-
1Dissertation/ Thesis
المؤلفون: Gómez Núñez, Alberto
المساهمون: University/Department: Universitat de Barcelona. Departament d'Enginyeria Electrònica i Biomèdica
Thesis Advisors: Vilà i Arbonès, Anna Maria
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Circuits impresos, Circuitos impresos, Printed circuits, Òxid de zinc, Óxido de cinc, Zinc oxide, Compostos de ferro, Compuestos de hierro, Iron compounds, Ciències Experimentals i Matemàtiques
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/481979
-
2Dissertation/ Thesis
المؤلفون: Lamiel Garcia, Josep Oriol
المساهمون: University/Department: Universitat de Barcelona. Departament de Ciència dels Materials i Química Física
Thesis Advisors: Illas i Riera, Francesc, Bromley, Stefan Thomas
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Òxid de zinc, Óxido de cinc, Zinc oxide, Diòxid de titani, Dióxido de titanio, Titanium dioxide, Fotocatàlisi, Fotocatálisis, Photocatalysis, Nanopartícules, Nanopartículas, Nanoparticles, Teoria del funcional de densitat, Funcionales de densidad, Density functionals, Termodinàmica estadística, Termodinámica estadística, Statistical thermodynamics, Ciències Experimentals i Matemàtiques
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/462882
-
3Dissertation/ Thesis
المؤلفون: Demiroglu, Ilker
المساهمون: University/Department: Universitat de Barcelona. Departament de Química Física
Thesis Advisors: Bromley, Stefan Thomas, Illas i Riera, Francesc
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Òxid de zinc, Óxido de cinc, Zinc oxide, Polimorfisme (Cristal·lografia), Polimorfismo (Cristalografía), Polymorphism (Crystallography), Pel·lícules fines, Películas delgadas, Thin films, Semiconductors, Semiconductores, Nanotecnologia, Nanotecnología, Nanotechnology, Ciències Experimentals i Matemàtiques
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/277286
-
4Dissertation/ Thesis
المؤلفون: Carreras Seguí, Paz
المساهمون: University/Department: Universitat de Barcelona. Departament de Física Aplicada i Òptica
Thesis Advisors: pazcarreras@gmail.com, Bertomeu i Balagueró, Joan, Antony, Aldrin
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Òxid de zinc, Óxido de cinc, Zinc oxide, Òxids conductors transparents, Óxidos conductores transparentes, Transparent conductive oxides, Cèl·lules solars, Células solares, Solar cells, Sputtering, Polvorització catòdica, Pulverización catódica, Pel·lícules fines, Películas delgadas, Thin films, Ciències Experimentals i Matemàtiques
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/109157
-
5Conference
مصطلحات موضوعية: Ingeniería, óxido de cinc, láser speckle dinámico
وصف الملف: application/pdf; 153-157
-
6Dissertation/ Thesis
Thesis Advisors: Andrés Miguel, Alicia de (dir.), UAM. Departamento de Física de Materiales
مصطلحات موضوعية: Optoelectrónica - Tesis doctorales, Grafenos - Tesis doctorales, Láminas delgadas - Tesis doctorales, Electrodos - Tesis doctorales, Óxido de cinc - Tesis doctorales, Física
URL الوصول: http://hdl.handle.net/10486/663943
-
7Academic Journal
المصدر: Revista Investigaciones en Facultades de Ingeniería del NOA
مصطلحات موضوعية: sensores ultravioleta, nanohilos de óxido de cinc, fotoconductividad
جغرافية الموضوع: ARG
وصف الملف: application/pdf
-
8Dissertation/ Thesis
المؤلفون: Luengo Gutiérrez, Carlos
المساهمون: Sanchez Vicente, Carlos, Santos Blanco, José Pedro, Franco Peláez, Francisco Javier
مصطلحات موضوعية: 504.7, 681.586, Sensores de gases resistivos, Nanopartículas, Drop-casting, Agentes contaminantes, Gases de efecto invernadero, Óxido de estaño, Óxido de cinc, Óxido de titanio, Resistive gas sensors, Nanoparticles, Pollutants greenhouse gases, Tin oxide, Zinc oxide, Titanium oxide, Electrónica (Física), Óptica (Física), 2203 Electrónica, 2204.05 Gases
وصف الملف: application/pdf
-
9Dissertation/ Thesis
المؤلفون: Rocha Diaz, Carlos Emilio
المساهمون: Camacho García, José Humberto, Ruiz Peralta, María de Lourdes
مصطلحات موضوعية: INGENIERÍA Y TECNOLOGÍA, Semiconductores--Investigación, Semiconductores--Materiales, Fotocatálisis--Materiales, Oxido de cinc, Materiales--Propiedades eléctricas, Adsorción--Investigación, Funcionales de densidad
وصف الملف: pdf; application/pdf
-
10Academic Journal
المؤلفون: Barba, Antonio, Clausell, Carolina, Jarque, Juan Carlos, Monzó, María
المصدر: Boletín de la Sociedad Española de Cerámica y Vidrio, Vol 53, Iss 2, Pp 69-75 (2014)
مصطلحات موضوعية: copper-nickel-zinc ferrites, sintering, microstructure, precipitation, zinc oxide, copper oxide, ferritas de cobre-níquel-cinc, sinterización, microestructura, precipitación, óxido de cinc, óxido de cobre, Clay industries. Ceramics. Glass, TP785-869
وصف الملف: electronic resource
-
11Academic Journal
المؤلفون: Andrade Campo, E. J., Aristizabal, H., Rodríguez-Páez, J. E.
المصدر: Boletín de la Sociedad Española de Cerámica y Vidrio, Vol 45, Iss 4, Pp 283-288 (2006)
مصطلحات موضوعية: Zinc oxide, co-precipitation method, elastomer vulcanization and reinforcement, Óxido de cinc, método de coprecipitación, vulcanización, reforzante, Clay industries. Ceramics. Glass, TP785-869
وصف الملف: electronic resource
-
12Dissertation/ Thesis
المؤلفون: zapata Hernandez, Juan Camilo
المساهمون: Buitrago Sierra, Robison, Santa Marín, Juan Felipe, Materiales Avanzados y Energía MATyER, Zapata Hernandez, Juan Camilo 0000-0002-8664-5867, https://scholar.google.com/citations?user=bhXNtYcAAAAJ&hl=es
مصطلحات موضوعية: 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería, Oxido de cinc, Dispositivos piezoeléctricos, Piezoelectric devices, Óxido de zinc, Salida eléctrica, Sensor, Textil, PENG, Zinc oxide, Electrical output, Textiles
وصف الملف: xxii, 109 páginas; application/pdf
Relation: RedCol; LaReferencia; Abd El-Ghaffar, M. A., Shaffei, K. A., Fouad Zikry, A. A., Mohamed, M. B., & Marzouq, K. A. G. (2016). Novel conductive nano-composite ink based on poly aniline, silver nanoparticles and nitrocellulose. Egyptian Journal of Chemistry, 59(4), 429–443. https://doi.org/10.21608/ejchem.2016.1101; Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., & Rossetti, G. A. (2017). BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. 041305.; Ahmad, M., Iqbal, M. A., Kiely, J., Luxton, R., & Jabeen, M. (2017). Enhanced output voltage generation via ZnO nanowires (50 nm): Effect of diameter thinning on voltage enhancement. Journal of Physics and Chemistry of Solids, 104, 281–285. https://doi.org/10.1016/j.jpcs.2017.01.006; Al-Heniti, S., Umar, A., & Zaki, H. M. (2015). Synthesis and characterization of zinc oxide nanosheets for dye-sensitized solar cells. Journal of Nanoscience and Nanotechnology, 15(12), 9954–9959. https://doi.org/10.1166/jnn.2015.10693; AlAhzm, A. M., Alejli, M. O., Ponnamma, D., Elgawady, Y., & Al-Maadeed, M. A. A. (2021). Piezoelectric properties of zinc oxide/iron oxide filled polyvinylidene fluoride nanocomposite fibers. Journal of Materials Science: Materials in Electronics, 32(11), 14610–14622. https://doi.org/10.1007/s10854-021-06020-3; Alamer, F. A. (2018). Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose, 25(3), 2075–2082. https://doi.org/10.1007/s10570-018-1667-9; Alhashmi Alamer, F. (2017). A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. Journal of Alloys and Compounds, 702, 266–273. https://doi.org/10.1016/j.jallcom.2017.01.001; Ali, A., Nguyen, N. H. A., Baheti, V., Ashraf, M., Militky, J., Mansoor, T., Noman, M. T., & Ahmad, S. (2018). Electrical conductivity and physiological comfort of silver coated cotton fabrics. Journal of the Textile Institute, 109(5), 620–628. https://doi.org/10.1080/00405000.2017.1362148; Alshehri, N. A., Lewis, A. R., Pleydell-Pearce, C., & Maffeis, T. G. G. (2018). Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. Journal of Saudi Chemical Society, 22(5), 538–545. https://doi.org/10.1016/j.jscs.2017.09.004; Amin, G., Asif, M. H., Zainelabdin, A., Zaman, S., Nur, O., & Willander, M. (2011). Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. Journal of Nanomaterials, 2011. https://doi.org/10.1155/2011/269692; Ariosa, D., Elhordoy, F., Dalchiele, E. A., Marotti, R. E., & Stari, C. (2011). Texture vs morphology in ZnO nano-rods: On the x-ray diffraction characterization of electrochemically grown samples. Journal of Applied Physics, 110(12). https://doi.org/10.1063/1.3669026; Askari, H., Hashemi, E., Khajepour, A., Khamesee, M. B., & Wang, Z. L. (2018). Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy, 53, 1003–1019. https://doi.org/10.1016/j.nanoen.2018.09.032; Augustine, R., Dan, P., Sosnik, A., Kalarikkal, N., Tran, N., Vincent, B., Thomas, S., Menu, P., Rouxel, D., Augustine, R., Dan, P., Sosnik, A., Kalarikkal, N., & Tran, N. (2022). Electrospun poly ( vinylidene fluoride-trifluoroethylene )/ zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation To cite this version : HAL Id : hal-01712240.; Babick, F., Mielke, J., Wohlleben, W., Weigel, S., & Hodoroaba, V. D. (2016). How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. Journal of Nanoparticle Research, 18(6), 1–40. https://doi.org/10.1007/s11051-016-3461-7; Bai, H., Wang, X., Zhou, Y., & Zhang, L. (2012). Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Progress in Natural Science: Materials International, 22(3), 250–257. https://doi.org/10.1016/j.pnsc.2012.04.011; Bairagi, S., & Ali, S. W. (2019). A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre. European Polymer Journal, 116(April), 554–561. https://doi.org/10.1016/j.eurpolymj.2019.04.043; Bairagi, S., & Ali, S. W. (2020a). A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs. International Journal of Energy Research, 44(7), 5545–5563. https://doi.org/10.1002/er.5306; Bairagi, S., & Ali, S. W. (2020b). Poly (vinylidine fluoride) (PVDF)/Potassium Sodium Niobate (KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator. Organic Electronics, 78(October 2019), 105547. https://doi.org/10.1016/j.orgel.2019.105547; Balan, V., Mihai, C. T., Cojocaru, F. D., Uritu, C. M., Dodi, G., Botezat, D., & Gardikiotis, I. (2019). Vibrational spectroscopy fingerprinting in medicine: From molecular to clinical practice. Materials, 12(18), 1–40. https://doi.org/10.3390/ma12182884; Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15(February), 100223. https://doi.org/10.1016/j.scp.2020.100223; Basnet, P., & Chatterjee, S. (2020). Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Structures and Nano-Objects, 22, 100426. https://doi.org/10.1016/j.nanoso.2020.100426; Bergström, J. (2015). Experimental Characterization Techniques. In Mechanics of Solid Polymers. https://doi.org/10.1016/b978-0-323-31150-2.00002-9; Bhat, T. S., Bhogale, S. B., Patil, S. S., Pisal, S. H., Phaltane, S. A., & Patil, P. S. (2020). Synthesis and characterization of hexagonal zinc oxide nanorods for Eosin-Y dye sensitized solar cell. Materials Today: Proceedings, 43, 2800–2804. https://doi.org/10.1016/j.matpr.2020.08.687; Bhatia, D., Sharma, H., Meena, R. S., & Palkar, V. R. (2016). A novel ZnO piezoelectric microcantilever energy scavenger: Fabrication and characterization. Sensing and Bio-Sensing Research, 9, 45–52. https://doi.org/10.1016/j.sbsr.2016.05.008; Bhunia, R., Ghosh, B., Ghosh, D., Hussain, S., Bhar, R., & Pal, A. K. (2015). Free-standing and flexible nano-ZnO/PVDF composite thin films: Impedance spectroscopic studies. Polymers for Advanced Technologies, 26(9), 1176–1183. https://doi.org/10.1002/pat.3551; Bi, H., Meng, S., Li, Y., Guo, K., Chen, Y., Kong, J., Yang, P., Zhong, W., & Liu, B. (2006). Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab on a Chip, 6(6), 769–775. https://doi.org/10.1039/b600326e; Boppella, R., Anjaneyulu, K., Basak, P., & Manorama, S. V. (2013). Facile synthesis of face oriented ZnO crystals: Tunable polar facets and shape induced enhanced photocatalytic performance. Journal of Physical Chemistry C, 117(9), 4597–4605. https://doi.org/10.1021/jp311443s; Boukir, A., Fellak, S., & Doumenq, P. (2019). Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD). Heliyon, 5(9), e02477. https://doi.org/10.1016/j.heliyon.2019.e02477; Briscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P. M., Cain, M., & Dunn, S. (2013). Measurement techniques for piezoelectric nanogenerators. Energy and Environmental Science, 6(10), 3035–3045. https://doi.org/10.1039/c3ee41889h; Bruno, T. J. (1999). Sampling accessories for infrared spectrometry. Applied Spectroscopy Reviews, 34(1–2), 91–120. https://doi.org/10.1081/ASR-100100840; Cano-Raya, C., Denchev, Z. Z., Cruz, S. F., & Viana, J. C. (2019). Chemistry of solid metal-based inks and pastes for printed electronics – A review. Applied Materials Today, 15, 416–430. https://doi.org/10.1016/j.apmt.2019.02.012; Cao, F., Li, C., Li, M., Li, H., Huang, X., & Yang, B. (2018). Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Applied Surface Science, 447, 173–181. https://doi.org/10.1016/j.apsusc.2018.03.217; Cao, X. T., Bach, L. G., Islam, M. R., & Lim, K. T. (2015). A simple synthesis, characterization, and properties of poly(methyl methacrylate) grafted CdTe nanocrystals. Molecular Crystals and Liquid Crystals, 618(1), 111–119. https://doi.org/10.1080/15421406.2015.1076305; Ceylan, Ö., Van Landuyt, L., Rahier, H., & De Clerck, K. (2013). The effect of water immersion on the thermal degradation of cotton fibers. Cellulose, 20(4), 1603–1612. https://doi.org/10.1007/s10570-013-9936-0; Chamakh, M. M., Mrlík, M., Leadenham, S., Bažant, P., Osička, J., Almaadeed, M. A. A., Erturk, A., & Kuřitka, I. (2020). Vibration sensing systems based on poly(Vinylidene fluoride) and microwave-assisted synthesized zno star-like particles with controllable structural and physical properties. Nanomaterials, 10(12), 1–15. https://doi.org/10.3390/nano10122345; Chand, N., & Fahim, M. (2020). Tribology of Natural Fiber Polymer Composites (2nd Editio, Vol. 148). https://doi.org/10.1016/C2018-0-04814-8; Chen, C., Bai, Z., Cao, Y., Dong, M., Jiang, K., Zhou, Y., Tao, Y., Gu, S., Xu, J., Yin, X., & Xu, W. (2020). Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators. Composites Science and Technology, 192, 108100. https://doi.org/10.1016/j.compscitech.2020.108100; Chen, F., Jing, M. xiang, Yang, H., Yuan, W. yong, Liu, M. quan, Ji, Y. sheng, Hussain, S., & Shen, X. qian. (2021). Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics, 27(3), 1101–1111. https://doi.org/10.1007/s11581-020-03891-0; Chen, J., Nabulsi, N., Wang, W., Kim, J. Y., Kwon, M. K., & Ryou, J. H. (2019). Output characteristics of thin-film flexible piezoelectric generators: A numerical and experimental investigation. Applied Energy, 255(June). https://doi.org/10.1016/j.apenergy.2019.113856; Cheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022a). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146(February), 106703. https://doi.org/10.1016/j.mssp.2022.106703; Cheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022b). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146(March), 106703. https://doi.org/10.1016/j.mssp.2022.106703; Cheon, J., Lee, J., & Kim, J. (2012). Inkjet printing using copper nanoparticles synthesized by electrolysis. Thin Solid Films, 520(7), 2639–2643. https://doi.org/10.1016/j.tsf.2011.11.021; Choi, D., & Park, Y. T. (2019). Nanogenerators in Korea. In Nanogenerators in Korea. https://doi.org/10.3390/books978-3-03897-623-3; Chowdhury, A. R., Jaksik, J., Hussain, I., Longoria, R., Faruque, O., Cesano, F., Scarano, D., Parsons, J., & Uddin, M. J. (2019). Multicomponent nanostructured materials and interfaces for efficient piezoelectricity. Nano-Structures and Nano-Objects, 17, 148–184. https://doi.org/10.1016/j.nanoso.2018.12.002; Christian, B., Volk, J., Lukàcs, I. E., Sautieff, E., Sturm, C., Graillot, A., Dauksevicius, R., O’Reilly, E., Ambacher, O., & Lebedev, V. (2016). Piezo-force and Vibration Analysis of ZnO Nanowire Arrays for Sensor Application. Procedia Engineering, 168, 1192–1195. https://doi.org/10.1016/j.proeng.2016.11.406; Coates, J. (2004). Encyclopedia of Analytical Chemistry -Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, 1–23. http://www3.uma.pt/jrodrigues/disciplinas/QINO-II/Teorica/IR.pdf; Costa, S. V., Azana, N. T., Shieh, P., & Mazon, T. (2018). Synthesis of ZnO rod arrays on aluminum recyclable paper and effect of the rod size on power density of eco-friendly nanogenerators. Ceramics International, 44(11), 12174–12179. https://doi.org/10.1016/j.ceramint.2018.03.272; Covaci, C., & Gontean, A. (2020). Piezoelectric energy harvesting solutions: A review. Sensors (Switzerland), 20(12), 1–37. https://doi.org/10.3390/s20123512; Crossley, S., & Kar-Narayan, S. (2015). Energy harvesting performance of piezoelectric ceramic and polymer nanowires. Nanotechnology, 26(34). https://doi.org/10.1088/0957-4484/26/34/344001; Deng, W., Yang, T., Jin, L., Yan, C., Huang, H., Chu, X., Wang, Z., Xiong, D., Tian, G., Gao, Y., Zhang, H., & Yang, W. (2019). Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 55, 516–525. https://doi.org/10.1016/j.nanoen.2018.10.049; Dong, K., Peng, X., & Wang, Z. L. (2020). Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Advanced Materials, 32(5), 1–43. https://doi.org/10.1002/adma.201902549; Dossin Zanrosso, C., Piazza, D., & Lansarin, M. A. (2020). PVDF/ZnO composite films for photocatalysis: A comparative study of solution mixing and melt blending methods. Polymer Engineering and Science, 60(6), 1146–1157. https://doi.org/10.1002/pen.25368; Dukali, R. M., Radovic, I. M., Stojanovic, D. B., Sevic, D. M., Radojevic, V. J., Jocic, D. M., & Aleksic, R. R. (2014). Electrospinning of the laser dye rhodamine B-doped poly(methyl methacrylate) nanofibers. Journal of the Serbian Chemical Society, 79(7), 867–880. https://doi.org/10.2298/JSC131014011D; Elton N. Kaufmann. (2003). Characterization of materials.; Erer, K. S. (2007). Adaptive usage of the Butterworth digital filter. Journal of Biomechanics, 40(13), 2934–2943. https://doi.org/10.1016/j.jbiomech.2007.02.019; Fang, L., Wu, W., Huang, X., He, J., & Jiang, P. (2015). Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Composites Science and Technology, 107, 67–74. https://doi.org/10.1016/j.compscitech.2014.12.009; Fangueiro, R., & Soutinho, F. (2011). Textile structures. In Fibrous and Composite Materials for Civil Engineering Applications. Woodhead Publishing Limited. https://doi.org/10.1533/9780857095583.1.62; Fateh, T., Richard, F., Rogaume, T., & Joseph, P. (2016). Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air. Journal of Analytical and Applied Pyrolysis, 120, 423–433. https://doi.org/10.1016/j.jaap.2016.06.014; Feng, W., Wang, B., Huang, P., Wang, X., Yu, J., & Wang, C. (2016). Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine(HMTA): Understanding the role of HMTA in the formation of ZnO crystals. Materials Science in Semiconductor Processing, 41, 462–469. https://doi.org/10.1016/j.mssp.2015.10.017; Fonoberov, V. A., & Balandin, A. A. (2006). ZnO Quantum Dots: Physical Properties and Optoelectronic Applications. Journal of Nanoelectronics and Optoelectronics, 1(1), 19–38. https://doi.org/10.1166/jno.2006.002; Fraga, M. A., Furlan, H., Pessoa, R. S., & Massi, M. (2014). Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: An overview. Microsystem Technologies, 20(1), 9–21. https://doi.org/10.1007/s00542-013-2029-z; Gaan, S., & Sun, G. (2009). Effect of nitrogen additives on thermal decomposition of cotton. Journal of Analytical and Applied Pyrolysis, 84(1), 108–115. https://doi.org/10.1016/j.jaap.2008.12.004; Gad, S. E., & Sullivan, D. W. (2014). Methyl Ethyl Ketone. In Encyclopedia of Toxicology: Third Edition (Third Edit, Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00879-4; Gerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 22(8), 1346–1358. https://doi.org/10.1039/c9ce01556f; Ghasemian, M. B., Lin, Q., Adabifiroozjaei, E., Wang, F., Chu, D., & Wang, D. (2017). Morphology control and large piezoresponse of hydrothermally synthesized lead-free piezoelectric (Bi0.5Na0.5)TiO3 nanofibres. RSC Advances, 7(25), 15020–15026. https://doi.org/10.1039/c7ra01293d; Godfrey, D., Nirmal, D., Arivazhagan, L., Rathes Kannan, R., Issac Nelson, P., Rajesh, S., Vidhya, B., & Mohankumar, N. (2020). A novel ZnPc nanorod derived piezoelectric nanogenerator for energy harvesting. Physica E: Low-Dimensional Systems and Nanostructures, 118, 113931. https://doi.org/10.1016/j.physe.2019.113931; Goel, S., & Kumar, B. (2020). A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. Journal of Alloys and Compounds, 816, 152491. https://doi.org/10.1016/j.jallcom.2019.152491; Golubevas, R., Zarkov, A., Alinauskas, L., Stankeviciute, Z., Balciunas, G., Garskaite, E., & Kareiva, A. (2017). Fabrication and investigation of high-quality glass-ceramic (GC)-polymethyl methacrylate (PMMA) composite for regenerative medicine. RSC Advances, 7(53), 33558–33567. https://doi.org/10.1039/c7ra05188c; gowayed, Y. (2013). Types of fiber and fiber arrangement in fi ber-reinforced polymer (FRP) composites. In N. Uddin (Ed.), Developments in fiber-reinforced polymer (FRP) composites for civil engineering (pp. 3–17).; Gulia, S., & Kakkar, R. (2013). Zno quantum dots for biomedical applications. Advanced Materials Letters, 4(12), 876–887. https://doi.org/10.5185/amlett.2013.3440; He, Q., Li, X., Zhang, J., Zhang, H., & Briscoe, J. (2021). P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy, 85(February), 105938. https://doi.org/10.1016/j.nanoen.2021.105938; Homayounfar, S. Z., & Andrew, T. L. (2020). Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technology, 25(1), 9–24. https://doi.org/10.1177/2472630319891128; Hou, Q., Zhu, L., Chen, H., Liu, H., & Li, W. (2013). Highly regular and ultra-thin porous ZnO nanosheets: An indirect electrodeposition method using acetate-containing precursor and their application in quantum dots-sensitized solar cells. Electrochimica Acta, 94(3), 72–79. https://doi.org/10.1016/j.electacta.2013.01.122; Hsu, C. L., & Chen, K. C. (2012). Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. Journal of Physical Chemistry C, 116(16), 9351–9355. https://doi.org/10.1021/jp301527y; Hu, D., Yao, M., Fan, Y., Ma, C., Fan, M., & Liu, M. (2019). Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy, 55(November 2018), 288–304. https://doi.org/10.1016/j.nanoen.2018.10.053; Ibrahim, N., Akindoyo, J. O., & Mariatti, M. (2022). Recent development in silver-based ink for flexible electronics. Journal of Science: Advanced Materials and Devices, 7(1), 100395. https://doi.org/10.1016/j.jsamd.2021.09.002; Inamuddin, & Abbas Kashmery, H. (2019). Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coated with polypyrrole/platinum electrode for ionic polymer metal composite actuator applications. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-46305-6; Indira, S. S., Vaithilingam, C. A., Oruganti, K. S. P., Mohd, F., & Rahman, S. (2019). Nanogenerators as a sustainable power source: state of art, applications, and challenges. In Nanomaterials (Vol. 9, Issue 5). https://doi.org/10.3390/nano9050773; Indolia, A. P., & Gaur, M. S. (2013). Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. Journal of Thermal Analysis and Calorimetry, 113(2), 821–830. https://doi.org/10.1007/s10973-012-2834-0; Io, W. F., Wong, M. C., Pang, S. Y., Zhao, Y., Ding, R., Guo, F., & Hao, J. (2022). Strong piezoelectric response in layered CuInP2S6 nanosheets for piezoelectric nanogenerators. Nano Energy, 99(May), 107371. https://doi.org/10.1016/j.nanoen.2022.107371; Jain, G., Rocks, C., Maguire, P., & Mariotti, D. (2020). One-step synthesis of strongly confined, defect-free and hydroxy-terminated ZnO quantum dots. Nanotechnology, 31(21). https://doi.org/10.1088/1361-6528/ab72b5; Javed, Z., Rafiq, L., Nazeer, M. A., Siddiqui, S., Ramzan, M. B., Khan, M. Q., & Naeem, M. S. (2022). Piezoelectric nanogenerator for bio-mechanical strain measurement. Beilstein Journal of Nanotechnology, 13, 192–200. https://doi.org/10.3762/BJNANO.13.14; Jenkins, K., Kelly, S., Nguyen, V., Wu, Y., & Yang, R. (2018). Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators. Nano Energy, 51, 317–323. https://doi.org/10.1016/j.nanoen.2018.06.061; Jia, G., Lu, X., Hao, B., Wang, X., Li, Y., & Yao, J. (2013). Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode. RSC Advances, 3(31), 12826–12830. https://doi.org/10.1039/c3ra23261a; Jiang, H., Wang, H., & Wang, X. (2011). Facile and mild preparation of fluorescent ZnO nanosheets and their bioimaging applications. Applied Surface Science, 257(15), 6991–6995. https://doi.org/10.1016/j.apsusc.2011.03.053; Jiang, Y., Deng, Y., & Qi, H. (2021). Microstructure dependence of output performance in flexible pvdf piezoelectric nanogenerators. Polymers, 13(19). https://doi.org/10.3390/polym13193252; Jiao, P. (2021). Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy, 88, 106227. https://doi.org/10.1016/j.nanoen.2021.106227; Jin, C., Hao, N., Xu, Z., Trase, I., Nie, Y., Dong, L., Closson, A., Chen, Z., & Zhang, J. X. J. (2020). Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sensors and Actuators, A: Physical, 305, 111912. https://doi.org/10.1016/j.sna.2020.111912; Joe, A., Park, S. H., Shim, K. D., Kim, D. J., Jhee, K. H., Lee, H. W., Heo, C. H., Kim, H. M., & Jang, E. S. (2017). Antibacterial mechanism of ZnO nanoparticles under dark conditions. Journal of Industrial and Engineering Chemistry, 45, 430–439. https://doi.org/10.1016/j.jiec.2016.10.013; Jung, D. Y., Baek, S. H., Hasan, M. R., & Park, I. K. (2015). Performance-enhanced ZnO nanorod-based piezoelectric nanogenerators on double-sided stainless steel foil. Journal of Alloys and Compounds, 641, 163–169. https://doi.org/10.1016/j.jallcom.2015.03.066; Kammel, R. S., & Sabry, R. S. (2019). Effects of the aspect ratio of ZnO nanorods on the performance of piezoelectric nanogenerators. Journal of Science: Advanced Materials and Devices, 4(3), 420–424. https://doi.org/10.1016/j.jsamd.2019.08.002; Kamyshny, A., & Magdassi, S. (2014). Conductive nanomaterials for printed electronics. Small, 10(17), 3515–3535. https://doi.org/10.1002/smll.201303000; Karmakar, S. R. (1998). Application of biotechnology in the pre-treatment processes of textiles. In Colourage (Vol. 45, Issue ANNUAL).; Karthikeyan, C., Arun, L., Hameed, A. S. H., Gopinath, K., Umaralikahan, L., Vijayaprasath, G., & Malathi, P. (2019). Structural, optical, thermal and magnetic properties of nickel calcium and nickel iron co-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 0(0), 0. https://doi.org/10.1007/s10854-019-01160-z; Kasaw, E., Haile, A., & Getnet, M. (2020). Conductive Coatings of Cotton Fabric Consisting of. Coatings, 1–17.; Kaur, J., & Singh, H. (2020). Fabrication and analysis of piezoelectricity in 0D, 1D and 2D Zinc Oxide nanostructures. Ceramics International, 46(11), 19401–19407. https://doi.org/10.1016/j.ceramint.2020.04.283; Kawamura, G., Alvarez, S., Stewart, I. E., Catenacci, M., Chen, Z., & Ha, Y. C. (2015). Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion. Scientific Reports, 5, 1–8. https://doi.org/10.1038/srep18333; Kim, H. G., Kim, E. H., & Kim, S. S. (2021). Growth of zno nanorods on ito film for piezoelectric nanogenerators. Materials, 14(6). https://doi.org/10.3390/ma14061461; Kim, M., & Fan, J. (2021). Piezoelectric Properties of Three Types of PVDF and ZnO Nanofibrous Composites. Advanced Fiber Materials, 3(3), 160–171. https://doi.org/10.1007/s42765-021-00068-w; Kim, M., Wu, Y. S., Kan, E. C., & Fan, J. (2018). Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers, 10(7). https://doi.org/10.3390/polym10070745; Kolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833; Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., & Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science, 249, 37–52. https://doi.org/10.1016/j.cis.2017.07.033; Kumar, P., Yadav, A. K., Joshi, A. G., Bhattacharyya, D., Jha, S. N., & Pandey, P. C. (2018). Influence of Li co-doping on structural property of sol-gel derived terbium doped zinc oxide nanoparticles. Materials Characterization, 142(December 2017), 593–601. https://doi.org/10.1016/j.matchar.2018.06.024; Kumar Prajapati, G., Katla, R., & Singh, B. (2021). Effect of variation of MoS2concentration on the piezoelectric performance of PVDF-MoS2based flexible nanogenerator. Materials Today: Proceedings, 47, 4861–4865. https://doi.org/10.1016/j.matpr.2021.06.084; Kurort, T., Sekiguchi, Y., Ogawa, T., Sawaguchi, T., Ikemusa, T., & Honda, T. (1977). Thermal Degradation of Polystyrene. Nippon Kagaku Kaishi, 1977(6), 894–901. https://doi.org/10.1246/nikkashi.1977.894; Kwon, Y. H., Kim, D. H., Kim, H. K., & Nah, J. (2015). Phosphorus-doped zinc oxide p-n homojunction thin film for flexible piezoelectric nanogenerators. Nano Energy, 18, 126–132. https://doi.org/10.1016/j.nanoen.2015.10.009; Lee, E., Park, J., Yim, M., Jeong, S., & Yoon, G. (2014). High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films. Applied Physics Letters, 104(21), 1–6. https://doi.org/10.1063/1.4880935; Lee, Y., Kim, S., Kim, D., Lee, C., Park, H., & Lee, J. H. (2020). Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet. Applied Surface Science, 509, 145328. https://doi.org/10.1016/j.apsusc.2020.145328; Leong, S. S., Ng, W. M., Lim, J. K., & Yeap, S. P. (2018). Handbook of Materials Characterization. https://doi.org/10.1007/978-3-319-92955-2_3; Li, G. Y., Zhang, H. Di, Guo, K., Ma, X. S., & Long, Y. Z. (2020). Fabrication and piezoelectric-pyroelectric properties of electrospun PVDF/ZnO composite fibers. Materials Research Express, 7(9). https://doi.org/10.1088/2053-1591/abb264; Li, M., Katsouras, I., Piliego, C., Glasser, G., Lieberwirth, I., Blom, P. W. M., & De Leeuw, D. M. (2013). Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. Journal of Materials Chemistry C, 1(46), 7695–7702. https://doi.org/10.1039/c3tc31774a; Li, T., Li, Y. T., Qin, W. W., Zhang, P. P., Chen, X. Q., Hu, X. F., & Zhang, W. (2015). Piezoelectric Size Effects in a Zinc Oxide Micropillar. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1081-2; Li, Wanxi, Qi, H., Guo, F., Niu, X., Du, Y., & Chen, Y. (2019). NiFe2O4 nanoparticles supported on cotton-based carbon fibers and their application as a novel broadband microwave absorbent. RSC Advances, 9(51), 29959–29966. https://doi.org/10.1039/c9ra05844c; Li, Weiwei, Meredov, A., & Shamim, A. (2019). Coat-and-print patterning of silver nanowires for flexible and transparent electronics. Npj Flexible Electronics, 3(1). https://doi.org/10.1038/s41528-019-0063-3; Li, Y., Feng, J., Zhao, Y., Wang, J., & Xu, C. (2022). Ultrathin flexible linear-piezoelectric ZnO thin film actuators: Tuning the piezoelectric responses by in-plane epitaxial strain. Applied Surface Science, 599(December 2021), 153969. https://doi.org/10.1016/j.apsusc.2022.153969; Liao, Y., Zhang, R., & Qian, J. (2019). Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging. RSC Advances, 9(50), 29154–29172. https://doi.org/10.1039/c9ra05954g; Liu, J., Yang, B., Lu, L., Wang, X., Li, X., Chen, X., & Liu, J. (2020). Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P(VDF-TrFE) nanofibers. Sensors and Actuators, A: Physical, 303(July), 111796. https://doi.org/10.1016/j.sna.2019.111796; Liu, M., Chang, J., Sun, J., & Gao, L. (2013). Synthesis of porous NiO using NaBH4 dissolved in ethylene glycol as precipitant for high-performance supercapacitor. Electrochimica Acta, 107, 9–15. https://doi.org/10.1016/j.electacta.2013.05.122; Liu, Yangsi, & Gao, W. (2015). Growth process, crystal size and alignment of ZnO nanorods synthesized under neutral and acid conditions. Journal of Alloys and Compounds, 629, 84–91. https://doi.org/10.1016/j.jallcom.2014.12.139; Liu, Yiming, Wang, L., Zhao, L., Yu, X., & Zi, Y. (2020). Recent progress on flexible nanogenerators toward self‐powered systems. InfoMat, 2(2), 318–340. https://doi.org/10.1002/inf2.12079; Liu, Z., Zhang, S., Jin, Y. M., Ouyang, H., Zou, Y., Wang, X. X., Xie, L. X., & Li, Z. (2017). Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semiconductor Science and Technology, 32(6). https://doi.org/10.1088/1361-6641/aa68d1; Liu, Z., Zhang, S., Jin, Y. M., Ouyang, H., Zou, Y., Wang, X. X., Xie, L. X., & Li, Z. (2019). Flexible Piezoelectric Nanogenerator for Wearable Self-powered Respiration Active Sensor and Healthcare Monitoring. Materials Research Express, 0–12.; Lu, L., Ding, W., Liu, J., & Yang, B. (2020a). Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 78(June), 105251. https://doi.org/10.1016/j.nanoen.2020.105251; Lu, L., Ding, W., Liu, J., & Yang, B. (2020b). Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 78(July), 105251. https://doi.org/10.1016/j.nanoen.2020.105251; Luo, J. T., Yang, Y. C., Zhu, X. Y., Chen, G., Zeng, F., & Pan, F. (2010). Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant. Physical Review B - Condensed Matter and Materials Physics, 82(1). https://doi.org/10.1103/PhysRevB.82.014116; Lv, J., Zhang, L., Zhong, Y., Sui, X., Wang, B., Chen, Z., Feng, X., Xu, H., & Mao, Z. (2019). High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage. Organic Electronics, 74(May), 59–68. https://doi.org/10.1016/j.orgel.2019.06.027; Ma, X., Zhang, F., Han, K., Yang, B., & Song, G. (2015). Evaporation characteristics of acetone-butanol-ethanol and diesel blends droplets at high ambient temperatures. Fuel, 160, 43–49. https://doi.org/10.1016/j.fuel.2015.07.079; Mahalakshmi, S., Hema, N., & Vijaya, P. P. (2020). In Vitro Biocompatibility and Antimicrobial activities of Zinc Oxide Nanoparticles (ZnO NPs) Prepared by Chemical and Green Synthetic Route— A Comparative Study. BioNanoScience, 10(1), 112–121. https://doi.org/10.1007/s12668-019-00698-w; Mahanty, B., Ghosh, S. K., Jana, S., Mallick, Z., Sarkar, S., & Mandal, D. (2021). ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-powered healthcare monitoring. Sustainable Energy and Fuels, 5(17), 4389–4400. https://doi.org/10.1039/d1se00444a; Mahapatra, A., Ajimsha, R. S., & Misra, P. (2022). Oxygen annealing induced enhancement in output characteristics of ZnO based flexible piezoelectric nanogenerators. Journal of Alloys and Compounds, 913, 165277. https://doi.org/10.1016/j.jallcom.2022.165277; Manjula, Y., Kumar, R. R., Raju, P. M. S., Kumar, G. A., Rao, T. V., Akshaykranth, A., & Suparaja, P. (2020). Piezoelectric Flexible Nanogenerator Based on ZnO Nanosheet Networks for Mechanical a Department. Chemical Physics, 110699. https://doi.org/10.1016/j.chemphys.2020.110699; Manoharan, C., Sutharsan, P., Venkatachalapathy, R., Vasanthi, S., Dhanapandian, S., & Veeramuthu, K. (2015). Spectroscopic and rock magnetic studies on some ancient Indian pottery samples. Egyptian Journal of Basic and Applied Sciences, 2(1), 39–49. https://doi.org/10.1016/j.ejbas.2014.11.001; Matin Nazar, A., Egbe, K. J. I., Jiao, P., Wang, Y., & Yang, Y. (2021). Magnetic lifting triboelectric nanogenerators (ml-TENG) for energy harvesting and active sensing. APL Materials, 9(9). https://doi.org/10.1063/5.0064300; Mayeen, A., & Kalarikkal, N. (2018). Development of ceramic-controlled piezoelectric devices for biomedical applications. In Fundamental Biomaterials: Ceramics. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102203-0.00002-0; Medina Cruz, D., Mostafavi, E., Vernet-Crua, A., Barabadi, H., Shah, V., Cholula-Díaz, J. L., Guisbiers, G., & Webster, T. J. (2020). Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. Journal of Physics: Materials, 3(3), 034005. https://doi.org/10.1088/2515-7639/ab8186; Meng, X., Cui, H., Dong, J., Zheng, J., Zhu, Y., Wang, Z., Zhang, J., Jia, S., Zhao, J., & Zhu, Z. (2013). Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons. Journal of Materials Chemistry A, 1(33), 9469–9476. https://doi.org/10.1039/c3ta10306d; Mesa, A. M., Castro-Autié, G. I., & Díaz-garcía, A. (2018). Evaluación de nanoestructuras de ZnO en la separación de CH4-CO2 (Issue June). https://doi.org/10.13140/RG.2.2.28587.54566; Mishra, S., Supraja, P., Jaiswal, V. V., Sankar, P. R., Kumar, R. R., Prakash, K., Kumar, K. U., & Haranath, D. (2021). Enhanced output of ZnO nanosheet-based piezoelectric nanogenerator with a novel device structure. Engineering Research Express, 3(4). https://doi.org/10.1088/2631-8695/ac34; Mo, L., Guo, Z., Yang, L., Zhang, Q., Fang, Y., Xin, Z., Chen, Z., Hu, K., Han, L., & Li, L. (2019). Silver nanoparticles based ink with moderate sintering in flexible and printed electronics. International Journal of Molecular Sciences, 20(9). https://doi.org/10.3390/ijms20092124; Mo, X., Zhou, H., Li, W., Xu, Z., Duan, J., Huang, L., Hu, B., & Zhou, J. (2019). Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 65(May), 104033. https://doi.org/10.1016/j.nanoen.2019.104033; Mokhatab, S., & Poe, W. A. (2012). Process Control Fundamentals. Handbook of Natural Gas Transmission and Processing, 473–509. https://doi.org/10.1016/b978-0-12-386914-2.00014-5; Musbah, S. S., Radojevic, V. J., Borna, N. V., Stojanovic, D. B., Dramicanin, M. D., Marinkovic, A. D., & Aleksic, R. R. (2011). PMMA-Y2O3 (Eu3+) nanocomposites: Optical and mechanical properties. Journal of the Serbian Chemical Society, 76(8), 1153–1161. https://doi.org/10.2298/JSC100330094M; Nagaraju, G., Udayabhanu, Shivaraj, Prashanth, S. A., Shastri, M., Yathish, K. V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94(September), 54–63. https://doi.org/10.1016/j.materresbull.2017.05.043; Naghdi, S., Rhee, K. Y., Hui, D., & Park, S. J. (2018). A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications. Coatings, 8(8). https://doi.org/10.3390/coatings8080278; Nain, V., Kaur, M., Sandhu, K. S., Thory, R., & Sinhmar, A. (2020). Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. International Journal of Biological Macromolecules, 162, 24–30. https://doi.org/10.1016/j.ijbiomac.2020.06.125; Nair, K. S., Varghese, H., Chandran, A., Hareesh, U. N. S., Chouprik, A., Spiridonov, M., & Surendran, K. P. (2022). Synthesis of KNN nanoblocks through surfactant-assisted hot injection method and fabrication of flexible piezoelectric nanogenerator based on KNN-PVDF nanocomposite. Materials Today Communications, 31(February), 103291. https://doi.org/10.1016/j.mtcomm.2022.103291; Narita, F., & Fox, M. (2018). A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Advanced Engineering Materials, 20(5), 1–22. https://doi.org/10.1002/adem.201700743; Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., & Khan, I. (2017). Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. Journal of Nanomaterials, 2017(Table 1). https://doi.org/10.1155/2017/8510342; Nayan, M. B., Jagadish, K., Abhilash, M. R., Namratha, K., & Srikantaswamy, S. (2019). Comparative Study on the Effects of Surface Area, Conduction Band and Valence Band Positions on the Photocatalytic Activity of ZnO-M x O y Heterostructures. Journal of Water Resource and Protection, 11(03), 357–370. https://doi.org/10.4236/jwarp.2019.113021; Nikolaidis, A. K., & Achilias, D. S. (2018). Thermal degradation kinetics and viscoelastic behavior of poly(methyl methacrylate)/ organomodified montmorillonite nanocomposites prepared via in situ bulk radical polymerization. Polymers, 10(5). https://doi.org/10.3390/polym10050491; Omidi, M., Fatehinya, A., Farahani, M., Akbari, Z., Shahmoradi, S., Yazdian, F., Tahriri, M., Moharamzadeh, K., Tayebi, L., & Vashaee, D. (2017). Characterization of biomaterials. In Biomaterials for Oral and Dental Tissue Engineering. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100961-1.00007-4; Ono, Y. (1997). Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General, 155(2), 133–166. https://doi.org/10.1016/S0926-860X(96)00402-4; Opoku, H., Nketia-Yawson, B., Shin, E. S., & Noh, Y. Y. (2017). Controlling organization of conjugated polymer films from binary solvent mixtures for high performance organic field-effect transistors. Organic Electronics, 41, 198–204. https://doi.org/10.1016/j.orgel.2016.11.004; Outline, C. (2019). Methods for Assessing Surface Cleanliness. In Developments in Surface Contamination and Cleaning, Volume 12 (Vol. 12). https://doi.org/10.1016/b978-0-12-816081-7.00003-6; Ouyang, J. (2018). Recent advances of intrinsically conductive polymers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 34(11), 1211–1220. https://doi.org/10.3866/PKU.WHXB201804095; Öztürk, S., Klnç, N., Taşaltn, N., & Öztürk, Z. Z. (2012). Fabrication of ZnO nanowires and nanorods. Physica E: Low-Dimensional Systems and Nanostructures, 44(6), 1062–1065. https://doi.org/10.1016/j.physe.2011.01.015; Parangusan, H., Ponnamma, D., & Al-Maadeed, M. A. A. (2018). Stretchable Electrospun PVDF-HFP/Co-ZnO Nanofibers as Piezoelectric Nanogenerators. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-19082-3; Parangusan, H., Ponnamma, D., & Almaadeed, M. A. A. (2018). Investigation on the effect of γ-irradiation on the dielectric and piezoelectric properties of stretchable PVDF/Fe-ZnO nanocomposites for self-powering devices. Soft Matter, 14(43), 8803–8813. https://doi.org/10.1039/c8sm01655k; Parize, R., Garnier, J., Chaix-Pluchery, O., Verrier, C., Appert, E., & Consonni, V. (2016). Effects of Hexamethylenetetramine on the Nucleation and Radial Growth of ZnO Nanowires by Chemical Bath Deposition. Journal of Physical Chemistry C, 120(9), 5242–5250. https://doi.org/10.1021/acs.jpcc.6b00479; Park, K. Il, Jeong, C. K., Kim, N. K., & Lee, K. J. (2016). Stretchable piezoelectric nanocomposite generator. Nano Convergence, 3(1), 1–12. https://doi.org/10.1186/s40580-016-0072-z; Park, J. S. (2010). A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1(4). https://doi.org/10.1088/2043-6262/1/4/043002; Pedroso Silva Santos, B., Rubio Arias, J. J., Elias Jorge, F., Értola Pereira de Deus Santos, R., da Silva Fernandes, B., da Silva Candido, L., Cesar de Carvalho Peres, A., Gervasoni Chaves, E., & Vieira Marques, M. de F. (2021). Preparation, characterization and permeability evaluation of poly(vinylidene fluoride) composites with ZnO particles for flexible pipelines. Polymer Testing, 94(January). https://doi.org/10.1016/j.polymertesting.2021.107064; Peterson, J. D., Vyazovkin, S., & Wight, C. A. (1999). Stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). Macromolecular Rapid Communications, 20(9), 480–483. https://doi.org/10.1002/(sici)1521-3927(19990901)20:93.3.co;2-z; Pigliacelli, C., D’Elicio, A., Milani, R., Terraneo, G., Resnati, G., Baldelli Bombelli, F., & Metrangolo, P. (2015). Hydrophobin-stabilized dispersions of PVDF nanoparticles in water. Journal of Fluorine Chemistry, 177, 62–69. https://doi.org/10.1016/j.jfluchem.2015.02.004; Porkalai, V., Sathya, B., Benny Anburaj, D., Nedunchezhian, G., Joshua Gnanamuthu, S., & Meenambika, R. (2018). Photoluminescences properties of lanthanum-silver co-doped ZnO nano particles. Modern Electronic Materials, 4(4), 135–141. https://doi.org/10.3897/j.moem.4.4.35063; Pratihar, S., Medda, S. K., Sen, S., & Devi, P. S. (2020). Tailored piezoelectric performance of self-polarized PVDF-ZnO composites by optimization of aspect ratio of ZnO nanorods. Polymer Composites, 41(8), 3351–3363. https://doi.org/10.1002/pc.25624; Proto, A., Penhaker, M., Conforto, S., & Schmid, M. (2017). Nanogenerators for Human Body Energy Harvesting. Trends in Biotechnology, 35(7), 610–624. https://doi.org/10.1016/j.tibtech.2017.04.005; Rafique, S., Kasi, A. K., Kasi, J. K., Aminullah, Bokhari, M., & Shakoor, Z. (2020). Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system. Nanomaterials and Nanotechnology, 10, 1–12. https://doi.org/10.1177/1847980419895741; Rai, P., Tripathy, S. K., Park, N. H., & Yu, Y. T. (2009). Hydrothermal synthesis, characterization and optical property of single crystal ZnO nanorods. AIP Conference Proceedings, 1147, 152–159. https://doi.org/10.1063/1.3183424; Rao, J., Chen, Z., Zhao, D., Yin, Y., Wang, X., & Yi, F. (2019). Recent Progress in Self-Powered Skin Sensors. 1–19.; Razza, S., Castro-Hermosa, S., Di Carlo, A., & Brown, T. M. (2016). Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials, 4(9). https://doi.org/10.1063/1.4962478; Ren, J., Wang, C., Zhang, X., Carey, T., Chen, K., Yin, Y., & Torrisi, F. (2017). Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon, 111, 622–630. https://doi.org/10.1016/j.carbon.2016.10.045; Roji, A. M. M., Jiji, G., & Raj, A. B. T. (2017). A retrospect on the role of piezoelectric nanogenerators in the development of the green world. RSC Advances, 7(53), 33642–33670. https://doi.org/10.1039/c7ra05256a; Rojo, M. M., Calero, O. C., Lopeandia, A. F., Rodriguez-Viejo, J., & Martín-Gonzalez, M. (2013). Review on measurement techniques of transport properties of nanowires. Nanoscale, 5(23), 11526–11544. https://doi.org/10.1039/c3nr03242f; Rojo, M. M., Manzano, C. V., Granados, D., Osorio, M. R., Borca-Tasciuc, T., & Martín-González, M. (2015). High electrical conductivity in out of plane direction of electrodeposited Bi2Te3 films. AIP Advances, 5(8). https://doi.org/10.1063/1.4928863; Rosen, Y., Marrach, R., Gutkin, V., & Magdassi, S. (2019). Thin Copper Flakes for Conductive Inks Prepared by Decomposition of Copper Formate and Ultrafine Wet Milling. Advanced Materials Technologies, 4(1), 1–8. https://doi.org/10.1002/admt.201800426; Sabry, R. S., & Hussein, A. D. (2019). Nanogenerator based on nanocomposites PVDF/ZnO with different concentrations. Materials Research Express, 6(10), 0–9. https://doi.org/10.1088/2053-1591/ab4296; Sahu, K., Choudhary, S., Singh, J., Kuriakose, S., Singhal, R., & Mohapatra, S. (2018). Facile wet chemical synthesis of ZnO nanosheets: Effects of counter ions on the morphological, structural, optical and photocatalytic properties. Ceramics International, 44(18), 23094–23101. https://doi.org/10.1016/j.ceramint.2018.09.116; Sayyah, S. M., El-Shafiey, Z. A., Barsoum, B. N., & Khaliel, A. B. (2004). Infrared spectroscopic studies of poly(methyl methacrylate) doped with a new sulfur-Science: Advanced Materials and Devices, 7(3), 100461. https://doi.org/10.1016/j.jsamd.2022.100461; Sriphan, S., & Vittayakorn, N. (2022b). Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. Journal of Science: Advanced Materials and Devices, 7(3), 100461. https://doi.org/10.1016/j.jsamd.2022.100461; Stassi, S., Cauda, V., Ottone, C., Chiodoni, A., Pirri, C. F., & Canavese, G. (2015). Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy, 13, 474–481. https://doi.org/10.1016/j.nanoen.2015.03.024; Stoppa, M., & Chiolerio, A. (2016). Testing and evaluation of wearable electronic textiles and assessment thereof. In Performance Testing of Textiles: Methods, Technology and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100570-5.00005-0; Sun, H., Luo, M., Weng, W., Cheng, K., Du, P., Shen, G., & Han, G. (2008). Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route. Nanotechnology, 19(12). https://doi.org/10.1088/0957-4484/19/12/125603; Sun, M., Li, Z., Yang, C., Lv, Y., Yuan, L., Shang, C., Liang, S., Guo, B., Liu, Y., Li, Z., & Luo, D. (2021). Nanogenerator-based devices for biomedical applications. Nano Energy, 89(PB), 106461. https://doi.org/10.1016/j.nanoen.2021.106461; Świerzy, A. P., Pawłowski, R., Warszyński, P., & Szczepanowicz, K. (2020). The conductive properties of ink coating based on Ni–Ag core–shell nanoparticles with the bimodal size distribution. Journal of Materials Science: Materials in Electronics, 31, 12991–12999.; Tan, K. S., Gan, W. C., Velayutham, T. S., & Majid, W. H. A. (2014). Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles. Smart Materials and Structures, 23(12). https://doi.org/10.1088/0964-1726/23/12/125006; Tan, W. K., Abdul Razak, K., Lockman, Z., Kawamura, G., Muto, H., & Matsuda, A. (2014). Synthesis of ZnO nanorod-nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation. Journal of Solid State Chemistry, 211, 146–153. https://doi.org/10.1016/j.jssc.2013.12.026; Tandon, B., Blaker, J. J., & Cartmell, S. H. (2018). Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomaterialia, 73(April), 1–20. https://doi.org/10.1016/j.actbio.2018.04.026; Tang, B., Cai, G., Wang, X., Xu, Z., & Yang, M. (2016). Functionalization of cotton fabrics through thermal reduction of graphene oxide. Applied Surface Science, 393, 441–448. https://doi.org/10.1016/j.apsusc.2016.10.046; Thakur, P., Kool, A., Hoque, N. A., Bagchi, B., Khatun, F., Biswas, P., Brahma, D., Roy, S., Banerjee, S., & Das, S. (2018a). Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy, 44, 456–467. https://doi.org/10.1016/j.nanoen.2017.11.065; Thein, M. T., Pung, S. Y., Aziz, A., & Itoh, M. (2015). Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study. Journal of Sol-Gel Science and Technology, 74(1), 260–271. https://doi.org/10.1007/s10971-015-3646-z; Torreblanca González, J., García Ovejero, R., Lozano Murciego, Á., Villarrubia González, G., & De Paz, J. F. (2019). Effects of Environmental Conditions and Composition on the Electrical Properties of Textile Fabrics. Sensors (Basel, Switzerland), 19(23). https://doi.org/10.3390/s19235145; Vinoth Pandi, D., Muthukumarasamy, N., Agilan, S., & Velauthapillai, D. (2018). CdSe quantum dots sensitized ZnO nanorods for solar cell application. Materials Letters, 223, 227–230. https://doi.org/10.1016/j.matlet.2018.04.022; Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640–1648. https://doi.org/10.1016/j.materresbull.2006.11.035; Wang, A. C., Wu, C., Pisignano, D., Wang, Z. L., & Persano, L. (2018). Polymer nanogenerators: Opportunities and challenges for large-scale applications. Journal of Applied Polymer Science, 135(24), 1–17. https://doi.org/10.1002/app.45674; Wang, Q., Yang, D., Qiu, Y., Zhang, X., Song, W., & Hu, L. (2018). Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices. Applied Physics Letters, 112(6). https://doi.org/10.1063/1.5012950; Wang, W., & Sun, H. (2020). Effect of different forms of nano-ZnO on the properties of PVDF/ZnO hybrid membranes. Journal of Applied Polymer Science, 137(36), 1–14. https://doi.org/10.1002/app.49070; Wang, Y. W., Shen, R., Wang, Q., & Vasquez, Y. (2018). ZnO Microstructures as Flame-Retardant Coatings on Cotton Fabrics. ACS Omega, 3(6), 6330–6338. https://doi.org/10.1021/acsomega.8b00371; Wang, Y., Zhu, L., & Du, C. (2021). Progress in piezoelectric nanogenerators based on pvdf composite films. Micromachines, 12(11). https://doi.org/10.3390/mi12111278; Wang, Z. L. (2009). ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering R: Reports, 64(3–4), 33–71. https://doi.org/10.1016/j.mser.2009.02.001; Wang, Z. L., Zhu, G., Yang, Y., Wang, S., & Pan, C. (2012). Progress in nanogenerators for portable electronics. Materials Today, 15(12), 532–543. https://doi.org/10.1016/S1369-7021(13)70011-7; Wang, Z., & Song, J. (2006). Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312(5771), 242–246. https://doi.org/10.1126/science.1124005; Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515a; Wei, S. F., Lian, J. S., & Jiang, Q. (2009). Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties. Applied Surface Science, 255(15), 6978–6984. https://doi.org/10.1016/j.apsusc.2009.03.023; Weng, L., Ju, P., Li, H., Yan, L., & Liu, L. (2017). Preparation and characterization of multi shape ZnO/PVDF composite materials. Journal Wuhan University of Technology, Materials Science Edition, 32(4), 958–962. https://doi.org/10.1007/s11595-017-1696-5; Whiter, R. A., Narayan, V., & Kar-Narayan, S. (2014). A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Advanced Energy Materials, 4(18), 1–7. https://doi.org/10.1002/aenm.201400519; Wilson, S., & Laing, R. (2019). Fabrics and garments as sensors: A research update. In Sensors (Switzerland) (Vol. 19, Issue 16). https://doi.org/10.3390/s19163570; Xu, B., & Cai, Z. (2008). Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Applied Surface Science, 254(18), 5899–5904. https://doi.org/10.1016/j.apsusc.2008.03.160; Xu, L.-L., Guo, M.-X., Liu, S., & Bian, S.-W. (2015). Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors. RSC Advances, 5(32), 25244–25249. https://doi.org/10.1039/C4RA16063K; Yaghoubidoust, F., Salimi, E., Wicaksono, D. H. B., & Nur, H. (2020). Physical and electrochemical appraisal of cotton textile modified with polypyrrole and graphene/reduced graphene oxide for flexible electrode. Journal of the Textile Institute, 0(0), 1–13. https://doi.org/10.1080/00405000.2020.1835171; Yang, Gang, Tian, M. Z., Huang, P., Fu, Y. F., Li, Y. Q., Fu, Y. Q., Wang, X. Q., Li, Y., Hu, N., & Fu, S. Y. (2021). Flexible pressure sensor with a tunable pressure-detecting range for various human motions. Carbon, 173, 736–743. https://doi.org/10.1016/j.carbon.2020.11.066; Yang, Geng, Pang, G., Pang, Z., Gu, Y., Mantysalo, M., & Yang, H. (2019). Non-Invasive Flexible and Stretchable Wearable Sensors with Nano-Based Enhancement for Chronic Disease Care. IEEE Reviews in Biomedical Engineering, 12, 34–71. https://doi.org/10.1109/RBME.2018.2887301; Yang, J., Zhang, Y., Li, Y., Wang, Z., Wang, W., An, Q., & Tong, W. (2021). Piezoelectric Nanogenerators based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by In-Situ Reduction. Materials Today Communications, 26. https://doi.org/10.1016/j.mtcomm.2020.101629; Yang leng. (2008). Characterization of Surfaces and Nanostructures Academic and Industrial Applications Characterization of Solid Materials and Heterogeneous Catalysts From Structure to Surface Reactivity Characterization Techniques for Polymer Nanocomposites Basic Concepts.; Yang, R., Qin, Y., Li, C., Dai, L., & Wang, Z. L. (2009). Characteristics of output voltage and current of integrated nanogenerators. Applied Physics Letters, 94(2), 4–6. https://doi.org/10.1063/1.3072362; Yi, G. C., Wang, C., & Park, W. Il. (2005). ZnO nanorods: Synthesis, characterization and applications. Semiconductor Science and Technology, 20(4). https://doi.org/10.1088/0268-1242/20/4/003; Yi, J., Song, Y., Cao, Z., Li, C., & Xiong, C. (2021). Gram-scale Y-doped ZnO and PVDF electrospun film for piezoelectric nanogenerators. Composites Science and Technology, 215(August), 109011. https://doi.org/10.1016/j.compscitech.2021.109011; Yu, D., Zhao, J., Wang, W., Qi, J., & Hu, Y. (2019). Mono-acrylated isosorbide as a bio-based monomer for the improvement of thermal and mechanical properties of poly(methyl methacrylate). RSC Advances, 9(61), 35532–35538. https://doi.org/10.1039/c9ra07548h; Yu, J., Wu, W., Dai, D., Song, Y., Li, C., & Jiang, N. (2014). Crystal structure transformation and dielectric properties of polymer composites incorporating zinc oxide nanorods. Macromolecular Research, 22(1), 19–25. https://doi.org/10.1007/s13233-014-2009-x; Yu, Q., Weng, P., Han, L., Yin, X., Chen, Z., Hu, X., Wang, L., & Wang, H. (2019). Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning. Cellulose, 26(12), 7523–7535. https://doi.org/10.1007/s10570-019-02592-w; Yue, R., Ramaraj, S. G., Liu, H., Elamaran, D., Elamaran, V., Gupta, V., Arya, S., Verma, S., Satapathi, S., hayawaka, Y., & Liu, X. (2022). A review of flexible lead-free piezoelectric energy harvester. Journal of Alloys and Compounds, 918, 165653. https://doi.org/10.1016/j.jallcom.2022.165653; Zapata-Hernandez, C., Durango-Giraldo, G., Cacua, K., & Buitrago-Sierra, R. (2020). Influence of graphene oxide synthesis methods on the electrical conductivity of cotton/graphene oxide composites. Journal of the Textile Institute, 0(0), 1–11. https://doi.org/10.1080/00405000.2020.1865507; Zeyrek Ongun, M., Oguzlar, S., Kartal, U., Yurddaskal, M., & Cihanbegendi, O. (2021). Energy harvesting nanogenerators: Electrospun β-PVDF nanofibers accompanying ZnO NPs and ZnO@Ag NPs. Solid State Sciences, 122(October), 106772. https://doi.org/10.1016/j.solidstatesciences.2021.106772; Zhang, D., Zhang, X., Li, X., Wang, H., Sang, X., Zhu, G., & Yeung, Y. (2022). Enhanced piezoelectric performance of PVDF/BiCl3/ZnO nanofiber-based piezoelectric nanogenerator. European Polymer Journal, 166(December 2021), 110956. https://doi.org/10.1016/j.eurpolymj.2021.110956; Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/624520; Zhang, Z., Chen, Y., & Guo, J. (2019). ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting. Physica E: Low-Dimensional Systems and Nanostructures, 105, 212–218. https://doi.org/10.1016/j.physe.2018.09.007; Zhao, C., Jia, C., Zhu, Y., & Zhao, T. (2021). An effective self-powered piezoelectric sensor for monitoring basketball skills. Sensors, 21(15). https://doi.org/10.3390/s21155144; Zhao, M., Wang, Z., & Mao, S. X. (2004). Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope.; Zhao, Z., Dai, Y., Dou, S. X., & Liang, J. (2021). Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Materials Today Energy, 20, 100690. https://doi.org/10.1016/j.mtener.2021.100690; Zhou, X., Parida, K., Halevi, O., Liu, Y., Xiong, J., Magdassi, S., & Lee, P. S. (2020). All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy, 72, 104676. https://doi.org/10.1016/j.nanoen.2020.104676; Zhou, Z., Zhao, Y., & Cai, Z. (2010). Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal method. Applied Surface Science, 256(14), 4724–4728. https://doi.org/10.1016/j.apsusc.2010.02.081; Zhu, L., Xiang, Y., Liu, Y., Geng, K., Yao, R., & Li, B. (2022). Comparison of piezoelectric responses of flexible tactile sensors based on hydrothermally-grown ZnO nanorods on ZnO seed layers with different thicknesses. Sensors and Actuators A: Physical, 341(April), 113552. https://doi.org/10.1016/j.sna.2022.113552; Zhu, M., Shi, Q., He, T., Yi, Z., Ma, Y., Yang, B., Chen, T., & Lee, C. (2019). Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. ACS Nano. https://doi.org/10.1021/acsnano.8b08329; https://repositorio.unal.edu.co/handle/unal/83074; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
