j.advms.2021.07.009.; Fumagalli S., Trevisan C., Del Signore S. et al. COVID-19 and atrial fibrillation in older patients: does oral anticoagulant therapy provide a survival benefit? – An insight from the GeroCovid registry. Thromb Haemost. 2022;122(1):105–12. https://doi.org/10.1055/a-1503-3875.; Protasiewicz M., Reszka K., Kosowski W. et al. Anticoagulation prior to COVID-19 infection has no impact on 6 months mortality: A propensity score-matched cohort study. J Clin Med. 2022;11(2):352. https://doi.org/10.3390/jcm11020352.; Gozzo L., Viale P., Longo L. et al. The potential role of heparin in patients with COVID-19: beyond the anticoagulant effect. A review. Front Pharmacol. 2020;11:1307. https://doi.org/10.3389/fphar.2020.01307.; RECOVERY Collaborative Group. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2022;399(10320):143–51. https://doi.org/10.1016/S2213-2600(21)00435-5.; Steffel J., Verhamme P., Potpara T.S.et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018;39(16):1330–93. https://doi.org/10.1093/eurheartj/ehy136.; Foerster K.I., Hermann S., Mikus G., Haefeli W.E. Drug–drug interactions with direct oral anticoagulants. Clin Pharmacokinet. 2020;59(8):967–80. https://doi.org/10.1007/s40262-020-00879-x.; Cuker A., Tseng E.K., Nieuwlaat R. et al. American Society of Hematology living guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19: July 2021 update on postdischarge thromboprophylaxis. Blood Adv. 2022;6(2):664–71. https://doi.org/10.1182/bloodadvances.2021005945.; Robinson S., Longmuir K., Pavord S. Haematology of pregnancy. Medicine. 2017;45(4):251–5. https://doi.org/10.1016.j.mpmed.2017.01.002.; D’Souza R., Malhamé I., Teshler L. et al. A critical review of the pathophysiology of thrombotic complications and clinical practice recommendations for thromboprophylaxis in pregnant patients with COVID-19. Acta Obstet Gynecol Scand. 2020;99(9):1110–20. https://doi.org/10.1111/aogs.13962.; Servante J., Swallow G., Thornton J.G. et al. Haemostatic and thromboembolic complications in pregnant women with COVID-19: a systematic review and critical analysis. BMC Pregnancy Childbirth. 2021;21(1):1–14. https://doi.org/10.1186/s12884-021-03568-0.; Daru J., White K., Hunt B.J. COVID-19, thrombosis and pregnancy.Thromb Update. 2021;5:100077. https://doi.org/10.1016/j.tru.2021.100077.; Lee Y.R., Blanco D.D. Efficacy of standard dose unfractionated heparin for venous thromboembolism prophylaxis in morbidly obese and non-morbidly obese critically ill patients. J Thromb Thrombolysis. 2017;44(3):386–91. https://doi.org/10.1007/s11239-017-1535-8.; Hendren N.S., De Lemos J.A., Ayers C. et al. Association of body mass index and age with morbidity and mortality in patients hospitalized with COVID-19: results from the American Heart Association COVID-19 Cardiovascular Disease Registry. Circulation. 2021;143(2):135–44. https://doi.org/10.1161/CIRCULATIONAHA.120.051936.; Sawadogo W., Tsegaye M., Gizaw A., Adera T. Overweight and obesity as risk factors for COVID-19-associated hospitalisations and death: systematic review and meta-analysis. BMJ NutR Prev Health. 2022;5(1):10–8. https://doi.org/10.1136/bmjnph-2021-000375.; Hunt B.J. Hemostasis at extremes of body weight. Semin Thromb Hemost. 2018;44(7):632–9. https://doi.org/10.1055/s-0038-1661385.; Belančić A., Kresović A., Rački V. Potential pathophysiological mechanisms leading to increased COVID-19 susceptibility and severity in obesity. Obes Med. 2020;19:100259. https://doi.org/10.1016/j.obmed.2020.100259.; Wang T.-F., Milligan P.E., Wong C.A. et al. Efficacy and safety of highdose thromboprophylaxis in morbidly obese inpatients. Thromb Haemost. 2014;111(1):88–93. https://doi.org/10.1160/TH13-01-0042.; He Z., Morrissey H., Ball P. Review of current evidence available for guiding optimal Enoxaparin prophylactic dosing strategies in obese patients – Actual Weight-based vs Fixed. Crit Rev Oncol Hematol. 2017;113:191–4. https://doi.org/10.1016/j.critrevonc.2017.03.022.; Liu Y., Du X., Chen J. et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect. 2020;81(1):e6–e12. https://doi.org/10.1016/j.jinf.2020.04.002.; Miranda S., Le Cam-Duchez V., Benichou J. et al. Adjusted value of thromboprophylaxis in hospitalized obese patients: a comparative study of two regimens of enoxaparin: the ITOHENOX study. Thromb Res. 2017;155:1–5. https://doi.org/10.1016/j.thromres.2017.04.011.; INSPIRATION Investigators; Sadeghipour P., Talasaz A., Rashidi F. et al. Eeffect of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic events, extracorporeal membrane oxygenation treatment, or mortality among patients with COVID-19 admitted to the intensive care unit: The INSPIRATION Randomized Clinical Trial. JAMA. 2021;325(16):1620–30. https://doi.org/10.1001/jama.2021.4152.; Moores L.K., Tritschler T., Brosnahan S. et al. Thromboprophylaxis in patients with COVID-19: a brief update to the CHEST guideline and expert panel report. Chest. 2022;162(1):213–25. https://doi.org/10.1016/j.chest.2022.02.006.; Cohoon K.P., Mahé G., Tafur A.J., Spyropoulos A.C. Emergence of institutional antithrombotic protocols for coronavirus 2019. Res Pract Thromb Haemost. 2020;4(4):510–7. https://doi.org/10.1002/rth2.12358.; Stevens S.M., Woller S.C., Kreuziger L.B. et al. Antithrombotic therapy for VTE disease: second update of the CHEST guideline and expert panel report. Chest. 2021;160(6):e545–e608. https://doi.org/10.1016/j.chest.2021.07.055.; Wang Y., Zhu F., Wang C. et al. Children hospitalized with severe COVID-19 in Wuhan. Pediatr Infect Dis J. 2020;39(7):e91–e94. https://doi.org/10.1097/INF.0000000000002739.; Cruz A.T., Zeichner S.L. COVID-19 in children: initial characterization of the pediatric disease. Pediatrics. 2020;145(6):e20200834. https://doi.org/10.1542/peds.2020-0834.; Feldstein L.R., Rose E.B., Horwitz S.M. et al. Multisystem inflammatory syndrome in US children and adolescents. N Engl J Med. 2020;383(4):334–46. https://doi.org/10.1056/NEJMoa2021680.; Goldenberg N.A., Sochet A., Albisetti M. et al. Consensus-based clinical recommendations and research priorities for anticoagulant thromboprophylaxis in children hospitalized for COVID-19-related illness. J Thromb Haemost. 2020;18(11):3099–105. https://doi.org/10.1111/jth.15073.; Sochet A.A., Morrison J.M., Jaffray J. et al. Enoxaparin thromboprophylaxis in children hospitalized for COVID-19: A phase 2 trial. Pediatrics. 2022;150(1):e2022056726. https://doi.org/10.1542/peds.2022-056726.; Shafiee M.A., Hosseini S.F., Mortazavi M. et al. Anticoagulation therapy in COVID-19 patients with chronic kidney disease. J Res Med Sci. 2021;26:63. https://doi.org/10.4103/jrms.JRMS_875_20.; Fernandez P., Saad E.J., Barrionuevo A.D. et al. The incidence, risk factors and impact of acute kidney injury in hospitalized patients due to COVID-19. Medicina (B Aires). 2021;81(6):922–30.; Stevens J.S., Velez J.C.Q., Mohan S. Continuous renal replacement therapy and the COVID pandemic. Semin Dial. 2021;34(6):561–6. https://doi.org/10.1111/sdi.12962.; Arnold F., Westermann L., Rieg S. et al. Comparison of different anticoagulation strategies for renal replacement therapy in critically ill patients with COVID-19: a cohort study. BMC Nephrol. 2020;21(1):486. https://doi.org/10.1186/s12882-020-02150-8.; Billett H., Reyes-Gil M., Szymanski J. et al. Anticoagulation in COVID-19: effect of enoxaparin, heparin and apixaban on mortality. Thromb Haemost. 2020;120(12):1691–9. https://doi.org/10.1055/s-0040-1720978.; Attallah N., Gupta S., Madhyastha R. et al. Anticoagulation in COVID-19 patients requiring continuous renal replacement therapy. Anaesth Crit Care Pain Med. 2021;40(3):100841. https://doi.org/10.1016/j.accpm.2021.100841.; Schünemann H.J., Cushman M., Burnett A.E. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018;2(22):3198–225. https://doi.org/10.1182/bloodadvances.2018022954.; PROTECT Investigators for the Canadian Critical Care Trials Group and the Australian and New Zealand Intensive Care Society Clinical Trials Group; Cook D., Meade M., Guyatt G. et al. Dalteparin versus unfractionated heparin in critically ill patients. N Engl J Med. 2011;364(14):1305–14. https://doi.org/10.1056/NEJMoa1014475.; Perepu U.S., Chambers I., Wahab A. et al. Standard prophylactic versus intermediate dose enoxaparin in adults with severe COVID-19: a multicenter, open-label, randomized controlled trial. J Thromb Haemost. 