يعرض 1 - 20 نتائج من 23 نتيجة بحث عن '"Ácidos Grasos Poliinsaturados de Cadena Larga"', وقت الاستعلام: 0.74s تنقيح النتائج
  1. 1
  2. 2
    Dissertation/ Thesis

    المؤلفون: Ribes Navarro, Alberto

    Thesis Advisors: Monroig Marzá, Óscar, Navarro Tárrega, Juan Carlos, Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal, Fundação para a Ciência e a Tecnologia, Portugal, Bundesministerium für Bildung und Forschung, Alemania, Agencia Estatal de Investigación

    Relation: info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095119-B-I00/ES/ESTRATEGIAS INNOVADORAS PARA LA MEJORA DE LA BIOSINTESIS DE OMEGA-3 EN INVERTEBRADOS ACUATICOS PARA LA ACUICULTURA/; info:eu-repo/grantAgreement/FCT//BLUEBIO%2F0005%2F2019/PT/; info:eu-repo/grantAgreement/BMBF//FKZ161B0950B; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PCI2020-111960/ES/CONVERSION DE DESECHOS DE ACUICULTURA Y AGRICULTURA EN INGREDIENTES PARA PIENSOS DE LA INDUSTRIA ACUICOLA MEDIANTE EL CULTIVO DE ORGANISMOS DE BAJO NIVEL TROFICO/

  3. 3
  4. 4
    Academic Journal

    المصدر: Grasas y Aceites; Vol. 67 No. 2 (2016); e134 ; Grasas y Aceites; Vol. 67 Núm. 2 (2016); e134 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2016.v67.i2

