-
1Academic Journal
المصدر: Мать и дитя в Кузбассе, Vol 25, Iss 3, Pp 26-32 (2024)
مصطلحات موضوعية: мужское бесплодие, женское бесплодие, генетические нарушения, aufi, экстракорпоральное оплодотворение, интрацитоплазматическое введение спермы, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Алексей Андреевич Шмелев, Алексей Геннадьевич Тришкин, Антон Игоревич Лесников, Лилия Владиславовна Курганова, Алексей Дмитриевич Бушмакин, Алексей Сергеевич Ильин
المصدر: Medicina v Kuzbasse, Vol 23, Iss 2, Pp 68-71 (2024)
مصطلحات موضوعية: мужское бесплодие, иммунологический фактор, показатели спермограммы, антиспермальные антитела, mar-тест, Medicine
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Шмелев, Алексей Андреевич, Тришкин, Алексей Геннадьевич, Лесников, Антон Игоревич, Курганова, Лилия Владиславовна, Бушмакин, Алексей Дмитриевич, Ильин, Алексей Сергеевич
المصدر: Medicine in Kuzbass; Том 23, № 2 (2024): июнь; 68-71 ; Медицина в Кузбассе; Том 23, № 2 (2024): июнь; 68-71 ; 2588-0411 ; 1819-0901
مصطلحات موضوعية: male infertility, immunological factor, spermogram parameters, antisperm antibodies, MAR test, мужское бесплодие, иммунологический фактор, показатели спермограммы, антиспермальные антитела, MAR-тест
وصف الملف: text/html; application/pdf
-
4Academic Journal
المصدر: Mother and Baby in Kuzbass; № 3 (2024): сентябрь ; Мать и Дитя в Кузбассе; № 3 (2024): сентябрь ; 2542-0968 ; 1991-010X
مصطلحات موضوعية: male infertility, female infertility, genetic disorders, AUFI, in vitro fertilization, intracytoplasmic sperm injection, мужское бесплодие, женское бесплодие, генетические нарушения, экстракорпоральное оплодотворение, интрацитоплазматическое введение спермы
وصف الملف: text/html
-
5Academic Journal
المؤلفون: Bezmenko A.A., Protoshchak V.V., Ivanov A.O., Mosyagin I.G., Zakharov I.S., Kutelev G.M., Tyagnerev A.T., Kovlen D.V., Iglovikov N.Y., Tkachuk V.A., Zverev D.P., Bobrov Y.M., Pluzhnik M.S.
المساهمون: 1
المصدر: Marine Medicine; Vol 10, No 1 (2024); 54-63 ; Морская медицина; Vol 10, No 1 (2024); 54-63 ; 2587-7828 ; 2413-5747
مصطلحات موضوعية: marine medicine, reproductive health of the Navy personnel, medical and psychological rehabilitation, male infertility in military personnel, risk factors of male infertility, military professional activity, spermogram, sexual function in military personnel, морская медицина, репродуктивное здоровье военнослужащих Военно-Морского Флота, медико-психологическая реабилитация, мужское бесплодие у военнослужащих, факторы риска мужского бесплодия, военно-профессиональная деятельность, спермограмма, половая функция у военнослужащих
وصف الملف: application/pdf
Relation: https://seamed.bmoc-spb.ru/jour/article/view/674/613; https://seamed.bmoc-spb.ru/jour/article/downloadSuppFile/674/230; https://seamed.bmoc-spb.ru/jour/article/downloadSuppFile/674/231; https://seamed.bmoc-spb.ru/jour/article/downloadSuppFile/674/232; https://seamed.bmoc-spb.ru/jour/article/downloadSuppFile/674/233; https://seamed.bmoc-spb.ru/jour/article/downloadSuppFile/674/339; https://seamed.bmoc-spb.ru/jour/article/downloadSuppFile/674/340; https://seamed.bmoc-spb.ru/jour/article/view/674; KRJKQO
-
6Academic Journal
المؤلفون: O. I. Apolikhin, S. S. Krasnyak, О. И. Аполихин, С. С. Красняк
المصدر: PULMONOLOGIYA; Том 34, № 3 (2024); 395-400 ; Пульмонология; Том 34, № 3 (2024); 395-400 ; 2541-9617 ; 0869-0189
