-
1Academic Journal
المؤلفون: Rivera, Jorge Alonso, Rengifo, Aura Caterine, Rosales Munar, Alicia, Díaz Herrera, Taylor H., Usme Ciro, Jose A., Parra, Edgar, Álvarez Díaz, Diego Alejandro, Laiton Donato, Katherine, Caldas, Maria Leonor
المساهمون: CIST-Centro de Investigación en Salud para el Trópico
وصف الملف: 10 páginas; application/pdf
Relation: 100; 10; 20; Virology Journal; Sylvestre E, Joachim C, Cecilia-Joseph E, Bouzille G, Campillo-Gimenez B, Cuggia M, et al. Data-driven methods for dengue prediction and surveillance using real-world and Big Data: a systematic review. PLoS Negl Trop Dis. 2022;16(1):e0010056.; Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4(9):1508–15.; Katzelnick LC, Coloma J, Harris E. Dengue: knowledge gaps, unmet needs, and research priorities. Lancet Infect Dis. 2017;17(3):e88–100.; World Health Organization. Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva, France: World Health Organization, 2009, p. 10-12.; Annan E, Bukhari MH, Treviño J, Abad ZSH, Lubinda J, da Silva EAB, et al. The ecological determinants of severe dengue: a Bayesian inferential model. Ecol. Inform. 2023;74:101986. https://doi.org/10.1016/j.ecoinf.2023.101986.; Barnes WJ, Rosen L. Fatal hemorrhagic disease and shock associated with primary dengue infection on a Pacific island. Am J Trop Med Hyg. 1974;23(3):495–506.; Cuypers L, Libin PJK, Simmonds P, Nowe A, Munoz-Jordan J, Alcantara LCJ, et al. Time to harmonize dengue nomenclature and classification. Viruses. 2018;10(10):569. https://doi.org/10.3390/v10100569.; Rico-Hesse R. Microevolution and virulence of dengue viruses. Adv Virus Res. 2003;59:315–41.; Twiddy SS, Farrar JJ, Vinh Chau N, Wills B, Gould EA, Gritsun T, et al. Phylogenetic relationships and differential selection pressures among genotypes of dengue-2 virus. Virology. 2002;298(1):63–72.; Holmes E, Twiddy S. The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol. 2003;3(1):19–28.; Rivera JA, Rengifo A.C., Rosales Munar, A., Díaz Herrera T.H., Usme Ciro, J.A., Parra, E., Alvarez Díaz. D.A., Laiton Donato, K. and Caldas, M.L. 2023. Genotyping of dengue virus from infected tissue samples embedded in paraffin. Virology Journal 20:100. doi:10.1186/s12985-023-02072-5; https://hdl.handle.net/20.500.12494/55527
-
2Academic Journal
المؤلفون: Rivera, Jorge, Rengifo, Aura Caterine, Álvarez Díaz, Diego Alejandro, Parra, Edgar, Usme Ciro, Jose A., Castellanos, Jaime, Velandia, Myriam, Laiton Donato, Katherine, Rico, Angélica, Pardo, Lisseth, Caldas, Maria Leonor
المساهمون: CIST-Centro de Investigación en Salud para el Trópico
مصطلحات موضوعية: 610 - Medicina y salud, Dengue, Viral disease, Aedes albopictus mosquitoes
وصف الملف: 9 páginas; application/pdf
Relation: tpmd220587; 916; 908; 109; The American Journal of Tropical Medicine and Hygiene; Messina JP. et al., 2019. The current and future global distribution and population at risk of dengue. Nat Microbiol 4: 1508–1515.; Bhatt S. et al., 2013. The global distribution and burden of dengue. Nature 496: 504–507.; Iglesias NG, Gamarnik AV, 2011. Dynamic RNA structures in the dengue virus genome. RNA Biol 8: 249–257.; Endy TP, Anderson KB, Nisalak A, Yoon I-K, Green S, Rothman AL, Thomas SJ, Jarman RG, Libraty DH, Gibbons RV, 2011. Determinants of inapparent and symptomatic dengue infection in a prospective study of primary school children in Kamphaeng Phet, Thailand. PLoS Negl Trop Dis 5: e975.; Cruz-Oliveira C, Freire JM, Conceicao TM, Higa LM, Castanho MA, Da Poian AT, 2015. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev 39: 155–170.; Huerre MR. et al., 2001. Liver histopathology and biological correlates in five cases of fatal dengue fever in Vietnamese children. Virchows Arch 438: 107–115.; Couvelard A, Marianneau P, Bedel C, Drouet MT, Vachon F, Henin D, Deubel V, 1999. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol 30: 1106–1110.; Basilio-de-Oliveira CA, Aguiar GR, Baldanza MS, Barth OM, Eyer-Silva WA, Paes MV, 2005. Pathologic study of a fatal case of dengue-3 virus infection in Rio de Janeiro, Brazil. Braz J Infect Dis 9: 341–347.; Bhamarapravati N, Tuchinda P, Boonyapaknavik V, 1967. Pathology of Thailand haemorrhagic fever: a study of 100 autopsy cases. Ann Trop Med Parasitol 61: 500–510.; Sarmiento L, Rengifo AC, Rivera J, Neira M, Parra E, Mendez J, Rodríguez G, Caldas ML, 2013. Glucógeno hepático en dengue severo: análisis histopatológico. Infect 17: 172–176.; Rivera J, Rengifo A.C., Alvarez Díaz D., Parra E, Usme Ciro J.A., Castellanos J., Velandia M., Laiton-Donato K, Rico A, Pardo L., Caldas M.L. Multisystem Failure in Fatal Dengue: Associations between the Infectious Viral Serotype and Clinical and Histopathological Findings. Am J Trop Med Hyg. 2023 Aug 21:tpmd220587. doi:10.4269/ajtmh.22-0587; https://hdl.handle.net/20.500.12494/55524
-
3Academic Journal
المؤلفون: Álvarez Díaz, Diego Alejandro, Usme Ciro, Jose Aldemar, Corchuelo, Sheryll, Naizaque, Julián Ricardo, Rivera, Jorge Alonso, Castiblanco Martínez, Hernán Darío, Torres Fernández, Orlando, Rengifo, Aura Caterine
المساهمون: CIST-Centro de Investigación en Salud para el Trópico
المصدر: https://link.springer.com/article/10.1007/s00705-023-05820-8#:~:text=The%20use%20of%205'%2F,assembly%20of%20complete%20genome%20sequences.
مصطلحات موضوعية: 610 - Medicina y salud, Zika virus, RNA genome, ZIKV genome, UTR sequences
وصف الملف: 8 páginas; application/pdf
Relation: 204; 168; Archives of Virology; Akiyama BM, Laurence HM, Massey AR, Costantino DA, Xie X, Yang Y, Shi PY, Nix JC, Beckham JD, Kieft JS (2016) Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 354:1148–1152; Alvarez DE, Lodeiro MF, Ludueña SJ, Pietrasanta LI, Gamarnik AV (2005) Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 79:6631–6643; Bellaousov S, Mathews DH (2010) ProbKnot: fast prediction of RNA secondary structure including pseudoknots. RNA 16:1870–1880; Besnard M, Eyrolle-Guignot D, Guillemette-Artur P, Lastère S, Bost-Bezeaud F, Marcelis L, Abadie V, Garel C, Moutard ML, Jouannic JM, Rozenberg F, Leparc-Goffart I, Mallet HP (2016) Congenital cerebral malformations and dysfunction in fetuses and newborns following the 2013–2014 Zika virus epidemic in French Polynesia. Euro Surveill 21:30181; Bryant JE, Vasconcelos PF, Rijnbrand RC, Mutebi JP, Higgs S, Barrett AD (2005) Size heterogeneity in the 3' noncoding region of South American isolates of yellow fever virus. J Virol 79:3807–3821; Cao-Lormeau V-M, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial A-L, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra J-C, Despres P, Fournier E, Mallet H-P, Musso D, Fontanet A, Neil J, Ghawché F (2016) Guillain–Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. The Lancet 387:1531–1539; Chen YS, Fan YH, Tien CF, Yueh A, Chang RY (2018) The conserved stem-loop II structure at the 3’ untranslated region of Japanese encephalitis virus genome is required for the formation of subgenomic flaviviral RNA. PLoS One 13:e0201250; de Borba L, Villordo SM, Marsico FL, Carballeda JM, Filomatori CV, Gebhard LG, Pallarés HM, Lequime S, Lambrechts L, Sánchez Vargas I, Blair CD, Gamarnik AV (2019) RNA Structure Duplication in the Dengue Virus 3’ UTR. Redundancy or Host Specificity? mBio 10:e02506; Dong H, Zhang B, Shi PY (2008) Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein. Virology 381:123–135; Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360:2536–2543; Álvarez-Díaz, D.A., Usme-Ciro, J.A., Corchuelo, S. et al. 5'/3' RACE method for sequencing the 5' and 3' untranslated regions of Zika virus. Arch Virol 168, 204 (2023). doi:10.1007/s00705-023-05820-8.; https://hdl.handle.net/20.500.12494/55526
-
4Academic Journal
المؤلفون: Rivera , Jorge, Corchuelo, Sheryll, Naizaque, Julián, Parra, Édgar, Meek, Eugenio Aladino, Álvarez-Díaz, Diego, Mercado , Marcela, Torres-Fernández, Orlando
المصدر: Biomedica; Vol. 43 No. 1 (2023); 8-21 ; Biomédica; Vol. 43 Núm. 1 (2023); 8-21 ; 2590-7379 ; 0120-4157
مصطلحات موضوعية: covid-19, histopatología, histopathology
وصف الملف: application/pdf; text/xml