2021;19(9):2225–34. https://doi.org/10.1111/jth.1545.; REMAP-CAP Investigators; ACTIV-4a Investigators; ATTACC Investigators; Goligher E.C., Bradbury C.A., McVerry B.J. et al. Therapeutic anticoagulation with heparin in critically ill patients with Covid-19. N Engl J Med. 2021;385(9):777–89. https://doi.org/10.1056/NEJMoa2103417.; REMAP-CAP Writing Committee for the REMAP-CAP Investigators; Bradbury C.A., Lawler P.R., Stanworth S.J. et al. Effect of antiplatelet therapy on survival and organ support-free days in critically ill patients with COVID-19: a randomized clinical trial. JAMA. 2022;327(13):1247–59. https://doi.org/10.1001/jama.2022.2910.; Bikdeli B., Talasaz A.H., Rashidi F. et al. Intermediate-dose versus standard-dose prophylactic anticoagulation in patients with COVID-19 admitted to the intensive care unit: 90-day results from the INSPIRATION randomized trial. Thromb Haemost. 2022;122(1):131–41. https://doi.org/10.1055/a-1485-2372.; Oliynyk O., Barg W., Slifirczyk A. et al. Comparison of the effect of unfractionated heparin and enoxaparin sodium at different doses on the course of COVID-19-associated coagulopathy. Life (Basel). 2021;11()10:1032. https://doi.org/10.3390/life11101032.; El-Ghiaty M.A, Shoieb S.M., El-Kadi A.O. Cytochrome P450-mediated drug interactions in COVID-19 patients: Current findings and possible mechanisms. Med Hypotheses. 2020;144:110033. https://doi.org/10.1016/j.mehy.2020.110033.; Vincent J.-L., Levi M., Hunt B.J. Prevention and management of thrombosis in hospitalised patients with COVID-19 pneumonia. Lancet Respir Med. 2021;10(2):214–20. https://doi.org/10.1016/S2213-2600(21)00455-0.; Roberts L.N., Whyte M.B., Georgiou L. et al. Postdischarge venous thromboembolism following hospital admission with COVID-19. Blood. 2020;136(11):1347–50. https://doi.org/10.1182/blood.2020008086.; Rashidi F., Barco S., Kamangar F. et al. Incidence of symptomatic venous thromboembolism following hospitalization for coronavirus disease 2019: prospective results from a multi-center study. Thromb Res. 2021;198:135–8. https://doi.org/10.1016/j.thromres.2020.12.001.; Patell R., Bogue T., Koshy A. et al. Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood. 2020;136(11):1342–6. https://doi.org/10.1182/blood.2020007938.; Giannis D., Allen S.L., Tsang J. et al. Postdischarge thromboembolic outcomes and mortality of hospitalized patients with COVID-19: the CORE-19 registry. Blood. 2021;137(20):2838–47. https://doi.org/10.1182/blood.2020010529.; Lui D.T.W., Li Y.K., Lee C.H. et al. A prospective study of the impact of glycaemic status on clinical outcomes and anti-SARS-CoV-2 antibody responses among patients with predominantly non-severe COVID-19. Diabetes Res Clin Pract. 2022;185:109232. https://doi.org/10.1016/j.diabres.2022.109232.; Chioh F.W., Fong S.-W., Young B.E. et al. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation. Elife. 2021;10:e64909. https://doi.org/10.7554/eLife.6490.; Spyropoulos A.C., Cohen S.L., Gianos E. et al. Validation of the IMPROVE-DD risk assessment model for venous thromboembolism among hospitalized patients with COVID-19. Res Pract Thromb Haemost. 2021;5(2):296–300. https://doi.org/10.1002/rth2.12486.; Goldin M., Lin S.K., Kohn N. et al. External validation of the IMPROVE-DD risk assessment model for venous thromboembolism among inpatients with COVID-19. J Thromb Thrombolysis. 2021;52(4):1032–5. https://doi.org/10.1007/s11239-021-02504-5.; Ramacciotti E., Agati L.B., Calderaro D. et al. Rivaroxaban versus no anticoagulation for post-discharge thromboprophylaxis after hospitalisation for COVID-19 (MICHELLE): an open-label, multicentre, randomised, controlled trial. Lancet. 2022;399(10319):50–9. https://doi.org/10.1016/S0140-6736(21)02392-8.; https://www.gynecology.su/jour/article/view/1521
-
17Academic Journal
المؤلفون: N. R. Gashimova, V. O. Bitsadze, L. L. Pankratyeva, J. Kh. Khizroeva, E. V. Slukhanchuk, K. N. Grigoreva, V. I. Tsibizova, J.-C. Gris, I. Elalamy, C. Ay, D. V. Blinov, V. N. Serov, A. D. Makatsariya, Н. Р. Гашимова, В. О. Бицадзе, Л. Л. Панкратьева, Д. Х. Хизроева, Е. В. Слуханчук, К. Н. Григорьева, В. И. Цибизова, Ж.-К. Гри, И. Элалами, Ц. Ай, Д. В. Блинов, В. Н. Серов, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 16, No 6 (2022); 692-705 ; Акушерство, Гинекология и Репродукция; Vol 16, No 6 (2022); 692-705 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: тромбоцитопения, COVID-19, SARS-CoV-2, immunothrombosis, thrombocytopenia, иммунотромбоз
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1519/1070; Coronavirus Disease (COVID-2019) Weekly Epidemiological Updates and Monthly Operational Update. World Health Organization, 2022. Available at: https://www.who.int/emergencies/diseases/novelcoronavirus-2019/situatio. [Aссessed: 10.09.2022].; Cui S., Chen S., Li X. et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421–4. https://doi.org/10.1111/jth.14830.; Poissy J., Goutay J., Caplan M et al.; Lille ICU Haemostasis COVID-19 Group. Pulmonary embolism in COVID-19 patients: awareness of an increased prevalence. Circulation. 2020;142(2):184–6. https://doi.org/10.1161/CIRCULATIONAHA.120.047430.; Lopes R.D., de Barros E. Silva P.G.M., Furtado R.H.M. et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): an open-label, multicentre, randomised, controlled trial. Lancet. 2021;397(10291):2253–63. https://doi.org/10.1016/S0140-6736(21)01203-4.; Mansory E.M., Srigunapalan S., Lazo-Langner A. Venous thromboembolism in hospitalized critical and noncritical COVID-19 patients: a systematic review and meta-analysis. TH Open. 2021;5(3):e286–e294. https://doi.org/10.1055/s-0041-1730967.; Lodigiani C., Iapichino G., Carenzo L. et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. https://doi.org/10.1016/j.thromres.2020.04.024.; Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6): e20200652. https://doi.org/10.1084/jem.20200652.; Machlus K.R., Italiano J.E. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6):785–96. https://doi.org/10.1083/jcb.201304054.; Ribeiro L.S., Branco L.M., Franklin B.S. Regulation of innate immune responses by platelets. Front Immunol. 2019;10:1320. https://doi.org/10.3389/fimmu.2019.01320.; Liu J.Z., van Sommeren S., Huang H. et al; International Multiple Sclerosis Genetics Consortium, International IBD Genetics Consortium. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86. https://doi.org/10.1038/ng.3359.; Riaz A.H., Tasma B.E., Woodman M.E. et al. Human platelets efficiently kill IgG-opsonized E. coli. FEMS Immunol Med Microbiol. 2012;65(1):78–83. https://doi.org/10.1111/j.1574-695X.2012.00945.x.; Martel C., Cointe S., Maurice P. et al. Requirements for membrane attack complex formation and anaphylatoxins binding to collagen-activated platelets. PLoS One. 2011;6(4):e18812. https://doi.org/10.1371/journal.pone.0018812.; Clemetson K.J., Clemetson J.M., Proudfoot A.E. et al. Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood. 2000;96(13):4046–54.; D'Atri L.P., Etulain J., Rivadeneyra L. et al. Expression and functionality of Toll-like receptor 3 in the megakaryocytic lineage. J Thromb Haemost. 2015;13(5):839–50. https://doi.org/10.1111/jth.12842.; Assinger A. Platelets and infection – an emerging role of platelets in viral infection. Front Immunol. 2014;5:649. https://doi.org/10.3389/fimmu.2014.00649.; Ojha A., Nandi D., Batra H. et al. Platelet activation determines the severity of thrombocytopenia in dengue infection. Sci Rep. 2017;7:41697. https://doi.org/10.1038/srep41697.; Baker J.V. Chronic HIV disease and activation of the coagulation system. Thromb Res. 2013;132(5):495–99. https://doi.org/10.1016/j.thromres.2013.08.016.; Jansen A.J.G., Spaan T., Low H.Z. et al. Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Adv. 2020;4(13):2967–78. https://doi.org/10.1182/bloodadvances.2020001640.; Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–8. https://doi.org/0.1056/NEJMoa2015432.; Bonaventura A., Vecchié A., Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319–29. https://doi.org/10.1038/s41577-021-00536-9.; Page M.J., Pretorius E. A champion of host defense: a generic large-scale cause for platelet dysfunction and depletion in infection. Semin Thromb Hemost. 2020;46(3):302–19. https://doi.org/10.1055/s-0040-1708827.; Mellema R.A., Crandel J., Petrey A.C. Platelet dysregulation in the pathobiology of COVID. Hamostaseologie. 2022;42(4):221–8. https://doi.org/10.1055/a-1646-3392.; Zhang Y., Zeng Х., Jiao Y, et al. Mechanisms involved in the development of thrombocytopenia in patients with COVID-19, Thromb Res. 202;193:110–5, https://doi.org/10.1016/j.thromres.2020.06.008.; Bobirca A., Bobirca F., Ancu I. et al. COVID-19 – a trigger factor for severe immune-mediated thrombocytopenia in active rheumatoid arthritis. Life (Basel). 