-
1Academic Journal
المصدر: Revista de Investigación Agraria y Ambiental, Vol 16, Iss 1 (2024)
مصطلحات موضوعية: contaminación urbana, elementos traza, Índice de Carga Contaminante (PLI), índice de contaminación, Agriculture, Environmental sciences, GE1-350
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Felipe Mendoza-Mora, Gustavo Cruz Cárdenas, José Teodoro Silva, Salvador Ochoa-Estrada, Dioselina Álvarez-Bernal
المصدر: Tecnología y ciencias del agua, Vol 14, Iss 5, Pp 364-412 (2023)
مصطلحات موضوعية: índice de calidad del agua canadiense, río cupatitzio, métricas ambientales, parámetros fisicoquímicos, índice de contaminación del agua, elementos taza, contaminación del agua, Hydraulic engineering, TC1-978, Water supply for domestic and industrial purposes, TD201-500
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Paúl Andrés Jiménez, Ximena Díaz, Marx Leandro Naves Silva, Anyela Vega, Beatriz Macêdo Medeiros, Nilton Curi
المصدر: Siembra, Vol 11, Iss 3(Especial) (2024)
مصطلحات موضوعية: arsénico geogénico, geoacumulación, indicadores ambientales, índice de contaminación, índice de enriquecimiento, Agriculture
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Pinzón , Yajaira, Guerrero-Riofrio, Patricia
المصدر: Revista Económica; Vol. 12 Núm. 1 (2024): RVE vol 12 (Enero-Junio 2024); 102-117 ; Revista Económica; Vol. 12 No. 1 (2024): RVE vol 12 (Enero-Junio 2024); 102-117 ; 2737-6257 ; 2602-8204
مصطلحات موضوعية: Índice de contaminación ambiental, Energía no renovable, Eficiencia energética, Environmental pollution index, Non-renewable energy, Energy efficiency
وصف الملف: application/pdf; text/html
Relation: https://revistas.unl.edu.ec/index.php/economica/article/view/2048/1405; https://revistas.unl.edu.ec/index.php/economica/article/view/2048/1404; https://revistas.unl.edu.ec/index.php/economica/article/view/2048
-
5Academic Journal
المؤلفون: Jiménez, Paúl Andrés, Díaz, Ximena, Naves Silva, Marx Leandro, Vega, Anyela, Macêdo Medeiros, Beatriz, Curi, Nilton
المصدر: Siembra; Vol. 11 No. 3(Especial) (2024): Memorias del IV Simposio Internacional por el Día Mundial del Suelo; e6628 ; Siembra; Vol. 11 Núm. 3(Especial) (2024): Memorias del IV Simposio Internacional por el Día Mundial del Suelo; e6628 ; 2477-8850 ; 1390-8928 ; 10.29166/siembra.v11i3(Especial)
مصطلحات موضوعية: arsénico geogénico, geoacumulación, indicadores ambientales, índice de contaminación, índice de enriquecimiento
وصف الملف: application/pdf; text/html; application/zip; text/xml
Relation: https://revistadigital.uce.edu.ec/index.php/SIEMBRA/article/view/6628/8102; https://revistadigital.uce.edu.ec/index.php/SIEMBRA/article/view/6628/8103; https://revistadigital.uce.edu.ec/index.php/SIEMBRA/article/view/6628/8104; https://revistadigital.uce.edu.ec/index.php/SIEMBRA/article/view/6628/8105; https://revistadigital.uce.edu.ec/index.php/SIEMBRA/article/view/6628
-
6Academic Journal
المصدر: RIAA, ISSN 2145-6453, Vol. 16, Nº. 1, 2025
مصطلحات موضوعية: contaminación urbana, elementos traza, Índice de Carga Contaminante (PLI), índice de contaminación, Pollutant Load Index (PLI), pollution index, trace elements, urban pollution
وصف الملف: application/pdf
-
7Academic Journal
المؤلفون: Karina Paola Torres-Cervera, Jesús Ramón Herrera-Martínez, Breiner Andrés Navarro-Sining, Nicolás Martínez-García, Adriana Royero-Ibarra, Aleana Cahuana-Mojica
المصدر: Revista Politécnica, Vol 18, Iss 35, Pp 110-127 (2022)
مصطلحات موضوعية: calidad ambiental, índice de bosque de ribera (qbr), índice de hábitat fluvial (ihf), índice bmwp/col, índice de contaminación (ico), Technology, Science
وصف الملف: electronic resource
-
8Academic Journal
المصدر: Tecnura; Vol. 27 No. 77 (2023): Julio - Septiembre; 121 - 140 ; Tecnura; Vol. 27 Núm. 77 (2023): Julio - Septiembre; 121 - 140 ; 2248-7638 ; 0123-921X
مصطلحات موضوعية: surface water, groundwater, pollution Index (WPI), Water Quality Index (WQI), physicochemical parameters, agua superficial, agua subterránea, Índice de contaminación (ICO), Índice de Calidad del Agua (ICA), parámetros fisicoquímicos
وصف الملف: text/xml; application/pdf
Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/20052/20030; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/20052/19580; Abdel, A., Ali, M., & Goher, M. (2017). Indices of water quality and metal pollution of Nile River, Egypt. The Egyptian Journal of Aquatic Research, 43(1), 21-29. https://doi.org/10.1016/j.ejar.2016.12.006; Agencia Nacional del Agua [ANA]. (2017). Indicadores de qualidade - índice de qualidade das água (IQA). Obtenido de http://pnqa.ana.gov.br/indicadores-indice-aguas.aspx; Barbulescu, A., Barbes, L., & Dumitriu, C. (2021). Assessing the Water Pollution of the Brahmaputra River Using Water Quality Indexes. Toxics, 9(11). https://doi.org/10.3390/toxics9110297; Ben, F., Boughariou, E., & Bouri, S. (2021). Multicriteria-analysis of deep groundwater quality using WQI and fuzzy logic tool in GIS: A case study of Kebilli region, SW Tunisia. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2021.104224; Brown, R., McClelland, N., Deininger, R., & Tozer, R. (1970). A water quality index-do we dare? Water & sewage works, 117(10), 339-343.; Dao, V., Urban, W., & Hazra, S. (2020). Introducing the modification of Canadian Water Quality Index. Groundwater for Sustainable Development, 11. https://doi.org/10.1016/j.gsd.2020.100457; Das, A., Joardar, M., De, A., Mridha, D., Chowdhury, N., Bin, M. T., . . . Roychowdhury, T. (2021). Pollution index and health risk assessment of arsenic through different groundwater sources and its load on soil-paddy-rice system in a part of Murshidabad district of West Bengal, India. Groundwater for Sustainable Development, 15. https://doi.org/10.1016/j.gsd.2021.100652; Dash, S., & Kalamdhad, A. (2021). Science mapping approach to critical reviewing of published literature on water quality indexing. Ecological Indicators, 128. https://doi.org/10.1016/j.ecolind.2021.107862; Díaz, L., Espinosa, A., & Molina, G. (2020). Salud ambiental del río Ranchería a través de macroinvertebrados acuáticos en el área de influencia del complejo carbonífero El Cerrejón. Tecnura, 24(65), 49-63. https://doi.org/10.14483/22487638.15773; Dimri, D., Daverey, A., Kumar, A., & Sharma, A. (2021). Monitoring water quality of River Ganga using multivariate techniques and WQI (Water Quality Index) in Western Himalayan region of