Relation: https://revistabiomedica.org/index.php/biomedica/article/view/6737/5235; https://revistabiomedica.org/index.php/biomedica/article/view/6737/5305; Esposito S, Noviello S, Pagliano P. Update on treatment of COVID-19: Ongoing studies between promising and disappointing results. Infez Med. 2020;28:198-211.; World Health Organization. Coronavirus disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update 2020. Accessed: March 30, 2022. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports; Caramaschi S, Kapp ME, Miller SE, Eisenberg R, Johnson J, Epperly G, et al. Histopathological findings and clinicopathologic correlation in COVID-19: A systematic review. Mod Pathol. 2021;34:1614-33. https://doi.org/10.1038/s41379-021-00814-w; Huang X, Wei F, Hu L, Wen L, Chen K. Epidemiology and clinical characteristics of COVID-19. Arch Iran Med. 2020;23:268-71.; Bulut C, Kato Y. Epidemiology of COVID-19. Turk J Med Sci. 2020;50:563-70. https://doi.org/10.3906/sag-2004-172; Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ. 2020;368:m606. https://doi.org/10.1136/bmj.m606; Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr. 2020;63:119-24. https://doi.org/10.3345/cep.2020.00493; Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011-33. https://doi.org/10.3390/v4061011; Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586-90. https://doi.org/10.1007/s00134-020-05985-9; Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203:622-30. https://doi.org/10.1002/path.1560; Farcas GA, Poutanen SM, Mazzulli T, Willey BM, Butany J, Asa SL, et al. Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus. J Infect Dis. 2005;191:193-7. https://doi.org/10.1086/426870; Hanley B, Lucas SB, Youd E, Swift B, Osborn M. Autopsy in suspected COVID-19 cases. J Clin Pathol. 2020;73:239-42. https://doi.org/10.1136/jclinpath-2020-206522; Fox S, Akmatbekov A, Harbert J, Li G, Brown J, Vander Heide R. Pulmonary and cardiac pathology in African American patients with COVID-19: An autopsy series from New Orleans. Lancet Respir Med. 2020;8:681-6. https://doi.org/10.1016/S2213-2600(20)30243-5; Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-20. https://doi.org/10.1056/NEJMoa2002032; Martines R, Ritter J, Matkovic E, Gary J, Bollweg B, Bullock H, et al. Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerg Infect Dis. 2020;26:2005. https://doi.org/10.3201/eid2609.202095; Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420-2. https://doi.org/10.1016/S2213-2600(20)30076-X; Hariri LP, North CM, Shih AR, Israel RA, Maley JH, Villalba JA, et al. Lung histopathology in coronavirus disease 2019 as compared with severe acute respiratory syndrome and H1N1 influenza: A systematic review. Chest. 2021;159:73-84. https://doi.org/10.1016/j.chest.2020.09.259; https://revistabiomedica.org/index.php/biomedica/article/view/6737
-
5Academic Journal
المؤلفون: Laiton-Donato, Katherine, Álvarez-Díaz, Diego A., Franco-Muñoz, Carlos, Ruiz-Moreno, Héctor A., Rojas-Estévez, Paola, Prada, Andrés, Rosales, Alicia, Ospina, Martha Lucía, Mercado-Reyes, Marcela
المصدر: Biomedica; Vol. 42 No. 3 (2022); 541-545 ; Biomédica; Vol. 42 Núm. 3 (2022); 541-545 ; 2590-7379 ; 0120-4157
مصطلحات موضوعية: Monkeypox virus, nanopore sequencing, phylogeny, Colombia, virus de la viruela de los monos, secuenciación de nanoporos, filogenia
وصف الملف: application/pdf; text/xml
Relation: https://revistabiomedica.org/index.php/biomedica/article/view/6647/5123; https://revistabiomedica.org/index.php/biomedica/article/view/6647/5161; Yinka-Ogunleye A, Aruna O, Dalhat M, Dalhat M, Ogoina D, McCollum A, et al . Outbreak of human monkeypox in Nigeria in 2017-18: A clinical and epidemiological report. Lancet Infect Dis. 2019;19:872-9. https://doi.org/10.1016/S1473-3099(19)30294-4; World Health Organization. Multi-country monkeypox outbreak in non-endemic countries. Geneva; WHO; 2022. Accessed: June 28, 2022. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385; Happi C, Adetifa I, Mbala P, Njouom R, Nakoune E, Happi A, et al. Urgent need for a non-discriminatory and non-stigmatizing nomenclature for monkeypox virus. PLoS Biol. 2022;20:e3001769. https://doi.org/10.1371/journal.pbio.3001769; Likos AM, Sammons SA, Olson VA, Frace AM, Li Y, Olsen-Rasmussen M, et al. A tale of two clades: Monkeypox viruses. J Gen Virol. 2005;86:2661-72. https://doi.org/10.1099/vir.0.81215-0; Centers for Disease Control and Prevention. Monkeypox Outbreak Global Map USA: Atlanta, GA:CDC;2022. Accessed: July 5, 2022. Available from: https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html; Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094-100. https://doi.org/10.1093/bioinformatics/bty191; Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268-74. https://doi.org/10.1093/molbev/msu3; Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078-9. https://doi.org/10.1093/bioinformatics/btp352; Kugelman JR, Johnston SC, Mulembakani PM, Kisalu N, Lee MS, Koroleva G, et al. Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo. Emerg Infect Dis. 2014;20:232-9. https://doi.org/10.3201/eid2002.130118; Patrono LV, Pléh K, Samuni L, Ulrich M, Röthemeier C, Sachse A, et al. Monkeypox virus emergence in wild chimpanzees reveals distinct clinical outcomes and viral diversity. Nat Microbiol. 2020;5:955-65. https://doi.org/10.1038/s41564-020-0706-0; Nakazawa Y, Mauldin MR, Emerson GL, Reynolds MG, Lash RR, Gao J, et al. A phylogeographic investigation of African monkeypox. Viruses. 2015;7:2168-84. https://doi.org/10.3390/v7042168; Antwerpen M, Lang D, Zange S, Walter M, Woelfel R. First German genome sequence of Monkeypox virus associated to multi-country outbreak in May 2022. Virological.org. 2022.; Accessed: July 12, 2022. Available from: https://virological.org/t/first-german-genomesequence-of-monkeypox-virus-associated-to-multi-country-outbreak-in-may-2022/812; Isidro J, Borges V, Pinto M, Sobral D, Santos JD, Nunes A, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med. 2022;28:1569-72. https://doi.org/10.1038/s41591-022-01907-y; Gigante CM, Korber B, Seabolt MH, Wilkins K, Davidson W, Rao AK, et al. Multiple lineages of Monkeypox virus detected in the United States, 2021-2022. bioRxiv. 2022. https://doi.org/10.1101/2022.06.10.495526; Croville G, Walch M, Guérin J, Mansuy J, Pasquier C, Izopet J. First French draft genome sequence of Monkeypox virus, May 2022. Virological.org. 2022. Accessed: July 15, 2022. Availble from: https://virological.org/t/first-french-draft-genome-sequence-of-monkeypoxvirus-may-2022/819; Mauldin MR, McCollum AM, Nakazawa YJ, Mandra A, Whitehouse ER, Davidson W, et al. Exportation of monkeypox virus from the African continent. J Infect Dis. 2022;225:1367-76. https://doi.org/10.1093/infdis/jiaa559; Cohen-Gihon I, Israeli O, Shifman O, Erez N, Melamed S, Paran N, et al. Identification and whole-genome sequencing of a Monkeypox virus strain isolated in Israel. Microbiol Resour Announc. 2020;9:e01524-19. https://doi.org/10.1128/MRA.01524-19; Shchelkunov SN, Totmenin AV, Babkin IV, Safronov PF, Ryazankina OI, Petrov NA, et al. Human monkeypox and smallpox viruses: Genomic comparison. FEBS Lett. 2021;509:66-70. https://doi.org/10.1016/s0014-5793(01)03144-1; Claro IM, Romano CM, Candido DD, Lima EL, Lindoso JAL, Ramundo MS, et al. Shotgun metagenomic sequencing of the first case of monkeypox virus in Brazil, 2022. Rev Inst Med Trop Sao Paulo. 2022;64:e48. https://doi.org/10.1590/S1678-9946202264048; https://revistabiomedica.org/index.php/biomedica/article/view/6647
-
6Academic Journal
المؤلفون: Álvarez-Díaz, Diego A., Ruiz-Moreno, Hector A., Zapata-Bedoya, Silvana, Franco-Muñoz, Carlos, Laiton-Donato, Katherine, Ferro, Carolina, Sepulveda, Maria T. Herrera, Pacheco-Montealegre, Mauricio, Walteros, Diana M., Carrero-Galindo, Laura C., Mercado-Reyes, Marcela
المصدر: International Journal of Infectious Diseases ; volume 125, page 149-152 ; ISSN 1201-9712
-
7Academic Journal
المؤلفون: Álvarez-Díaz, Diego Alejandro, Valencia-Álvarez, Emmanuel, Rivera, Jorge Alonso, Rengifo, Aura Caterine, Usme-Ciro, José Aldemar, Peláez-Carvajal, Dioselina, Lozano-Jiménez, Yenny Yolanda, Torres-Fernández, Orlando
المصدر: Scopus Unisalle
مصطلحات موضوعية: Arbovirus, Chikungunya, Dengue, RT-qPCR, Viral load, Zika
Relation: https://ciencia.lasalle.edu.co/scopus_unisalle/826; https://doi.org/10.1016/j.meegid.2021.104967
-
8Academic Journal
المؤلفون: Laiton-Donato, Katherine, Usme-Ciro, Jose A., Franco-Muñoz, Carlos, Álvarez-Díaz, Diego A., Ruiz-Moreno, Hector Alejandro, Reales-González, Jhonnatan, Prada, Diego Andrés, Corchuelo, Sheryll, Herrera-Sepúlveda, Maria T., Naizaque, Julian, Santamaría, Gerardo, Wiesner, Magdalena, Walteros, Diana Marcela, Ospina Martínez, Martha Lucia, Mercado-Reyes, Marcela
المصدر: Frontiers in Medicine ; volume 8 ; ISSN 2296-858X
-
9Academic Journal
المؤلفون: Laiton-Donato, Katherine, Franco-Muñoz, Carlos, Álvarez-Díaz, Diego A., Ruiz-Moreno, Hector Alejandro, Usme-Ciro, José A., Prada, Diego Andrés, Reales-González, Jhonnatan, Corchuelo, Sheryll, Herrera-Sepúlveda, María T., Naizaque, Julian, Santamaría, Gerardo, Rivera, Jorge, Rojas, Paola, Ortiz, Juan Hernández, Cardona, Andrés, Malo, Diana, Prieto-Alvarado, Franklin, Gómez, Fernando Ruiz, Wiesner, Magdalena, Martínez, Martha Lucia Ospina, Mercado-Reyes, Marcela
المصدر: Infection, Genetics and Evolution ; volume 95, page 105038 ; ISSN 1567-1348
-
10Academic Journal
المؤلفون: Laiton Donato, Katherine, Villabona Arenas, Christian J., Usme Ciro, José Aldemar, Franco Muñoz, Carlos, Álvarez Díaz, Diego Alejandro, Villabona Arenas, Liz S., Echeverria Londoño, Susy, Cucunuba, Zulma M., Franco Sierra, Nicolas D., Florez, Astrid C., Ferro, Carolina, Ajami, Nadim J., Walteros, Diana M., Prieto, Franklin, Duran, Carlos A., Ospina Martinez, Martha L., Mercado Reyes, Marcela
