يعرض 1 - 20 نتائج من 64 نتيجة بحث عن '"Амфиподы"', وقت الاستعلام: 0.51s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal

    المساهمون: The research was supported by the State Project No. 0279-2021-0010.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 27, № 4 (2023); 349-356 ; Вавиловский журнал генетики и селекции; Том 27, № 4 (2023); 349-356 ; 2500-3259 ; 2500-0462 ; 10.18699/VJGB-23-35

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3777/1714; Ahmad S.F., Singchat W., Panthum T., Srikulnath K. Impact of repetitive DNA elements on snake genome biology and evolution. Cells. 2021;10(7):1707. DOI 10.3390/cells10071707.; Athanasouli M., R ӧ delsper g er C. Analysis of repeat elements in the Pristionchus pacificus genome reveals an ancient invasion by horizontally transferred transposons. BMC Genomics. 2022;23(1):523. DOI 10.1186/s12864-022-08731-1.; Bazikalova A.Ya. Amphipoda of Lake Baikal. In: Proceedings of the Baikal Limnological Station. Vol. 11. Moscow, 1945. (in Russian); Bird C.P., Stranger B.E., Dermitzakis E.T. Functional variation and evolution of non-coding DNA. Curr. Opin. Genet. Dev. 2006;16(6):559-564. DOI 10.1016/j.gde.2006.10.003.; Biscotti M.A., Olmo E., Heslop-Harrison J. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015;23(3):415-420. DOI 10.1007/s10577-015-9499-z.; Boto L. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc. Biol. Sci. 2014;281(1777):20132450. DOI 10.1098/rspb.2013.2450.; Butina T.V., Bukin Yu.S., Khanaev I.V., Kravtsova L.S., Maikova O.O., Tupikin A.E., Kabilov M.R., Belikov S.I. Metagenomic analysis of viral communities in diseased Baikal sponge Lubomirskia baikalensis. Limnol. Freshw. Biol. 2019;1:155-162. DOI 10.31951/2658-3518-2019-A-1-155.; Cavalier-Smith T., Beaton M. The skeletal function of non-genic nuclear DNA: new evidence from ancient cell chimaeras. Genetica. 1999;106(1-2):3-13. DOI 10.1023/a:1003701925110.; Chen S.C., Sun G.X., Rosen B.P., Zhang S.Y., Deng Y., Zhu B.K., Rensing C., Zhu Y.G. Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Sci. Rep. 2017;7(1):7741. DOI 10.1038/s41598-017-08313-2.; Costa M., Manton J.D., Ostrovsky A.D., Prohaska S., Jefferis G.S. NBLAST: rapid, sensitive comparison of neuronal structure and con struction of neuron family databases. Neuron. 2016;91(2):293-311. DOI 10.1016/j.neuron.2016.06.012.; de Sena Brandine G., Smith A.D. Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Res. 2019;8:1874. DOI 10.12688/f1000research.21142.2.; Dodsworth S., Chase M.W., Kelly L.J., Leitch I.J., Macas J., Novák P., Piednoël M., Weiss-Schneeweiss H., Leitch A.R. Genomic repeat abundances contain phylogenetic signal. Syst. Biol. 2015;64(1):112-126. DOI 10.1093/sysbio/syu080.; Drozdova P., Saranchina A., Madyarova E., Gurkov A., Timofeyev M. Experimental crossing confirms reproductive isolation between cryp tic species within Eulimnogammarus verrucosus (Crustacea: Amphi poda) from Lake Baikal. Int. J. Mol. Sci. 2022;23(18):10858. DOI 10.3390/ijms231810858.; Gurkov A., Rivarola-Duarte L., Bedulina D., Fernández Casas I., Michael H., Drozdova P., Nazarova A., Govorukhina E., Timofeyev M., Stadler P.F., Luckenbach T. Indication of ongoing amphipod speciation in Lake Baikal by genetic structures within endemic species. BMC Evol. Biol. 2019;19(1):138. DOI 10.1186/s12862-019-1470-8.; Hausdorf B., Röpstorf P., Riedel F. Relationships and origin of endemic Lake Baikal gastropods (Caenogastropoda: Rissooidea) based on mitochondrial DNA sequences. Mol. Phylogenet. Evol. 2003;26(3):435-443. DOI 10.1016/s1055-7903(02)00365-2.; Hou Z., Sket B. A review of gammaridae (crustacea: Amphipoda): the family extent, its evolutionary history, and taxonomic redefinition of genera. Zool. J. Linn. Soc. 2016;176(2):323-348. DOI 10.1111/zoj.12318.; Jalili V., Afgan E., Gu Q., Clements D., Blankenberg D., Goecks J., Taylor J., Nekrutenko A. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 2020;48(W1):W395-W402. DOI 10.1093/nar/gkaa434.; Kamaltynov R.M. On the higher classification of Lake Baikal amphipods. Crustaceana. 1999;72(8):933-944.; Kejnovsky E., Jedlicka P. Nucleic acids movement and its relation to genome dynamics of repetitive DNA: is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components? BioEssays. 2022;44(4):е2100242. DOI 10.1002/bies.202100242.; Kozhov M. Lake Baikal and Its Life. Monographiae Biologicae. Vol. 11. Dordrecht: Springer, 1963. DOI 10.1007/978-94-015-7388-7.; Lee I.P.A., Eldakar O.T., Gogarten J.P., Andam C.P. Bacterial cooperation through horizontal gene transfer. Trends Ecol. Evol. 2022;37(3):223-232. DOI 10.1016/j.tree.2021.11.006.; Lerat E., Casacuberta J., Chaparro C., Vieira C. On the importance to acknowledge transposable elements in epigenomic analyses. Genes. 