2022;12(1):77. https://doi.org/10.3390/life12010077.; Xia S., Xu W., Wang Q. et al. Peptide-based membrane fusion inhibitors targeting HCOV-229E spike protein HR1 and HR2 domains. Int J Mol Sci. 2018;19(2):487. https://doi.org/10.3390/ijms19020487.; Aldridge R.W., Lewer D., Beale S. et al.; Flu Watch Group. Seasonality and immunity to laboratory-confirmed seasonal coronaviruses (HCoV-NL63, HCoV-OC43, and HCoV-229E): results from the Flu Watch cohort study. Wellcome Open Res. 2020;5:52. https://doi.org/10.12688/wellcomeopenres.15812.2.; Wickström M., Larsson R., Nygren P., Gullbo J. Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci. 2011;102(3):501–8. https://doi.org/10.1111/j.1349-7006.2010.01826.x.; Ropa J., Cooper S., Capitano M. et al. Human hematopoietic stem, progenitor, and immune cells respond ex vivo to SARS-CoV-2 spike protein. Stem Cell Rev Rep. 2021;17(1):253–65. https://doi.org/10.1007/s12015-020-10056-z.; Schnaubelt S., Tihanyi D., Strassl R. et al. Hemophagocytic lymphohistiocytosis in COVID-19. Case reports of a stepwise approach. Medicine (Baltimore). 2021;100(12):e25170. https://doi.org/10.1097/MD.0000000000025170.; Dimopoulos G., de Mast Q., Markou N. et al. Favorable anakinra responses in severe Covid-19 patients with secondary hemophagocyticlymphohistiocytosis. Cell Host Microbe. 2020;28(1):117–123.e1. https://doi.org/10.1016/j.chom.2020.05.007.; Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020;506:145–8. https://doi.org/10.1016/j.cca.2020.03.022.; Bashash D., Hosseini-Baharanchi F.S., Rezaie-Tavirani M. et al. The prognostic value of thrombocytopenia in COVID-19 patients; a systematic review and meta-analysis. Arch Acad Emerg Med. 2020;8(1):e75.; Bhattacharjee S., Banerjee M. Immune thrombocytopenia secondary to COVID-19: fsystematic review. SN Compr Clin Med. 2020;2(11):2048–58. https://doi.org/10.1007/s42399-020-00521-8.; Bradley B.T., Maioli H., Johnston R. et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396(10247):320–32. https://doi.org/10.1016/S0140-6736(20)31305-2.; Lee S., Chary M., Salehi I., Bansal R. Immune-mediated adalimumabinduced thrombocytopenia for the treatment of ulcerative colitis. Int J Pharm Pharm Sci. 2015;7(7):456–8.; Xu P., Qi Zhou, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020;99(6):1205–8. https://doi.org/10.1007/s00277-020-04019-0.; Tiwari R., Mishra A.R., Mikaeloff F. et al. In silico and in vitro studies reveal complement system drives coagulation cascade in SARS-CoV-2 pathogenesis. Comput Struct Biotechnol J. 2020;18:3734–44. https://doi.org/10.1016/j.csbj.2020.11.005.; Pavord S., Thachil J., Hunt B.J. et al. Practical guidance for the management of adults with immune thrombocytopenia during the COVID-19 pandemic. Br J Haematol. 2020;189(6):1038–43. https://doi.org/10.1111/bjh.16775.; McKenzie S.E., Taylor S.M., Malladi P. et al. The role of the human Fc receptor Fcγriia in the immune clearance of platelets: A transgenic mouse model. J Immunol. 1999;162(7):4311–8.; Daviet F., Guervilly C., Baldesi O. et al. Heparin-induced thrombocytopenia in severe COVID-19. Circulation. 2020;142(19):1875–7. https://doi.org/10.1161/CIRCULATIONAHA.120.049015.; Nazy I., Jevtic S.D., Moore J.C. et al. Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. J Thromb Haemost. 2021;19(5):1342–7. https://doi.org/10.1111/jth.15283.; Jaax M.E., Krauel K., Marschall T. et al. Complex formation with nucleic acids and aptamers alters the antigenic properties of platelet factor 4. Blood. 2013;122(2):272–81. https://doi.org/10.1182/blood-2013-01-478966.; Warkentin T.E. Heparin-induced thrombocytopenia: pathogenesis and management. Br J Haematol. 2003;121(4):535–55. https://doi.org/10.1046/j.1365-2141.2003.04334.x.; Warkentin T.E. Clinical picture of heparin-induced thrombocytopenia (HIT) and its differentiation from non-HIT thrombocytopenia. Thromb Haemost. 2016;116(5):813–22. https://doi.org/10.1160/TH16-06-0435.; Greinacher A., Thiele T., Warkentin T.E. et al. Thrombotic thrombocytopenia after ChAdOx1 nCOV-19 vaccination. N Engl J Med. 2021;384(22):2092–101. https://doi.org/10.1056/NEJMoa2104840.; Iba T., Levy J.H. The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced immune thrombotic thrombocytopenia. Trends Cardiovasc Med. 2022;32(1):1–9. https://doi.org/10.1016/j.tcm.2021.08.012.; Zhang S., Liu Y., Wang X. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol. 2020;13(1):120. https://doi.org/10.1186/s13045-020-00954-7.; Barrett T.J., Bilaloglu S., Cornwell M. et al. Platelets contribute to disease severity in COVID-19. J Thromb Haemost. 2021;19(12):3139–53. https://doi.org/10.1111/jth.15534.; Zaid Y., Puhm F., Allaeys I. et al. Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circ Res. 2020;127(11):1404–18. Online ahead of print. https://doi.org/10.1161/CIRCRESAHA.120.317703.; Gadanec L.K., McSweeney K.R., Qaradakhi T. et al. Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int J Mol Sci. 2021;22(3):992. https://doi.org/10.3390/ijms22030992.; Cunin P., Bouslama R., Machlus K.R. et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. Elife. 2019;8:e44031. https://doi.org/10.7554/eLife.44031.; Sacchi A., Grassi G., Notari S. et al. Expansion of myeloid derived suppressor cells contributes to platelet activation by L-arginine deprivation during SARS-CoV-2 infection. Cells. 2021;10(8):2111. https://doi.org/10.3390/cells10082111.; Sacchi A., Grassi G., Bordoni V. et al. Early expansion of myeloid-derived suppressor cells inhibits SARS-CoV-2 specific T-cell response and may predict fatal COVID-19 outcome. Cell Death Dis. 2020;11(10):921. https://doi.org/10.1038/s41419-020-03125-1.; Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82. https://doi.org/10.1038/nri1785.; Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–70. https://doi.org/10.1016/j.immuni.2010.11.011.; Hahn S., Giaglis S., Chowdury C.S. et al. Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol. 2013;35(4):439–53. https://doi.org/10.1007/s00281-013-0380-x.; Gupta A.K., Giaglis S., Hasler P., Hahn S. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS One. 2014;9(5):e97088. https://doi.org/10.1371/journal.pone.0097088.; Lai J.J., Cruz F.M., Rock K.L. Immune sensing of cell death through recognition of histone sequences by C-type lectin-receptor-2d causes inflammation and tissue injury. Immunity. 2020;52(1):123–35.e6. https://doi.org/10.1016/j.immuni.2019.11.013.; Arcanjo A., Logullo J., Menezes C.C. et al. The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Sci Rep. 2020;10(1):196300. https://doi.org/10.1038/s41598-020-76781-0.; Batiha G.E., Shaheen H.M., Al-Kuraishy H.M. et al. Possible mechanistic insights into iron homeostasis role of the action of 4-aminoquinolines (chloroquine/hydroxychloroquine) on COVID-19 (SARS-CoV-2) infection. Eur Rev Med Pharmacol Sci. 2021;25(23):7565–84. https://doi.org/10.26355/eurrev_202112_27456.; Al-Kuraishy H.M., Al-Gareeb A.I., Alblihed M. et al. COVID-19 in relation to hyperglycemia and diabetes mellitus. Front Cardiovasc Med. 2021;8:644095. https://doi.org/10.3389/fcvm.2021.644095.; Khawaja A.A., Taylor K.A., Lovell A.O. et al. HIV antivirals affect endothelial activation and endothelial-platelet crosstalk. Circ Res. 2020;127(11):1365–80. https://doi.org/10.1161/CIRCRESAHA.119.316477.; Makatsariya A.D., Slukhanchuk E.V., Bitsadze V.O. et al. Neutrophil extracellular traps: a role in inflammation and dysregulated hemostasis as well as in patients with COVID-19 and severe obstetric pathology. Obstetrics, Gynecology and Reproduction. 2021;15(4):335–50. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.238.; Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473–4. https://doi.org/10.1126/science.abb8925.; Fard M.B., Fard S.B., Ramazi, S. et al. Thrombosis in COVID-19 infection: Role of platelet activation-mediated immunity. Thromb J. 2021;19(1):59. https://doi.org/10.1186/s12959-021-00311-9.; Goshua G., Pine A.B., Meizlish M.L. et al. Endotheliopathy in COVID-19-associated coagulopathy: Evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575–e582. https://doi.org/10.1016/S2352-3026(20)30216-7.; Comer S.P., Cullivan S., Szklanna P.B. et al.; COCOON Study investigators. COVID-19 induces a hyperactive phenotype in circulating platelets. PLoS Biol. 2021;19(2):e3001109. https://doi.org/10.1371/journal.pbio.3001109.; Althaus K., Marini I., Zlamal J. et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood. 2021;137(8):1061–71. https://doi.org/10.1182/blood.2020008762.; Ivanov I.I., Apta B.H.R., Bonna A.M., Harper M.T. Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci Rep. 2019;9(1):13397. https://doi.org/10.1038/s41598-019-49635-7.; Etulain J., Martinod K., Wong S.L. et al. P-selectin promotes neutrophil extracellular trap formation in mice. Blood. 2015;126(2):242–6. https://doi.org/10.1182/blood-2015-01-624023.; Manne B.K., Denorme F., Middleton E.A. et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136(11):1317–29. https://doi.org/10.1182/blood.2020007214.; Stalker T.J., Newman D.K., Ma P. et al. Platelet signaling. Handb Exp Pharmacol. 2012;(210):59–85. https://doi.org/10.1007/978-3-642-29423-5_3.; Shen B., Yi X., Sun Y. et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020;182(1):59–72.e15. https://doi.org/10.1016/j.cell.2020.05.032.; Kruger A., Vlok M., Turner S. et al. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system. Cardiovasc Diabetol. 2022;21(1):190. https://doi.org/10.1186/s12933-022-01623-4.; Maxwell A.J., Ding J., You Y. et al. Identification of key signaling pathways induced by SARS-CoV2 that underlie thrombosis and vascular injury in COVID-19 patients. J Leukoc Biol. 2020;109(1):35–47. https://doi.org/10.1002/JLB.4COVR0920-552RR.; Alvarez A., Rios-Navarro C., Blanch-Ruiz M.A. et al. Abacavir induces platelet-endothelium interactions by interfering with purinergic signalling: a step from inflammation to thrombosis. Antiviral Res. 2017;141:179–85. https://doi.org/10.1016/j.antiviral.2017.03.001.; Semeraro F., Ammollo C.T., Morrissey J.H. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61. https://doi.org/10.1182/blood-2011-03-343061.; Middleton E.A., He X.Y., Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–79. https://doi.org/10.1182/blood.2020007008.; Van der Poll T., van de Veerdonk F.L., Scicluna B.P., Netea M.G. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407–20. https://doi.org/10.1038/nri.2017.36.; Skendros P., Mitsios A., Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130(11):6151–7. https://doi.org/10.1172/JCI141374.; Hottz E.D., Martins-Gonçalves R. et al. Platelet-monocyte interaction amplifies thromboinflammation through tissue factor signaling in COVID-19. Blood Adv. 2022;6(17):5085–99. https://doi.org/10.1182/bloodadvances.2021006680.; Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L. et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020;136(11):1330–41. https://doi.org/10.1182/blood.2020007252.; Li T., Yang Y., Li Y. et al. Platelets mediate inflammatory monocyte activation by SARS-CoV-2 spike protein. J Clin Invest. 2022;132(4):e150101. https://doi.org/10.1172/JCI150101.; Portier I., Campbell R.A. Role of platelets in detection and regulation of infection. Arterioscler Thromb Vasc Biol. 2021;41(1):70–8. https://doi.org/10.1161/ATVBAHA.120.314645.; Rolla R., Puricelli C., Bertoni A. et al. Platelets: "multiple choice" effectors in the immune response and their implication in COVID-19 thromboinflammatory process. Int J Lab Hematol. 2021;43(5):895–906. https://doi.org/10.1111/ijlh.13516.; Olsson A.K., Cedervall J. The pro-inflammatory role of platelets in cancer. Platelets. 2018;29(6):569–73. https://doi.org/10.1080/09537104.2018.1453059.; Semple J.W., Italiano J.E., Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74. https://doi.org/10.1038/nri2956.; Gockel L.M., Nekipelov K., Ferro V. et al. Tumour cell-activated platelets modulate the immunological activity of CD4+, CD8+, and NK cells, which is efficiently antagonized by heparin. Cancer Immunol Immunother. 2022;71:2523–33. https://doi.org/10.1007/s00262-022-03186-5.; Flego D., Cesaroni S., Romiti G.F. et al; Vax-SPEED-IT Study Group. Platelet and immune signature associated with a rapid response to the BNT162b2 mRNA COVID-19 vaccine. J Thromb Haemost. 2022;20(4):961–74. https://doi.org/10.1111/jth.15648.; https://www.gynecology.su/jour/article/view/1519
-
18Academic Journal
المؤلفون: E. V. Slukhanchuk, V. O. Bitsadze, A. G. Solopova, J. Kh. Khizroeva, V. I. Tsibizova, J.-K. Gris, I. Elalamy, D. V. Shcherbakov, L. L. Pankratyeva, L. A. Ashrafyan, A. D. Makatsariya, Е. В. Слуханчук, В. О. Бицадзе, А. Г. Солопова, Д. Х. Хизроева, В. И. Цибизова, Ж.-К. Гри, И. Элалами, Д. В. Щербаков, Л. Л. Панкратьева, Л. А. Ашрафян, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 16, No 6 (2022); 648-663 ; Акушерство, Гинекология и Репродукция; Vol 16, No 6 (2022); 648-663 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: рак, NETs, von Willebrand factor, vWF, ADAMTS-13, thrombotic microangiopathy, TMA, cancer, фактор фон Виллебранда, тромботическая микроангиопатия, ТМА
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1516/1067; Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.; Bernardo A., Ball C., Nolasco L. et al. Platelets adhered to endothelial cellbound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost. 2005;3(3):562–70. https://doi.org/10.1111/j.1538-7836.2005.01122.x.; Albrengues J., Shields M.A., Ng D. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. https://doi.org/10.1126/science.aao4227.; Delgado-Rizo V., Martínez-Guzmán M.A., Iñiguez-Gutierrez L. et al. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81. https://doi.org/10.3389/fimmu.2017.00081.; Cao W., Pham H.P., Williams L.A. et al. Human neutrophil peptides and complement factor Bb in pathogenesis of acquired thrombotic thrombocytopenic purpura. Haematologica. 2016;101(11):1319–26. https://doi.org/10.3324/haematol.2016.149021.; Petretto A., Bruschi M., Pratesi F. et al. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One. 2019;14(7):e0218946. https://doi.org/10.1371/journal.pone.0218946.; Staessens S., Denorme F., Francois O. et al. Structural analysis ofischemic stroke thrombi: histological indications for therapy resistance. Haematologica. 2020;105(2):498–507. https://doi.org/10.3324/haematol.2019.219881.; Brill A., Fuchs T., Savchenko A. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–44. https://doi.org/10.1111/j.1538-7836.2011.04544.x.; Thålin C., Hisada Y., Lundström S. et al. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 2019;39(9):1724–38. https://doi.org/10.1161/ATVBAHA.119.312463.; Thiam H.R., Wong S.L., Qiu R. et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci U S A. 2020;117(13):7326–37. https://doi.org/10.1073/pnas.1909546117.; Yipp B.G., Kubes P. NETosis: how vital is it? Blood. 2013;122(16):2784–94. https://doi.org/10.1182/blood-2013-04-457671.; Yousefi S., Mihalache C., Kozlowski E. et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16(11):1438–44. https://doi.org/10.1038/cdd.2009.96.; Laridan E., Martinod K., De Meyer S.F. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost. 2019;45(1):86–93. https://doi.org/10.1055/s-0038-1677040.; Hounkpe B.W., Fiusa M.M.L., Colella M.P. et al. Role of innate immunitytriggered pathways in the pathogenesis of Sickle Cell Disease: a meta-analysis of gene expression studies. Sci Rep. 2015;5:17822. https://doi.org/10.1038/srep17822.; Gould T.J., Vu T.T., Swystun L.L. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and plateletindependent mechanisms. Arterioscler Thromb Vasc Biol. 2014;34(9):1977–84. https://doi.org/10.1161/ATVBAHA.114.304114.; Fuchs T.A., Bhandari A.A., Wagner D.D. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;118(13):3708–14. https://doi.org/10.1182/blood-2011-01-332676.; Massberg S., Grahl L., von Bruehl M.-L. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96. https://doi.org/10.1038/nm.2184.; Frangou E., Vassilopoulos D., Boletis J., Boumpas D.T. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): Implications for the pathogenesis and treatment. Autoimmun Rev. 2019;18(8):751–60. https://doi.org/10.1016/j.autrev.2019.06.011.; Denning N.-.L, Aziz M., Gurien S.D., Wang P. DAMPs and NETs in sepsis. Front Immunol. 2019;10:2536. https://doi.org/10.3389/fimmu.2019.02536.; Doring Y., Soehnlein O., Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017;120(4):736–43. https://doi.org/10.1161/CIRCRESAHA.116.309692.; Grover S.P., Nigel M. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol. 2018;38(7):709–25. https://doi.org/10.1161/ATVBAHA.117.309846.; Darbousset R., Thomas G.M., Mezouar S. et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 2012;120(10):2133–43. https://doi.org/10.1182/blood-2012-06-437772.; Jewkes R., Sikweyiya Y., Morrell R., Dunkle K. Gender inequitable masculinity and sexual entitlement in rape perpetration South Africa: findings of a cross-sectional study. PloS One. 2011;6(12):e29590. https://doi.org/10.1371/journal.pone.0029590.; Zhou J., Qu F., Sang X. et al. Acupuncture and auricular acupressure in relieving menopausal hot flashes of bilaterally ovariectomized chinese women: a randomized controlled trial. Evid Based Complement Alternat Med. 2011;2011:713274. https://doi.org/10.1093/ecam/nep001.; Skendros P., Mitsios A., Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130(11):6151–7. https://doi.org/10.1172/JCI141374.; Frangou E., Chrysanthopoulou A., Kambas K. et al. FP098REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) by the release of neutrophil extracellular traps (NETs). Nephrol Dial Transplant. 2018;33(suppl_1):i80–i80. https://doi.org/10.1093/ndt/gfy104.FP098.; Lisman T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018;371(3):567–76. https://doi.org/10.1007/s00441-017-2727-4.; Carestia A., Kaufman T., Rivadeneyra L. et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol. 2016;99(1):153–62. https://doi.org/10.1189/jlb.3A0415-161R.; Maugeri N., Campana L., Gavina M. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12(12):2074–88. https://doi.org/10.1111/jth.12710.; Gol S., Pena R.N., Rothschild M.F. et al. A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs. Sci Rep. 2018;8(1):14336. https://doi.org/10.1038/s41598-018-32710-w.; Semeraro F., Ammollo C.T., Morrissey J.H. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61. https://doi.org/10.1182/blood-2011-03-343061.; Zhou Y.-F., Eng E.T., Zhu J. et al. Sequence and structure relationships within von Willebrand factor. Blood. 2012;120(2):449–58. https://doi.org/10.1182/blood-2012-01-405134.; Löf A., Müller J.P., Brehm M.A. A biophysical view on von Willebrand factor activation. J Cell Physiol. 2018;233(2):799–810. https://doi.org/10.1002/jcp.25887.; Pendu R., Terraube V., Christophe O.D. et al. P-selectin glycoprotein ligand 1 and β2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood. 2006;108(12):3746–52. https://doi.org/10.1182/blood-2006-03-010322.; Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5. https://doi.org/10.1073/pnas.1005743107.; Lancellotti S., Basso M., De Cristofaro R. Proteolytic processing of von Willebrand factor by adamts13 and leukocyte proteases. Mediterr J Hematol Infect Dis. 2013;5(1):e2013058. https://doi.org/10.4084/MJHID.2013.058.; Weber C., Jenke A., Chobanova V., et al. Targeting of cell-free DNA by DNase I diminishes endothelial dysfunction and inflammation in a rat model of cardiopulmonary bypass. Sci Rep. 2019;9(1):19249. https://doi.org/10.1038/s41598-019-55863-8.; South K., Lane D.A. ADAMTS-13 and von Willebrand factor: a dynamic duo. J Thromb Haemost. 2018;16(1):6–18. https://doi.org/10.1111/jth.13898.; Scully M., Cataland S.R., Peyvandi F. et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–46. https://doi.org/10.1056/NEJMoa1806311.; Soejima K., Mimura N., Hiroshima M. et al. A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease? J Biochem. 2001;130(4):475–80. https://doi.org/10.1093/oxfordjournals.jbchem.a003009.; Dong J.-f. Structural and functional correlation of ADAMTS13. Curr Opin Hematol. 2007;14(3):270–6. https://doi.org/10.1097/MOH.0b013e3280d35820.; Tao Z., Wang Y., Choi H. et al. Cleavage of ultralarge multimers of von Willebrand factor by C-terminal-truncated mutants of ADAMTS-13 under flow. Blood. 2005;106(1):141–3. https://doi.org/10.1182/blood-2004-11-4188.; Huang R.-H., Fremont D.H., Diener J.L. et al. A structural explanation for the antithrombotic activity of ARC1172, a DNA aptamer that binds von Willebrand factor domain A1. Structure. 2009;17(11):1476–84. https://doi.org/10.1016/j.str.2009.09.011.; Grässle S., Huck V., Pappelbaum K.I. et al. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscler Thromb Vasc Biol. 2014;34(7):1382–9. https://doi.org/10.1161/ATVBAHA.113.303016.; Edwards J.V., Howley P.S. Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings. J Biomed Mater Res A. 2007;83(2):446–54. https://doi.org/10.1002/jbm.a.31171.; Urisono Y., Sakata A., Matsui H. et al. Von Willebrand factor aggravates hepatic ischemia-reperfusion injury by promoting neutrophil recruitment in mice. Thromb Haemost. 2018;118(4):700–8. https://doi.org/10.1055/s-0038-1636529.; Gragnano F., Sperlongano S., Golia E. et al. The role of von Willebrand factor in vascular inflammation: from pathogenesis to targeted therapy. Mediators Inflamm. 2017;2017:5620314. https://doi.org/10.1155/2017/5620314.; Honda M., Kubes P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol. 2018;15(4):206–21. https://doi.org/10.1038/nrgastro.2017.183.; Farkas P., Csuka D., Mikes B. et al. Complement activation, inflammation and relative ADAMTS13 deficiency in secondary thrombotic microangiopathies. Immunobiology. 2017;222(2):119–27. https://doi.org/10.1016/j.imbio.2016.10.014.; Richardson P. Phase II trial of single agent bortezomib (VELCADE^(! R)) in patients with previously untreated multiple myeloma. Blood. 2004;104:100a.; Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor–cleaving protease (ADAMTS13) in patients with sepsisinduced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34. https://doi.org/10.1182/blood-2005-03-1087.; Crawley J.T., Lam J.K., Rance J.B. et al. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood. 2005;105(3):1085–93. https://doi.org/10.1182/blood-2004-03-1101.; Klebanoff S.J. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77950:598–625. https://doi.org/10.1189/jlb.1204697.; Chen J., Fu X., Wang Y. et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood. 2010;115(3):706–12. https://doi.org/10.1182/blood-2009-03-213967.; Nishimura K., Sano M., Ohtaka M. et al. Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem. 2011;286(6):4760–71. https://doi.org/10.1074/jbc.M110.183780.; Pillai V.G., Bao J., Zander C.B. et al. Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood. 2016;128(1):110–9. https://doi.org/10.1182/blood-2015-12-688747.; Quinn K., Henriques M., Parker T. et al. Human neutrophil peptides: a novel potential mediator of inflammatory cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2008;295(5):H1817–24. https://doi.org/10.1152/ajpheart.00472.2008.; Higazi A.A., Ganz T., Kariko K., Cines D.B. Defensin modulates tissue-type plasminogen activator and plasminogen binding to fibrin and endothelial cells. J Biol Chem. 1996;271(30):17650–5. https://doi.org/10.1074/jbc.271.30.17650.; Wong S.L., Wagner D.D. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB J. 2018;32(12):fj201800691R. https://doi.org/10.1096/fj.201800691R. Online ahead of print.; Sorvillo N., Mizurini D.M., Coxon C. et al. Plasma peptidylarginine deiminase IV promotes VWF-platelet string formation and accelerates thrombosis after vessel injury. Circ Res. 2019;125(5):507–19. https://doi.org/10.1161/CIRCRESAHA.118.314571.; Buchtele N., Schwameis M., Gilbert J.C. et al. Targeting von Willebrand factor in ischaemic stroke: focus on clinical evidence. Thromb Haemost. 2018;118(6):959–78. https://doi.org/10.1055/s-0038-1648251.; Laridan E., Denorme F., Desender L. et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol. 2017;82(2):223–32. https://doi.org/10.1002/ana.24993.; Pena-Martinez C., Duran-Laforet V., Garcia-Culebras A. et al. Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) resistance. Stroke. 2019;50(11):3228–37. https://doi.org/10.1161/STROKEAHA.119.026848.; Novotny J., Oberdieck P., Titova A. et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology. 2020;94(22):e2346–e2360. https://doi.org/10.1212/WNL.0000000000009532.; Hada M., Kaminski M., Bockenstedt P., McDonagh J. Covalent crosslinking of von Willebrand factor to fibrin. Blood. 1986;68(1):95–101.; Miszta A., Pelkmans L., Lindhout T. et al. Thrombin-dependent incorporation of von Willebrand factor into a fibrin network. J Biol Chem. 2014;289(52):35979–86. https://doi.org/10.1074/jbc.M114.591677.; Denorme F., Langhauser F., Desender L. et al. ADAMTS13-mediated thrombolysis of t-PA-resistant occlusions in ischemic stroke in mice. Blood. 2016;127(19):2337–45. https://doi.org/10.1182/blood-2015-08-662650.; https://www.gynecology.su/jour/article/view/1516
-
19Academic Journal