مصطلحات موضوعية: Coronavirus, Secuenciación, Filogenómica, COVID-19, Colombia, SARS-CoV-2, Genome sequencing, Phylogenomics
وصف الملف: 2854-2862; application/pdf
Relation: https://wwwnc.cdc.gov/eid/article/26/12/20-2969_article; Emerging Infectious Diseases; Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–9. https://doi.org/10.1038/ s41586-020-2008-3; World Health Organization. Novel coronavirus—China, 2020 Jan 12 [cited 2020 Jun 16]. https://www.who.int/csr/ don/12-january-2020-novel-coronavirus-china; Kraemer MUG, Yang C-H, Gutierrez B, Wu C-H, Klein B, Pigott DM, et al.; Open COVID-19 Data Working Group. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science. 2020;368:493–7. https://doi.org/10.1126/science.abb4218; He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26:672–5. https://doi.org/ 10.1038/s41591-020-0869-5; Li J, Zhang L, Liu B, Song D. Case report: viral shedding for 60 days in a woman with COVID-19. Am J Trop Med Hyg. 2020;102:1210–3. https://doi.org/10.4269/ajtmh.20-0275; Jarvis CI, Van Zandvoort K, Gimma A, Prem K, Klepac P, Rubin GJ, et al. CMMID COVID-19 working group. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020;18:124. https://doi.org/10.1186/s12916-020-01597-8; Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al.; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health. 2020;5:e261–70. https://doi.org/ 10.1016/S2468-2667(20)30073-6; Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al.; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health. 2020;8:e488–96. https://doi.org/ 10.1016/S2214-109X(20)30074-7; Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020;368:395–400. https://doi.org/10.1126/ science.aba9757; Ribeiro F, Leist A. Who is going to pay the price of Covid-19? Reflections about an unequal Brazil. Int J Equity Health. 2020;19:91. https://doi.org/10.1186/s12939-020-01207-2; Ministry of Health and Social Protection. Colombia. Minsalud confirms six new cases of coronavirus (COVID-19) in Colombia [in Spanish]. Bogotá, Colombia; Boletín de Prensa no. 057 de 2020. 2020 [cited 2020 May 24]. https://www.minsalud.gov.co/Paginas/Minsaludconfirma-seis-nuevos-casos-de-coronavirus-(COVID-19)- en-Colombia.aspx; National Institute of Health. Colombia. COVID-2019 in Colombia daily report 2020 March 31 [in Spanish] [cited 2020 Jun 2]. https://www.ins.gov.co/Noticias/Paginas/ Coronavirus.aspx; National Institute of Health. Colombia. COVID-2019 in Colombia daily report 2020 Jun 18 [in Spanish] [cited 2020 Jun 2]. https://www.ins.gov.co/Noticias/Paginas/ Coronavirus.aspx; Grubaugh ND, Ladner JT, Lemey P, Pybus OG, Rambaut A, Holmes EC, et al. Tracking virus outbreaks in the twentyfirst century. Nat Microbiol. 2019;4:10–9. https://doi.org/ 10.1038/s41564-018-0296-2; Lu J, du Plessis L, Liu Z, Hill V, Kang M, Lin H, et al. Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell. 2020;181:997–1003.e9. https://doi.org/ 10.1016/j.cell.2020.04.023; Eden J-S, Rockett R, Carter I, Rahman H, de Ligt J, Hadfield J, et al. An emergent clade of SARS-CoV-2 linked to returned travellers from Iran. Virus Evol. 2020;6:veaa027. https://doi.org/10.1093/ve/veaa027; Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, et al. Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med. 2020;382:2302–15. https://doi.org/10.1056/NEJMoa2006100; Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25:2000045. https://doi.org/10.2807/1560-7917. ES.2020.25.3.2000045; Quick J. nCoV-2019 sequencing protocol version 1. protocols. io; 2020 Jan 22 [cited 2020 Mar 2]. https://www.protocols. io/view/ncov-2019-sequencing-protocol-bbmuik6w; Wick R. Porechop version 0.2.4. 2018 Oct 19 [cited 2020 Jun 18]. https://github.com/rrwick/Porechop; Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95. https://doi.org/10.1093/bioinformatics/btp698; Simpson J. Nanopolish: signal-level algorithms for MinION data [cited 2020 May 10]. https://github com/jts/nanopolish; Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-inone FASTQ preprocessor. Bioinformatics. 2018;34:i884–90. https://doi.org/10.1093/bioinformatics/bty560; Bushnell B. BBMap short read aligner, and other bioinformatic tools [cited 2020 May 10]. https://escholarship.org/uc/ item/1h3515gn; Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34:4121–3. https://doi.org/10.1093/bioinformatics/bty407; Rambaut A, Holmes EC, Hill V, O’Toole Á, McCrone JT, Ruis C, et al. A dynamic nomenclature proposal for SARSCoV-2 to assist genomic epidemiology. Nat Microbiol. 2020 Jul 15 [Epub ahead of print]. https://doi.org/10.1038/ s41564-020-0770-5; O’Toole A, McCrone JT. Pangolin: Phylogenetic Assignment of Named Global Outbreak LINeages [cited 2020 Jun 18]. https://github.com/hCoV-2019/pangolin; Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. https://doi.org/10.1093/nar/gkf436; De Maio N, Walker C, Borges R, Weilguny L, Slodkowicz G, Goldman N. Issues with SARS-CoV-2 sequencing data. 2020 Jul 29 [cited 2020 Jun 16]. https://virological.org/t/issueswith-sars-cov-2-sequencing-data/473; Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:160–74. https://doi.org/10.1007/BF02101694; Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. https://doi.org/10.1093/ molbev/msaa015; Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010; Sagulenko P, Puller V, Neher RA. TreeTime: maximumlikelihood phylodynamic analysis. Virus Evol. 2018;4:vex042. https://doi.org/10.1093/ve/vex042; To T-H, Jung M, Lycett S, Gascuel O. Fast dating using leastsquares criteria and algorithms. Syst Biol. 2016;65:82–97. https://doi.org/10.1093/sysbio/syv068; World Health Organization. Novel coronavirus (2019-nCoV) situation report—57. 2020 March 17 [cited 2020 May 10]. https://www.who.int/emergencies/diseases/novelcoronavirus-2019/situation-reports; United Nations Population Division. World population prospects 2019 [cited 2020 Jun 19]. https://population. un.org/wpp/Download/Metadata/Documentation; Candido DDS, Watts A, Abade L, Kraemer MUG, Pybus OG, Croda J, et al. Routes for COVID-19 importation in Brazil. J Travel Med. 2020;27:taaa042. https://doi.org/10.1093/jtm/ taaa042; Ministry of Health and Social Protection, Colombia. Resolution number 0000380 [in Spanish]. 2020 Mar 10 [cited 2020 June 2] https://www.minsalud.gov.co/ Normatividad_Nuevo/Resoluci%C3%B3n%20No.%20 380%20de%202020.pdf; Ministry of Health and Social Protection, Colombia. Resolution number 0000385 [in Spanish]. 2020 Mar 12 [cited 2020 June 2] https://www.minsalud.gov.co/sites/rid/Lists/Biblioteca Digital/RIDE/DE/DIJ/resolucion-385-de-2020.pdf; Ministry of the Interior, Colombia. Decree 412 [in Spanish]. 2020 Mar 16 [cited 2020 June 2]. https://dapre.presidencia. gov.co/normativa/normativa/DECRETO%20412%20 DEL%2016%20DE%20MARZO%20DE%202020.pdf; Ministry of the Interior, Colombia. Decree 457 [in Spanish]. 2020 Mar 22 [cited 2020 June 2] https://dapre.presidencia. gov.co/normativa/normativa/DECRETO%20457%20 DEL%2022%20DE%20MARZO%20DE%202020.pdf; Ministry of Transport, Colombia. Decree 439 [in Spanish]. 2020 Mar 20 [cited 2020 May 10] https://dapre.presidencia. gov.co/normativa/normativa/DECRETO%20439%20 DEL%2020%20DE%20MARZO%20DE%202020.pdf; Chancellery of Colombia. Communication on humanitarian flights from 2 to 12 July; 2020 June 17 [cited 2020 Jun 19]. https://www.cancilleria.gov.co/newsroom/publiques/ comunicado-vuelos-caracter-humanitario-2-12-julio; Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digit Health. 2020;2:e201–8. https://doi.org/10.1016/ s2589-7500(20)30026-1; Castillo AE, Parra B, Tapia P, Acevedo A, Lagos J, Andrade W, et al. Phylogenetic analysis of the first four SARS-CoV-2 cases in Chile. J Med Virol. 2020;92:1562–6. https://doi.org/10.1002/jmv.25797; Candido DS, Claro IM, de Jesus JG, Souza WM, Moreira FRR, Dellicour S, et al.; Brazil-UK Centre for Arbovirus Discovery, Diagnosis, Genomics and Epidemiology (CADDE) Genomic Network. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science. 2020;369:1255–60. https://doi.org/10.1126/ science.abd2161; Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al.; Sheffield COVID-19 Genomics Group. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182:812–827.e19. https://doi.org/10.1016/ j.cell.2020.06.043; da Silva Candido D, Watts A, Abade L, Kraemer MUG, Pybus OG, Croda J, et al. Routes for COVID-19 importation in Brazil. J Travel Med. 2020;27:taaa042. https://doi.org/ 10.1093/jtm/taaa042; https://hdl.handle.net/20.500.12494/32678; Laiton-Donato, K., Villabona-Arenas, C., Usme-Ciro, J. A., Franco-Muñoz, C., Álvarez-Díaz, D. A., Villabona-Arenas, L.Mercado-Reyes, M. (2020). Genomic Epidemiology of Severe Acute Respiratory Syndrome Coronavirus 2, Colombia. Emerging Infectious Diseases, 26(12), 2854-2862. https://dx.doi.org/10.3201/eid2612.202969.