Uttarakhand, India. Environmental Nanotechnology, Monitoring & Management, 15. https://doi.org/10.1016/j.enmm.2020.100375; Dutra, M., Teixeira, O., Ramos, J., & Libânio, M. (2019). Evaluating the surface Water quality index fuzzy and its influence on water treatment. Journal of Water Process Engineering, 32. https://doi.org/10.1016/j.jwpe.2019.100890; Effendi, H. (2016). River Water Quality Preliminary Rapid Assessment Using Pollution Index. Procedia Environmental Sciences, 33. https://doi.org/10.1016/j.proenv.2016.03.108; Effendi, H., Romanto, & Wardiatno, Y. (2015). Water Quality Status of Ciambulawung River, Banten Province, Based on Pollution Index and NSF-WQI. Procedia Environmental Sciences, 24, 228-237. https://doi.org/10.1016/j.proenv.2015.03.030; Egbueri, J., Ameh, P., & Unigwe, C. (2020). Integrating entropy-weighted water quality index and multiple pollution indices towards a better understanding of drinking water quality in Ojoto area, SE Nigeria. Scientific African. https://doi.org/10.1016/j.sciaf.2020.e00644; Gad, M., El-Safa, A., Magda, M., Farouk, M., Hussein, H., Alnemari, A., . . . Eid, E. (2021). Integration of Water Quality Indices and Multivariate Modeling for Assessing Surface Water Quality in Qaroun Lake, Egypt. Water, 13(16), 2258. https://doi.org/10.3390/w13162258; Gayer, F., de Angelis, D., de Angelis, A., & Poletti, E. (2021). Use of Complex Network Modelling to Assess the Influence of the Parameters on Water Quality of Rivers. Water, Air, and Soil Pollution, 232. https://doi.org/10.1007/s11270-021-05270-5; Gikas, G., Sylaios, G., Tsihrintzis, V., Konstantinou, I., Albanis, T., & Boskidis, I. (2020). Comparative evaluation of river chemical status based on WFD methodology and CCME water quality index. Science of The Total Environment, 745. https://doi.org/10.1016/j.scitotenv.2020.140849; Granitto, M., Diodato, S., & Rodríguez, P. (2021). Water quality index including periphyton chlorophyll-a in forested urban watersheds from Tierra del Fuego (Argentina). Ecological Indicators, 126. https://doi.org/10.1016/j.ecolind.2021.107614; Guirao, J., Olmedo, A., & Ferrer, E. (2008). El artículo de revisión. Revista Iberoamericana de Enfermeria Comunitaria. Obtenido de http://revista.enfermeriacomunitaria.org/articuloCompleto.php?ID=7; Gupta, S., & Gupta, S. (2021). A critical review on water quality index tool: Genesis, evolution and future directions. Ecological Informatics, 63. https://doi.org/10.1016/j.ecoinf.2021.101299; Hasan, M., Shahriar, A., & Jim, K. (2019). Water pollution in Bangladesh and its impact on public health. Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02145; Hasan, M., Ahmed, M., & Shafiquzzaman, M. (2020). Water quality indices to assess the spatiotemporal variations of Dhaleshwari river in central Bangladesh. Environmental and Sustainability Indicators, 8. https://doi.org/10.1016/j.indic.2020.100068; Hossain, M., & Patra, P. (2020). Water pollution index – A new integrated approach to rank water quality. Ecological Indicators, 117. https://doi.org/10.1016/j.ecolind.2020.106668; Hurley, T., Sadiq, R., & Mazumder, A. (2012). Adaptation and evaluation of the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) for use as an effective tool to characterize drinking source water quality. Water Research, 46(11), 3544- 3552. https://doi.org/10.1016/j.watres.2012.03.061; Karaouzas, I., Kapetanaki, N., Mentzafou, A., Kanellopoulos, T., & Skoulikidis, N. (2021). Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere, 263. https://doi.org/10.1016/j.chemosphere.2020.128192; Khadija, D., Hicham, A., Rida, A., Hicham, E., Nordine, N., & Najlaa, F. (2021). Surface water quality assessment in the semi-arid area by a combination of heavy metal pollution indices and statistical approaches for sustainable management. Environmental Challenges, 5. https://doi.org/10.1016/j.envc.2021.100230; Klamt, R., Lobo, E., & da Costa, A. (2021). Development of a Water Quality Index (WQI) for public supply in the Vale do Rio Pardo region, RS, Brazil. Ambiente & Água, 16(4). https://doi.org/10.4136/ambi-agua.2711; Kumar, M., Nagdev, R., Tripathi, R., Singh, V., Ranjan, P., Soheb, M., & Ramanathan, A. (2019). Geospatial and multivariate analysis of trace metals in tubewell water using for drinking purpose in the upper Gangetic basin, India: Heavy metal pollution index. Groundwater for Sustainable Development, 8. https://doi.org/10.1016/j.gsd.2018.10.001; Kumar, V., Parihar, R., Sharma, A., Bakshi, P., Singh Sidhu, G., Bali, A., . . . Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta- analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236. https://doi.org/10.1016/j.chemosphere.2019.124364; Liu, S., Lou, S., Kuang, C., Huang, W., Chen, W., Zhang, J., & Zhong, G. (2011). Water quality assessment by pollution-index method in the coastal waters of Hebei Province in western Bohai Sea, China. Marine Pollution Bulletin, 62(10), 2220- 2229. https://doi.org/10.1016/j.marpolbul.2011.06.021; Ma, Z., Li, H., Ye, Z., Wen, J., Hu, Y., & Liu, Y. (2020). Application of modified water quality index (WQI) in the assessment of coastal water quality in main aquaculture areas of Dalian, China. Marine Pollution Bulletin, 157. https://doi.org/10.1016/j.marpolbul.2020.111285; Medeiros, A., Faial, K., do Carmo, K., da Silva, I., de Oliveira, M., Guimarães, R., & Mendonça, N. (2017). Quality index of the surface water of Amazonian rivers in industrial areas in Pará, Brazil. Marine Pollution Bulletin, 123(1-2), 156-164. https://doi.org/10.1016/j.marpolbul.2017.09.002; Moyano, Á., Cuadros, F., Pabón, A., & Trujillo, J. (2021). Impacto ambiental del vertimiento de aguas servidas enaglomerados urbanos ilegales del municipio de Villavicencio, Colombia. Tecnura, 25(68), 43-62. https://doi.org/10.14483/22487638.16273; Nayak, J., Patil, L., & Patki, V. (2020). Development of water quality index for Godavari River (India) based on fuzzy inference system. Groundwater for Sustainable Development, 10. https://doi.org/10.1016/j.gsd.2020.100350; Nayak, J., Patil, L., & Patki, V. (2021). Artificial neural network-based water quality index (WQI) for river Godavari (India). Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.03.100; Noori, R., Berndtsson, R., Hosseinzadeh, M., Adamowski, J. F., & Abyaneh, M. R. (2019). A critical review on the application of the National Sanitation Foundation Water Quality Index. Environmental Pollution, 244, 575-587. https://doi.org/10.1016/j.envpol.2018.10.076; Oñate, H., & Cortéz, G. (2020). Tecnura • Estado del agua del río Cesar por vertimientos residuales de la ciudad de Valledupar. Bioindicación por índice BMWP/Co. Tecnura, 24(65), 39-48. https://doi.org/10.14483/22487638.15766; Pandit, D., Kumari, R., & Shitanshu, S. (2022). A comparative assessment of the status of Surajkund and Rani Pond, Aurangabad, Bihar, India using overall Index of Pollution and Water Quality Index. Acta Ecologica Sinica, 42(3), 149-155. https://doi.org/10.1016/j.chnaes.2020.11.009; Pesce, S., & Wunderlin, D. (2000). Use of water quality indices to verify the impact of Córdoba City (Argentina) on Suquía River. Water Research, 34(11), 2915-2926. https://doi.org/10.1016/S0043-1354(00)00036-1; Rahman, K., Barua, S., & Imran, H. (2021). Assessment of water quality and apportionment of pollution sources of an urban lake using multivariate statistical analysis. Cleaner Engineering and Technology, 5. https://doi.org/10.1016/j.clet.2021.100309; Rana, R., & Ganguly, R. (2020). Water quality indices: challenges and applications—an overview. Arabian Journal of Geosciences, 13. https://doi.org/10.1007/s12517-020-06135-7; Rezaie, M., Attar, N., Mohammadzadeh, A., Murti, M., Ahmed, A., Fai, C., . . . El-Shafie, A. (2020). Physicochemical parameters data assimilation for efficient improvement of wáter quality index prediction: Comparative assessment of a noise suppression hybridization approach. Journal of Cleaner Production, 271. https://doi.org/10.1016/j.jclepro.2020.122576; Sahoo, M., Patra, K., & Khatua, K. (2015). Inference of Water Quality Index Using ANFIA and PCA. Aquatic Procedia, 4. https://doi.org/10.1016/j.aqpro.2015.02.139 Sciencedirect. (10 de 11 de 2021). Acerca de ScienceDirect. Obtenido de sciencedirect.com: https://www.elsevier.com/solutions/sciencedirect; Shankar, B., & Raman, S. (2020). A novel approach for the formulation of Modified Water Quality Index and its application for groundwater quality appraisal and grading. Human and Ecological Risk Assessment: An International Journal, 26(10), 2812-2823. https://doi.org/10.1080/10807039.2019.1688638; Sharma, V., Sharma, M., Pandita, S., Kumar, V., Kour, J., & Sharma, N. (2021). 9 - Assessment of water quality using different pollution indices and multivariate statistical techniques. Heavy Metals in the Environment, 165-178. https://doi.org/10.1016/B978-0-12-821656-9.00009-2; Sunitha, V., Reddy, Y., Suvarna, B., & Reddy, B. (2022). Human health risk assessment (HHRA) of fluoride and nitrate using pollution index of groundwater (PIG) in and around hard rock terrain of Cuddapah, A.P. South India. Environmental Chemistry and Ecotoxicology, 4, 113-123. https://doi.org/10.1016/j.enceco.2021.12.002; Suriadikusumah, A., Mulyani, O., Sudirja, R., Sofyan, E., Maulana, M., & Mulyono, A. (2021). Analysis of the water quality at Cipeusing river, Indonesia using the pollution index method. Acta Ecologica Sinica, 41(3), 177-182. https://doi.org/10.1016/j.chnaes.2020.08.001; Torres, P., Cruz, C., & Patiño, P. (2009). Índices de calidad de agua en fuentes superficiales utilizadas en la producción de agua para consumo humano. Una revisión crítica. Revista Ingenierías Universidad de Medellín, 8(15). Obtenido de http://www.scielo.org.co/pdf/rium/v8n15s1/v8n15s1a09.pdf; Torres, P., Hernán , C., & Patiño, P. (2009). Índices de calidad de agua en fuentes superficiales utilizadas en la producción de agua para consumo humano: Una revisión crítica. Revista Ingenierías Universidad de Medellín, 8(15), 79-94. Obtenido de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-33242009000300009; Uddin, G., Nash, S., & Olbert, A. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122. https://doi.org/10.1016/j.ecolind.2020.107218; Unda, J., Ruiz, E., Martínez, M., Vidal, M., & Antigüedad, I. (2020). Multivariate statistical analyses for water and sediment quality index development: A study of susceptibility in an urban river. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135026; Ustao˘glu, F., & Tepe, Y. (2019). Water quality and sediment contamination assessment of Pazarsuyu Stream, Turkey using multivariate statistical methods and pollution indicators. International Soil and Water Conservation Research, 7(1), 47-56. https://doi.org/10.1016/j.iswcr.2018.09.001; Ustao˘glu, F., Tepe, Y., & Ta¸s, B. (2020). Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecological Indicators, 113. https://doi.org/10.1016/j.ecolind.2019.105815; Vera, O. (2016). Como publicar artículos de revisión o actualización. Cuadernos Hospital de Clínicas, 57(3), 62-67. Obtenido de http://www.scielo.org.bo/scielo.php?pid=S165267762016000300009&script=sci_arttext; Wator, K., & Zdechlik, R. (2021). Application of water quality indices to the assessment of the effect of geothermal water discharge on river water quality – case study from the Podhale region (Southern Poland). Ecological Indicators, 121. https://doi.org/10.1016/j.ecolind.2020.107098; Yu, C., Yin, X., Li, H., & Yang, Z. (2020). A hybrid water-quality-index and grey water footprint assessment approach for comprehensively evaluating water resources utilization considering multiple pollutants. Journal of Cleaner Production, 248. https://doi.org/10.1016/j.jclepro.2019.119225; Zhao, E., Kuo, Y., & Chen, N. (2021). Assessment of water quality under various environmental features using a site-specific weighting water quality index. Science of The Total Environment, 783. https://doi.org/10.1016/j.scitotenv.2021.146868; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/20052
-
9Academic Journal
المصدر: Interacción y Perspectiva Revista de Trabajo Social, Vol.13 Nro.1, 50-62, (2022-11-30)
مصطلحات موضوعية: evaluación ecológica urbana, nivel de contaminación ambiental, índice de contaminación atmosférica, índice de contaminación total del suelo
Relation: https://doi.org/10.5281/zenodo.7382770; https://doi.org/10.5281/zenodo.7382771; oai:zenodo.org:7382771
-
10Academic Journal
المؤلفون: Trujillo-González, Juan Manuel, García-Bravo, Deiver Alexis, Rojas-Peña, Jose Ismael, Serrano-Gómez, Marlon, Castillo-Monroy, Edgar Fernando, Torres-Mora, Marco Aurelio, García-Navarro, Francisco J., Jiménez-Ballesta, Raimundo
المصدر: TecnoLógicas; Vol. 26 No. 57 (2023); e2667 ; TecnoLógicas; Vol. 26 Núm. 57 (2023); e2667 ; 2256-5337 ; 0123-7799