مصطلحات موضوعية: эректильная дисфункция, male reproductive health, infertility, oxidative stress, erectile dysfunction, мужское репродуктивное здоровье, бесплодие, окислительный стресс
وصف الملف: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/4561/3662; Tuteja N., Chandra M., Tuteja R., Misra M.K. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J. Biomed. Biotechnol. 2004; 2004 (4): 227–237. DOI:10.1155/S1110724304402034.; Zhao Y., Vanhoutte P.M., Leung S.W. Vascular nitric oxide: beyond eNOS. J. Pharmacol. Sci. 2015; 129 (2): 83–94. DOI:10.1016/j.jphs.2015.09.002.; Ying L., Hofseth L.J. An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res. 2007; 67 (4): 1407–1410. DOI:10.1158/0008-5472.CAN-06-2149.; Förstermann U., Sessa W.C. Nitric oxide synthases: regulation and function. Eur. Heart J. 2012; 33 (7): 829–837. DOI:10.1093/eurheartj/ehr304.; Wang J., He Q., Yan X. et al. Effect of exogenous nitric oxide on sperm motility in vitro. Biol. Res. 2014; 47 (1): 44. DOI:10.1186/0717-6287-47-44.; Lanas A. Role of nitric oxide in the gastrointestinal tract. Arthritis Res. Ther. 2008; 10 (Suppl. 2): S4. DOI:10.1186/ar2465.; Cuzzocrea S., Wayman N.S., Mazzon E. et al. The cyclopentenone prostaglandin 15-deoxy-delta(12, 14)-prostaglandin J(2)attenuates the development of acute and chronic inflammation. Mol. Pharmacol. 2002; 61 (5): 997–1007. DOI:10.1124/mol.61.5.997.; Tejero J., Shiva S., Gladwin M.T. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol. Rev. 2019; 99 (1): 311–379. DOI:10.1152/physrev.00036.2017.; Stuehr D.J. Enzymes of the L-arginine to nitric oxide pathway. J. Nutr. 2004; 134 (10, Suppl.): 2748–2751S. DOI:10.1093/jn/134.10.2748S.; Feng M.S., Guo P., Jiang L.X. et al. Synthesis of novel methotrexate derivatives with inhibition activity of nitric oxide synthase. Chin. Chem. Lett. 2009; 20 (2): 178–180. DOI:10.1016/j.cclet.2008.10.027.; Mukherjee P., Cinelli M.A., Kang S., Silverman R.B. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem. Soc. Rev. 2014; 43 (19): 6814–6838. DOI:10.1039/C3CS60467E.; Pavanelli W.R., Gutierrez F.R.S., da Silva J.J.N. et al. The effects of nitric oxide on the immune response during giardiasis. Braz. J. Infect. Dis. 2010; 14 (6): 606–612. DOI:10.1016/S1413-8670(10)70119-7.; Rojas J., Chávez-Castillo M., Olivar L.C. et al. Physiologic course of female reproductive function: a molecular look into the prologue of life. J. Preg. 2015; 2015: 715735. DOI:10.1155/2015/715735.; Lu J., Wang Z., Cao J. et al. A novel and compact review on the role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2018; 16 (1): 80. DOI:10.1186/s12958-018-0391-5.; Devine P.J., Perreault S.D., Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol. Reprod. 2012; 86 (2): 27. DOI:10.1095/biolreprod.111.095224.; Motta A., Estevez A., Tognetti T. et al. Dual effects of nitric oxide in functional and regressing rat corpus luteum. Mol. Hum Reprod. 2001; 7 (1): 43–47. DOI:10.1093/molehr/7.1.43.; Agarwal A., Aponte-Mellado A., Premkumar B.J. et al. The effects of oxidative stress on female reproduction: a review. Reprod. Biol. Endocrinol. 