-
11Academic Journal
المؤلفون: Rosales Munar, Alicia, Álvarez Díaz, Diego Alejandro, Laiton Donato, Katherine, Pelaez Carvajal, Dioselina, Usme Ciro, José Aldemar
مصطلحات موضوعية: Extremos de genoma, Virus dengue, RACE-PCR, Poli(A) polimerasa, Genome ends, Dengue virus, Poly(A) polymerase
وصف الملف: application/pdf
Relation: https://www.mdpi.com/1999-4915/12/5/496; Viruses; Brathwaite Dick, O.; San Martín, J.L.; Montoya, R.H.; del Diego, J.; Zambrano, B.; Dayan, G.H. The History of Dengue Outbreaks in the Americas. Am. J. Trop. Med. Hyg. 2012, 87, 584–593. [CrossRef]; WHO. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization, Ed.; WHO: Geneva, Switzerland, 2009; pp. 1–160.; Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [CrossRef]; Twiddy, S.S.; Farrar, J.J.; Vinh Chau, N.; Wills, B.; Gould, E.A.; Gritsun, T.; Lloyd, G.; Holmes, E.C. Phylogenetic relationships and differential selection pressures among genotypes of dengue-2 virus. Virology 2002, 298, 63–72. [CrossRef]; Lindenbach, B.D.; Murray, C.L.; Thiel, H.J.; Rice, C.M. Flaviviridae. In Fields in Virology, 6th ed.; Knipe, D.M., Ed.; Williams & Wilkins Lippincott: Philadelphia, PA, USA, 2013; pp. 712–746.; Clyde, K.; Kyle, J.L.; Harris, E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J. Virol. 2006, 80, 11418–11431. [CrossRef]; Filomatori, C.V.; Lodeiro, M.F.; Alvarez, D.E.; Samsa, M.M.; Pietrasanta, L.; Gamarnik, A.V. A 50 RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev. 2006, 20, 2238–2249. [CrossRef]; Khromykh, A.A.; Meka, H.; Guyatt, K.J.; Westaway, E.G. Essential role of cyclization sequences in flavivirus RNA replication. J. Virol. 2001, 75, 6719–6728. [CrossRef]; Friebe, P.; Harris, E. Interplay of RNA elements in the dengue virus 50 and 30 ends required for viral RNA replication. J. Virol. 2010, 84, 6103–6118. [CrossRef]; Clyde, K.; Barrera, J.; Harris, E. The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology 2008, 379, 314–323. [CrossRef]; Gebhard, L.G.; Filomatori, C.V.; Gamarnik, A.V. Functional RNA Elements in the Dengue Virus Genome. Viruses 2011, 3, 1739–1756. [CrossRef]; Villordo, S.M.; Carballeda, J.M.; Filomatori, C.V.; Gamarnik, A.V. RNA Structure Duplications and Flavivirus Host Adaptation. Trends Microbiol. 2016, 24, 270–283. [CrossRef]; Paranjape, S.M.; Harris, E. Y box-binding protein-1 binds to the dengue virus 30 -untranslated region and mediates antiviral effects. J. Biol. Chem. 2007, 282, 30497–30508. [CrossRef] [PubMed]; Li, Z.; Yu, M.; Zhang, H.; Wang, H.Y.; Wang, L.F. Improved rapid amplification of cDNA ends (RACE) for mapping both the 50 and 30 terminal sequences of paramyxovirus genomes. J. Virol. Methods 2005, 130, 154–156. [CrossRef] [PubMed]; Miller, E. Rapid Amplification of cDNA Ends for RNA Transcript Sequencing in Staphylococcus. Methods Mol. Biol. 2016, 1373, 169–183. [CrossRef] [PubMed]; Usme, J.; Gómez, A.; Gallego, J. Molecular detection and typing of dengue virus by RT-PCR and nested PCR using degenerated oligonucleotides. Rev. Salud Uninorte 2012, 28, 1–15.; Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [CrossRef] [PubMed; Usme-Ciro, J.A.; Mendez, J.A.; Laiton, K.D.; Paez, A. The relevance of dengue virus genotypes surveillance at country level before vaccine approval. Hum. Vaccines Immunother. 2014, 10, 2674–2678. [CrossRef]; IUPAC Codes. Available online: https://www.bioinformatics.org/sms2/iupac.html (accessed on 2 April 2020).; Chu, P.W.; Westaway, E.G. Replication strategy of Kunjin virus: Evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology 1985, 140, 68–79. [CrossRef]; Leitmeyer, K.C.; Vaughn, D.W.; Watts, D.M.; Salas, R.; Villalobos, I.; de Ramos, C.; Rico-Hesse, R. Dengue virus structural differences that correlate with pathogenesis. J. Virol. 1999, 73, 4738–4747. [CrossRef]; Goo, L.; VanBlargan, L.A.; Dowd, K.A.; Diamond, M.S.; Pierson, T.C. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathog. 2017, 13, e1006178. [CrossRef]; Filomatori, C.V.; Carballeda, J.M.; Villordo, S.M.; Aguirre, S.; Pallarés, H.M.; Maestre, A.M.; Sánchez-Vargas, I.; Blair, C.D.; Fabri, C.; Morales, M.A.; et al. Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells. PLoS Pathog. 2017, 13, e1006265. [CrossRef]; Sirigulpanit, W.; Kinney, R.M.; Leardkamolkarn, V. Substitution or deletion mutations between nt 54 and 70 in the 50 non-coding region of dengue type 2 virus produce variable effects on virus viability. J. Gen. Virol. 2007, 88, 1748–1752. [CrossRef]; Tajima, S.; Nukui, Y.; Takasaki, T.; Kurane, I. Characterization of the variable region in the 30 non-translated region of dengue type 1 virus. J. Gen. Virol. 2007, 88, 2214–2222. [CrossRef] [PubMed]; Alvarez, D.E.; De Lella Ezcurra, A.L.; Fucito, S.; Gamarnik, A.V. Role of RNA structures present at the 30UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 2005, 339, 200–212. [CrossRef] [PubMed]; Drake, J.W.; Holland, J.J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 1999, 96, 13910–13913. [CrossRef] [PubMed]; Ong, S.H.; Yip, J.T.; Chen, Y.L.; Liu,W.; Harun, S.; Lystiyaningsih, E.; Heriyanto, B.; Beckett, C.G.; Mitchell,W.P.; Hibberd, M.L.; et al. Periodic re-emergence of endemic strains with strong epidemic potential-a proposed explanation for the 2004 Indonesian dengue epidemic. Infect. Genet. Evol. 2008, 8, 191–204. [CrossRef] [PubMed]; Sasmono, R.T.; Wahid, I.; Trimarsanto, H.; Yohan, B.; Wahyuni, S.; Hertanto, M.; Yusuf, I.; Mubin, H.; Ganda, I.J.; Latief, R.; et al. Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia. Infect. Genet. Evol. 2015, 32, 165–177. [CrossRef] [PubMed]; Christenbury, J.G.; Aw, P.P.; Ong, S.H.; Schreiber, M.J.; Chow, A.; Gubler, D.J.; Vasudevan, S.G.; Ooi, E.E.; Hibberd, M.L. A method for full genome sequencing of all four serotypes of the dengue virus. J. Virol. Methods 2010, 169, 202–206. [CrossRef]; Dash, P.K.; Sharma, S.; Soni, M.; Agarwal, A.; Sahni, A.K.; Parida, M. Complete genome sequencing and evolutionary phylogeography analysis of Indian isolates of Dengue virus type 1. Virus Res. 2015, 195, 124–134. [CrossRef]; Wongsurawat, T.; Jenjaroenpun, P.; Taylor, M.K.; Lee, J.; Tolardo, A.L.; Parvathareddy, J.; Kandel, S.; Wadley, T.D.; Kaewnapan, B.; Athipanyasilp, N.; et al. Rapid Sequencing of Multiple RNA Viruses in Their Native Form. Front. Microbiol. 2019, 10, 260. [CrossRef]; Tan, C.C.S.; Maurer-Stroh, S.; Wan, Y.; Sessions, O.M.; de Sessions, P.F. A novel method for the capture-based purification of whole viral native RNA genomes. AMB Express 2019, 9, 45. [CrossRef]; https://hdl.handle.net/20.500.12494/32699; Rosales-Munar, A., Alvarez-Diaz, D. A., Laiton-Donato, K., Peláez-Carvajal, D., & Usme-Ciro, J. A. (2020). Efficient method for molecular characterization of the 5’ and 3' ends of the dengue virus genome. Viruses, 12(5), 496.
-
12Academic Journal
المؤلفون: Laiton-Donato, Katherine, Villabona-Arenas, Christian Julián, Usme-Ciro, José A, Franco-Muñoz, Carlos, Álvarez-Díaz, Diego A, Villabona-Diaz, Liz Stephany, Echeverría-Londoño, Susy, Cucunubá, Zulma M, Franco-Sierra, Nicolás D, Flórez, Astrid C, Ferro, Carolina, Ajami, Nadim J, Walteros, Diana Marcela, Prieto, Franklin, Durán, Carlos Andrés, Ospina-Martínez, Martha Lucia, Mercado-Reyes, Marcela
وصف الملف: text
Relation: https://researchonline.lshtm.ac.uk/id/eprint/4658748/1/Genomic%20Epidemiology%20of%20Severe%20Acute%20Respiratory%20Syndrome%20Coronavirus%202,%20Colombia.pdf; Laiton-Donato, Katherine; Villabona-Arenas, Christian Julián ; Usme-Ciro, José A; Franco-Muñoz, Carlos; Álvarez-Díaz, Diego A; Villabona-Diaz, Liz Stephany ; Echeverría-Londoño, Susy; Cucunubá, Zulma M; Franco-Sierra, Nicolás D; Flórez, Astrid C; +7 more. Ferro, Carolina; Ajami, Nadim J; Walteros, Diana Marcela; Prieto, Franklin; Durán, Carlos Andrés; Ospina-Martínez, Martha Lucia; Mercado-Reyes, Marcela; (2020) Genomic Epidemiology of Severe Acute Respiratory Syndrome Coronavirus 2, Colombia. Emerging infectious diseases, 26 (12). pp. 2854-2862. ISSN 1080-6040 DOI: https://doi.org/10.3201/eid2612.202969
-
13Academic Journal
المؤلفون: Díaz Castrillón, Francisco Javier, Aguilar Jiménez, Wbeimar, Flórez Álvarez, Lizdany, Valencia, Gladys, Laiton Donato, Katherine Dayanna, Franco Muñoz, Carlos Esteban, Álvarez Díaz, Diego Alejandro, Mercado Reyes, Marcela María, Rugeles López, María Teresa
مصطلحات موضوعية: Infecciones por Coronavirus, Coronavirus Infections, Síndrome Respiratorio Agudo Grave, Severe Acute Respiratory Syndrome, Microscopía Electrónica, Microscopy, Electron, Secuenciación de Nucleótidos de Alto Rendimiento, High-Throughput Nucleotide Sequencing
وصف الملف: application/pdf
Relation: Biomédica; https://hdl.handle.net/10495/29863
-
14Dissertation/ Thesis
المؤلفون: Álvarez Díaz, Diego Alejandro
المساهمون: Torres Fernandez, Orlando, Castellanos Parra, Jaime Eduardo, Genómica de Microorganismos Emergentes - Instituto Nacional de Salud, Diego Alejandro Alvarez-Diaz 0000000265340079, ALVAREZ DIAZ, DIEGO ALEJANDRO 0000944122#, Diego Alejandro Alvarez Díaz Diego-Alvarez-Diaz-2, Diego Alejandro Álvarez-Díaz ApWpYpwAAAAJ