المؤلفون: E. V. Slukhanchuk, V. O. Bitsadze, A. G. Solopova, J. Kh. Khizroeva, J.-S. Gris, I. Elalamy, L. L. Pankratyeva, V. I. Tsibizova, J. Yu. Ungiadze, L. A. Ashrafyan, A. D. Makatsariya, Е. В. Слуханчук, В. О. Бицадзе, А. Г. Солопова, Д. Х. Хизроева, Ж.-К. Гри, И. Элалами, Л. Л. Панкратьева, В. И. Цибизова, Д. Ю. Унгиадзе, Л. А. Ашрафян, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 16, No 5 (2022); 611-622 ; Акушерство, Гинекология и Репродукция; Vol 16, No 5 (2022); 611-622 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: тромбовоспаление, thrombosis, inflammation, metastasis, thromboinflammation, тромбоз, воспаление, метастазирование
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1467/1062; https://www.gynecology.su/jour/article/view/1467/1063; Fernandes C.J., Morinaga L.T., Alves J.L. et al. Cancer-associated thrombosis: the when, how and why. Eur Respir Rev. 2019;28(151):180119. https://doi.org/10.1183/16000617.0119-2018.; Hisada Y., Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood. 2017;130(13):1499–506. https://doi.org/10.1182/blood-2017-03-743211.; Trousseau A. Phlegmasia alba dolens. Clinique medicale de l'Hotel-Dieu de Paris. 1865;3:94.; Ay C., Pabinger I., Cohen A.T. Cancer-associated venous thromboembolism: burden, mechanisms, and management. Thromb Haemost. 2017;117(2):219–30. https://doi.org/10.1160/TH16-08-0615.; Noble S., Pasi J. Epidemiology and pathophysiology of cancer-associated thrombosis. Br J Cancer. 2010;102 Suppl 1(Suppl 1):S2–9. https://doi.org/10.1038/sj.bjc.6605599.; Wun T., White R.H. Venous thromboembolism (VTE) in patients with cancer: epidemiology and risk factors. Cancer Invest. 2009;27 Suppl 1:63–74. https://doi.org/10.1080/07357900802656681.; Ma S.-N., Mao Z.-X., Wu Y. et al. The anti-cancer properties of heparin and its derivatives: a review and prospect. Cell Adh Migr. 2020;14(1):118–28. https://doi.org/10.1080/19336918.2020.1767489.; Lyman G.H., Eckert L., Wang Y. et al. Venous thromboembolism risk in patients with cancer receiving chemotherapy: a real-world analysis. Oncologist. 2013;18(12):1321–9. https://doi.org/10.1634/theoncologist.2013-0226.; Lyman G.H. Venous thromboembolism in the patient with cancer: focus on burden of disease and benefits of thromboprophylaxis. Cancer. 2011;117(7):1334–49.https://doi.org/10.1002/cncr.25714.; Wun T., White R.H. Epidemiology of cancer-related venous thromboembolism. Best Pract Res Clin Haematol. 2009;22(1):9–23. https://doi.org/10.1016/j.beha.2008.12.001.; Falanga A., Marchetti M. Venous thromboembolism in the hematologic malignancies. J Clin Oncol. 2009;27(29):4848–57. https://doi.org/10.1200/JCO.2009.22.8197.; De Cicco M. The prothrombotic state in cancer: pathogenic mechanisms. Crit Rev Oncol Hematol. 2004;50(3):187–96. https://doi.org/10.1016/j.critrevonc.2003.10.003.; Abdel-Razeq H., Mansour A., Saadeh S.S. et al. The application of current proposed venous thromboembolism risk assessment model for ambulatory patients with cancer. Clin Appl Thromb Hemost. 2018;24(3):429–33. https://doi.org/10.1177/1076029617692880.; Hamada K., Kuratsu J., Saitoh Y. et al. Expression of tissue factor correlates with grade of malignancy in human glioma. Cancer. 1996;77(9):1877–83. https://doi.org/10.1002/(SICI)1097-0142(19960501)77:9%3C1877::AID-CNCR18%3E3.0.CO;2-X; Dai H., Zhou H., Sun Y. et al. D-dimer as a potential clinical marker for predicting metastasis and progression in cancer. Biomed Rep. 2018;9(5):453–7. https://doi.org/10.3892/br.2018.1151.; Chen N., Ren M., Li R. et al. Bevacizumab promotes venous thromboembolism through the induction of PAI-1 in a mouse xenograft model of human lung carcinoma. Mol Cancer. 2015;14:140. https://doi.org/10.1186/s12943-015-0418-x.; Granger J.M., Kontoyiannis D.P. Etiology and outcome of extreme leukocytosis in 758 nonhematologic cancer patients: a retrospective, single-institution study. Cancer. 2009;115(17):3919–23. https://doi.org/10.1002/cncr.24480.; Blix K., Jensvoll H., Brækkan S.K., Hansen J.-B. White blood cell count measured prior to cancer development is associated with future risk of venous thromboembolism – the Tromsø study. PLoS One. 2013;8(9):e73447. https://doi.org/10.1371/journal.pone.0073447.; Shindo K., Aishima S., Ohuchida K. et al. Podoplanin expression in cancerassociated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas. Mol Cancer. 2013;12(1):168. https://doi.org/10.1186/1476-4598-12-168.; Mukai M., Oka T. Mechanism and management of cancer-associated thrombosis. J Cardiol. 2018;72(2):89–93. https://doi.org/10.1016/j.jjcc.2018.02.011.; Peterson J.E., Zurakowski D., Italiano J.E. et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 2012;15(2):265–73. https://doi.org/10.1007/s10456-012-9259-z.; Quintanilla M., Montero-Montero L., Renart J., Martín-Villar E. Podoplanin in inflammation and cancer. Int J Mol Sci. 2019;20(3):707. https://doi.org/10.3390/ijms20030707.; Aharon A., Brenner B. Microparticles, thrombosis and cancer. Best Pract Res Clin Haematol. 2009;22(1):61–9. https://doi.org/10.1016/j.beha.2008.11.002.; Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34–45. https://doi.org/10.1038/nri3345.; Geddings J.E., Mackman N. Tumor-derived tissue factor–positive microparticles and venous thrombosis in cancer patients. Blood. 2013;122(11):1873–80. https://doi.org/10.1182/blood-2013-04-460139.; Zarà M., Canobbio I., Visconte C. et al. Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells. Cell Signal. 2018;48:45–53. https://doi.org/10.1016/j.cellsig.2018.04.008.; Lowe K.L., Navarro-Nunez L., Watson S.P. Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res. 2012;129 Suppl 1:S30–7. https://doi.org/10.1016/S0049-3848(12)70013-0.; Lee H.-Y., Yu N.-Y., Lee S.-H. et al. Podoplanin promotes cancerassociated thrombosis and contributes to the unfavorable overall survival in an ectopic xenograft mouse model of oral cancer. Biomed J. 2020;43(2):146–62. https://doi.org/10.1016/j.bj.2019.07.001.; Stone R.L., Nick A.M., McNeish I.A. et al. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med. 2012;366(7):610–8. https://doi.org/10.1056/NEJMoa1110352.; Seyfried T.N., Huysentruyt L.C. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1–2):43–73. https://doi.org/10.1615/critrevoncog.v18.i1-2.40.; Riedl J., Preusser M., Nazari P.M.S. et al. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood. 2017;129(13):1831–9. https://doi.org/10.1182/blood-2016-06-720714.; Payne H., Ponomaryov T., Watson S.P., Brill A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood. 2017;129(14):2013–20. https://doi.org/10.1182/blood-2016-09-742999.; Efrimescu C.I., Buggy P.M., Buggy D.J. Neutrophil extracellular trapping role in cancer, metastases, and cancer-related thrombosis: a narrative review of the current evidence base. Curr Oncol Rep. 2021;23(10):118. https://doi.org/10.1007/s11912-021-01103-0.; Martins-Cardoso K., Almeida V.H., Bagri K.M. et al. Neutrophil extracellular traps (NETs) promote pro-metastatic phenotype in human breast cancer cells through epithelial–mesenchymal transition. Cancers (Basel). 2020;12(6):1542. https://doi.org/10.3390/cancers12061542.; Snoderly H.T., Boone B.A., Bennewitz M.F. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res. 2019;21(1):145. https://doi.org/10.1186/s13058-019-1237-6.; Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.; Teijeira Á., Garasa S., Gato M. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;2(5):856–71.e8. https://doi.org/10.1016/j.immuni.2020.03.001.; Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. https://doi.org/10.1172/jci.insight.138999.; Nie M., Yang L., Bi X. et al. Neutrophil extracellular traps induced by IL8 promote diffuse large B-cell lymphoma progression via the TLR9 signaling. Clin Cancer Res. 2019;25(6):1867–79. https://doi.org/10.1158/1078-0432.CCR-18-1226.; Yang D., Liu J. Neutrophil extracellular traps: A new player in cancer metastasis and therapeutic target. J Exp Clin Cancer Res. 2021;40(1):233. https://doi.org/10.1186/s13046-021-02013-6.; Thalin C., Hisada Y., Lundstrom S. et al. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 2019;39(9):1724–38. https://doi.org/10.1161/ATVBAHA.119.312463.; Giaglis S., Stoikou M., Grimolizzi F. et al. Neutrophil migration into the placenta: Good, bad or deadly? Cell Adh Migr. 2016;10(1–2):208–25. https://doi.org/10.1080/19336918.2016.1148866.; Marder W., Knight J.S., Kaplan M.J. et al. Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies. Lupus Sci Med. 2016;3(1):e000134. https://doi.org/10.1136/lupus-2015-000134.; Osorio Y., Bonilla D.L., Peniche A.G. et al. Pregnancy enhances the innate immune response in experimental cutaneous leishmaniasis through hormone-modulated nitric oxide production. J Leukoc Biol. 2008;83(6):1413–22. https://doi.org/10.1189/jlb.0207130.; Hahn S., Lapaire O., Than N.G. Biomarker development for presymptomatic molecular diagnosis of preeclampsia: feasible, useful or even unnecessary? Expert Rev Mol Diagn. 