2019;10(4):258. DOI 10.3390/genes10040258.; Li Y., Liu Z., Liu C., Shi Z., Pang L., Chen C., Chen Y., Pan R., Zhou W., Chen X.X., Rokas A., Huang J., Shen X.X. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell. 2022;185(16):2975-2987.е10. DOI 10.1016/j.cell.2022.06.014.; Lipaeva P., Vereshchagina K., Drozdova P., Jakob L., Kondrateva E., Lucassen M., Bedulina D., Timofeyev M., Stadler P., Luckenbach T. Different ways to play it cool: transcriptomic analysis sheds light on different activity patterns of three amphipod species under long­term cold exposure. Mol. Ecol. 2021;30(22):5735-5751. DOI 10.1111/mec.16164.; Mats V.D., Shcherbakov D.Y., Efimova I.M. Late Cretaceous–Cenozoic history of the Lake Baikal depression and formation of its unique biodiversity. Stratigr. Geol. Correl. 2011;19(4):404-423. DOI 10.1134/S0869593811040058.; Naumenko S.A., Logacheva M.D., Popova N.V., Klepikova A.V., Penin A.A., Bazykin G.A., Etingova A.E., Mugue N.S., Kondrashov A.S., Yampolsky L.Y. Transcriptome-based phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection. Mol. Ecol. 2017;26(2):536-553. DOI 10.1111/mec.13927.; Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of euka ryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792-793. DOI 10.1093/bioinformatics/btt054.; Peretolchina T., Sitnikova T.Y., Sherbakov D.Y. The complete mitochondrial genomes of four Baikal molluscs from the endemic family Baicaliidae (Caenogastropoda: Truncatelloida). J. Molluscan Stud. 2020;86(3):201-209. DOI 10.1093/mollus/eyaa004.; Rocha A., Dalgarno A., Neretti N. The functional impact of nuclear reorganization in cellular senescence. Brief. Funct. Genomics. 2022;21(1):24-34. DOI 10.1093/bfgp/elab012.; Romanova E.V., Aleoshin V.V., Kamaltynov R.M., Mikhailov K.V., Logacheva M.D., Sirotinina E.A., Gornov A.Y., Anikin A.S., Sherbakov D.Y. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics. 2016;17(Suppl.14):1016. DOI 10.1186/s12864-016-3357-z.; Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4(4):406-425. DOI 10.1093/oxfordjournals.molbev.a040454.; Shen W., Le S., Li Y., Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PloS One. 2016;11(10):e0163962. DOI 10.1371/journal.pone.0163962.; Sherbakov D.Y. Molecular phylogenetic studies on the origin of biodiversity in Lake Baikal. Trends Ecol. Evol. 1999;14(3):92-95. DOI 10.1016/s0169-5347(98)01543-2.; Silva B.S.M.L., Heringer P., Dias G.B., Svartman M., Kuhn G.C.S. De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines. PLoS One. 2019;14(12):e0223466. DOI 10.1371/journal.pone.0223466.; Sitnikova T.Y. Endemic gastropod distribution in Baikal. Hydrobiologia. 2006;568(1):207-211. DOI 10.1007/s10750-006-0313-y.; Sitnikova T., Roepstorf P., Riedel F. Reproduction, duration of embryogenesis, egg capsules and protoconchs of gastropods of the family Baicaliidae (Caenogastropoda) endemic to Lake Baikal. Malacologia. 2001;43(1-2):59-85.; Steensels J., Gallone B., Verstrepen K.J. Interspecific hybridization as a driver of fungal evolution and adaptation. Nat. Rev. Microbiol. 2021; 19(8):485-500. DOI 10.1038/s41579-021-00537-4.; Takhteev V. On the current state of taxonomy of the Baikal Lake amphipods (Crustacea: Amphipoda) and the typological ways of constructing their system. Arthropoda Selecta. 2019;28(3):374-402. DOI 10.15298/arthsel.28.3.03.; Thakur J., Packiaraj J., Henikoff S. Sequence, chromatin and evolution of satellite DNA. Int. J. Mol. Sci. 2021;22(9):4309. DOI 10.3390/ijms22094309.; Titievsky A., Putintseva Y.A., Taranenko E.A., Baskin S., Oreshkova N.V., Brodsky E., Sharova A.V., Sharov V.V., Panov J., Kuzmin D.A., Brodsky L., Krutovsky K.V. Comparative genomics analysis of repetitive elements in ten gymnosperm species: “dark re peatome” and its abundance in conifer and gnetum species. Life. 2021;11(11):1234. DOI 10.3390/life11111234.; Yakhnenko A., Itskovich V. Analysis of mtDNA variability in closely related Baikal sponge species for new barcoding marker development. Limnology. 2020;21(1):49-57. DOI 10.1007/s10201-019-00599-7.; Zubakov D.Y., Shcherbakov D.Y., Sitnikova T.Y. Phylogeny of the endemial Baicaliidae molluscs inferred from partial nucleotide sequences of the CO1 mitochondrial gene. Mol. Biol. 1997;31(6):935-939.; https://vavilov.elpub.ru/jour/article/view/3777