مصطلحات موضوعية: Contamination factor, pollution load index, Nemerov integrated pollution index, geo-accumulation index, heavy metals, tropical soils, Factor de contaminación, índice de carga de contaminación, índice de contaminación integrado de Nemerov, Índice de geoacumulación, metales pesados, suelos tropicales
وصف الملف: application/pdf; text/xml; application/zip; text/html
Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2667/2902; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2667/2910; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2667/3128; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2667/3162; P. S. Hooda, Trace elements in soils, Chichester, U.K. John Wiley & Sons, 2010. https://doi.org/10.1002/9781444319477; M. Oves, M. S. Khan, A. Zaidi, and E. Ahmad, “Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview,” Toxicity of Heavy Metals to Legumes and Bioremediation, pp. 1-27, Feb. 2012. https://doi.org/10.1007/978-3-7091-0730-0_1; M. Wen, Z. Ma, D. B. Gingerich, X. Zhao, and D. Zhao, “Heavy metals in agricultural soil in China: A systematic review and meta-analysis,” Eco-Environment & Health, vol. 1, no. 4, pp. 219-228, Dec. 2022. https://doi.org/10.1016/j.eehl.2022.10.004; L. H. P. Jones, S. C. Jarvis, D. J. Green, and M. H. B. Hayes, Clay Minerals, The Chemistry of Soil Processes, Chichester, U.K. John Wiley & Sons, 2018. https://doi.org/10.1180/claymin.1982.017.2.14; K. Weggler, M. J. McLaughlin, and R. D. Graham, “Effect of chloride in soil solution on the plant availability of biosolid‐borne cadmium,” Journal of Environmental Quality, vol. 33, no. 2, pp. 496-504, Mar. 2004. https://doi.org/10.2134/jeq2004.4960; M. J. McLaughlin, R. E. Hamon, R. G. McLaren, T. W. Speir, and S. L. Rogers, “Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand,” Soil Research, vol. 38, no. 6, pp. 1037-1086, 2000. https://doi.org/10.1071/SR99128; M. E. Sumner, “Beneficial use of effluents, wastes, and biosolids,” Communications in Soil Science and Plant Analysis, vol. 31, no. 11-14, pp. 1701-1715, Nov. 2008. https://doi.org/10.1080/00103620009370532; United States Environmental Protection Agency, Background Report on Fertilizer Use, Contaminants and Regulations, Columbus, 1999.; F. Zeng et al, “The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants,” Environmental Pollution, vol. 159, no. 1, pp. 84-91, Jan. 2011. https://doi.org/10.1016/j.envpol.2010.09.019; M.-L. Bloemen, B. Markert, and H. Lieth, “The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabrück in relation to land use,” Science of the Total Environment, vol. 166, no. 1-3, pp. 137-148, Apr. 1995. https://doi.org/10.1016/0048-9697(95)04520-B; Z. Atafar et al., “Effect of fertilizer application on soil heavy metal concentration,” Environmental Monitoring and Assessment, vol. 160, pp. 83-89, Jan. 2010. https://doi.org/10.1007/s10661-008-0659-x; B. Wei, J. Yu, Z. Cao, M. Meng, L. Yang, and Q. Chen, “The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application,” International Journal of Environmental Research and Public Health, vol. 17, no. 15, pp. 5359, Jul. 2020. https://doi.org/10.3390/ijerph17155359; A. Alengebawy, S. T. Abdelkhalek, S. R. Qureshi, and M.-Q. Wang “Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications”. Toxics, vol. 9, no. 3, p. 42, Feb. 2021. https://doi.org/10.3390/toxics9030042; J. D. Mahecha-Pulido, J. M. Trujillo-González, and M. A. Torres-Mora, “Análisis de estudios en metales pesados en zonas agrícolas de Colombia,” Orinoquia, vol. 21, no. Extra 1, pp. 83-93, Apr. 2017. https://dialnet.unirioja.es/servlet/articulo?codigo=7051738; J. D. Mahecha-Pulido, J. M. Trujillo-González, and M. A. Torres-Mora “Contenido de metales pesados en suelos agrícolas de la región del Ariari, Departamento del Meta,” Orinoquia, vol. 19, no. 1, pp. 118-122, Jun. 2015. https://www.redalyc.org/articulo.oa?id=89640816011; D. D. Jamioy Orozco, J. C. Menjivar Flores, and Y. Rubiano Sanabria, “Indicadores químicos de calidad de suelos en sistemas productivos del Piedemonte de los Llanos Orientales de Colombia,” Acta agronómica, vol. 64, no. 4, pp. 302-307, Oct. 2015. https://doi.org/10.15446/acag.v64n4.38731; M. A. Ramírez Niño and M. A. Navarro Ramírez, “Análisis de metales pesados en suelos irrigados con agua del río Guatiquía,” Ciencia En Desarrollo, vol. 6, no. 2, pp. 167-175, Jul. 2015. http://docplayer.es/22033351-Analisis-de-metales-pesados-en-suelos-irrigados-con-agua-del-rio-guatiquia.html; Cormacarena, “Plan de Ordenación y Manejo de la Cuenca del río Acacías-Pajure. Plan de ordenación del recurso hídrico para el río Acacías y sus afluentes ríos Orotoy y Acaciitas”, Documento técnico. p. 160, 2012. https://www.cormacarena.gov.co/gestion-de-planificacion/pomcas/; United States Department of Agriculture – Natural Resources Conservation Service, Soil Survey Staff. Keys to Soil Taxonomy. Tenth Edition, 2006. https://nrcspad.sc.egov.usda.gov/DistributionCenter/pdf.aspx?productID=459&KeystoSoilTaxonomy; C. Micó, L. Recatalá, M. Peris, and J. Sánchez, “Assessing heavy metal sources in agricultural soils of and European Mediterranean area by multivariate analysis,” Chemosphere, vol. 65, no. 5, pp. 863-872, Oct. 2006. https://doi.org/10.1016/j.chemosphere.2006.03.016; G. W. Gee and J. W. Bauder, “Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters,” Soil Science Society of America Journal, vol. 43, no. 5, pp. 1004-1007, Sep. 1979. https://doi.org/10.2136/sssaj1979.03615995004300050038x; M. L. Jackson, Soil chemical analysis, India, Prentice Hall of Indian Pvt. Ltd, 1967. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=105097; G. Müller, “Index of geo-accumulation in sediments of the Rhine River,” GeoJournal, vol. 2, no. 3, pp. 108-118, Jan. 1969. https://www.scinapse.io/papers/782739266; L. L. García-Martínez and C. Poleto, “Assessment of diffuse pollution associated with metals in urban sediments using the geoaccumulation index (Igeo),” Journal of Soils and Sediments, vol. 14, no. 7, pp. 1251-1257, Feb. 2014. https://doi.org/10.1007/s11368-014-0871-y; A. Daripa et al., “Risk assessment of agricultural soils surrounding an iron ore mine: A field study from Western Ghat of Goa, India,” Soil and Sediment Contamination: An International Journal, vol. 32, no. 5, pp. 570-590, Aug. 2022. https://doi.org/10.1080/15320383.2022.2111403; L. Hakanson, “An ecological risk index for aquatic pollution control. A sedimentological approach,” Water Research, vol. 14, no. 8, pp. 975-1001, 1980. https://doi.org/10.1016/0043-1354(80)90143-8; D. L. Tomlinson, J. G. Wilson, C. R. Harris, and D. W. Jeffrey, “Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index,” Helgoländer meeresuntersuchungen, vol. 33 no. 1, pp. 566-575, Mar. 1980. https://doi.org/10.1007/BF02414780; J. M. Trujillo-González, M. A. Torres-Mora, M. Serrano-Gómez, E. F. Castillo-Monroy, and R. Jiménez-Ballesta, “Baseline values and environmental assessment for metal (loid)s in soils under a tropical rainy climate in a Colombian region”, Environmental Monitoring and Assessment, vol. 194, no. 494, Jun. 2022. https://doi.org/10.1007/s10661-022-10036-5; A. M. Taiwo et al., “Spatial distribution, pollution index, receptor modelling and health risk assessment of metals in road dust from Lagos metropolis, Southwestern Nigeria,” Environmental Advances, vol. 2, p. 100012, Dec. 2020. https://doi.org/10.1016/j.envadv.2020.100012; J. M. Trujillo-González, M. A. Torres-Mora, R. Jiménez Ballesta, and E. C. Brevik, “Spatial variability of the physicochemical properties of acidic soils along an altitudinal gradient in Colombia,” Environmental Earth Sciences, vol. 81, no. 108, Feb. 2022. https://doi.org/10.1007/s12665-022-10235-w; J. M. Trujillo-González, J. D. Mahecha-Pulido, M. A. Torres-Mora, E. C. Brevik, S. D. Keesstra, and R. Jiménez-Ballesta, “Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate,” Agriculture, vol. 7, no. 7, p. 52, Jun. 2017. https://doi.org/10.3390/agriculture7070052; Instituto Geográfico Agustín Codazzi, “Estudio General de Suelos y Zonificación de Tierras, Departamento de Meta,” Colombia, 2004. https://catalogo.unillanos.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=17983; M. J. Yacomelo Hernández, “Riesgo toxicológico en personas expuestas, a suelos y vegetales, con posibles concentraciones de metales pesados, suelos en el sur del Atlántico, Colombia,” (Tesis de maestría), Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, 2014. https://repositorio.unal.edu.co/handle/unal/21826; L. Chen, J. Wang, J. Beiyuan, X. Guo, H. Wu, and L. Fang, “Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis,” Sci Total Environ, vol. 816, p. 151556, Apr. 2021. https://doi.org/10.1016/j.scitotenv.2021.151556; S. Khan, Q. Cao, Y. M. Zheng, Y. Z. Huang, and Y. G. Zhu, “Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China,” Environmental Pollution, vol. 152, no. 3, pp. 686-692, Apr. 2008. https://doi.org/10.1016/j.envpol.2007.06.056; F. Faridullah, M. Umar, A. Alam, M. A. Sabir, and D. Khan, “Assessment of heavy metals concentration in phosphate rock deposits, Hazara basin, Lesser Himalaya Pakistan,” Geosciences Journal, vol. 21, no 5, pp. 743-752, Aug. 2017. https://doi.org/10.1007/s12303-017-0013-9; S. S. Das et al., “Soil health and its relationship with food security and human health to meet the sustainable development goals in India,” Soil Security, vol. 8, p. 100071, Sep. 2022.https://doi.org/10.1016/j.soisec.2022.100071; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2667
-
11Academic Journal
المؤلفون: Meza, Reynaldo José, Salamanca, Iván Camilo
المصدر: CITECSA; Vol. 14 Núm. 23 (2022): Revista CITECSA, volumen 14, número 23, año 2022; 17-30 ; 2027-6745
مصطلحات موضوعية: estuaries, Kendall´s W, sensitivity analysis, pollution index, estuarios, W de Kendall, análisis de sensibilidad, índice de contaminación
وصف الملف: application/pdf
-
12Academic Journal
المؤلفون: Torres-Cervera, Karina Paola, Herrera-Martínez, Jesús Ramón, Navarro-Sining, Breiner Andrés, Martínez-García, Nicolás, Royero-Ibarra, Adriana, Cahuana-Mojica, Aleana
المصدر: Revista Politécnica; Vol. 18 No. 35 (2022): January-June, 2022; 110-127 ; Revista Politécnica; Vol. 18 Núm. 35 (2022): Enero-Junio, 2022; 110-127 ; Revista Politécnica; v. 18 n. 35 (2022): Enero-Junio, 2022; 110-127 ; 2256-5353 ; 1900-2351
مصطلحات موضوعية: Environmental Quality, quality Forest riverside index (QBR), habitat river index (IHF), BMWP/COL Index, Pollution Index (ICO), Calidad Ambiental, Índice de Bosque de Ribera (QBR), Índice de Hábitat Fluvial (IHF), Índice BMWP/CO, Índice de contaminación (ICO)
وصف الملف: application/pdf; text/html
-
13Academic Journal
المؤلفون: Abidi, Myriam, Yahyaoui, Asma, Ben Amor, Rim, Chouba, Lassaad, Gueddari, Moncef
المصدر: Scientia Marina; Vol. 86 No. 1 (2022); e028 ; Scientia Marina; Vol. 86 Núm. 1 (2022); e028 ; 1886-8134 ; 0214-8358 ; 10.3989/scimar.2022.86n1
مصطلحات موضوعية: heavy metal speciation, environmental risks, sediment pollution index, Mediterranean lagoon, especiación de metales pesados, riesgos ambientales, indice de contaminación por sedimentos, laguna mediterránea
وصف الملف: text/html; application/pdf; text/xml
Relation: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1917/2852; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1917/2853; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1917/2854; Abidi M., Ben Amor R., Gueddari M. 2019. Sedimentary dynamics of the South Lagoon of Tunis (Tunisia, Mediterranean Sea). Estud. Geol. 75: e086. https://doi.org/10.3989/egeol.43194.487; Baptista Neto J.A., Gingele F.X., Leipe T., Brehme I. 2006. Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environ. Geol. 49: 1051-1063. https://doi.org/10.1007/s00254-005-0149-1; Ben Charrada R. 1992. Le lac de Tunis après les aménagements. Paramètres physicochimiques de l'eau et relation avec la croissance des macro algues. Mar. Life 1: 29-44.; Ben Souissi J. 2002. Impact de la Pollution sur les Communauées Macro benthiques du Lac Sud de Tunis avant sa Restauration Environnementale, PhD thesis, Faculté des sciences de Tunis, Tunis, Tunisia.; Ben Souissi J., Zaouali J., Aouij S., et al. 1999. Teneurs en metaux traces des sediments de surface du Lac Sud de Tunis avant restoration. IAEA-SM-354/14:13-18.; Ben Souissi J., Mejri H., Zaouali J. 2005. Teleost species recorded in Tunis Southern Lagoon after its environmental restoration (Northe Tunisia, Central Mediterranean). Ann. Ser. Hist. Nat. Arch. 15: 157-165.; Bernhard M., Brinckman F.E., Sadler P.J. 1986. The importance of chemical "speciation" in environmental processes. In: Bernhard M., Brinckman F.E. and Sadler P.J. (eds), Report of the Dahlem Workshop, Life Sciences Research Report 33, Berlin, September 2-7, 1984, Springer-Verlag, Berlin, Heidelberg, 1986, 762 pp. https://doi.org/10.1007/978-3-642-70441-3; Birch G.F, Davies K.I. 2003. A scheme for assessing human impact and sediment quality in coastal waterways. In: Woodroffe C.D., Furness R.A. (eds), Proceedings of the coastal GIS conference, Wollongong, NSW, 7-8 July, 2003: pp. 371-380. Australia: University of Wollongong.; Book E., Moore J.N. 1988. Particle-size and chemical control of As, Cd, Cu, Fe, Mn, Ni, Pb and Zn in bed sediment from the Clark Fork river, Montana (U.S.A.). Sci. Total Environ. 