2015;15(5):617–29. https://doi.org/10.1586/14737159.2015.1025757.; Lam F.W., Cruz M.A., Parikh K., Rumbaut R.E. Histones stimulate von Willebrand factor release in vitro and in vivo. Haematologica. 2016;101(7):e277–9. https://doi.org/10.3324/haematol.2015.140632.; Meier T.R., Myers D.D., Wrobleski S.K. et al. Prophylactic P-selectin inhibition with PSI-421 promotes resolution of venous thrombosis without anticoagulation. Thromb Haemost. 2008;99(2):343–51. https://doi.org/10.1160/TH07-10-0608.; Ay C., Simanek R., Vormittag R. et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood. 2008;112(7):2703–8. https://doi.org/10.1182/blood-2008-02-142422.; Hernandez C., Huebener P., Schwabe R.F. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene. 2016;35(46):5931–41. https://doi.org/10.1038/onc.2016.104.; Tang M., Jiang L., Lin Y. et al. Platelet microparticle-mediated transfer of miR-939 to epithelial ovarian cancer cells promotes epithelial to mesenchymal transition. Oncotarget. 2017;8(57):97464–75. https://doi.org/10.18632/oncotarget.22136.; Hindilerden F., Yonal-Hindilerden I., Akar E., Kart-Yasar K. Covid-19 associated autoimmune thrombotic thrombocytopenic purpura: Report of a case. Thromb Res. 2020;195:136–8. https://doi.org/10.1016/j.thromres.2020.07.005.; Giamarellos-Bourboulis E.J., Netea M.G., Rovina N. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992–1000.e3. https://doi.org/10.1016/j.chom.2020.04.009.; Middleton E.A., He X.Y., Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–79. https://doi.org/10.1182/blood.2020007008.; Ashar H.K., Mueller N.C., Rudd J.M. et al. The role of extracellular histones in influenza virus pathogenesis. Am J Pathol. 2018;188(1):135–48. https://doi.org/10.1016/j.ajpath.2017.09.014.; Gould T.J., Lysov Z., Liaw P.C. Extracellular DNA and histones: doubleedged swords in immunothrombosis. J Thromb Haemost. 2015;13 Suppl 1:S82–91. https://doi.org/10.1111/jth.12977.; https://www.gynecology.su/jour/article/view/1467
-
20Academic Journal
المؤلفون: K. N. Grigoreva, V. O. Bitsadze, J. Kh. Khizroeva, V. I. Tsibizova, M. V. Tretyakova, D. V. Blinov, L. L. Pankratyeva, N. R. Gashimova, F. E. Yakubova, A. S. Antonova, J.-C. Gris, I. Elalamy, A. D. Makatsariya, К. Н. Григорьева, В. О. Бицадзе, Д. Х. Хизроева, В. И. Цибизова, М. В. Третьякова, Д. В. Блинов, Л. Л. Панкратьева, Н. Р. Гашимова, Ф. Э. Якубова, А. С. Антонова, Ж.-К. Гри, И. Элалами, А. Д. Макацария
المصدر: Obstetrics, Gynecology and Reproduction; Vol 16, No 5 (2022); 588-599 ; Акушерство, Гинекология и Репродукция; Vol 16, No 5 (2022); 588-599 ; 2500-3194 ; 2313-7347
مصطلحات موضوعية: система гемостаза, vWF, ADAMTS-13 metalloprotease, vWF/ADAMTS-13, von Willebrand disease, hemostasis, металлопротеаза ADAMTS-13, болезнь Виллебранда
وصف الملف: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1465/1059; https://www.gynecology.su/jour/article/view/1465/1060; Zhou Y.-F., Eng E.T., Zhu J. et al. Sequence and structure relationships within von Willebrand factor. Blood. 2012;120(2):449–58. https://doi.org/10.1182/blood-2012-01-405134.; Nightingale T., Cutler D. The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J Thromb Haemost. 2013;11 Suppl 1(Suppl 1):192–201. https://doi.org/10.1111/jth.12225.; Valentijn K.M., Sadler J.E., Valentijn J.A. et al. Functional architecture of Weibel-Palade bodies. Blood. 2011;117(19):5033–43. https://doi.org/10.1182/blood-2010-09-267492.; Lenting P.J., Christophe O.D., Denis CV. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015;125(13):2019–28. https://doi.org/10.1182/blood-2014-06-528406.; De Ceunynck K., De Meyer S.F., Vanhoorelbeke K. Unwinding the von Willebrand factor strings puzzle. Blood. 2013;121(2):270–7. https://doi.org/10.1182/blood-2012-07-442285.; Wieberdink R.G., van Schie M.C., Koudstaal P.J. et al. High von Willebrand factor levels increase the risk of stroke: the Rotterdam study. Stroke. 2010;41(10):2151–6. https://doi.org/10.1161/STROKEAHA.110.586289.; Rietveld I.M., Lijfering W.M., le Cessie S. et al. High levels of coagulation factors and venous thrombosis risk: strongest association for factor VIII and von Willebrand factor. J Thromb Haemost. 2019;17(1):99–109. https://doi.org/10.1111/jth.14343.; Bowman M., Hopman W.M., Rapson D. et al. The prevalence of symptomatic von Willebrand disease in primary care practice. J Thromb Haemost. 2010;8(1):213–6. https://doi.org/10.1111/j.1538-7836.2009.03661.x.; Von Willebrand E.A. Hereditary pseudohaemophilia. Haemophilia. 1999;5(3):223–31; discussion 222. https://doi.org/10.1046/j.1365-2516.1999.00302.x.; Verweij C.L., Diergaarde P.J., Hart M., Pannekoek H. Full-length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J. 1986;5(8):1839–47.; Sadler J.E. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395–424. https://doi.org/10.1146/annurev.biochem.67.1.395.; Mannucci P.M. Treatment of von Willebrand’s disease. N Engl J Med. 2004;351(7):683–94. https://doi.org/10.1056/NEJMra040403.; James A.H., Kouides P.A., Abdul-Kadir R. et al. Evaluation and management of acute menorrhagia in women with and without underlying bleeding disorders: consensus from an international expert panel. Eur J Obstet Gynecol Reprod Biol. 2011;158(2):124–34. https://doi.org/10.1016/j.ejogrb.2011.04.025.; Govorov I., Ekelund L., Chaireti R. et al. Heavy menstrual bleeding and health-associated quality of life in women with von Willebrand’s disease. Exp Ther Med. 2016;11(5):1923–9. https://doi.org/10.3892/etm.2016.3144.; Lavin M., Aguila S., Dalton N. et al. Significant gynecological bleeding in women with low von Willebrand factor levels. Blood Adv. 2018;2(14):1784–91. https://doi.org/10.1182/bloodadvances.2018017418.; Nowak-Göttl U., Limperger V., Kenet G. et al. Developmental hemostasis: a lifespan from neonates and pregnancy to the young and elderly adult in a European white population. Blood Cells Mol Dis. 2017;67:2–13. https://doi.org/10.1016/j.bcmd.2016.11.012.; James A.H., Konkle B.A., Kouides P. et al. Postpartum von Willebrand factor levels in women with and without von Willebrand disease and implications for prophylaxis. Haemophilia. 2015;21(1):81–7. https://doi.org/10.1111/hae.12568.; James A.H., Jamison M.G. Bleeding events and other complications during pregnancy and childbirth in women with von Willebrand disease. J Thromb Haemost. 2007;5(6):1165–9. https://doi.org/10.1111/j.1538-7836.2007.02563.x.; Majluf-Cruz K., Anguiano-Robledo L., Calzada-Mendoza C.C. et al. von Willebrand Disease and other hereditary haemostatic factor deficiencies in women with a history of postpartum haemorrhage. Haemophilia. 2020;26(1):97–105. https://doi.org/10.1111/hae.13900.; South K., Freitas M.O., Lane D.A. A model for the conformational activation of the structurally quiescent metalloprotease ADAMTS13 by von Willebrand factor. J Biol Chem. 2018;293(4):1149–50. https://doi.org/10.1074/jbc.M117.776732.; Plautz W.E., Raval J.S., Dyer M.R. et al. ADAMTS13: origins, applications and prospects. Transfusion. 2018;58(10):2453–62. https://doi.org/10.1111/trf.14804.; de Groot R., Lane D.A., Crawley J.T. The role of the ADAMTS13 cysteinerich domain in VWF binding and proteolysis. Blood. 2015;125(12):1968–7. https://doi.org/10.1182/blood-2014-08-594556.; Pabinger I., Thaler J., Ay C. Biomarkers for prediction of venous thromboembolism in cancer. Blood. 2013;122(12):2011–8. https://doi.org/10.1182/blood-2013-04-460147.; Katneni U.K., Ibla J.C., Hunt R. et al. von Willebrand factor/ADAMTS-13 interactions at birth: implications for thrombosis in the neonatal period. J Thromb Haemost. 2019;17(3):429–40. https://doi.org/10.1111/jth.14374.; Schaller M., Studt J.D., Voorberg J., Kremer Hovinga J.A. Acquired thrombotic thrombocytopenic purpura. Development of an autoimmune response. Hamostaseologie. 2013;33(2):121–30. https://doi.org/10.5482/HAMO-12-12-0023.; De Young V., Singh K., Kretz C.A. Mechanisms of ADAMTS13 regulation. J Thromb Haemost. 2022 Sep 8. https://doi.org/10.1111/jth.15873. Onlineahead of print.; Sánchez-Aranguren L.C., Prada C.E., Riaño-Medina C.E., Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol. 2014;5:372. https://doi.org/10.3389/fphys.2014.00372.; Molvarec A., Rigó J., Bõze T. et al. Increased plasma von Willebrand factor antigen levels but normal von Willebrand factor cleaving protease (ADAMTS13) activity in preeclampsia. Thromb Haemost. 2009;101(2):305–11.; Aref S., Goda H. Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology. 