  3. 3
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المساهمون: Работа выполнена в рамках государственного задания «Таксономическое, морфологическое и экологическое разнообразие гельминтов позвоночных животных Северной Азии» № ААА-А17-117012710031-6.

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 75, № 4 (2020); 285-290 ; Вестник Московского университета. Серия 16. Биология; Том 75, № 4 (2020); 285-290 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/940/536; Орловская О.М. Новые сведения о жизненных циклах некоторых видов трематод прибрежных рыб Северного Охотоморья // Биоразнообразие и экология паразитов. Труды Центра паразитологии. Том XLVI / Под ред. С.В. Зиновьева. М.: Наука, 2010. C. 186–197.; Успенская А.В. Паразитофауна бентических ракообразных Баренцева моря. М.: Изд-во акад. наук СССР, 1963. 126 с.; James B.L. Host selection and ecology of marine digenean larvae // Fourth European marine biology symposium / Ed. D.J Crisp. Cambridge: Cambridge Univ. Press, 1971. P. 179–197.; Køie M. On the morphology and life history of Podocotyle reflexa and a comparison of its developmental stages with those of P. atomon (Trematoda, Opecoelidae) // Ophelia. 1980. Vol. 20. N 1. P. 17–43.; Shimazu T. On two metacercariae on the genus Podocotyle from the shrimp, Pandalus goniurus, from Aniwa Bay, Sakhalin, USSR (Trematoda, Opecoelidae) // Bull. Japan. Soc. Sci. Fish. 1973. Vol. 39. N 5. P. 481–487.; Lo S.J., Hall J.E., Allender P.A., Klainer A.S. Scanning electron microscopy of an opecoelid cercaria and its encystment and encapsulation in an insect host // J. Parasitol. 1975. Vol. 61. N 3. P. 413–417.; Knowles E.E., Hall J.E. Histopathology of an opecoelid trematode infection in mayfly Naiads // J. Invert. Pathol. 1976. Vol. 27. N 3. P. 351–362.; Beckett E.B. Histological changes in mosquito flight muscle fibres associated with parasitization by filarial larvae // Parasitology. 1971. Vol. 63. N 3. P. 365–372.; Chikilian M.L., Bradley T.J., Nayar J.K., Knight J.W. Ultrastructural comparison of extracellular and intracellular encapsulation of Brugia malayi in Anopheles quadrimaculatus // J. Parasitol. 1994. Vol. 80. N 1. P. 133–140.; Глупов В.В., Слепнева И.А., Дубовский И.М. Генерация активированных кислородных метаболитов при формировании иммунного ответа у членистоногих // Труды Зоол. ин-та. РАН. 2009. Т. 313. № 3. С. 297–307.; Dubovskiy I.M., Kryukova N.A., Glupov V.V., Ratcliffe N.A. Encapsulation and nodulation in insects // Invert. Surv. J. 2016. Vol. 13. N 1. P. 229–246.; Chen C.C. Further evidence of both humoral and cellular encapsulations of sheathed microfilariae of Brugia pahangi in Anopheles quadrimaculatus // Parasitology. 1988. Vol. 78. N 6. P. 819–826.; Nappi A., Poirié M., Carton Y. The role of melanization and cytotoxic by products in the cellular immune responses of Drosophila against parasitic wasps // Adv. Parasitol. 2009. Vol. 70. N 4. P. 99–121.; Kim-Jo C., Gatti J-L., Poirié M. Drosophila cellular immunity against parasitoid wasps: a complex and timedependent process // Frontiers Physiol. 2019. Vol. 10: 603.; Dezfuli B.S., Simoni E., Duclos L., Rossetti E. Crustacean-acanthocephalan interaction and host cellmediated immunity: parasite encapsulation and melanization // Folia Parasitol. 2008. Vol. 55. N 1. P. 53–59.; Kostadinova A., Mavrodieva R.S. Microphallids in Gammarus insensibilis Stock, 1966 from a Black Sea Lagoon: host response to infection // Parasitology. 2005. Vol. 131. N 3. P. 347–354.; Skorobrekhova E.M., Nikishin V.P. Encapsulation of the acanthocephalan Corynosoma strumosum (Rudolphi, 1802) Lühe, 1904, in the intermediate host Spinulogammarus ochotensis // J. Parasitol. 2019. Vol. 105. N 4. P. 567–570.; Christensen B.M., Li J., Chen C.-C., Nappi A.J. Melanization immune responses in mosquito vectors // Trends Parasitol. 2005. Vol. 21. N 4. P. 192–199.; Carton Y., Frey F., Nappi A.J. Inheritance of cellular immune resistance in Drosophila melanogaster // Heredity. 1992. Vol. 69. P. 393–399.; Salt G. The cellular defense reactions of insects. Cambridge monograph in experimental biology. London: Cambridge Univ. Press, 1970. 118 pp.; Kobayashi M., Ogura N., Yamamoto H. Studies on filariasis VIII: histological observation on the abortive development of Brugia malayi larvae in the thoracic muscles of the mosquitoes, Armigeres subalbatus // Jpn. J. Sanit. Zool. 1986. Vol. 37. N 2. P. 127–132.; Dedkhad W., Christensen B.M., Bartholomay L.C., Joshi D., Hempolchom C., Saeung A. Immune responses of Aedes togoi, Anopheles paraliae and Anopheles lesteri against nocturnally subperiodic Brugia malayi microfilariae during migration from the midgut to the site of development // Parasites Vectors. 2018. Vol. 11: 528.; Martin T.R., Conn D.B. The pathogenicity, localization, and cyst structure of echinostomatid metacercariae (Trematoda) infecting the kidneys of the frogs Rana clamitans and Rana pipiens // J. Parasitol. 1990. Vol. 76. N 3. P. 414–419.; Taft S.J. Cinephotomicrographic and histochemical observations on cercarial penetration and encystment by Plagiorchis sp. in larvae of Chaoborus sp. // Trans. Am. Micros. Soc. 1990. Vol. 109. N 2. P. 160–167.; Galaktionov K.V., Malkova I.I., Irwin S.W.B., Saville D.H., Maguire J.G. The structure and formation of metacercarial cysts in the trematode family Microphallidae Travassos 1920 // J. Helminthol. 1997. Vol. 71. N 1. P. 13–20.; https://vestnik-bio-msu.elpub.ru/jour/article/view/940