76: 247-266. https://doi.org/10.1016/0048-9697(88)90111-8; Bouden S., Chaabani F., Abdeljaoued S. 2004. Caractérisation géochimique des sédiments superficiels de la lagune de Korba (Cap Bon, Nord-Est de la Tunisie). Geo-Eco-Trop. 28: 15-26.; Caumette P. 1985. Rôle des bactéries phototrophes et des bactéries sulfato-réductrices dans les milieux lagunaires. Etudes et thèses. Edit. ORSTOM, Paris, FR.; Cottenie A., Camerlynck R., Verloo M., Dhaese A. 1979. Fractionation and determination of trace elements in plants, soils and sediments. Pure Appl. Chem. 52: 45-53. https://doi.org/10.1351/pac198052010045; El Ati Hellal M., Hellal F., El Khemissi Z., et al. 2011. Trace Metals in Algae and Sediments from the North-Eastern Tunisian Lagoons. Bull. Environ. Contam. Toxicol. 86: 194-198. https://doi.org/10.1007/s00128-010-0175-x PMid:21153803; Elliott M., Quintino V. 2007. The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar. Poll. Bull. 54: 640-645. https://doi.org/10.1016/j.marpolbul.2007.02.003 PMid:17418874; Ennouri R., Chouba L., Magni P., Kraiem M.M. 2010. Spatial distribution of trace metals (Cd, Pb, Hg, Cu, Zn, Fe and Mn) and oligo-elements (Mg, Ca, Na and K) in surface sediments of the Gulf of Tunis (Northern Tunisia). Environ. Monit. Assess. 163: 229-239. https://doi.org/10.1007/s10661-009-0829-5 PMid:19277885; Förstner U. Wittmann G.T.M. 1981. Metal pollution in the aquatic environment. 2nd ed., Springer-Yerlag, 486 pp. https://doi.org/10.1007/978-3-642-69385-4; Froelich P.N. 1980. Analysis of organic carbon in marine sediments. Limnol. Oceanogr. 25: 242-248. https://doi.org/10.4319/lo.1980.25.3.0564; Harbridge W., Pilkey H.O., Whaling P., Swetland P. 1976. Sedimentation in the Lake of Tunis: A Lagoon Strongly Influenced by Man. Environ. Geol. Vol 1: 215-225. Springer-Verlag New York Inc. https://doi.org/10.1007/BF02407508; Hedges J. I., Stern J. K. 1984. Carbon and nitrogen determinations of carbonate-containing solids. Limnol. Oceanogr. 29: 657-663. https://doi.org/10.4319/lo.1984.29.3.0657; Horowitz A.J., Elric K.A. 1987. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Appl. Geochem. 2: 437-451. https://doi.org/10.1016/0883-2927(87)90027-8; Ikem A., Egiebor O.N., Nyavor K. 2003. Heavy elements in water, fish and sediment from Tuskegee Lake, southern USA. Water Air Soil Pollut. 149: 51-75. https://doi.org/10.1023/A:1025694315763; Ioannides K., Stamoulis K., Papachristodoulou C., et al. 2015. Distribution of heavy metals in sediment cores of Lake Pamvotis (Greece): a pollution and potential risk assessment. Environ. Monit. Assess. 187: 4209. https://doi.org/10.1007/s10661-014-4209-4 PMid:25527434; Jenne E.A. 1968. Trace inorganics in water. Adv. Chem. Ser. 73: 337-387. https://doi.org/10.1021/ba-1968-0073.ch021; Jouini Z., Ben Charrada R., Moussa M. 2005. Characteristics of the South Lake of Tunis after restoration. Mar. Life 15: 3-11.; Kjerfve B. 1986. Comparative oceanography of coastal lagoons. In: Wolfe D.A. (ed), Coastal Lagoon Processes. Academic Press, New York. pp. 63-81. https://doi.org/10.1016/B978-0-12-761890-6.50009-5; Kochlef M. 2003. Contribution à l'étude du fonctionnement hydrodynamique du lac Sud Tunis après les travaux d'aménagement. DEA.National Agronomy Institute of Tunisia. Carthage University.; Levin L.A., Boesch D.F., Covich A., et al. 2001. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4: 430-451. https://doi.org/10.1007/s10021-001-0021-4; Li X., Shen Z., Wai O.W., Li Y.S. 2001. Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River Estuary. Mar. Poll. Bull. 42: 215-223. https://doi.org/10.1016/S0025-326X(00)00145-4; Müller G. 1969. Index of geoaccumulation in sediments of the Rhine River. Geol. J. 2: 109-118.; Müller G. 1979. Schwermetalle in den sedimenten des RheinsVeränderungen seit 1971. Umschau in Wissenschaft und Technik 79: 778-783.; Muniz P., Danulat E., Yannicelli B., et al. 2003. Assessment of contamination by heavy metals and petroleum hydrocarbons in sediments of Montevideo harbour (Uruguay). Environ. Int. 1096: 1-10.; Murray K.S., Cauvet D., Lybeer M., Thomas J.C. 1999. Particle size and chemical control of heavy metals in bed sediment from the Rouge river, Southeast Michigan. Environ. Sci. Technol. 15: 474-480 https://doi.org/10.1021/es9807946; Oakley S.M., Nelson P.O., Williamson K.J. 1981. Model of trace-metal partitioning in marine sediments. Environ. Sci. Technol. 15: 474-480. https://doi.org/10.1021/es00086a015 PMid:22248418; Ouertani N., Yahyaoui S. 2019. Holocene Paleoclimatic Variation Inferred from Study of Sediments in the Gulf of Tunis (North Africa). Book chapter: Patterns and Mechanisms of Climate, Paleoclimate and Paleoenvironmental Changes from Low-Latitude Regions, Adv. Sci. Technol. Innov. pp 37-40. https://doi.org/10.1007/978-3-030-01599-2_9; Ouertani N., Hamouda P., Belayouni H. 2006. Study of the organic matter buried in recent sediments of an increasing anoxic environment surrounded by an urban area: the «Lac sud de Tunis». Geo-Eco-Trop. 30: 21-34.; Oueslati W., Added A., Abdeljaoued S. 2010. Geochemical and statistical approaches to evaluation of metal contamination in a changed sedimentary environment: Ghar El Melh Lagoon, Tunisia. Chem. Speciat. Bioavailab. 22: 227-240. https://doi.org/10.3184/095422910X12893267432461; Oueslati W., Helali M.A., Mensi I., Bayaoui M., Touati H., Khadraoui A., Zaabooub N., Added A., Aleya L. 2018. How useful are geochemical and mineralogical indicators in assessing trace metal contamination and bioavailability in a post-restoration Mediterranean lagoon? Environ. Sci. Pollut. Res. 25: 25045-25059. https://doi.org/10.1007/s11356-018-2575-0 PMid:29934833; Pérez-Ruzafa A., Marcos C., Pérez-Ruzafa I.M., Barcala E. 2007. Detecting changes resulting from human pressure in a naturally quick changing and heterogeneous environment: spatial and temporal scales of variability in coastal lagoons. Est. Coast. Shelf Sci. 75: 175-188. https://doi.org/10.1016/j.ecss.2007.04.030; Pérez-Ruzafa A., Marcos C., Pérez-Ruzafa I., Pérez-Marcos M. 2011. Coastal lagoons: "transitional ecosystems" between transitional and coastal Waters. J. Coast. Conserv.15: 369-392. https://doi.org/10.1007/s11852-010-0095-2; Prange J.A., Dennison WC. 2000. Physiological responses of five seagrass species to trace metals. Mar. Poll. Bull. 41: 327-336. https://doi.org/10.1016/S0025-326X(00)00126-0; Radenac G., Fichet D., Miramand P. 2001. Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea-urchin embryo. Mar. Environ. Res. 51: 151-166. https://doi.org/10.1016/S0141-1136(00)00092-1; Rigollet V, Sfriso A, Marcomini A, De Casabianca M. L. 2004. Seasonal evolution of heavy metal concentrations in the surface sediments of two Mediterranean Zostera marina L. beds at Thau lagoon (France) and Venice lagoon (Italy). Bioresour. Technol. 95: 159-167. https://doi.org/10.1016/j.biortech.2003.12.018 PMid:15246440; Rubio B., Nombela M.A., Vilas F. 2000. Geochemistry of major and trace elements in sediments of the Ría de Vigo (NW Spain): An assessment of metal pollution. Mar. Poll. Bull. 40: 968-980. https://doi.org/10.1016/S0025-326X(00)00039-4; Ruiz F. 2001. Trace metals in estuarine sediments from the southwestern Spanish coast. Mar. Poll. Bull. 42: 482-490. https://doi.org/10.1016/S0025-326X(00)00192-2; Sakan S.M., Dordevic D.S., Manojlovic D.D. 2009. Trace elements as tracers of environmental pollution in the canal sediments (alluvial formation of the Danube River, Serbia). Environ. Monit. Assess.167: 219-233. https://doi.org/10.1007/s10661-009-1044-0 PMid:19543990; Salomons W. and Förstner U. 1984. Metals in the Hydrocycle. Springer-Verlag, Berlin, 349 pp. https://doi.org/10.1007/978-3-642-69325-0; Shili A., Trabelsi E.B., Ben Maïz N. 2002. Seasonal dynamics of macro-algae in the South Lake of Tunis. J. Coast. Conserv. 8: 127-134. https://doi.org/10.1652/1400-0350(2002)008[0127:SDOMIT]2.0.CO;2; Singh M., Müller G., Singh I.B. 2002. Heavy Metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga Plain, India. Water Air Soil Pollut. 141: 35-54. https://doi.org/10.1023/A:1021339917643; Spencer K.L. 2002. Spatial variability of metals in the inter-tidal sediments of the Medway estuary, Kent, UK. Mar. Poll. Bull. 44: 933-944. https://doi.org/10.1016/S0025-326X(02)00129-7; SPLT, STUDI/SOGREAH. 1998. Société d'étude et de promotion de Tunis Sud: Etude de la marée, Travaux de restauration du lac sud de Tunis et de ses berges.; Stone M., Droppo I.G. 1996. Distribution of lead, copper and zinc in size-fractionated river bed sediment in two agricultural catchments of southern Ontario, Canada. Environ. Pollut. 93: 353-362. https://doi.org/10.1016/S0269-7491(96)00038-3; Suthar S., Nema A.K., Chabukdhara M., Gupta SK. 2009. Assessment of metals in water and sediments of Hindon River, India: Impact of industrial and urban discharges. J. Hazard. Mater. 171: 1088-1095. https://doi.org/10.1016/j.jhazmat.2009.06.109 PMid:19616893; Tessier A., Campbell P.G.C. 1987. Partitioning of trace metals in sediments: relationship with bioavailability. Hydrobiologia 149: 43-52. https://doi.org/10.1007/BF00048645; Tessier A., Campbell P.G.C., Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844-851. https://doi.org/10.1021/ac50043a017; Uluturhan E., Kontas A., Can E. 2011. Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea): assessment of contamination and ecological risks. Mar. Poll. Bull. 62: 1989-1997. https://doi.org/10.1016/j.marpolbul.2011.06.019 PMid:21764081; Wang Z., Wang Y., Chen L., et al. 2015. Assessment of metal contamination in coastal sediments of the Maluan Bay (China) using geochemical indices and multivariate statistical. Mar. Poll. Bull. 99: 43-53. https://doi.org/10.1016/j.marpolbul.2015.07.064 PMid:26233304; Wilkinson M., Wood P., Wells E., Scanlan C. 2007. Using attached macroalgae to assess ecological status of British estuaries for the Water Framework Directive. Mar. Poll. Bull. 55: 136-150. https://doi.org/10.1016/j.marpolbul.2006.09.004 PMid:17084419; Zaouali J. 1977. Le lac de Tunis: facteurs climatiques, physicochimiques et crises dystrophiques. Bull. Off. Natl. Pêch. Tunisie 1: 37-49; Zaouali J. 1983. Lac de Tunis: 3000 years of engieering and pollution. A bibliographical study with comments. UNESCO, Rapp. Mar. Sci. 26: 30-47.; Zhao S., Feng C., Yang Y., Niu J., Shen Z. 2012. Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods. J. Hazard. Mater. 241. https://doi.org/10.1016/j.jhazmat.2012.09.023 PMid:23083940; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1917
-
14Academic Journal
المصدر: Interacción y perspectiva: Revista de Trabajo Social, ISSN 2244-808X, Vol. 13, Nº. 1, 2023 (Ejemplar dedicado a: Interacción y Perspectiva Revista de Trabajo Social), pags. 50-62
مصطلحات موضوعية: urban ecological assessment, environmental pollution level, atmospheric pollution index, total soil pollution index, evaluación ecológica urbana, nivel de contaminación ambiental, índice de contaminación atmosférica, índice de contaminación total del suelo
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=8846083; (Revista) ISSN 2244-808X
-
15Academic Journal
المؤلفون: Miranda Sanguino, Rocio Andrea, Ramirez, Roiman David, Hernández, Katiusca, Angarita Castilla, Wilson
مصطلحات موضوعية: Agua, Calidad del agua, Índice de calidad, Índice de contaminación del agua, Quality index, Water quality assessment, Water pollution index, water
وصف الملف: image/png
Relation: https://hdl.handle.net/20.500.11839/8038
-
16Academic Journal
المؤلفون: Trujillo González, Juan Manuel, García Bravo, Deiver Alexis, Rojas Peña, Jose Ismael, Serrano Gómez, Marlon, Castillo Monroy, Edgar Fernando, Torres Mora, Marco Aurelio, García Navarro, Francisco Jesús, Jiménez Ballesta, Raimundo
المصدر: TecnoLógicas, ISSN 0123-7799, Nº. 57, 2023
مصطلحات موضوعية: Contamination factor, pollution load index, Nemerov integrated pollution index, geo-accumulation index, heavy metals, tropical soils, Factor de contaminación, índice de carga de contaminación, índice de contaminación integrado de Nemerov, Índice de geoacumulación, metales pesados, suelos tropicales
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=9518103; (Revista) ISSN 2256-5337; (Revista) ISSN 0123-7799
-
17