13Dissertation/ Thesis
المؤلفون: Durango Giraldo, Geraldine
المساهمون: Buitrago Sierra, Robison, Santa Marín, Juan Felipe, Materiales Avanzados y Energía MATyER, Durango Giraldo, Geraldine 0000-0002-7799-4790
مصطلحات موضوعية: 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales, Oxido de cinc, Látex, Óxido de zinc, Compuesto, Actividad antibacteriana, Latex, Zinc oxide, Compound, Antibacterial activity
وصف الملف: xxii, 78 páginas; application/pdf
Relation: RedCol; LaReferencia; Abadeer, N. S., & Murphy, C. J. (2016). Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. Journal of Physical Chemistry C, 120(9), 4691–4716. https://doi.org/10.1021/acs.jpcc.5b11232; Abd Elkodous, M., El-Sayyad, G. S., Abdelrahman, I. Y., El-Bastawisy, H. S., Mohamed, A. E., Mosallam, F. M., Nasser, H. A., Gobara, M., Baraka, A., Elsayed, M. A., & El-Batal, A. I. (2019). Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids and Surfaces B: Biointerfaces, 180(March), 411–428. https://doi.org/10.1016/j.colsurfb.2019.05.008; Abebe, B., Zereffa, E. A., Tadesse, A., & Murthy, H. C. A. (2020). A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Microscopic Investigation. Nanoscale Research Letters, 15(1). https://doi.org/10.1186/s11671-020-03418-6; Abu-Dalo, M., Jaradat, A., Albiss, B. A., & Al-Rawashdeh, N. A. F. (2019). Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection. Journal of Environmental Chemical Engineering, 7(5), 103370. https://doi.org/10.1016/j.jece.2019.103370; Aditya, A., Chattopadhyay, S., Jha, D., Gautam, H. K., Maiti, S., & Ganguli, M. (2018). Zinc Oxide Nanoparticles Dispersed in Ionic Liquids Show High Antimicrobial Efficacy to Skin-Specific Bacteria. ACS Applied Materials and Interfaces, 10(18), 15401–15411. https://doi.org/10.1021/acsami.8b01463; Aielo, P. B., Borges, F. A., Romeira, K. M., Miranda, M. C. R., Arruda, L. B. D., Paulo, P. N., Drago, B. D. C., & Herculano, R. D. (2014). Evaluation of sodium diclofenac release using natural rubber latex as carrier. Materials Research, 17(August), 146–152. https://doi.org/10.1590/S1516-14392014005000010; Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736. https://doi.org/10.1021/nn101390x; Al-Jumaili, A., Alancherry, S., Bazaka, K., & Jacob, M. V. (2017). Review on the antimicrobial properties of Carbon nanostructures. Materials, 10(9), 1–26. https://doi.org/10.3390/ma10091066; Almeida, G. F. B., Cardoso, M. R., Zancanela, D. C., Bernardes, L. L., Norberto, A. M. Q., Barros, N. R., Paulino, C. G., Chagas, A. L. D., Herculano, R. D., & Mendonça, C. R. (2020). Controlled drug delivery system by fs-laser micromachined biocompatible rubber latex membranes. Applied Surface Science, 506, 144762. https://doi.org/10.1016/j.apsusc.2019.144762; Almontasser, A., Parveen, A., & Azam, A. (2019). Synthesis, Characterization and antibacterial activity of Magnesium Oxide (MgO) nanoparticles. IOP Conference Series: Materials Science and Engineering, 577(1). https://doi.org/10.1088/1757-899X/577/1/012051; Alsultany, F. H., Majdi, H. S., Abd, H. R., Hassan, Z., & Ahmed, N. M. (2019). Catalytic Growth of 1D ZnO Nanoneedles on Glass Substrates Through Vapor Transport. Journal of Electronic Materials, 48(3), 1660–1668. https://doi.org/10.1007/s11664-018-06853-5; Anandgaonker, P., Kulkarni, G., Gaikwad, S., & Rajbhoj, A. (2019). Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application. Arabian Journal of Chemistry, 12(8), 1815–1822. https://doi.org/10.1016/j.arabjc.2014.12.015; Anjana, P. M., Bindhu, M. R., Umadevi, M., & Rakhi, R. B. (2019). Antibacterial and electrochemical activities of silver, gold, and palladium nanoparticles dispersed amorphous carbon composites. Applied Surface Science, 479(February), 96–104. https://doi.org/10.1016/j.apsusc.2019.02.057; Arens, D., Zeiter, S., Nehrbass, D., Ranjan, N., Paulin, T., & Alt, V. (2020). Antimicrobial silver-coating for locking plates shows uneventful osteotomy healing and good biocompatibility results of an experimental study in rabbits. Injury, 51(4), 830–839. https://doi.org/10.1016/j.injury.2020.02.115; Arias-Flores, R., Rosado-Quiab, U., Vargas-Valerio, A., & Grajales-Muñiz, C. (2016). Los microorganismos causantes de infecciones nosocomiales en el Instituto Mexicano del Seguro Social. Microorganisms Responsible of Nosocomial Infections in the Instituto Mexicano Del Seguro Social., 54(1), 20–24. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=112752580&lang=es&site=ehost-live; Ariosa, D., Elhordoy, F., Dalchiele, E. A., Marotti, R. E., & Stari, C. (2011). Texture vs morphology in ZnO nano-rods: On the x-ray diffraction characterization of electrochemically grown samples. Journal of Applied Physics, 110(12). https://doi.org/10.1063/1.3669026; Arora, S., Kaur, H., Kumar, R., Kaur, R., Rana, D., Rayat, C. S., Kaur, I., Arora, S. K., Bubber, P., & Bharadwaj, L. M. (2015). In vitro cytotoxicity of multiwalled and single-walled carbon nanotubes on human cell lines. Fullerenes Nanotubes and Carbon Nanostructures, 23(5), 377–382. https://doi.org/10.1080/1536383X.2013.812638; Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641. https://doi.org/10.1038/nnano.2009.242; B. Pinto, R. J., C., M., Pascoal, C., & Trindade, T. (2012). Composites of Cellulose and Metal Nanoparticles. Nanocomposites - New Trends and Developments. https://doi.org/10.5772/50553; Babayevska, N., Przysiecka, Ł., Iatsunskyi, I., Nowaczyk, G., Jarek, M., Janiszewska, E., & Jurga, S. (2022). ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Scientific Reports, 12(1), 1–13. https://doi.org/10.1038/s41598-022-12134-3; Badetti, E., Calgaro, L., Falchi, L., Bonetto, A., Bettiol, C., Leonetti, B., Ambrosi, E., Zendri, E., & Marcomini, A. (2019). Interaction between copper oxide nanoparticles and amino acids: Influence on the antibacterial activity. Nanomaterials, 9(5). https://doi.org/10.3390/nano9050792; Balabanian, C. A. C. A., Coutinho-Netto, J., Lamano-Carvalho, T. L., Lacerda, S. A., & Brentegani, L. G. (2006). Biocompatibility of natural latex implanted into dental alveolus of rats. Journal of Oral Science, 48(4), 201–205. https://doi.org/10.2334/josnusd.48.201; Barraza-Garza, G., De La Rosa, L. A., Martínez-Martínez, A., Castillo-Michel, H., Cotte, M., & Alvarez-Parrilla, E. (2013). La microespectroscopía de infrarrojo con transformada de fourier (FTIRM) en el estudio de sistemas biológicos. Revista Latinoamericana de Quimica, 41(3), 125–148.; Beezhold, D., Swanson, M., Zehr, B. D., & Kostyal, D. (1996). Measurement of natural rubber proteins in latex glove extracts: Comparison of the methods. Annals of Allergy, Asthma and Immunology, 76(6), 520–526. https://doi.org/10.1016/S1081-1206(10)63271-1; Bernatová, Silvie; Samek, Ota; Pilát, Zdeněk; Šerý, Mojmír; Ježek, Jan; Jákl, Petr; Šiler, Martin; Krzyžánek, Vladislav; Zemánek, Pavel; Holá, Veronika; Dvořáčková, Milada; Růžička, F. (2013). Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy. Molecules, 13188–13199. https://doi.org/10.3390/molecules181113188; Bhat, T. S., Bhogale, S. B., Patil, S. S., Pisal, S. H., Phaltane, S. A., & Patil, P. S. (2020). Synthesis and characterization of hexagonal zinc oxide nanorods for Eosin-Y dye sensitized solar cell. Materials Today: Proceedings, 43, 2800–2804. https://doi.org/10.1016/j.matpr.2020.08.687; Borda D’Água, R., Branquinho, R., Duarte, M. P., Maurício, E., Fernando, A. L., Martins, R., & Fortunato, E. (2018). Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost: In situ synthesis. New Journal of Chemistry, 42(2), 1052–1060. https://doi.org/10.1039/c7nj03418k; Borges, F. A., de Barros, N. R., Garms, B. C., Miranda, M. C. R., Gemeinder, J. L. P., Ribeiro-Paes, J. T., Silva, R. F., de Toledo, K. A., & Herculano, R. D. (2017). Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. Journal of Applied Polymer Science, 134(39), 1–10. https://doi.org/10.1002/app.45321; Bottier, C. (2020). Biochemical composition of Hevea brasiliensis latex: A focus on the protein, lipid, carbohydrate and mineral contents. In Advances in Botanical Research (Vol. 93). Elsevier Ltd. https://doi.org/10.1016/bs.abr.2019.11.003; Bottier, C., Gross, B., Wadeesirisak, K., Srisomboon, S., Vallat, M., & Mougin, K. (2017). Impact of storage time of ammonia-stabilized latex on biochemical and physicochemical indicators of hevea. Agris: International Information System for the Agricultural Science and Technology, 1, 1–14.; Cáceres, A. P., & Gauthier-maradei, P. (2012). Análisis termogravimetrico como un nuevo método para la determinación de contenido de sólidos totales ( CST ) y caucho seco ( CCS ) del látex natural Thermogravimetric analysis as a new method to determine of total solid content ( TSC ) and dry rubber con. 25(2), 57–65.; Cedillo-González, E. I., Hernández-López, J. M., Ruiz-Valdés, J. J., Barbieri, V., & Siligardi, C. (2020). Self-cleaning TiO2 coatings for building materials: The influence of morphology and humidity in the stain removal performance. Construction and Building Materials, 237. https://doi.org/10.1016/j.conbuildmat.2019.117692; Chen, J., Chen, S., Gao, T., Gao, L., Xie, M., Pan, R., Zhong, J., & Cui, X. (2019). A novel approach in blending natural rubber latex with siliceous earth nanoparticles. Iranian Polymer Journal (English Edition), 28(9), 759–768. https://doi.org/10.1007/s13726-019-00740-4; Chen, J. L., Devi, N., Li, N., Fu, D. J., & Ke, X. W. (2018). Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties. Chinese Physics B, 27(8). https://doi.org/10.1088/1674-1056/27/8/086102; Chen, X., Wang, Z., & Wu, J. (2018). Processing and characterization of natural rubber/stearic acid-tetra-needle-like zinc oxide whiskers medical antibacterial composites. Journal of Polymer Research, 25(2). https://doi.org/10.1007/s10965-017-1433-y; Ciapetti, G., Stea, S., Pizzoferrato, A., Checchi, L., & Pelliccioni, G. A. (1994). A latex membrane, as an alternative device in the GTR technique: preliminary report on its biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9–10), 647–650. https://doi.org/10.1007/BF00120348; Cullity, B. D. (1978). Elements of X-RAY DIFFRACTION. In Addison-Wesley Publishing Company.; De Souza, R. C., Haberbeck, L. U., Riella, H. G., Ribeiro, D. H. B., & Carciofi, B. A. M. (2019). Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazilian Journal of Chemical Engineering, 36(2), 885–893. https://doi.org/10.1590/0104-6632.20190362s20180027; Devaraj, N. K., Han, T. C., Low, P. L., Ong, B. H., & Sin, Y. K. (2014). Synthesis and characterisation of zinc oxide nanoparticles for thermoelectric application. Materials Research Innovations, 18, S6-350-S6-353. https://doi.org/10.1179/1432891714Z.000000000980; Dey, T. K., Hossain, A., Jamal, M., Layek, R. K., & Uddin, M. E. (2022). Zinc Oxide Nanoparticle Reinforced Waste Buffing Dust Based Composite Insole and Its Antimicrobial Activity. Advances in Polymer Technology, 2022. https://doi.org/10.1155/2022/7130551; Dick, T. A., & Santos, L. A. (2017). In situ synthesis and characterization of hydroxyapatite / natural rubber composites for biomedical applications. Materials Science & Engineering C, 77, 874–882. https://doi.org/10.1016/j.msec.2017.03.301; Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P. K., & Ighalo, J. O. (2022). Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustainable Environment Research, 32(1).https://doi.org/10.1186/s42834-021-00111-w; Dwivedi, S., Wahab, R., Khan, F., Mishra, Y. K., Musarrat, J., & Al-Khedhairy, A. A. (2014). Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE, 9(11), 1–9. https://doi.org/10.1371/journal.pone.0111289; Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184, 537–556. https://doi.org/10.1016/j.talanta.2018.02.088; Emami-Karvani, Z., & Pegah, C. (2012). Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African Journal of Microbiology Research, 5(18), 1368–1373. https://doi.org/10.5897/ajmr10.159; Espitia, P. J. P., Soares, N. de F. F., Coimbra, J. S. dos R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology, 5(5), 1447–1464. https://doi.org/10.1007/s11947-012-0797-6; Feng, Q., Wu, J., Chen, G., Cui, F., Kim, T., & Kim, J. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Polymer Bulletin, 55(1–2), 105–113. https://doi.org/10.1007/s00289-005-0414-1; Floriano, J. F., Da Mota, L. S. L. S., Furtado, E. L., Rossetto, V. J. V., & Graeff, C. F. O. (2014). Biocompatibility studies of natural rubber latex from different tree clones and collection methods. Journal of Materials Science: Materials in Medicine, 25(2), 461–470. https://doi.org/10.1007/s10856-013-5089-9; Fontecha-Umaña, F., Ríos-Castillo, A. G., Ripolles-Avila, C., & Rodríguez-Jerez, J. J. (2020). Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods, 9(4). https://doi.org/10.3390/foods9040442; Franco, S., Rodriguez, C., & Arias, S. (2013). Modelo de costo-efectividad para optimizar el impacto en la prevención de infecciones asociadas a la atención en salud en hospitales de Bogotá. 1–85. https://repository.usergioarboleda.edu.co/bitstream/handle/11232/899/Modelo de costo efectividad para optimizar impacto.pdf?sequence=2&isAllowed=y; Gallego, A., Cacua, K., Herrera, B., Cabaleiro, D., Piñeiro, M. M., & Lugo, L. (2020). Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Advanced Powder Technology, 31(2), 560–570. https://doi.org/10.1016/j.apt.2019.11.012; Gao, R., Gao, S., Wang, P., Xu, Y., Zhang, X., Cheng, X., Zhou, X., Major, Z., Zhu, H., & Huo, L. (2020). Ionic liquid assisted synthesis of snowflake ZnO for detection of NOx and sensing mechanism. Sensors and Actuators, B: Chemical, 303(x). https://doi.org/10.1016/j.snb.2019.127085; Gardini, D., Lüscher, C. J., Struve, C., & Krogfelt, K. A. (2018). Tailored nanomaterials for antimicrobial applications. In Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization. Elsevier Inc. https://doi.org/10.1016/B978-0-323-51255-8.00004-5; Gerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 22(8), 1346–1358. https://doi.org/10.1039/c9ce01556f; Gharbani, P., & Mehalizadeh, A. (2018). Facile Preparation of Novel Zinc Oxide Nano Sheets and Study of Its Optical Properties. Asian Journal of Nanoscience and Materials, 2(1), 27–36. https://doi.org/10.26655/ajnanomat.2019.1.2; Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W. M., Scott, J. H. J., & Joy, D. C. (2018). Microscopy and X-Ray Microanalysis. https://www.google.co.uk/books/edition/Scanning_Electron_Microscopy_and_X_Ray_M/D0I_DwAAQBAJ?hl=en&gbpv=0; Gopala Krishna, P., Paduvarahalli Ananthaswamy, P., Yadavalli, T., Bhangi Mutta, N., Sannaiah, A., & Shivanna, Y. (2016). ZnO nanopellets have selective anticancer activity. Materials Science and Engineering C, 62, 919–926. https://doi.org/10.1016/j.msec.2016.02.039; Guo, J., Qin, J., Ren, Y., Wang, B., Cui, H., Ding, Y., Mao, H., & Yan, F. (2018). Antibacterial activity of cationic polymers: Side-chain or main-chain type? Polymer Chemistry, 9(37), 4611–4616. https://doi.org/10.1039/c8py00665b; Ha, M. K., Shim, Y. J., & Yoon, T. H. (2018). Effects of agglomeration on in vitro dosimetry and cellular association of silver nanoparticles. Environmental Science: Nano, 5(2), 446–455. https://doi.org/10.1039/c7en00965h; Haberhauer, G., & Gerzabek, M. H. (1999). Drift and transmission FT-IR spectroscopy of forest soils: An approach to determine decomposition processes of forest litter. Vibrational Spectroscopy, 19(2), 413–417. https://doi.org/10.1016/S0924-2031(98)00046-0; Haines, P. J., Reading, M., & Wilburn, F. W. (1998). Chapter 5. 1, 279–361.; Hamzah, R., Bakar, M. A., Khairuddean, M., Mohammed, I. A., & Adnan, R. (2012). A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques. Molecules, 17(9), 10974–10993. https://doi.org/10.3390/molecules170910974; Hotze, E. M., Phenrat, T., & Lowry, G. V. (2010). Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. Journal of Environmental Quality, 39(6), 1909–1924. https://doi.org/10.2134/jeq2009.0462; Huang, Y., Gohs, U., Müller, M. T., Zschech, C., & Wießner, S. (2019). Evaluation of electron induced crosslinking of masticated natural rubber at different temperatures. Polymers, 11(8), 1–14. https://doi.org/10.3390/polym11081279; Ito, H., Sakata, M., Hongo, C., Matsumoto, T., & Nishino, T. (2018). Cellulose nanofiber nanocomposites with aligned silver nanoparticles. Nanocomposites, 4(4), 167–177. https://doi.org/10.1080/20550324.2018.1556912; Jacoby, W. A., Maness, P. C., Wolfrum, E. J., Blake, D. M., & Fennell, J. A. (1998). Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental Science and Technology, 32(17), 2650–2653. https://doi.org/10.1021/es980036f; Jain, A., Bhargava, R., & Poddar, P. (2013). Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods. Materials Science and Engineering C, 33(3), 1247–1253. https://doi.org/10.1016/j.msec.2012.12.019; Jeevanandam, J., Chan, Y. S., & Danquah, M. K. (2019). Evaluating the Antibacterial Activity of MgO Nanoparticles Synthesized from Aqueous Leaf Extract. Med One. https://doi.org/10.20900/mo.20190011; Jenkins, R., & Snyder, R. L. (1996). CHEMICAL ANALYSIS A SERIES OF MONOGRAPHS ON ANALYTICAL CHEMISTRY AND ITS APPLICATIONS (Vol. 138).; Jin, S. E., & Jin, H. E. (2019). Synthesis, characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications. Pharmaceutics, 11(11). https://doi.org/10.3390/pharmaceutics11110575; Joe, A., Park, S. H., Shim, K. D., Kim, D. J., Jhee, K. H., Lee, H. W., Heo, C. H., Kim, H. M., & Jang, E. S. (2017). Antibacterial mechanism of ZnO nanoparticles under dark conditions. Journal of Industrial and Engineering Chemistry, 45, 430–439. https://doi.org/10.1016/j.jiec.2016.10.013; Jones, F., Tran, H., Lindberg, D., Zhao, L., & Hupa, M. (2013). Thermal stability of zinc compounds. Energy and Fuels, 27(10), 5663–5669. https://doi.org/10.1021/ef400505u; Kang, S., Herzberg, M., Rodrigues, D. F., & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 24(13), 6409–6413. https://doi.org/10.1021/la800951v; Karthik, K., Dhanuskodi, S., Gobinath, C., Prabukumar, S., & Sivaramakrishnan, S. (2019). Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. Journal of Photochemistry and Photobiology B: Biology, 190, 8–20. https://doi.org/10.1016/j.jphotobiol.2018.11.001; Khashan, K. S., Sulaiman, G. M., Abdulameer, F. A., Albukhaty, S., Ibrahem, M. A., Al-Muhimeed, T., & Alobaid, A. A. (2021). Antibacterial activity of tio2 nanoparticles prepared by one-step laser ablation in liquid. Applied Sciences (Switzerland), 11(10). https://doi.org/10.3390/app11104623; Kim, I., Viswanathan, K., Kasi, G., Thanakkasaranee, S., Sadeghi, K., & Seo, J. (2022). ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges. Food Reviews International, 38(4), 537–565. https://doi.org/10.1080/87559129.2020.1737709; Kinoshita, M., Okamoto, Y., Furuya, M., & Okamoto, M. (2019). Biocomposites composed of natural rubber latex and cartilage tissue derived from human mesenchymal stem cells. Materials Today Chemistry, 12, 315–323. https://doi.org/10.1016/j.mtchem.2019.03.002; Kolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833; Koodziejczak-Radzimska, A., Markiewicz, E., & Jesionowski, T. (2012). Structural characterisation of ZnO particles obtained by the emulsion precipitation method. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/656353; Krainoi, A., Poomputsa, K., Kalkornsurapranee, E., Johns, J., Songtipya, L., Nip, R. L., & Nakaramontri, Y. (2021). Disinfectant natural rubber films filled with modified zinc oxide nanoparticles: Synergetic effect of mechanical and antibacterial properties. Express Polymer Letters, 15(11), 1081–1100. https://doi.org/10.3144/expresspolymlett.2021.87; Kundu, B., Kurland, N. E., Bano, S., Patra, C., Engel, F. B., Yadavalli, V. K., & Kundu, S. C. (2014). Silk proteins for biomedical applications: Bioengineering perspectives. Progress in Polymer Science, 39(2), 251–267. https://doi.org/10.1016/j.progpolymsci.2013.09.002; Lallo da Silva, B., Caetano, B. L., Chiari-Andréo, B. G., Pietro, R. C. L. R., & Chiavacci, L. A. (2019). Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces, 177(February), 440–447. https://doi.org/10.1016/j.colsurfb.2019.02.013; Lam, E., Male, K. B., Chong, J. H., Leung, A. C. W., & Luong, J. H. T. (2012). Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology, 30(5), 283–290. https://doi.org/10.1016/j.tibtech.2012.02.001; Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339–354. https://doi.org/10.1016/j.nantod.2015.04.002; Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371–384. https://doi.org/10.1038/nrmicro3028; Levy, D. A., Moudiki, P., & Leynadier, F. (2001). Deproteinised latex condoms are well tolerated by latex allergic patients. Sexually Transmitted Infections, 77(3), 202–203. https://doi.org/10.1136/sti.77.3.202; Li, J., Cha, R., Mou, K., Zhao, X., Long, K., Luo, H., Zhou, F., & Jiang, X. (2018). Nanocellulose-Based Antibacterial Materials. Advanced Healthcare Materials, 7(20), 1–16. https://doi.org/10.1002/adhm.201800334; Li, T., Su, Y., Wang, D., Mao, Y., Wang, W., Liu, L., & Wen, S. (2022). High antibacterial and barrier properties of natural rubber comprising of silver-loaded graphene oxide. International Journal of Biological Macromolecules, 195(December 2021), 449–455. https://doi.org/10.1016/j.ijbiomac.2021.12.029; Lin, S., Chen, L., Huang, L., Cao, S., Luo, X., & Liu, K. (2015). Novel antimicrobial chitosan-cellulose composite films bioconjugated with silver nanoparticles. Industrial Crops and Products, 70, 395–403. https://doi.org/10.1016/j.indcrop.2015.03.040; Lv, M. Z., Fang, L., Li, P. W., & Yang, C. L. (2014). The natural rubber/zinc oxide nanocomposites: Its morphology, mechanical and thermal decomposing properties. Advanced Materials Research, 936, 394–399. https://doi.org/10.4028/www.scientific.net/AMR.936.394; Ma, H., Brennan, A., & Diamond, S. A. (2012). Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environmental Toxicology and Chemistry, 31(9), 2099–2107. https://doi.org/10.1002/etc.1916; Maji, J., Pandey, S., & Basu, S. (2020). Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bulletin of Materials Science, 43(1), 1–10. https://doi.org/10.1007/s12034-019-1963-5; Mam, K., & Dangtungee, R. (2019). Effects of silver nanoparticles on physical and antibacterial properties of natural rubber latex foam. Materials Today: Proceedings, 17, 1914–1920. https://doi.org/10.1016/j.matpr.2019.06.230; Mehta, N., Braun, P. X., Gendelman, I., Alibhai, A. Y., Arya, M., Duker, J. S., & Waheed, N. K. (2020). Repeatability of binarization thresholding methods for optical coherence tomography angiography image quantification. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-72358-z; Mendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. de M. R., Lopes, P. R. M., de Moraes, P. B., Montagnolli, R. N., Ferreira, H., & Bidoia, E. D. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-06657-y; Mesa, A. M., Castro-Autié, G. I., & Díaz-garcía, A. (2018). Evaluación de nanoestructuras de ZnO en la separación de CH4-CO2 (Issue June). https://doi.org/10.13140/RG.2.2.28587.54566; Mieszawska, A. J., Fourligas, N., Georgakoudi, I., Ouhib, N. M., Belton, D. J., Perry, C. C., & Kaplan, D. L. (2010). Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials, 31(34), 8902–8910. https://doi.org/10.1016/j.biomaterials.2010.07.109; Ministerio de Salud y Protección Social, I. (2017). INFECCIONES ASOCIADAS A DISPOSITIVOS. 1–31.; Musa, A., Ahmad, M. B., Hussein, M. Z., Mohd Izham, S., Shameli, K., & Abubakar Sani, H. (2016). Synthesis of Nanocrystalline Cellulose Stabilized Copper Nanoparticles. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/2490906; Nagaraju, G., Udayabhanu, Shivaraj, Prashanth, S. A., Shastri, M., Yathish, K. V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94(September), 54–63. https://doi.org/10.1016/j.materresbull.2017.05.043; Nain, V., Kaur, M., Sandhu, K. S., Thory, R., & Sinhmar, A. (2020). Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. International Journal of Biological Macromolecules, 162, 24–30. https://doi.org/10.1016/j.ijbiomac.2020.06.125; Narongwongwattana, S., Rittiron, R., & Hock, L. C. (2015). Rapid determination of alkalinity (ammonia content) in Para rubber latex using portable and Fourier transform-near infrared spectrometers. Journal of Near Infrared Spectroscopy, 23(3), 181–188. https://doi.org/10.1255/jnirs.1160; Nawamawat, K., Sakdapipanich, J. T., Ho, C. C., Ma, Y., Song, J., & Vancso, J. G. (2011). Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 390(1–3), 157–166. https://doi.org/10.1016/j.colsurfa.2011.09.021; Nazari, A. (2019). Superior Self-cleaning and Antimicrobial Properties on Cotton Fabrics Using Nano Titanium Dioxide along with Green Walnut Shell Dye. Fibers and Polymers, 20(12), 2503–2509. https://doi.org/10.1007/s12221-019-1135-7; Nejati, M., Rostami, M., Mirzaei, H., Rahimi-Nasrabadi, M., Vosoughifar, M., Nasab, A. S., & Ganjali, M. R. (2022). Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. Inorganic Chemistry Communications, 136(December 2021), 109107. https://doi.org/10.1016/j.inoche.2021.109107; Sharma, R. K., Agarwal, M., & Balani, K. (2016). Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite. Materials Science and Engineering C, 62, 843–851. https://doi.org/10.1016/j.msec.2016.02.032; Sharma, S. K., Verma, D. S., Khan, L. U., Kumar, S., & Khan, S. B. (2018). Handbook of Materials Characterization. Handbook of Materials Characterization, July 2020, 1–613. https://doi.org/10.1007/978-3-319-92955-2; Sheikh, M., Pazirofteh, M., Dehghani, M., Asghari, M., Rezakazemi, M., Valderrama, C., & Cortina, J. L. (2019). Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chemical Engineering Journal, 123475. https://doi.org/10.1016/j.cej.2019.123475; Singh, S. (2019). Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicology Mechanisms and Methods, 29(4), 300–311. https://doi.org/10.1080/15376516.2018.1553221; Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-x; Sirisomboon, P., & Hock Lim, C. (2020). Rapid Evaluation of the Properties of Natural Rubber Latex and Its Products Using Near-Infrared Spectroscopy. Organic Polymers, 1–18. https://doi.org/10.5772/intechopen.84549; Soto, K., Garza, K. M., & Murr, L. E. (2007). Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia, 3(3 SPEC. ISS.), 351–358. https://doi.org/10.1016/j.actbio.2006.11.004; Sruthi, S., Ashtami, J., & Mohanan, P. V. (2018). Biomedical application and hidden toxicity of Zinc oxide nanoparticles. Materials Today Chemistry, 10, 175–186. https://doi.org/10.1016/j.mtchem.2018.09.008; Stanković, A., Dimitrijević, S., & Uskoković, D. (2013). Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids and Surfaces B: Biointerfaces, 102, 21–28. https://doi.org/10.1016/j.colsurfb.2012.07.033; Stoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679–6686. https://doi.org/10.1021/la0202374; Suksup, R., Imkaew, C., & Smitthipong, W. (2017). Cream concentrated latex for foam rubber products. IOP Conference Series: Materials Science and Engineering, 272(1). https://doi.org/10.1088/1757-899X/272/1/012025; Surfactant, P., & Crosslinking, C. (2021). Water-Resistant Latex Coatings : Tuning of Properties by.; Theerthagiri, J., Salla, S., Senthil, R. A., Nithyadharseni, P., Madankumar, A., Arunachalam, P., Maiyalagan, T., & Kim, H. S. (2019). A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology, 30(39). https://doi.org/10.1088/1361-6528/ab268a; Tofa, T. S., Kunjali, K. L., Paul, S., & Dutta, J. (2019). Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environmental Chemistry Letters, 17(3), 1341–1346. https://doi.org/10.1007/s10311-019-00859-z; Umar, A., Chauhan, M. S., Chauhan, S., Kumar, R., Sharma, P., Tomar, K. J., Wahab, R., Al-Hajry, A., & Singh, D. (2013). Applications of ZnO nanoflowers as antimicrobial agents for Escherichia coli and enzyme-free glucose sensor. Journal of Biomedical Nanotechnology, 9(10), 1794–1802. https://doi.org/10.1166/jbn.2013.1751; Vaysse, L., Bonfils, F., Sainte-Beuve, J., & Cartault, M. (2012). Natural Rubber. In Polymer Science: A Comprehensive Reference, 10 Volume Set (Vol. 10, Issue January). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53349-4.00267-3; Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640–1648. https://doi.org/10.1016/j.materresbull.2006.11.035; Wahab, R., Kim, Y. S., Mishra, A., Yun, S. Il, & Shin, H. S. (2010). Formation of ZnO Micro-Flowers Prepared via Solution Process and their Antibacterial Activity. Nanoscale Research Letters, 5(10), 1675–1681. https://doi.org/10.1007/s11671-010-9694-y; Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249. https://doi.org/10.2147/IJN.S121956; Wang, L., Zhang, S., Keatch, R., Corner, G., Nabi, G., Murdoch, S., Davidson, F., & Zhao, Q. (2019). In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. Journal of Hospital Infection, 103(1), 55–63. https://doi.org/10.1016/j.jhin.2019.02.012; Wei, F., Yu, H., Zeng, Z., Liu, H., Wang, Q., Wang, J., & Li, S. (2014). Preparation and structure characterization of hydroxylethylmethacrylate grafted natural rubber latex. Polímeros Ciência e Tecnologia, 24(3), 283–290. https://doi.org/10.4322/polimeros.2014.068; Williams, D. B., & Carter, C. B. (2009). Transmission Electron Microscopy. In Transmission Electron Microscopy. https://doi.org/10.1007/978-1-4757-2519-3_6; World Health Organisation. (2022). Global report on infection prevention and control. http://apps.who.int/bookorders.; Zhang, W., Hu, J., Zhou, Y., Chen, Y., Yu, F., Hong, C., Chen, L., Xin, H., Hong, K., & Wang, X. (2019). Latex and a ZnO-based multi-functional material for cardiac implant-related inflammation. Biomaterials Science, 7(10), 4186–4194. https://doi.org/10.1039/c9bm00952c; Zhao, D. L., Wang, X. X., Zeng, X. W., Xia, Q. S., & Tang, J. T. (2009). Preparation and inductive heating property of Fe3O4-chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. Journal of Alloys and Compounds, 477(1–2), 739–743. https://doi.org/10.1016/j.jallcom.2008.10.104; Zhu, Y., Fu, H., Ding, J., Li, H., Zhang, M., Zhang, J., & Liu, Y. (2018). Fabrication of three-dimensional zinc oxide nanoflowers for high-sensitivity fiber-optic ammonia gas sensors. Applied Optics, 57(27), 7924. https://doi.org/10.1364/ao.57.007924; Zou, L., Phule, A. D., Sun, Y., Zhu, T. Y., Wen, S., & Zhang, Z. X. (2020). Superhydrophobic and superoleophilic polyethylene aerogel coated natural rubber latex foam for oil-water separation application. Polymer Testing, 85(January), 106451. https://doi.org/10.1016/j.polymertesting.2020.106451; https://repositorio.unal.edu.co/handle/unal/83073; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
14Dissertation/ Thesis
المؤلفون: Vicencio Garrido, Marco Antonio
المساهمون: Pacio Castillo, Mauricio, Pérez Cuapio, Rene
مصطلحات موضوعية: CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA, Generación de energía fotovoltaica--Investigación, Sistemas de energía fotovoltaica, Celdas solares--Diseño y construcción, Películas delgadas--Materiales, Oxido de cinc, Nanocristales--Síntesis, Puntos cuánticos
وصف الملف: pdf; application/pdf
-
15Dissertation/ Thesis
المؤلفون: Mora Viquez, Jorge Rodrigo
المساهمون: Pacio Castillo, Mauricio, Carrillo López, Jesús
مصطلحات موضوعية: CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA, Agua--Contaminación, Agua--Purificación, Fotocatálisis--Investigación, Fotocatálisis--Materiales, Semiconductores, Oxido de cinc
وصف الملف: pdf; application/pdf
-
16Academic Journal
المصدر: Revista de la Asociación Odontológica Argentina, Vol 103, Iss 3 (2015)
مصطلحات موضوعية: endodoncia, óxido de cinc y eugenol, sellado coronario, selladores endodónticos.endodontics, zinc oxide and eugenol, coronal seal, Dentistry, RK1-715, Medicine (General), R5-920
وصف الملف: electronic resource
-
17Academic Journal
المؤلفون: Osvaldo Zmener, Daniel Grana, Gabriel Kokubu
المصدر: Revista de la Asociación Odontológica Argentina, Vol 103, Iss 2 (2015)
مصطلحات موضوعية: biocompatibilidad, endodoncia, selladores a base de óxido de cinc y eugenol.biocompatibility, endodontics, Dentistry, RK1-715, Medicine (General), R5-920
وصف الملف: electronic resource
-
18Academic Journal
المؤلفون: García Coque, María Purificación, Verdeja González, Luis Felipe, Huerta Nosti, María Asunción
مصطلحات موضوعية: Óxido de cinc, Propiedades superficiales
Relation: Boletín de la Sociedad Española de Cerámica y Vídrio, 32(4); http://hdl.handle.net/10651/31463; http://boletines.secv.es/upload/199332267.pdf
-
19
المؤلفون: Hill Pastor, Laura Marcela
المساهمون: Díaz Becerril, Tomás, Romano Trujillo, Román
المصدر: Benemérita Universidad Autónoma de Puebla
BUAP
Repositorio Institucional de Acceso Abierto RIAA-BUAPمصطلحات موضوعية: Superconductores de óxido de cobre, Celdas solares, CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA, Superconductividad de alta temperatura, Películas delgadas de óxido de cinc, Semiconductores
وصف الملف: application/pdf
-
20
المؤلفون: Campos Castellanos, Eduardo
المساهمون: Nieto Márquez, Antonio, Alcaraz Romo, Lorena
المصدر: Digital.CSIC. Repositorio Institucional del CSIC
instnameمصطلحات موضوعية: pilas y baterías, paracetamol, óxido de cinc y manganeso, fotocatálisis, reciclado