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المصدر: South of Russia: ecology, development; Том 4, № 4 (2009); 110-113 ; Юг России: экология, развитие; Том 4, № 4 (2009); 110-113 ; 2413-0958 ; 1992-1098 ; 10.18470/1992-1098-2009-4

    وصف الملف: application/pdf

    Relation: https://ecodag.elpub.ru/ugro/article/view/556/547; Алигаджиев Г.А. Биологические ресурсы Дагестанского рыбохозяйственного района Каспия. – Махачкала: Дагестанское книжное издательство, 1989. – 124 с.; Алигаджиев Г.А., Абдулмеджидов А.А. Количественное распределение бентоса в Дагестанском районе Каспийского моря // Кормовая база бентосоядных рыб. – М.: ВНИРО, 1988. – С. 42-46.; Исрапов И.М. Функциональная морфология амфипод и особенности пространственной структуры их таксоцена в Каспийском море. – Махачкала: Даггоспединститут, 1992. – 87 с.; Романова Н.Н., Осадчих В.Ф. Современное состояние зообентоса Каспийского моря // Изменения биологических комплексов Каспийского моря за последние десятилетия. – М.: Наука, 1965. – С. 138-165.; Сайпулаев И.М., Эльдаров Э.М., Атаев З.В. и др. Водные ресурсы Дагестана: состояние и проблемы. – Махачкала, 1996. – 180 с.; Санина Л.В. Летний фитопланктон Среднего Каспия // Рыбохозяйственные исследования планктона. Каспийское море. – М.: ВНИРО, 1991. – С. 77-95.; Яблонская Е.А. Состав и распределение взвешенных веществ как пищевого материала для донных организмов в Каспийском море // Аннотации научных работ ВНИРО. – М., 1965. – С. 35-38.; https://ecodag.elpub.ru/ugro/article/view/556

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal
  18. 18
  19. 19
  20. 20