المؤلفون: Tobar Oliva, Yesica Mayde
المساهمون: Marín Burbano, Lina María
مصطلحات موضوعية: Agua de riego - Análisis, Calidad del agua, Water quality, Índice de Calidad de Agua (ICA), Plantas de cannabis, Índice de Contaminación por Materia Orgánica (ICOMO), Ingeniería Ambiental, Sistema de tratamiento, Productos químicos, Irrigation water - Analysis, Índice de contaminación por mineralización
وصف الملف: 140 páginas; application/pdf
-
18Dissertation/ Thesis
المؤلفون: Rodríguez Cardenas, Liliana
المساهمون: Choque Quispe, Yudith
مصطلحات موضوعية: Caracterización de lixiviados, contaminación, Índice de Contaminación por Lixiviado (ICL), lixiviado, relleno, variación temporal, http://purl.org/pe-repo/ocde/ford#2.07.00
وصف الملف: application/pdf
Relation: https://hdl.handle.net/20.500.14168/838
-
19Academic Journal
المصدر: JOURNAL BIODIVERSITY RESEARCH AND DEVELOPMENT; Vol. 34 No. 1 (2015); 14-21 ; REVISTA DE INVESTIGACIONES; Vol. 34 Núm. 1 (2015); 14-21 ; 1657-3498 ; 10.18636/riutch.v34i1
مصطلحات موضوعية: Calidad del Agua, puntos de monitoreo, Contaminación Hídricas, Índice de contaminación, Contaminación por materia orgánica, sólidos suspendidos, Hydric pollution, Monitoring points, Pollution by organic matter, Pollution index, Suspended solids, Water quality
وصف الملف: application/pdf
Relation: https://revistas.utch.edu.co/index.php/revinvestigacion/article/view/553/pdf_5; lonso J. 2013. Evaluación de calidad de las aguas del arroyo Aguapey mediante el empleo del índice sim- pli cado de calidad de agua. Revista sobre Estudios e Investigaciones del Saber Académico. 7: 9-13.; Amado-Alvarez J, Rubiños Panta E, Gavi Reyes F, Alarcón Cabañero JJ, Hernández Acosta E, Ramírez Ayala C, et al. 2006. Índice de calidad del agua en la cuenca del río Amajac, Hidalgo, México: Diagnóstico y predicción. Phyton (Buenos Aires). 75: 71-83. URL disponible en: http://www.scielo.org.ar/pdf/phyton/ v75/v75a07.pdf; Behar R, Zúñiga de Cardozo MdC, Rojas O. 1997. Análisis y valoración del índice de calidad de agua (ICA) de la NSF: casos ríos Cali y Meléndez. Revista Ingeniería y Competitividad. 1 (1): 17-27. URL disponible en: http://revistaingenieria.univalle.edu.co/ojsunivalle/ ojs/index.php/ingenieria_y_competitividad/article/ view/2361 20; Coello JR, Ormaza RM, Déley ÁR, Recalde CG, Ríos AC. 2013. Aplicación del ICA-NSF para determinar la calidad del agua de los Ríos Ozogoche, Pichahuiña y Pomacocho-Parque Nacional Sangay-Ecuador. Rev del Instituto de Investigación (RIIGEO). FIG- MMG-UNMSM. 15 (30): 66-71. URL disponible en: http://revistasinvestigacion.unmsm.edu.pe/index. php/iigeo/article/view/11281/10118; González-Caro M. 2015. Análisis espectral de sólidos suspendidos en aguas continentales con presencia de actividades mineras: caso de estudio río Sipí, Pací - co colombiano. Bogotá: Universidad Militar Nueva Granada. URL disponible en: http://unimilitar-dspa- ce.metabiblioteca.org/bitstream/10654/13462/1/Arti- culo_ nal_UMNG_Mauricio_Gonzalez_Caro_3.pdf; Fernández N, Ramírez A, Solano F. 2003. Índices sicoquí- micos de calidad del agua: un estudio comparativo. Conferencia Internacional Usos Múltiples del Agua: Para la Vida y el Desarrollo Sostenible. Cali: Univer- sidad del Valle/Instituto Cinara; p. 211-9.; Fernández NJ, Solano F. 2005. Índices de calidad y de contaminación del agua. Pamplona: Universidad de Pamplona; pp. 43-53. URL disponible en: http:// www.unipamplona.edu.co/unipamplona/portalIG/ home_10/recursos/general/vinci2013/pag_conteni- do/02042013/sub_editorial.jsp; Cadavid JC, Echeverri JD, Gómez AE. 2011. Modelación índices de calidad de agua (ICA) en las cuencas de la región Cornare. Revista Gestión y Ambiente. 13 (2): 7-24. URL disponible en: http://www.revistas.unal. edu.co/index.php/gestion/article/view/25391/25902; Cañas-Arias JS. 2014. Determinación y evaluación deíndices de contaminación (ICOS) en cuerpos de agua. (Bachelor’s Thesis Licenciatura). Bogotá: Universidad Militar Nueva Granada. URL disponible en: http://repo- sitory.unimilitar.edu.co/bitstream/10654/10901/1/ articulo%20final. pdf; Holguín C, Rubio H, Olave ME, Saucedo R, Gutiérrez M, Bautista R. 2006. Calidad del agua del río Conchos en la región de Ojinaga, Chihuahua: Parámetros sicoquímicos, metales y metaloides. Universidad y Ciencia. 22 (1): 51-63. URL disponible en: http:// www.redalyc.org/articulo.oa?id=15402204; Puerto-Rodríguez SP, Pimentel-Suárez A. 2006. Deter- minación de índices y planteamiento de objetivos de calidad del agua para las cuencas de segundo orden de la jurisdicción de La CAR-Cundinamar- ca. Bogotá: Universidad de la Salle, Facultad de Ingeniería Ambiental y Sanitaria. URL disponible en: http://repository.lasalle.edu.co/bitstream/hand- le/10185/14144/T41.06%20P962d.pdf?sequence=1; Ramírez A, Restrepo R, Viña G. 1997. Cuatro índices de contaminación para caracterización de aguas conti- nentales. Formulaciones y aplicación. CT&F-Cien- cia, Tecnología y Futuro. 1 (3): 135-53. URL dis- ponible en: http://www.scielo.org.co/pdf/ctyf/v1n3/ v1n3a09.pdf; Samboni NE, Reyes A, Carvajal Y. 2011. Aplicación de los indicadores de calidad y contaminación del agua en la determinación de la oferta hídrica neta. Revista Ingeniería y Competitividad. 13 (2): 49- 60. URL disponible en: http://www.redalyc.org/ pdf/2913/291323530004.pdf; Samboni Ruiz NE, Carvajal Escobar Y, Escobar JC. 2007. Revisión de parámetros sicoquímicos como indi- cadores de calidad y contaminación del agua. Ing Investig. 27 (3): 172-81. URL disponible en: http:// www.scielo.org.co/pdf/iei/v27n3/v27n3a19.pdf; Torres P, Cruz CH, Patiño PJ. 2009. Índices de calidad de agua en fuentes super ciales utilizadas en la producción de agua para consumo humano. Una revisión crítica. Revista Ingenierías. 8 (15): 79-94. URL disponible en: http://revistas.udem.edu.co/ index.php/ingenierias/article/view/59; https://revistas.utch.edu.co/index.php/revinvestigacion/article/view/553
-
20Dissertation/ Thesis
المؤلفون: Jayo Cuellar, Zulma
المساهمون: Aronés Medina, Edgar
المصدر: Universidad Nacional de San Cristóbal de Huamanga ; Repositorio Institucional - UNSCH
مصطلحات موضوعية: Río Muyurina, Índice de contaminación, Calidad de agua, Saneamiento básico, Ordenamiento ambiental, https://purl.org/pe-repo/ocde/ford#1.05.08, https://purl.org/pe-repo/ocde/ford#2.07.00
وصف الملف: application/pdf
Relation: TM Q14_Jay; http://repositorio.unsch.edu.pe/handle/UNSCH/5780