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1600/1915; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1600/1916; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1600/1917; Adams LA, Angulo P and Lindor KD. 2005. Nonalcoholic fatty liver disease. Can. Med. Assoc. J. 172, 899–905. http://dx.doi.org/10.1503/cmaj.045232 PMid:15795412 PMCid:PMC554876; Angel P, Hattori K, Smeal T and Karin M. 1988. The jun proto-oncogene is positively autoregulated by its product, jun/AP-1. Cell. 55, 875–885. http://dx.doi.org/10.1016/0092-8674(88)90143-2; Araya J, Rodrigo R, Pettinelli P, Araya V, Poniachik J and Videla L. 2010. Decreased liver fatty acid ?-6 and ?-5 desaturase activity in obese patients. Obesity. 18, 1460–1463. http://dx.doi.org/10.1038/oby.2009.379 PMid:19875987; Araya J, Rodrigo R, Videla L, Thielemann L, Orellana M, Pettinelli P and Poniachik J. 2004. Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 106, 635–643. http://dx.doi.org/10.1042/CS20030326 PMid:14720121; Aronis A, Madar Z and Tirosh O. 2005. Mechanism underlying oxidative stress-mediated lipotoxicity: Exposure of J774.2 to macrophages triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic. Biol. Med. 38, 1221–1230. http://dx.doi.org/10.1016/j.freeradbiomed.2005.01.015 PMid:15808420; Baffy G. 2009. Kupffer cells in non-alcoholic fatty liver disease: The emerging view. J. Hepatol. 51, 212–223. http://dx.doi.org/10.1016/j.jhep.2009.03.008 PMid:19447517 PMCid:PMC2694233; Bartlett K and Eaton S. 2004. Mitochondrial ?-oxidation. Eur. J. Biochem. 271, 462–469. http://dx.doi.org/10.1046/j.1432-1033.2003.03947.x PMid:14728673; Bellentani S, Scaglioni F, Marino M and Bedogni G. 2010. Epidemiology of non-alcoholic fatty liver disease (NAFLD). Dig Dis. 28, 155–161. http://dx.doi.org/10.1159/000282080 PMid:20460905; Brunt EM, Janney CG, Di Biscegle AM, Neuschwander-Tetri BA and Bacon BR. 1999. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 94, 2467–2474. http://dx.doi.org/10.1111/j.1572-0241.1999.01377.x PMid:10484010; Delerive P, Fruchart JC and Staels B. 2001. Peroxisome proliferator-activated receptors ininflamation control. J. Endocrinology. 169, 453–459. http://dx.doi.org/10.1677/joe.0.1690453 PMid:11375115; De Roos B, Mavrommatis Y and Brouwer I. 2009. Longchain n-3 polyunsaturated fatty acids: new insights into mechanisms relating to inflammation and coronary heart disease. Br. J. Pharmacol. 158, 413–428. http://dx.doi.org/10.1111/j.1476-5381.2009.00189.x PMid:19422375 PMCid:PMC2757681; De Meijer V, Le H, Meisel J, Sharif M, Pan A, Nos. V and Puder M. 2010. Dietary fat intake promotes the development of hepatic steatosis independently from excess caloric consumption in a murine model. Metabolism. 59, 1092–105. http://dx.doi.org/10.1016/j.metabol.2009.11.006 PMid:20060143 PMCid:PMC3361716; Dorn C, Engelmann J, Saugspier M, Koch A, Hartmann A, Müller M, Spang R, Bossenhorff A and Hellerbrand C. 2014. Increased expression of c-Jun in nonalcoholic fatty liver disease. Lab Invest. 94, 394–408. http://dx.doi.org/10.1038/labinvest.2014.3 PMid:24492282; Dossi CG, Tapia GS, Espinosa A, Videla LA and D'Espessailles A. 2014. Reversal of High-fat diet-induced hepatic steatosis by n-3 LCPUFA: role of PPAR-? and SREBP-1c. J. Nutr. Biochem. 25, 977–984. http://dx.doi.org/10.1016/j.jnutbio.2014.04.011 PMid:24993917; Dowman JK, Tomlinson JW and Newsome PN. 2010. Pathogenesis of non-alcoholic fatty liver disease. Int. J. Med. 103, 71–83. http://dx.doi.org/10.1093/qjmed/hcp158; Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, and Esquivel-Chirino C. 2011. Inflammation, Oxidative Stress, and Obesity. Int J Mol Sci. 12, 3117–32. http://dx.doi.org/10.3390/ijms12053117 PMid:21686173 PMCid:PMC3116179; Hasenfuss SC, Bakiri L, Thomsen M, Williams E, Auwerx J and Wagner E. 2014. Regulation of Steatohepatitis and PPAR? Signaling by Distinct AP-1 Dimers. Cell Metabolism. 