2013;18(4):237–41. https://doi.org/10.1179/1607845412Y.0000000070.; Sánchez-Luceros A., Meschengieser S.S., Marchese C. et al. Factor VIII and von Willebrand factor changes during normal pregnancy and puerperium. Blood Coagul Fibrinolysis. 2003;14(7):647–5. https://doi.org/10.1097/00001721-200310000-00005.; Grandone E., Vimercati А., Sorrentino F. et al. Obstetric outcomes in pregnant COVID-19 women: the imbalance of von Willebrand factor and ADAMTS13 axis. BMC Pregnancy Childbirth. 2022;22(1):142. https://doi.org/10.1186/s12884-022-04405-8.; Reiter R.A., Varadi K., Turecek P.L. et al. Changes in ADAMTS13 (vonWillebrand-factor-cleaving protease) activity after induced release of von Willebrand factor during acute systemic inflammation. Thromb Haemost. 2005;93:554–8. https://doi.org/10.1160/TH04-08-0467.; Strauss T., Elisha N., Ravid B. et al. Activity of Von Willebrand factor and levels of VWF-cleaving protease (ADAMTS13) in preterm and full term neonates. Blood Cells Mol Dis. 2017;67:14–7. https://doi.org/10.1016/j.bcmd.2016.12.013.; Khorana A., Francis C., Culakova E. et al. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost. 2007;5(3):632–4. https://doi.org/10.1111/j.1538-7836.2007.02374.x.; Palacios-Acedo A.L., Mege D., Crescence L. et al. Platelets, thromboinflammation, and cancer: collaborating with the enemy. Front Immunol. 2019;10:1805. https://doi.org/10.3389/fimmu.2019.01805.; Mochizuki S., Soejima K., Shimoda M. et al. Effect of ADAM28 on carcinoma cell metastasis by cleavage of von Willebrand factor. J Natl Cancer Inst. 2012;104(12):906–22. https://doi.org/10.1093/jnci/djs232.; Ishihara J., Ishihara A., Starke R.D. et al. The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing. Blood. 2019;133(24):2559–69. https://doi.org/10.1182/blood.2019000510.; Guo R., Yang J., Liu X. et al. Increased von Willebrand factor over decreased ADAMTS-13 activity is associated with poor prognosis in patients with advanced non-small cell lung cancer. J Clin Lab Anal. 2018;32(1):e22219. https://doi.org/10.1002/jcla.22219.; Koh S.C., Razvi K., Chan Y. et al. The association with age, human tissue kallikreins 6 and 10 and hemostatic markers for survival outcome from epithelial ovarian cancer. Arch Gynecol Obstet. 2011;284(1):183–90. https://doi.org/10.1007/s00404-010-1605-z.; Marfia G., Navone S.E., Fanizzi C. et al. Prognostic value of preoperative von Willebrand factor plasma levels in patients with Glioblastoma. Cancer Med. 2016;5(8):1783–90. https://doi.org/10.1002/cam4.747.; Rho J., Ladd J.J., Li C. et al. Protein and glycomic plasma markers for early detection of adenoma and colon cancer. Gut. 2018;67(3):473–84. https://doi.org/10.1136/gutjnl-2016-312794.; Yang A.-J., Wang M., Wang Y. et al. Cancer cell-derived von Willebrand factor enhanced metastasis of gastric adenocarcinoma. Oncogenesis. 2018;7(1):12. https://doi.org/10.1038/s41389-017-0023-5.; Xu Y., Pan S., Liu J. et al. GATA3-induced vWF upregulation in the lung adenocarcinoma vasculature. Oncotarget. 2017;8(66):110517–29. https://doi.org/10.18632/oncotarget.22806.; John A., Robador J.R., Vidal-Y-Sy S. et al. Urothelial carcinoma of the bladder induces endothelial cell activation and hypercoagulation. Mol Cancer Res. 2020;18(7):1099–109. https://doi.org/10.1158/1541-7786.MCR-19-1041.; Bauer A.T., Suckau J., Frank K. et al. von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood. 2015;125(20):3153–63. https://doi.org/10.1182/blood-2014-08-595686.; O’Sullivan J.M., Preston R.J., Robson T., O’Donnell J.S. Emerging roles for von Willebrand factor in cancer cell biology. Semin Thromb Hemost. 2018;44(2):159–66. https://doi.org/10.1055/s-0037-1607352.; Suter C.M., Hogg P.J., Price J.T. et al. Identification and characterisation of a platelet GPIb/V/IX-like complex on human breast cancers: implications for the metastatic process. Jpn J Cancer Res. 2001;92(10):1082–92. https://doi.org/10.1111/j.1349-7006.2001.tb01063.x.; Yang X., Sun H., Li Z. et al. Gastric cancer-associated enhancement of von Willebrand factor is regulated by vascular endothelial growth factor and related to disease severity. BMC Cancer. 2015;15:80. https://doi.org/10.1186/s12885-015-1083-6.; Goertz L., Schneider S.W., Desch A. et al. Heparins that block VEGF-Amediated von Willebrand factor fiber generation are potent inhibitors of hematogenous but not lymphatic metastasis. Oncotarget. 2016;7(42):68527–45. https://doi.org/10.18632/oncotarget.11832.; Brill A., Fuchs T.A., Savchenko A.S. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–44. https://doi.org/10.1111/j.1538-7836.2011.04544.x.; Staessens S., Denorme F., François O. et al. Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance. Haematologica. 2020;105(2):498–507. https://doi.org/10.3324/haematol.2019.219881.; Verhenne S., Denorme F., Libbrecht S. et al. Platelet-derived VWF is not essential for normal thrombosis and hemostasis but fosters ischemic stroke injury in mice. Blood. 2015;126(14):1715–22. https://doi.org/10.1182/blood-2015-03-632901.; Sonneveld M., de Maat M.P.M., Leebeek F.W.G. Von Willebrand factor and ADAMTS13 in arterial thrombosis: a systemic review and metaanalysis. Blood Rev. 2014;28(4):167–78. https://doi.org/10.1016/j.blre.2014.04.003.; McCabe D.J., Murphy S.J., Starke R. et al. Relationship between ADAMTS13 activity, von Willebrand factor antigen levels and platelet function in the early and late phases after TIA or ischaemic stroke. J Neurol Sci. 2015;348(1–2):35–40. https://doi.org/10.1016/j.jns.2014.10.035.; Kovacevic K.D., Mayer F.J., Jilma B. et al. Von Willebrand factor antigen levels predict major adverse cardiovascular events in patients with carotid stenosis of the ICARAS study. Atherosclerosis. 2019;290:31–6. https://doi.org/10.1016/j.atherosclerosis.2019.09.003.; Andersson H., Siegerink B., Luken B. et al. High VWF, low ADAMTS13, and oral contraceptives increase the risk of ischemic stroke and myocardial infarction in young women. Blood. 2012;119(6):1555–60. https://doi.org/10.1182/blood-2011-09-380618.; Qu L., Jiang M., Qiu W. et al. Assessment of the diagnostic value of plasma levels, activities, and their ratios of von Willebrand factor and ADAMTS13 in patients with cerebral infarction. Clin Appl Thromb Hemost. 2016;22(3):252–9. https://doi.org/10.1177/1076029615583347.; Donkel S.J., Benaddi B., Dippel D.W.J. et al. Prognostic hemostasis biomarkers in acute ischemic stroke: a systematic review. Arterioscler Thromb Vasc Biol. 2019;39(3):360–72. https://doi.org/10.1161/ATVBAHA.118.312102.; Peeling R.W., Heymann D.L., Teo Y.-Y., Garcia P.J. Diagnostics for COVID19: moving from pandemic response to control. Lancet. 2022;399(10326):757–68. https://doi.org/10.1016/S0140-6736(21)02346-1.; Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.; Helms J., Tacquard C., Severac F. et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–98. https://doi.org/10.1007/s00134-020-06062-x.; Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–7. https://doi.org/10.1111/jth.14768.; Loo J., Spittle D.A., Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax. 2021;76(4):412–20. https://doi.org/10.1136/thoraxjnl-2020-216243.; Cordoro K.M., Reynolds S.D., Wattier R., McCalmont T.H. Clustered cases of acral perniosis: clinical features, histopathology, and relationship to COVID-19. Pediatr Dermatol. 2020;37(3):419–23. https://doi.org/10.1111/pde.14227.; Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19. medRxiv. 2020 Apr 14;2020.04.09.20059626. https://doi.org/10.1101/2020.04.09.20059626. Preprint.; Seth R., McKinnon T.A.J., Zhang X.F. Contribution of the von Willebrand factor/ADAMTS13 imbalance to COVID-19 coagulopathy. Am J Physiol Heart Circ Physiol. 2022;322(1):H87–H93. https://doi.org/10.1152/ajpheart.00204.2021.; Favaloro E.J., Henry B.M., Lippi G. Increased VWF and decreased ADAMTS-13 in COVID-19: creating a milieu for (micro)thrombosis. Semin Thromb Hemost. 2021;47(4):400–18. https://doi.org/10.1055/s-0041-1727282.; Xu X., Feng Y., Jia Y. et al. Prognostic value of von Willebrand factor and ADAMTS13 in patients with COVID-19: A systematic review and metaanalysis. Thromb Res. 2022;218:83–98. https://doi.org/10.1016/j.thromres.2022.08.017.; Бицадзе В.О., Хизроева Д.Х., Гри Ж.-К. и др. Патогенетическое и прогностическое значение воспаления и нарушений в оси ADAMTS13/vWF у больных тяжелой формой COVID-19. Акушерство, Гинекология и Репродукция. 2022;16(3):228–43. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.327.; https://www.gynecology.su/jour/article/view/1465