مصطلحات موضوعية: 570 - Biología::576 - Genética y evolución, 610 - Medicina y salud::616 - Enfermedades, 610 - Medicina y salud::615 - Farmacología y terapéutica, Vacunas contra la COVID-19, COVID-19 Vaccines, INMUNIDAD, Immunity, COVID-19, SARS-CoV-2, Variant of interest, Variant of Concern, Neutralizing antibodies, Vaccines, Genomic surveillance, Variantes de interés, Variantes de preocupación, Anticuerpos neutralizantes, Vacunas, Vigilancia genómica
وصف الملف: 95 páginas; application/pdf; application/vnd.ms-excel; application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
Relation: Morens, D.M.; Breman, J.G.; Calisher, C.H.; Doherty, P.C.; Hahn, B.H.; Keusch, G.T.; Kramer, L.D.; LeDuc, J.W.; Monath, T.P.; Taubenberger, J.K. The Origin of COVID-19 and Why It Matters. Am J Trop Med Hyg 2020, 103, 955-959, doi:10.4269/ajtmh.20-0849.; Laiton-Donato, K.; Villabona-Arenas, C.J.; Usme-Ciro, J.; Franco-Muñoz, C.; Álvarez-Díaz, D.; Villabona-Arenas, L.S.; Echeverría-Londoño, S.; Cucunubá, Z.; Franco-Sierra, N.; Flórez, A.; et al. Genomic Epidemiology of Severe Acute Respiratory Syndrome Coronavirus 2, Colombia. Emerging Infectious Disease journal 2020, 26, doi:10.3201/eid2612.202969.; INS. COVID-19 en Colombia. Available online: https://www.ins.gov.co/Noticias/Paginas/coronavirus.aspx (accessed on Dec 28 2022).; Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020, 20, 533-534, doi:10.1016/S1473-3099(20)30120-1.; WHO. Tracking SARS-CoV-2 variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on Dec 28, 2022).; Mohammed, R.N.; Tamjidifar, R.; Rahman, H.S.; Adili, A.; Ghoreishizadeh, S.; Saeedi, H.; Thangavelu, L.; Shomali, N.; Aslaminabad, R.; Marof, F.; et al. Correction: A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19). Cell Commun Signal 2022, 20, 139, doi:10.1186/s12964-022-00967-4.; Morales-Nunez, J.J.; Munoz-Valle, J.F.; Torres-Hernandez, P.C.; Hernandez-Bello, J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines (Basel) 2021, 9, doi:10.3390/vaccines9121376.; Heinz, F.X.; Stiasny, K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines 2021, 6, 104, doi:10.1038/s41541-021-00369-6.; Valdes-Balbin, Y.; Santana-Mederos, D.; Paquet, F.; Fernandez, S.; Climent, Y.; Chiodo, F.; Rodriguez, L.; Sanchez Ramirez, B.; Leon, K.; Hernandez, T.; et al. Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines. ACS Cent Sci 2021, 7, 757-767, doi:10.1021/acscentsci.1c00216.; Negi, S.S.; Schein, C.H.; Braun, W. Regional and temporal coordinated mutation patterns in SARS-CoV-2 spike protein revealed by a clustering and network analysis. Sci Rep 2022, 12, 1128, doi:10.1038/s41598-022-04950-4.; Minsalud. Vacunación contra COVID-19. Available online: https://www.minsalud.gov.co/salud/publica/Vacunacion/Paginas/Vacunacion-covid-19.aspx (accessed on December 13, 2022).; Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect 2022, 28, 202-221, doi:10.1016/j.cmi.2021.10.005.; Lu, L.; Mok, B.W.; Chen, L.L.; Chan, J.M.; Tsang, O.T.; Lam, B.H.; Chuang, V.W.; Chu, A.W.; Chan, W.M.; Ip, J.D.; et al. Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients. Clin Infect Dis 2021, doi:10.1093/cid/ciab1041.; Fukutani, K.F.; Barreto, M.L.; Andrade, B.B.; Queiroz, A.T.L. Correlation Between SARS-Cov-2 Vaccination, COVID-19 Incidence and Mortality: Tracking the Effect of Vaccination on Population Protection in Real Time. Front Genet 2021, 12, 679485, doi:10.3389/fgene.2021.679485.; WHO. Interim statement on booster doses for COVID-19 vaccination. Available online: (https://www.who.int/news/item/22-12-2021-interim-statement-on-booster-doses-for-covid-19-vaccination---update-22-december-2021 (accessed on March 11, 2022).; Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; El Sahly, H.M.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Homologous and Heterologous Covid-19 Booster Vaccinations. N Engl J Med 2022, 386, 1046-1057, doi:10.1056/NEJMoa2116414.; Crotty, S. Hybrid immunity. 2021, 372, 1392-1393, doi:doi:10.1126/science.abj2258.; Alvarez-Diaz, D.A.; Laiton-Donato, K.; Franco-Munoz, C.; Mercado-Reyes, M. SARS-CoV-2 sequencing: The technological initiative to strengthen early warning systems for public health emergencies in Latin America and the Caribbean. Biomedica 2020, 40, 188-197, doi:10.7705/biomedica.5841.; Laiton-Donato, K.; Franco-Munoz, C.; Alvarez-Diaz, D.A.; Ruiz-Moreno, H.A.; Usme-Ciro, J.A.; Prada, D.A.; Reales-Gonzalez, J.; Corchuelo, S.; Herrera-Sepulveda, M.T.; Naizaque, J.; et al. Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. Infect Genet Evol 2021, 95, 105038, doi:10.1016/j.meegid.2021.105038.; Laiton-Donato, K.; Usme-Ciro, J.A.; Franco-Munoz, C.; Alvarez-Diaz, D.A.; Ruiz-Moreno, H.A.; Reales-Gonzalez, J.; Prada, D.A.; Corchuelo, S.; Herrera-Sepulveda, M.T.; Naizaque, J.; et al. Novel Highly Divergent SARS-CoV-2 Lineage With the Spike Substitutions L249S and E484K. Front Med (Lausanne) 2021, 8, 697605, doi:10.3389/fmed.2021.697605.; Silva, A.R.D., Jr.; Villas-Boas, L.S.; Tozetto-Mendoza, T.R.; Honorato, L.; Paula, A.; Witkin, S.S.; Mendes-Correa, M.C. Generation of neutralizing antibodies against Omicron, Gamma and Delta SARS-CoV-2 variants following CoronaVac vaccination. Rev Inst Med Trop Sao Paulo 2022, 64, e19, doi:10.1590/S1678-9946202264019.; Ferrareze, P.A.G.; Franceschi, V.B.; Mayer, A.M.; Caldana, G.D.; Zimerman, R.A.; Thompson, C.E. E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infect Genet Evol 2021, 93, 104941, doi:10.1016/j.meegid.2021.104941.; Boehm, E.; Kronig, I.; Neher, R.A.; Eckerle, I.; Vetter, P.; Kaiser, L.; Geneva Centre for Emerging Viral, D. Novel SARS-CoV-2 variants: the pandemics within the pandemic. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2021, 27, 1109-1117, doi:10.1016/j.cmi.2021.05.022.; WHO. COVID-19 Weekly Epidemiological Update Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---31-august-2021 (accessed on May 23, 2022).; Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020, 382, 727-733, doi:10.1056/NEJMoa2001017.; Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270-273, doi:10.1038/s41586-020-2012-7.; Coronaviridae Study Group of the International Committee on Taxonomy of, V. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020, 5, 536-544, doi:10.1038/s41564-020-0695-z.; WHO. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 2020, May 05).; Laiton-Donato K, V.-A.C., Usme-Ciro JA, Franco-Muñoz C, Álvarez-Díaz DA, Villabona-Arenas LS, et al. Genomic epidemiology of severe acute respiratory syndrome coronavirus 2, Colombia. Emerg Infect Dis 2020, 26, 2854-2862, doi:0.3201/eid2612.202969.; Laiton-Donato, K.; Alvarez, D.A.; Pelaez-Carvajal, D.; Mercado, M.; Ajami, N.J.; Bosch, I.; Usme-Ciro, J.A. Molecular characterization of dengue virus reveals regional diversification of serotype 2 in Colombia. Virol J 2019, 16, 62, doi:10.1186/s12985-019-1170-4.; Laiton-Donato, K.; Alvarez-Diaz, D.A.; Rengifo, A.C.; Torres-Fernandez, O.; Usme-Ciro, J.A.; Rivera, J.A.; Santamaria, G.; Naizaque, J.; Monroy-Gomez, J.; Sarmiento, L.; et al. Complete Genome Sequence of a Colombian Zika Virus Strain Obtained from BALB/c Mouse Brain after Intraperitoneal Inoculation. Microbiol Resour Announc 2019, 8, doi:10.1128/MRA.01719-18.; Rosales-Munar, A.; Alvarez-Diaz, D.A.; Laiton-Donato, K.; Pelaez-Carvajal, D.; Usme-Ciro, J.A. Efficient Method for Molecular Characterization of the 5' and 3' Ends of the Dengue Virus Genome. Viruses 2020, 12, doi:10.3390/v12050496.; Orjuela, L.I.; Alvarez-Diaz, D.A.; Morales, J.A.; Grisales, N.; Ahumada, M.L.; Venegas, H.J.; Quinones, M.L.; Yasnot, M.F. Absence of knockdown mutations in pyrethroid and DDT resistant populations of the main malaria vectors in Colombia. Malar J 2019, 18, 384, doi:10.1186/s12936-019-3034-1.; Alvarez-Diaz, D.A.; Franco-Munoz, C.; Laiton-Donato, K.; Usme-Ciro, J.A.; Franco-Sierra, N.D.; Florez-Sanchez, A.C.; Gomez-Rangel, S.; Rodriguez-Calderon, L.D.; Barbosa-Ramirez, J.; Ospitia-Baez, E.; et al. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infect Genet Evol 2020, 84, 104390, doi:10.1016/j.meegid.2020.104390.; Franco-Munoz, C.; Alvarez-Diaz, D.A.; Laiton-Donato, K.; Wiesner, M.; Escandon, P.; Usme-Ciro, J.A.; Franco-Sierra, N.D.; Florez-Sanchez, A.C.; Gomez-Rangel, S.; Rodriguez-Calderon, L.D.; et al. Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America. Infect Genet Evol 2020, 104557, doi:10.1016/j.meegid.2020.104557.; Volz, E.; Hill, V.; McCrone, J.T.; Price, A.; Jorgensen, D.; O'Toole, A.; Southgate, J.; Johnson, R.; Jackson, B.; Nascimento, F.F.; et al. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell 2021, 184, 64-75 e11, doi:10.1016/j.cell.2020.11.020.; Plante, J.A.; Liu, Y.; Liu, J.; Xia, H.; Johnson, B.A.; Lokugamage, K.G.; Zhang, X.; Muruato, A.E.; Zou, J.; Fontes-Garfias, C.R.; et al. Author Correction: Spike mutation D614G alters SARS-CoV-2 fitness. Nature 2021, 595, E1, doi:10.1038/s41586-021-03657-2.; Rotondo, J.C.; Martini, F.; Maritati, M.; Mazziotta, C.; Di Mauro, G.; Lanzillotti, C.; Barp, N.; Gallerani, A.; Tognon, M.; Contini, C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021, 13, doi:10.3390/v13091687.; Chakraborty, S. E484K and N501Y SARS-CoV 2 spike mutants Increase ACE2 recognition but reduce affinity for neutralizing antibody. Int Immunopharmacol 2022, 102, 108424, doi:10.1016/j.intimp.2021.108424.; Liu, Y.; Liu, J.; Plante, K.S.; Plante, J.A.; Xie, X.; Zhang, X.; Ku, Z.; An, Z.; Scharton, D.; Schindewolf, C.; et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 2022, 602, 294-299, doi:10.1038/s41586-021-04245-0.; Laffeber, C.; de Koning, K.; Kanaar, R.; Lebbink, J.H.G. Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants. J Mol Biol 2021, 433, 167058, doi:10.1016/j.jmb.2021.167058.; Tian, D.; Sun, Y.; Zhou, J.; Ye, Q. The global epidemic of SARS-CoV-2 variants and their mutational immune escape. Journal of Medical Virology 2022, 94, 847-857, doi:https://doi.org/10.1002/jmv.27376.; Yang, W.T.; Huang, W.H.; Liao, T.L.; Hsiao, T.H.; Chuang, H.N.; Liu, P.Y. SARS-CoV-2 E484K Mutation Narrative Review: Epidemiology, Immune Escape, Clinical Implications, and Future Considerations. Infect Drug Resist 2022, 15, 373-385, doi:10.2147/IDR.S344099.; Fraley, E.; LeMaster, C.; Geanes, E.; Banerjee, D.; Khanal, S.; Grundberg, E.; Selvarangan, R.; Bradley, T. Humoral immune responses during SARS-CoV-2 mRNA vaccine administration in seropositive and seronegative individuals. BMC Med 2021, 19, 169, doi:10.1186/s12916-021-02055-9.; Krammer, F.; Srivastava, K.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermudez-Gonzalez, M.C.; Bielak, D.A.; Carreno, J.M.; Chernet, R.L.; et al. Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 mRNA Vaccine. N Engl J Med 2021, 384, 1372-1374, doi:10.1056/NEJMc2101667.; Goldberg, Y.; Mandel, M.; Bar-On, Y.M.; Bodenheimer, O.; Freedman, L.S.; Ash, N.; Alroy-Preis, S.; Huppert, A.; Milo, R. Protection and Waning of Natural and Hybrid Immunity to SARS-CoV-2. N Engl J Med 2022, doi:10.1056/NEJMoa2118946.; Mercado-Reyes, M.; Malagon-Rojas, J.; Rodriguez-Barraquer, I.; Zapata-Bedoya, S.; Wiesner, M.; Cucunuba, Z.; Toloza-Perez, Y.G.; Hernandez-Ortiz, J.P.; Acosta-Reyes, J.; Parra-Barrera, E.; et al. Seroprevalence of anti-SARS-CoV-2 antibodies in Colombia, 2020: A population-based study. Lancet Reg Health Am 2022, 9, 100195, doi:10.1016/j.lana.2022.100195.; Laajaj, R.; De Los Rios, C.; Sarmiento-Barbieri, I.; Aristizabal, D.; Behrentz, E.; Bernal, R.; Buitrago, G.; Cucunuba, Z.; de la Hoz, F.; Gaviria, A.; et al. COVID-19 spread, detection, and dynamics in Bogota, Colombia. Nat Commun 2021, 12, 4726, doi:10.1038/s41467-021-25038-z.; Chiesa, V.; Antony, G.; Wismar, M.; Rechel, B. COVID-19 pandemic: health impact of staying at home, social distancing and 'lockdown' measures-a systematic review of systematic reviews. J Public Health (Oxf) 2021, 43, e462-e481, doi:10.1093/pubmed/fdab102.; UN. The Impact of COVID-19 on Latin America and the Caribbean. 2020, 25.; Perez, J.; Ricciulli-Marín, D.; Bonet, J.; Haddad, E.; Araújo, I.; S. Perobelli, F. Regional differences in the economic impact of lockdown measures to prevent the spread of COVID-19: A case study for Colombia. Cuadernos de Economia 2021, 40, doi:10.15446/cuad.econ.v40n85.90803.; Restrepo Zea, J.H.; Espinal Piedrahita, J.; Palacios Romaña, L.D. Gasto en salud durante la pandemia por covid-19 en países de América Latina; Asociación Nacional de Empresarios -ANDI; Universidad de Antioquia: 2022.; INS. COVID-19: progreso de la pandemia y sus desigualdades en Colombia Décimo tercero Informe Técnico. 2021, 278.; INS. Coronavirus (COVID - 2019) en Colombia: Genoma. Available online: https://www.ins.gov.co/Noticias/Paginas/coronavirus-genoma.aspx (accessed on April 18, 2022).; OPS. Reportes de Situación COVID-19: Colombia. Available online: https://www.paho.org/es/reportes-situacion-covid-19-colombia?topic=All&d%5Bmin%5D=&d%5Bmax%5D=&page=0 (accessed on Dec 14, 2022).; Ng, O.T.; Marimuthu, K.; Lim, N.; Lim, Z.Q.; Thevasagayam, N.M.; Koh, V.; Chiew, C.J.; Ma, S.; Koh, M.; Low, P.Y.; et al. Analysis of COVID-19 Incidence and Severity Among Adults Vaccinated With 2-Dose mRNA COVID-19 or Inactivated SARS-CoV-2 Vaccines With and Without Boosters in Singapore. JAMA Netw Open 2022, 5, e2228900, doi:10.1001/jamanetworkopen.2022.28900.; Andrews, N.; Tessier, E.; Stowe, J.; Gower, C.; Kirsebom, F.; Simmons, R.; Gallagher, E.; Thelwall, S.; Groves, N.; Dabrera, G.; et al. Duration of Protection against Mild and Severe Disease by Covid-19 Vaccines. N Engl J Med 2022, 386, 340-350, doi:10.1056/NEJMoa2115481.; Mueller, A.L.; McNamara, M.S.; Sinclair, D.A. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020, 12, 9959-9981, doi:10.18632/aging.103344.; Collarino, R.; Vauloup-Fellous, C.; Allemang-Trivalle, A.; Mouna, L.; Baudouin, E.P.; Keravec, H.; Neiss, M.; Bouchareb, S.; Bessai, C.; Sanchez-Tamayo, J.; et al. Persistence of Neutralizing Antibodies and Clinical Protection up to 12 Months After Severe Acute Respiratory Syndrome Coronavirus 2 Infection in the Elderly. Open Forum Infect Dis 2022, 9, ofac613, doi:10.1093/ofid/ofac613.; Minsalud. Personas con hipertensión arterial, priorizadas en el Plan Nacional de Vacunación. Available online: https://www.minsalud.gov.co/Paginas/Personas-con-hipertension-arterial-priorizadas-en-el-Plan-Nacional-de-Vacunacion.aspx (accessed on November 29, 2021).; To, K.K.; Tsang, O.T.; Chik-Yan Yip, C.; Chan, K.H.; Wu, T.C.; Chan, J.M.C.; Leung, W.S.; Chik, T.S.; Choi, C.Y.; Kandamby, D.H.; et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis 2020, doi:10.1093/cid/ciaa149.; Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2020, 25, 2000045, doi:10.2807/1560-7917.ES.2020.25.3.2000045.; Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589-595, doi:10.1093/bioinformatics/btp698.; Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019, 20, 1160-1166, doi:10.1093/bib/bbx108.; WHO. Novel Coronavirus (2019-nCoV) technical guidance: Laboratory testing for 2019-nCoV in humans. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance (accessed on Febrary 7th, 2020).; Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32, 1792-1797, doi:10.1093/nar/gkh340.; Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018, 35, 1547-1549, doi:10.1093/molbev/msy096.; Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.G.T.; Fu, H.; et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020, 20, 669-677, doi:10.1016/S1473-3099(20)30243-7.; Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology 1938, 27, 493-497, doi:10.1093/oxfordjournals.aje.a118408.; Algaissi, A.; Hashem, A.M. Evaluation of MERS-CoV Neutralizing Antibodies in Sera Using Live Virus Microneutralization Assay. Methods in molecular biology (Clifton, N.J.) 2020, 2099, 107-116, doi:10.1007/978-1-0716-0211-9_9.; Saker, K.; Escuret, V.; Pitiot, V.; Massardier-Pilonchery, A.; Paul, S.; Mokdad, B.; Langlois-Jacques, C.; Rabilloud, M.; Goncalves, D.; Fabien, N.; et al. Evaluation of Commercial Anti-SARS-CoV-2 Antibody Assays and Comparison of Standardized Titers in Vaccinated Health Care Workers. J Clin Microbiol 2022, 60, e0174621, doi:10.1128/JCM.01746-21.; Colombini, A.; Vigano, M.; Tomaiuolo, R.; Di Resta, C.; Corea, F.; Sabetta, E.; Ferrari, D.; De Vecchi, E.; Maria Spano, S.; Banfi, G. Exploratory assessment of serological tests to determine antibody titer against SARS-CoV-2: Appropriateness and limits. J Clin Lab Anal 2022, 36, e24363, doi:10.1002/jcla.24363.; Álvarez-Díaz, D.A.; Franco-Muñoz, C.; Laiton-Donato, K.; Usme-Ciro, J.A.; Franco-Sierra, N.D.; Flórez-Sánchez, A.C.; Gómez-Rangel, S.; Rodríguez-Calderon, L.D.; Barbosa-Ramirez, J.; Ospitia-Baez, E.; et al. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infection, Genetics and Evolution 2020, 84, 104390, doi:https://doi.org/10.1016/j.meegid.2020.104390.; Alvarez-Diaz, D.A.; Ruiz-Moreno, H.A.; Zapata-Bedoya, S.; Franco-Munoz, C.; Laiton-Donato, K.; Ferro, C.; Sepulveda, M.T.H.; Pacheco-Montealegre, M.; Walteros, D.M.; Carrero-Galindo, L.C.; et al. Clinical outcomes associated with Mu variant infection during the third epidemic peak of COVID-19 in Colombia. Int J Infect Dis 2022, 125, 149-152, doi:10.1016/j.ijid.2022.10.028.; WHO. Tracking SARS-CoV-2 variants. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on Dec 25, 2022).; Faria, N.R.; Mellan, T.A.; Whittaker, C.; Claro, I.M.; Candido, D.D.S.; Mishra, S.; Crispim, M.A.E.; Sales, F.C.S.; Hawryluk, I.; McCrone, J.T.; et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021, 372, 815-821, doi:10.1126/science.abh2644.; Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021, 599, 114-119, doi:10.1038/s41586-021-03944-y.; Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel-Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech, J.; et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021, 596, 276-280, doi:10.1038/s41586-021-03777-9.; Dhawan, M.; Sharma, A.; Priyanka; Thakur, N.; Rajkhowa, T.K.; Choudhary, O.P. Delta variant (B.1.617.2) of SARS-CoV-2: Mutations, impact, challenges and possible solutions. Hum Vaccin Immunother 2022, 18, 2068883, doi:10.1080/21645515.2022.2068883.; O'Toole, A., E. Scher, and A. Rambaut. Lineage List. Available online: https://cov-lineages.org/lineage_list.html (accessed on Dec 27, 2022).; Araf, Y.; Akter, F.; Tang, Y.D.; Fatemi, R.; Parvez, M.S.A.; Zheng, C.; Hossain, M.G. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol 2022, 94, 1825-1832, doi:10.1002/jmv.27588.; Gangavarapu, K.; Latif, A.; Mullen, J.; Alkuzweny, M.; Hufbauer, E.; Tsueng, G.; Haag, E.; Zeller, M.; Aceves, C.; Zaiets, K.; et al. Omicron Variant Report Available online: https://outbreak.info/situation-reports/Omicron?xmin=2022-06-27&xmax=2022-12-27 (accessed on 27 December 2022.).; Alvarez-Diaz, D.A.; Laiton-Donato, K.; Torres-Garcia, O.A.; Ruiz-Moreno, H.A.; Franco-Munoz, C.; Beltran, M.A.; Mercado-Reyes, M.; Rueda, M.G.; Munoz, A.L. Reduced levels of convalescent neutralizing antibodies against SARS-CoV-2 B.1+L249S+E484K lineage. Virus Res 2022, 308, 198629, doi:10.1016/j.virusres.2021.198629.; Alvarez-Diaz, D.A.; Munoz, A.L.; Herrera-Sepulveda, M.T.; Tavera-Rodriguez, P.; Laiton-Donato, K.; Franco-Munoz, C.; Ruiz-Moreno, H.A.; Galindo, M.; Catama, J.D.; Bermudez-Forero, A.; et al. Neutralizing Antibody Responses Elicited by Inactivated Whole Virus and Genetic Vaccines against Dominant SARS-CoV-2 Variants during the Four Epidemic Peaks of COVID-19 in Colombia. Vaccines (Basel) 2022, 10, doi:10.3390/vaccines10122144.; Alvarez-Diaz, D.A.; Munoz, A.L.; Tavera-Rodriguez, P.; Herrera-Sepulveda, M.T.; Ruiz-Moreno, H.A.; Laiton-Donato, K.; Franco-Munoz, C.; Pelaez-Carvajal, D.; Cuellar, D.; Munoz-Suarez, A.M.; et al. Low Neutralizing Antibody Titers against the Mu Variant of SARS-CoV-2 in 31 BNT162b2 Vaccinated Individuals in Colombia. Vaccines (Basel) 2022, 10, doi:10.3390/vaccines10020180.; Gdoura, M.; Abouda, I.; Mrad, M.; Ben Dhifallah, I.; Belaiba, Z.; Fares, W.; Chouikha, A.; Khedhiri, M.; Layouni, K.; Touzi, H.; et al. SARS-CoV2 RT-PCR assays: In vitro comparison of 4 WHO approved protocols on clinical specimens and its implications for real laboratory practice through variant emergence. Virology Journal 2022, 19, 54, doi:10.1186/s12985-022-01784-4.; Razu, M.H.; Ahmed, Z.B.; Hossain, M.I.; Rabbi, M.F.A.; Nayem, M.R.; Hassan, M.A.; Paul, G.K.; Khan, M.R.; Moniruzzaman, M.; Karmaker, P.; et al. Performance Evaluation of Developed Bangasure Multiplex rRT-PCR Assay for SARS-CoV-2 Detection in Bangladesh: A Blinded Observational Study at Two Different Sites. Diagnostics (Basel) 2022, 12, doi:10.3390/diagnostics12112617.; Fu, J.Y.L.; Chong, Y.M.; Sam, I.C.; Chan, Y.F. SARS-CoV-2 multiplex RT-PCR to detect variants of concern (VOCs) in Malaysia, between January to May 2021. J Virol Methods 2022, 301, 114462, doi:10.1016/j.jviromet.2022.114462.; Ng, W.H.; Tipih, T.; Makoah, N.A.; Vermeulen, J.G.; Goedhals, D.; Sempa, J.B.; Burt, F.J.; Taylor, A.; Mahalingam, S. Comorbidities in SARS-CoV-2 Patients: a Systematic Review and Meta-Analysis. mBio 2021, 12, doi:10.1128/mBio.03647-20.; Padilla-Rojas, C.; Jimenez-Vasquez, V.; Hurtado, V.; Mestanza, O.; Molina, I.S.; Barcena, L.; Morales Ruiz, S.; Acedo, S.; Lizarraga, W.; Bailon, H.; et al. Genomic analysis reveals a rapid spread and predominance of lambda (C.37) SARS-COV-2 lineage in Peru despite circulation of variants of concern. J Med Virol 2021, 93, 6845-6849, doi:10.1002/jmv.27261.; Yang, Y.; Du, L. SARS-CoV-2 spike protein: a key target for eliciting persistent neutralizing antibodies. Signal Transduct Target Ther 2021, 6, 95, doi:10.1038/s41392-021-00523-5.; Jangra, S.; Ye, C.; Rathnasinghe, R.; Stadlbauer, D.; Personalized Virology Initiative study, g.; Krammer, F.; Simon, V.; Martinez-Sobrido, L.; Garcia-Sastre, A.; Schotsaert, M. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2021, 2, e283-e284, doi:10.1016/S2666-5247(21)00068-9.; Planas, D.; Bruel, T.; Grzelak, L.; Guivel-Benhassine, F.; Staropoli, I.; Porrot, F.; Planchais, C.; Buchrieser, J.; Rajah, M.M.; Bishop, E.; et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med 2021, 27, 917-924, doi:10.1038/s41591-021-01318-5.; Annavajhala, M.K.; Mohri, H.; Wang, P.; Nair, M.; Zucker, J.E.; Sheng, Z.; Gomez-Simmonds, A.; Kelley, A.L.; Tagliavia, M.; Huang, Y.; et al. Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature 2021, 597, 703-708, doi:10.1038/s41586-021-03908-2.; McCallum, M.; Bassi, J.; De Marco, A.; Chen, A.; Walls, A.C.; Di Iulio, J.; Tortorici, M.A.; Navarro, M.J.; Silacci-Fregni, C.; Saliba, C.; et al. SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science 2021, 373, 648-654, doi:10.1126/science.abi7994.; Malli, F.; Lampropoulos, I.C.; Papagiannis, D.; Papathanasiou, I.V.; Daniil, Z.; Gourgoulianis, K.I. Association of SARS-CoV-2 Vaccinations with SARS-CoV-2 Infections, ICU Admissions and Deaths in Greece. Vaccines (Basel) 2022, 10, doi:10.3390/vaccines10020337.; Hasan, T.; Beardsley, J.; Marais, B.J.; Nguyen, T.A.; Fox, G.J. The Implementation of Mass-Vaccination against SARS-CoV-2: A Systematic Review of Existing Strategies and Guidelines. Vaccines (Basel) 2021, 9, doi:10.3390/vaccines9040326.; Bian, L.; Liu, J.; Gao, F.; Gao, Q.; He, Q.; Mao, Q.; Wu, X.; Xu, M.; Liang, Z. Research progress on vaccine efficacy against SARS-CoV-2 variants of concern. Hum Vaccin Immunother 2022, 18, 2057161, doi:10.1080/21645515.2022.2057161.; Minsalud. Dosis aplicadas contra COVID-19. Available online: https://app.powerbi.com/view?r=eyJrIjoiNThmZTJmZWYtOWFhMy00OGE1LWFiNDAtMTJmYjM0NDA5NGY2IiwidCI6ImJmYjdlMTNhLTdmYjctNDAxNi04MzBjLWQzNzE2ZThkZDhiOCJ9 (accessed on July 14, 2022).; Lopera, T.J.; Chvatal-Medina, M.; Florez-Alvarez, L.; Zapata-Cardona, M.I.; Taborda, N.A.; Rugeles, M.T.; Hernandez, J.C. Humoral Response to BNT162b2 Vaccine Against SARS-CoV-2 Variants Decays After Six Months. Front Immunol 2022, 13, 879036, doi:10.3389/fimmu.2022.879036.; Yu, J.; Collier, A.Y.; Rowe, M.; Mardas, F.; Ventura, J.D.; Wan, H.; Miller, J.; Powers, O.; Chung, B.; Siamatu, M.; et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. N Engl J Med 2022, 386, 1579-1580, doi:10.1056/NEJMc2201849.; Ou, J.; Lan, W.; Wu, X.; Zhao, T.; Duan, B.; Yang, P.; Ren, Y.; Quan, L.; Zhao, W.; Seto, D.; et al. Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduct Target Ther 2022, 7, 138, doi:10.1038/s41392-022-00992-2.; Magazine, N.; Zhang, T.; Wu, Y.; McGee, M.C.; Veggiani, G.; Huang, W. Mutations and Evolution of the SARS-CoV-2 Spike Protein. Viruses 2022, 14, doi:10.3390/v14030640.; Fratev, F. R346K Mutation in the Mu Variant of SARS-CoV-2 Alters the Interactions with Monoclonal Antibodies from Class 2: A Free Energy Perturbation Study. J Chem Inf Model 2022, 62, 627-631, doi:10.1021/acs.jcim.1c01243.; Koyama, T.; Miyakawa, K.; Tokumasu, R.; S, S.J.; Kudo, M.; Ryo, A. Evasion of vaccine-induced humoral immunity by emerging sub-variants of SARS-CoV-2. Future Microbiol 2022, 17, 417-424, doi:10.2217/fmb-2022-0025.; McLean, G.; Kamil, J.; Lee, B.; Moore, P.; Schulz, T.F.; Muik, A.; Sahin, U.; Tureci, O.; Pather, S. The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. mBio 2022, 13, e0297921, doi:10.1128/mbio.02979-21.; Muttineni, R.; R, N.B.; Putty, K.; Marapakala, K.; K, P.S.; Panyam, J.; Vemula, A.; Singh, S.M.; Balachandran, S.; S, T.V.; et al. SARS-CoV-2 variants and spike mutations involved in second wave of COVID-19 pandemic in India. Transbound Emerg Dis 2022, 69, e1721-e1733, doi:10.1111/tbed.14508.; Di Giacomo, S.; Mercatelli, D.; Rakhimov, A.; Giorgi, F.M. Preliminary report on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike mutation T478K. J Med Virol 2021, 93, 5638-5643, doi:10.1002/jmv.27062.; Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O'Connell, A.M.; et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med 2022, 386, 1532-1546, doi:10.1056/NEJMoa2119451.; Barros-Martins, J.; Hammerschmidt, S.I.; Cossmann, A.; Odak, I.; Stankov, M.V.; Morillas Ramos, G.; Dopfer-Jablonka, A.; Heidemann, A.; Ritter, C.; Friedrichsen, M.; et al. Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nat Med 2021, 27, 1525-1529, doi:10.1038/s41591-021-01449-9.; Deng, J.; Ma, Y.; Liu, Q.; Du, M.; Liu, M.; Liu, J. Comparison of the Effectiveness and Safety of Heterologous Booster Doses with Homologous Booster Doses for SARS-CoV-2 Vaccines: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2022, 19, doi:10.3390/ijerph191710752.; Ntziora, F.; Kostaki, E.G.; Karapanou, A.; Mylona, M.; Tseti, I.; Sipsas, N.V.; Paraskevis, D.; Sfikakis, P.P. Protection of vaccination versus hybrid immunity against infection with COVID-19 Omicron variants among Health-Care Workers. Vaccine 2022, 40, 7195-7200, doi:10.1016/j.vaccine.2022.09.042.; Ho-Yan Fong, C.; Zhang, X.; Chen, L.L.; Wing-Shan Poon, R.; Pui-Chun Chan, B.; Zhao, Y.; King-Ho Wong, C.; Chan, K.H.; Yuen, K.Y.; Fan-Ngai Hung, I.; et al. Effect of vaccine booster, vaccine type, and hybrid immunity on humoral and cellular immunity against SARS-CoV-2 ancestral strain and Omicron variant sublineages BA.2 and BA.5 among older adults with comorbidities: a cross sectional study. EBioMedicine 2023, 88, 104446, doi:10.1016/j.ebiom.2023.104446.; Cervantes-Luevano, K.; Espino-Vazquez, A.N.; Flores-Acosta, G.; Bernaldez-Sarabia, J.; Cabanillas-Bernal, O.; Gasperin-Bulbarela, J.; Gonzalez-Sanchez, R.; Comas-Garcia, A.; Licea-Navarro, A.F. Neutralizing antibodies levels are increased in individuals with heterologous vaccination and hybrid immunity with Ad5-nCoV in the north of Mexico. PLoS One 2022, 17, e0269032, doi:10.1371/journal.pone.0269032.; Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020, 17, 613-620, doi:10.1038/s41423-020-0400-4.; Alaofi, A.L.; Shahid, M. Mutations of SARS-CoV-2 RBD May Alter Its Molecular Structure to Improve Its Infection Efficiency. Biomolecules 2021, 11, doi:10.3390/biom11091273.; Hernandez-Luis, P.; Aguilar, R.; Pelegrin-Perez, J.; Ruiz-Olalla, G.; Garcia-Basteiro, A.L.; Tortajada, M.; Moncunill, G.; Dobano, C.; Angulo, A.; Engel, P. Decreased and Heterogeneous Neutralizing Antibody Responses Against RBD of SARS-CoV-2 Variants After mRNA Vaccination. Front Immunol 2022, 13, 816389, doi:10.3389/fimmu.2022.816389.; Liu, S.; Jia, Z.; Nie, J.; Liang, Z.; Xie, J.; Wang, L.; Zhang, L.; Wang, X.; Wang, Y.; Huang, W. A broader neutralizing antibody against all the current VOCs and VOIs targets unique epitope of SARS-CoV-2 RBD. Cell Discovery 2022, 8, 81, doi:10.1038/s41421-022-00443-w.; Starr, T.N.; Czudnochowski, N.; Liu, Z.; Zatta, F.; Park, Y.-J.; Addetia, A.; Pinto, D.; Beltramello, M.; Hernandez, P.; Greaney, A.J.; et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 2021, 597, 97-102, doi:10.1038/s41586-021-03807-6.; Speletas, M.; Voulgaridi, I.; Sarrou, S.; Dadouli, A.; Mouchtouri, V.A.; Nikoulis, D.J.; Tsakona, M.; Kyritsi, M.A.; Peristeri, A.M.; Avakian, I.; et al. Intensity and Dynamics of Anti-SARS-CoV-2 Immune Responses after BNT162b2 mRNA Vaccination: Implications for Public Health Vaccination Strategies. Vaccines (Basel) 2022, 10, doi:10.3390/vaccines10020316.; Lau, E.H.Y.; Tsang, O.T.Y.; Hui, D.S.C.; Kwan, M.Y.W.; Chan, W.H.; Chiu, S.S.; Ko, R.L.W.; Chan, K.H.; Cheng, S.M.S.; Perera, R.; et al. Neutralizing antibody titres in SARS-CoV-2 infections. Nat Commun 2021, 12, 63, doi:10.1038/s41467-020-20247-4.; Gharbharan, A.; Jordans, C.C.E.; GeurtsvanKessel, C.; den Hollander, J.G.; Karim, F.; Mollema, F.P.N.; Stalenhoef-Schukken, J.E.; Dofferhoff, A.; Ludwig, I.; Koster, A.; et al. Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection. Nat Commun 2021, 12, 3189, doi:10.1038/s41467-021-23469-2.; Moss, P. The T cell immune response against SARS-CoV-2. Nat Immunol 2022, 23, 186-193, doi:10.1038/s41590-021-01122-w.; Bertoletti, A.; Le Bert, N.; Tan, A.T. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity 2022, 55, 1764-1778, doi:10.1016/j.immuni.2022.08.008.; https://repositorio.unal.edu.co/handle/unal/84273; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
15Academic Journal
المؤلفون: Laiton Donato, Katherine, Álvarez Díaz, Diego Alejandro, Rengifo, Aura C., Torres Fernandez, Orlando, Usme Ciro, José Aldemar, Rivera, Jorge A., Santamaría, Gerardo, Naizaque, Julian, Monroy Gomez, Jeison, Sarmiento, Ladys, Gunturiz, Maria L., Muñoz, Alejandra, Vanegas, Ricardo, Rico, Angelica, Pardo, Lissethe, Pelaez Carvajal, Dioselina
مصطلحات موضوعية: Virus Zika, Genoma completo, Aislamiento viral, Cerebro, Modelo animal, Zika virus, Complete genome, Virus isolation, brain, Animal model
وصف الملف: application/pdf
Relation: https://mra.asm.org/content/8/46/e01719-18; Microbiology Resource Announcements; Dick GW, Kitchen SF, Haddow AJ. 1952. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46:509 –520. https:// doi.org/10.1016/0035-9203(52)90042-4.; Musso D. 2015. Zika virus transmission from French Polynesia to Brazil. Emerg Infect Dis 21:1887. https://doi.org/10.3201/eid2110.151125.; Cuevas EL, Tong VT, Rozo N, Valencia D, Pacheco O, Gilboa SM, Mercado Laiton-Donato et al. Volume 8 Issue 46 e01719-18 mra.asm.org 2 on November 14, 2019 by guest http://mra.asm.org/ Downloaded from M, Renquist CM, González M, Ailes EC, Duarte C, Godoshian V, Sancken CL, Turca AMR, Calles DL, Ayala M, Morgan P, Perez ENT, Bonilla HQ, Gomez RC, Estupiñan AC, Gunturiz ML, Meaney-Delman D, Jamieson DJ, Honein MA, Martínez MLO. 2016. Preliminary report of microcephaly potentially associated with Zika virus infection during pregnancy— Colombia, January–November 2016. MMWR Morb Mortal Wkly Rep 65: 1409 –1413. https://doi.org/10.15585/mmwr.mm6549e1.; Devhare P, Meyer K, Steele R, Ray RB, Ray R. 2017. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells. Cell Death Dis 8:e3106. https://doi.org/10 .1038/cddis.2017.517.; Tsunoda I, Omura S, Sato F, Kusunoki S, Fujita M, Park AM, Hasanovic F, Yanagihara R, Nagata S. 2016. Neuropathogenesis of Zika virus infection: potential roles of antibody-mediated pathology. Acta Medica Kinki University 41:37–52.; GeurtsvanKessel CH, Islam Z, Islam MB, Kamga S, Papri N, van de Vijver D, Reusken C, Mogling R, Heikema AP, Jahan I, Pradel FK, Pavlicek RL, Mohammad QD, Koopmans MPG, Jacobs BC, Endtz HP. 2018. Zika virus and Guillain-Barré syndrome in Bangladesh. Ann Clin Transl Neurol 5:606 – 615. https://doi.org/10.1002/acn3.556.; Zhang F, Wang HJ, Wang Q, Liu ZY, Yuan L, Huang XY, Li G, Ye Q, Yang H, Shi L, Deng YQ, Qin CF, Xu Z. 2017. American strain of Zika virus causes more severe microcephaly than an old Asian strain in neonatal mice. EBioMedicine 25:95–105. https://doi.org/10.1016/j.ebiom.2017.10 .019.; Santiago GA, Vazquez J, Courtney S, Matias KY, Andersen LE, Colon C, Butler AE, Roulo R, Bowzard J, Villanueva JM, Munoz-Jordan JL. 2018. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat Commun 9:1391. https://doi.org/ 10.1038/s41467-018-03772-1.; Azeredo EL, Dos Santos FB, Barbosa LS, Souza TMA, Badolato-Correa J, Sanchez-Arcila JC, Nunes PCG, de-Oliveira-Pinto LM, de Filippis AM, Dal Fabbro M, Hoscher Romanholi I, Venancio da Cunha R. 2018. Clinical and laboratory profile of zika and dengue infected patients: lessons learned from the co-circulation of dengue, zika and chikungunya in Brazil. PLoS Curr 10:ecurrents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5. https:// doi.org/10.1371/currents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5; Mehta R, Gerardin P, de Brito CAA, Soares CN, Ferreira MLB, Solomon T. 2018. The neurological complications of chikungunya virus: a systematic review. Rev Med Virol 28:e1978. https://doi.org/10.1002/rmv.1978.; https://hdl.handle.net/20.500.12494/32705; Laiton-Donato, K., Álvarez-Díaz, D. A., Rengifo, A. C., Torres-Fernández, O., Usme-Ciro, J. A., Rivera, J. A., Santamaría, G., Naizaque, J., Monroy-Gómez, J., Sarmiento, L., Gunturiz, M. L., Muñoz, A., Vanegas, R., Rico, A., Pardo, L., & Peláez-Carvajal, D. (2019). Complete Genome Sequence of a Colombian Zika Virus Strain Obtained from BALB/c Mouse Brain after Intraperitoneal Inoculation. Microbiology Resource Announcements, 8(46). https://doi.org/10.1128/MRA.01719-18
-
16Academic Journal
المؤلفون: Orjuela, Lorena I., Álvarez-Diaz, Diego A., Morales, Juliana A., Grisales, Nelson, Ahumada, Martha L., Venegas H, Juan, Quiñones, Martha L., Yasnot, María F.
المساهمون: Instituto Nacional de Salud de Colombia, Colciencias
المصدر: Malaria Journal ; volume 18, issue 1 ; ISSN 1475-2875
-
17Academic Journal
المؤلفون: Álvarez-Díaz, Diego Alejandro, Usme-Ciro, José Aldemar, Corchuelo, Sheryll, Naizaque, Julián Ricardo, Rivera, Jorge Alonso, Castiblanco-Martínez, Hernán Darío, Torres-Fernández, Orlando, Rengifo, Aura Caterine
المساهمون: Departamento Administrativo de Ciencia, Tecnología e Innovación
المصدر: Archives of Virology ; volume 168, issue 8 ; ISSN 0304-8608 1432-8798
-
18Academic Journal
المؤلفون: Alvarez Díaz, Diego, Narvaez Sanchez, Raúl
مصطلحات موضوعية: Angiogenic Proteins, Proteínas Angiogénicas, RNA, Long Noncoding, Uterine Cervical Neoplasms, Neoplasias del Cuello Uterino, Colonic Neoplasms, Neoplasias del Colon
وصف الملف: application/pdf
Relation: Iatreia; https://hdl.handle.net/10495/34395; https://revistas.udea.edu.co/index.php/iatreia/article/view/330295
-
19Academic Journal
المؤلفون: Álvarez-Díaz, Diego A., Laiton-Donato, Katherine, Torres-García, Orlando Alfredo, Ruiz-Moreno, Hector Alejandro, Franco-Muñoz, Carlos, Beltran, Maria Angie, Mercado-Reyes, Marcela, Rueda, Miguel Germán, Muñoz, Ana Luisa
المصدر: Virus Research ; volume 308, page 198629 ; ISSN 0168-1702
-
20Academic Journal
المؤلفون: Usme Ciro, José Aldemar, Lopera Madrid, Jaime Alberto, Álvarez Díaz, Diego Alejandro, Enjuanes, Luis, Almazán, Fernando
مصطلحات موضوعية: Virus del Dengue, Dengue Virus, Replicón, Replicon, Flavivirus
وصف الملف: application/pdf
Relation: Intervirology; http://hdl.handle.net/10495/23269