19, 84–95. http://dx.doi.org/10.1016/j.cmet.2013.11.018 PMid:24411941 PMCid:PMC4023468; Hong S, Gronert K, Devchand PR, Moussignac RL and Serhan CN. 2003. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells: Autacoids in anti-inflammation. J. Biol. Chem. 278, 14677–14687. http://dx.doi.org/10.1074/jbc.M300218200 PMid:12590139; Houstis N, Rosen E and Lander E. 2006. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948. http://dx.doi.org/10.1038/nature04634 PMid:16612386; Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H, Kohgo Y and Okumura T. 2005. Increased expression of PPAR? in high fat dietinduced liver steatosis in mice. Bioch and Bioph Res Comms. 336, 215–222. http://dx.doi.org/10.1016/j.bbrc.2005.08.070 PMid:16125673; Leamy AK, Egnatchik RA and Young JD. 2013. Molecular Mechanisms and the Role of Saturated Fatty Acids in the Progression of Non-Alcoholic Fatty Liver Disease. Prog Lipid Res. 52:165–174. http://dx.doi.org/10.1016/j.plipres.2012.10.004 PMid:23178552 PMCid:PMC3868987; Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L. 2009. Molecular mechanisms involved in NAFLD progression. J. Mol. Med. 87, 679–695. http://dx.doi.org/10.1007/s00109-009-0464-1 PMid:19352614; Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, et al. 2006. International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacol Rev. 58, 726–741. http://dx.doi.org/10.1124/pr.58.4.5 PMid:17132851; Musso G, Gambino G, and Cassader M. 2009. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog. in Lipid Research. 48, 1–26. http://dx.doi.org/10.1016/j.plipres.2008.08.001 PMid:18824034; Nobili V and Sanyal AJ. 2012. Treatment of nonalcoholic fatty liver disease in adults and children: closer look at the arsenal. J. Gastroenterol. 47, 29–36. http://dx.doi.org/10.1007/s00535-011-0467-x PMid:21983927; Poirier Y, Antonenkov VD, Glumoff T and Hiltunen JK. 2006. Peroxisomal ?-oxidation: A metabolic pathway with multiple functions. Mol Cell Res. 1763, 1413–1426. http://dx.doi.org/10.1016/j.bbamcr.2006.08.034; Shapiro H, Tehilla M, Attal-Singer J, Bruck R, Luzzatti R and Singer P. 2011. The therapeutic potential of longchain omega-3 fatty acids in nonalcoholic fatty liver disease. Clin Nutr. 30, 6–19. http://dx.doi.org/10.1016/j.clnu.2010.06.001 PMid:20619513; Surwit RS, Kuhn CM, Cochrane C, McCubbin JA and Feinglos MN. 1988. Diet-induced type II diabetes in C57BL/6J mice. Diabetes. 37, 1163–1167. http://dx.doi.org/10.2337/diab.37.9.1163 PMid:3044882; Thanos D, Georgopoulos K, Greenberg M and Leder P. 1988. c-jun dimerizes with itself and with c-fos, forming complexes of different DNA binding affinities. Cell. 55, 917–924. http://dx.doi.org/10.1016/0092-8674(88)90147-X; Valenzuela R and Videla L. 2011. The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food Funct. 2, 644–648. http://dx.doi.org/10.1039/c1fo10133a PMid:22008843; Valenzuela R, Espinosa A, Gonz.lez D, Fern.ndez V, Videla LA, Romanque P, et al. 2012. N-3 long-chain polyunsaturated fatty acid supplementation significantly reduces liver oxidative stress in high fat induced steatosis. Plos One. 7, e46400. http://dx.doi.org/10.1371/journal.pone.0046400 PMid:23082120 PMCid:PMC3474802; Videla L and Pettinelli P. 2012. Misregulation of PPAR functioning and its pathogenic consequences associated with nonalcoholic fatty liver disease in human obesity. PPAR Res. 2012, 1–14. http://dx.doi.org/10.1155/2012/107434 PMid:23304111 PMCid:PMC3526338; Ye D, Zhang D, Oltman C, Dellsperger K, Lee HC and Van Rollins M. 2002. Cytochrome P-450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels. J. Pharmacol. Exp. Ther. 303. http://dx.doi.org/10.1124/jpet.303.2.768; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1600

  5. 5
    Academic Journal

    المصدر: Grasas y Aceites; Vol. 67 No. 2 (2016); e129 ; Grasas y Aceites; Vol. 67 Núm. 2 (2016); e129 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2016.v67.i2

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1595/1894; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1595/1895; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1595/1896; Bazinet RP and Layé S. 2014. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 15, 771–785. http://dx.doi.org/10.1038/nrn3820 PMid:25387473; Brenna JT, Salem N Jr., Sinclair AJ, Cunnane SC; International Society for the Study of Fatty Acids and Lipids, ISSFAL. 2009. alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids. 80, 85–91. http://dx.doi.org/10.1016/j.plefa.2009.01.004 PMid:19269799; Bligh EG and Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917. http://dx.doi.org/10.1139/o59-099 PMid:13671378; Carlson SE. 2009. Docosahexaenoic acid supplementation in pregnancy and lactation. Am. J. Clin. Nutr. 89, 678S-684S. http://dx.doi.org/10.3945/ajcn.2008.26811E PMid:19116324 PMCid:PMC2647754; Cheng L, Yu Y, Szabo A, Wu Y, Wang H, Camer D, Huang XF. 2015. Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice. J. Nutr. Biochem. 26, 541–548. http://dx.doi.org/10.1016/j.jnutbio.2014.12.011 PMid:25724108; Cicerale S, Lucas LJ, Keast RS. 2012. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol. 23, 129–135. http://dx.doi.org/10.1016/j.copbio.2011.09.006 PMid:22000808; De Caterina R. 2011. n-3 fatty acids in cardiovascular disease. N. Engl. J. Med. 364, 2439–2450. http://dx.doi.org/10.1056/NEJMra1008153 PMid:21696310; Mozaffarian D and Wu J. 2012. (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J. Nutr. 142, 614S-625S. http://dx.doi.org/10.3945/jn.111.149633 PMid:22279134 PMCid:PMC3278271; Domenichiello AF, Kitson AP, Bazinet RP. 2015. Is docosahexaenoic acid synthesis from ?-linolenic acid sufficient to supply the adult brain?. Prog. Lipid Res. 59, 54–66. http://dx.doi.org/10.1016/j.plipres.2015.04.002 PMid:25920364; Domenichiello AF, Chen CT, Trepanier MO, Stavro PM, Bazinet RP. 2014. Whole body synthesis rates of DHA from ?-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats. J. Lipid Res. 55, 62–74. http://dx.doi.org/10.1194/jlr.M042275 PMid:24212299 PMCid:PMC3927474; Gerster H. 1998. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int. J. Vitam. Nutr. 68, 159–173.; Gibson RA, Muhlhausler B, Makrides M. 2011. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern Child Nutr. 7, 17–26. http://dx.doi.org/10.1111/j.1740-8709.2011.00299.x PMid:21366864; Guillou H, Zadravec D, Martin PG, Jacobsson A. 2010. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 49, 186–199. http://dx.doi.org/10.1016/j.plipres.2009.12.002 PMid:20018209; Haeiwa H, Fujita T, Saitoh Y, Miwa N. 2014. Oleic acid promotes adaptability against oxidative stress in 3T3-L1 cells through lipohormesis. Mol Cell Biochem. 386, 73–83. http://dx.doi.org/10.1007/s11010-013-1846-9 PMid:24234346; Kwan HY, Niu X, Dai W, Tong T, Chao X, Su T, Chan CL, Lee KC, Fu X, Yi H, Yu H, Li T, Tse AK, Fong WF, Pan SY, Lu A, Yu ZL. 2015. Lipidomic-based investigation into the regulatory effect of Schisandrin B on palmitic acid level in non-alcoholic steatotic livers. Sci. Rep. 5, 9114. http://dx.doi.org/10.1038/srep09114 PMid:25766252 PMCid:PMC4358044; Li J, Huang M, Shen X. 2014. The association of oxidative stress and pro-inflammatory cytokines in diabetic patients with hyperglycemic crisis. J. Diabetes Complications. 28, 662– 666. http://dx.doi.org/10.1016/j.jdiacomp.2014.06.008 PMid:25044235; Li H, Min Q, Ouyang C, Lee J, He C, Zou MH, Xie Z. 2014. AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochim. Biophys. Acta. 1842, 1844–1854. http://dx.doi.org/10.1016/j.bbadis.2014.07.002 PMid:25016145; Lim JH, Gerhart-Hines Z, Dominy JE, Lee Y, Kim S, Tabata M, Xiang YK, Puigserver P. 2013. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1? complex. J. Biol. Chem. 288, 7117–7126. http://dx.doi.org/10.1074/jbc.M112.415729 PMid:23329830 PMCid:PMC3591621; Lin LE, Chen CT, Hildebrand KD, Liu Z, Hopperton KE, Bazinet RP. 2015. Chronic dietary n-6 PUFA deprivation leads to conservation of arachidonic acid and more rapid loss of DHA in rat brain phospholipids. J. Lipid Res. 56, 390–402. http://dx.doi.org/10.1194/jlr.M055590 PMid:25477531 PMCid:PMC4306692; Lu Y, Cheng J, Chen L, Li C, Chen G, Gui L, Shen B, Zhang Q. Endoplasmic reticulum stress involved in high-fat diet and palmitic acid-induced vascular damages and fenofibrate intervention. Biochem. Biophys. Res. Commun. 458, 1–7. http://dx.doi.org/10.1016/j.bbrc.2014.12.123 PMid:25592967; Marseglia L, Manti S, D'Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T. 2014. Oxidative stress in obesity: a critical component in human diseases. Int. J. Mol Sci. 16, 378–400. http://dx.doi.org/10.3390/ijms16010378 PMid:25548896 PMCid:PMC4307252; Morrison WR and Smith LM. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5, 600–608. PMid:14221106; Nakamura MT and Nara TY. 2003. Essential fatty acid synthesis and its regulation in mammals. Prostaglandins Leukot Essent Fatty Acids. 68, 145–150. http://dx.doi.org/10.1016/S0952-3278(02)00264-8; Nakamura MT and Nara TY. 2004. Structure, function, and dietary regulation of delta 6, delta 5, and delta9 desaturases. Annu. Rev. Nutr. 24, 345–376. http://dx.doi.org/10.1146/annurev.nutr.24.121803.063211 PMid:15189125; Nissar AU, Sharma A, Tasduq SA. 2015. Palmitic acid induced lipotoxicity is associated with altered lipid metabolism, enhanced CYP450 2E1 and intracellular calcium mediated ER stress in human hepatoma cells. Toxicol. Res. 4, 1344–1358. http://dx.doi.org/10.1039/C5TX00101C; Orr SK, Palumbo S, Bosetti F, Mount HT, Kang JX, Greenwood CE, Ma DW, Serhan CN, Bazinet RP. 2013. Unesterified docosahexaenoic acid is protective in neuroinflammation. J. Neurochem. 127, 78–93. http://dx.doi.org/10.1111/jnc.12392 PMid:23919613 PMCid:PMC4068707; Pardo V, González-Rodríguez Á, Muntané J, Kozma SC, Valverde ÁM. 2015. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection. Food Chem. Toxicol. 80, 298–309. http://dx.doi.org/10.1016/j.fct.2015.03.029 PMid:25846498; Pawlak M, Lefebvre P, Staels B. 2015. Molecular mechanism of PPAR? action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62, 720–33. http://dx.doi.org/10.1016/j.jhep.2014.10.039 PMid:25450203; Rahman I, Kode A, Biswas SK. 2006. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1, 3159–3165. http://dx.doi.org/10.1038/nprot.2006.378 PMid:17406579; Reddy KK, Vidya Rajan VK, Gupta A, Aparoy P, Reddanna P. 2015. Exploration of binding site pattern in arachidonic acid metabolizing enzymes, Cyclooxygenases and Lipoxygenases. BMC Res. Notes. 8, 152–162. http://dx.doi.org/10.1186/s13104-015-1101-4 PMid:25886468 PMCid:PMC4416244; Ruiz-Gutierrez V, Cert A, Rios JJ. 1992. Determination of phospholipid fatty acid and triacylglycerol composition of rat caecal mucosa. J. Chromatogr. 575, 1–6. http://dx.doi.org/10.1016/0378-4347(92)80497-E; Simopoulos AP. 2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood). 233, 674–688. http://dx.doi.org/10.3181/0711-MR-311 PMid:18408140; Simopoulos AP. 2011. Importance of the omega-6/omega-3 balance in health and disease: evolutionary aspects of diet. World Rev. Nutr. Diet. 102, 10–21. http://dx.doi.org/10.1159/000327785 PMid:21865815; Tapia G, Valenzuela R, Espinosa A, Romanque P, Dossi C, Gonzalez-Ma-án D, Videla LA, D'Espessailles A. 2014. N-3 long-chain PUFA supplementation prevents high fat diet induced mouse liver steatosis and inflammation in relation to PPAR-? upregulation and NF-?B DNA binding abrogation. Mol. Nutr. Food Res. 58, 1333–1341. http://dx.doi.org/10.1002/mnfr.201300458 PMid:24436018; Valenzuela A. 2009. Docosahexaenoic acid (DHA), an essential fatty acid for the proper functioning of neuronal cells: Their role in mood disorders. Grasas Aceites. 60, 203–212. http://dx.doi.org/10.3989/gya.085208; Valenzuela R and Videla LA. 2011. The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food Funct. 2, 644–8. http://dx.doi.org/10.1039/c1fo10133a PMid:22008843; Valenzuela R, Espinosa A, González-Ma-án D, D'Espessailles A, Fernández V, Videla LA, Tapia G. 2012. N-3 long-chain polyunsaturated fatty acid supplementation significantly reduces liver oxidative stress in high fat induced steatosis. PLoS One. 7, e46400. http://dx.doi.org/10.1371/journal.pone.0046400 PMid:23082120 PMCid:PMC3474802; Valenzuela R, Gormáz JG, Masson L, Vizcarra M, Cornejo P, Valenzuela A, Tapia G. 2012. Evaluation of the hepatic bioconversion of ?-linoleic acid (ALA) to eicosapentaenoic acid (EPA) and docosahexahenoic acid (DHA) in rats fed with oils from chia (Salvia hispanica) or rosa mosqueta (Rosa rubiginosa). Grasas Aceites. 63, 61–69. http://dx.doi.org/10.3989/gya.057111; Valenzuela B R, Barrera R C, González-Astorga M, Sanhueza C J, Valenzuela B A. 2014. Alpha linolenic acid (ALA) from Rosa canina, sacha inchi and chia oils may increase ALA accretion and its conversion into n-3 LCPUFA in diverse tissues of the rat. Food Funct. 5, 1564–1572. http://dx.doi.org/10.1039/c3fo60688k PMid:24855655; Valenzuela R, Barrera C, Espinosa A, Llanos P, Orellana P, Videla LA. 2015. Reduction in the desaturation capacity of the liver in mice subjected to high fat diet: Relation to LCPUFA depletion in liver and extrahepatic tissues. Prostaglandins Leukot Essent Fatty Acids. 98, 7–14. http://dx.doi.org/10.1016/j.plefa.2015.04.002 PMid:25910408; Videla LA, Rodrigo R, Orellana M, Fernandez V, Tapia G, Qui-ones L, Varela N, Contreras J, Lazarte R, Csendes A, Rojas J, Maluenda F, Burdiles P, Diaz JC, Smok G, Thielemann L, Poniachik J. 2004. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin. Sci. (Lond). 106, 261–268. http://dx.doi.org/10.1042/CS20030285 PMid:14556645; Videla LA, Rodrigo R, Araya J, Poniachik J. 2006. Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease. Trends Mol. Med. 12, 555–558. http://dx.doi.org/10.1016/j.molmed.2006.10.001 PMid:17049925; Videla LA, Tapia G, Rodrigo R, Pettinelli P, Haim D, Santiba-ez C, Araya AV, Smok G, Csendes A, Gutierrez L, Rojas J, Castillo J, Korn O, Maluenda F, Díaz JC, Rencoret G, Poniachik J. 2009. Liver NF-kappaB and AP-1 DNA binding in obese patients. Obesity (Silver Spring). 17, 973–979. http://dx.doi.org/10.1038/oby.2008.601 PMid:19165171; Visioli F, Caruso D, Grande S, Bosisio R, Villa M, Galli G, Sirtori C, Galli C. 2005. Virgin Olive Oil Study (VOLOS): vasoprotective potential of extra virgin olive oil in mildly dyslipidemic patients. Eur. J. Nutr. 44, 121–127. http://dx.doi.org/10.1007/s00394-004-0504-0 PMid:15309433; Zhu L, Liu Z, Feng Z, Hao J, Shen W, Li X, Sun L, Sharman E, Wang Y, Wertz K, Weber P, Shi X, Liu J. 2010. Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells. J. Nutr. Biochem. 21, 1089–1098. http://dx.doi.org/10.1016/j.jnutbio.2009.09.006 PMid:20149621; Zrelli H, Matsuoka M, Kitazaki S, Zarrouk M, Miyazaki H. 2011. Hydroxytyrosol reduces intracellular reactive oxygen species levels in vascular endothelial cells by upregulating catalase expression through the AMPK-FOXO3a pathway. Eur J Pharmacol. 660, 275–282 http://dx.doi.org/10.1016/j.ejphar.2011.03.045 PMid:21497591; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1595

  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
  10. 10
  11. 11
  12. 12
    Dissertation/ Thesis
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Dissertation/ Thesis

    المؤلفون: Ribes Navarro, Alberto

    المساهمون: Monroig Marzá, Óscar, Navarro Tárrega, Juan Carlos, Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal, Fundação para a Ciência e a Tecnologia, Portugal, Bundesministerium für Bildung und Forschung, Alemania, Agencia Estatal de Investigación

    Relation: info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095119-B-I00/ES/ESTRATEGIAS INNOVADORAS PARA LA MEJORA DE LA BIOSINTESIS DE OMEGA-3 EN INVERTEBRADOS ACUATICOS PARA LA ACUICULTURA/; info:eu-repo/grantAgreement/FCT//BLUEBIO%2F0005%2F2019/PT/; info:eu-repo/grantAgreement/BMBF//FKZ161B0950B; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PCI2020-111960/ES/CONVERSION DE DESECHOS DE ACUICULTURA Y AGRICULTURA EN INGREDIENTES PARA PIENSOS DE LA INDUSTRIA ACUICOLA MEDIANTE EL CULTIVO DE ORGANISMOS DE BAJO NIVEL TROFICO/; http://hdl.handle.net/10251/207006