2012; 10: 49. DOI:10.1186/1477-7827-10-49.; Premkumar B.J., Aponte A., Shaman A., Agarwal A. Reactive oxygen species and female infertility. In: Laher I., ed. Systems biology of free radicals and antioxidants. Berlin, Heidelberg: Springer; 2014: 2743–2772. DOI:10.1007/978-3-642-30018-9_114.; Kong L., Wei Q., Fedail J.S. et al. Effects of thyroid hormones on the antioxidative status in the uterus of young adult rats. J. Reprod. Dev. 2015; 61 (3): 2019–2027. DOI:10.1262/jrd.2014-129.; Francavilla F., Santucci R., Macerola B. et al. Nitric oxide synthase inhibition in human sperm affects sperm-oocyte fusion but not zona pellucida binding. Biol. Reprod. 2000; 63 (2): 425–429. DOI:10.1095/biolreprod63.2.425.; Sengupta P., Dutta S., Alahmar A.T., D’souza U.J.A. Reproductive tract infection, inflammation and male infertility. Chem. Biol. Lett. 2020; 7 (2): 75–84. Available at: https://pubs.thesciencein.org/journal/index.php/cbl/article/view/137; Doshi S.B., Khullar K., Sharma R.K., Agarwal A. Role of reactive nitrogen species in male infertility. Reprod. Biol. Endocrinol. 2012; 10: 109. DOI:10.1186/1477-7827-10-109.; Favini R., Aldieri E., Revelli A. et al. Nitric oxide synthesis in human nonpregnant myometrium and uterine myomas. Fertil. Steril. 2003; 79 (Suppl. 1): 749–753. DOI:10.1016/S0015-0282(02)04825-2.; Traish A.M., Goldstein I., Kim N.N. Testosterone and erectile function: from basic research to a new clinical paradigm for managing men with androgen insufficiency and erectile dysfunction. Eur. Urol. 2007; 52 (1): 54–70. DOI:10.1016/j.eururo.2007.02.034.; Napoli C., Ignarro L.J. Nitric oxide-releasing drugs. Annu. Rev. Pharmacol. Toxicol. 2003; 43: 97–123. DOI:10.1146/annurev.pharmtox.43.100901.140226.; Herrero M.B., Gagnon C. Nitric oxide: a novel mediator of sperm function. J. Androl. 2001; 22 (3): 349–356. DOI:10.1002/j.1939-4640.2001.tb02188.x.; Balercia G., Moretti S., Vignini A. et al. Role of nitric oxide concentrations on human sperm motility. J. Androl. 2004; 25 (2): 245–249. DOI:10.1002/j.1939-4640.2004.tb02784.x.; Wu T.P., Huang B.M., Tsai H.C. et al. Effects of nitric oxide on human spermatozoa activity, fertilization and mouse embryonic development. Arch. Androl. 2004; 50 (3): 173–179. DOI:10.1080/01485010490455494.; Agarwal A., Leisegang K., Sengupta P. Oxidative stress in pathologies of male reproductive disorders. In: Pathology. London: Academic Press; 2020: 15–27. DOI:10.1016/B978-0-12-815972-9.00002-0.; Ramya T., Misro M.M., Sinha D. et al. Altered levels of seminal nitric oxide, nitric oxide synthase, and enzymatic antioxidants and their association with sperm function in infertile subjects. Fertil. Steril. 2011; 95 (1): 135–140. DOI:10.1016/j.fertnstert.2010.06.044.; Rosselli M., Dubey R.K., Imthurn B. et al. Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Hum. Reprod. 1995; 10 (7): 1786–1790. DOI:10.1093/oxfordjournals.humrep.a136174.; O’Bryan M.K., Zini A., Cheng C.Y., Schlegel P.N. Human sperm endothelial nitric oxide synthase expression: correlation with sperm motility. Fertil. Steril. 1998; 70 (6): 1143–1147. DOI:10.1016/S0015-0282(98)00382-3.; Miraglia E., Rullo M.L., Bosia A. et al. Stimulation of the nitric oxide/cyclic guanosine monophosphate signaling pathway elicits human sperm chemotaxis in vitro. Fertil. Steril. 2007; 87 (5): 1059–1063. DOI:10.1016/j.fertnstert.2006.07.1540.; Tomlinson M., East S., Barratt C. et al. Preliminary communication: possible role of reactive nitrogen intermediates in leucocyte-mediated sperm dysfunction. Am. J. Reprod. Immunol. 1992; 27 (1–2): 89–92. DOI:10.1111/j.1600-0897.1992.tb00730.x.; Bolaños J.P., Delgado-Esteban M., Herrero-Mendez A. et al. Regulation of glycolysis and pentose-phosphate pathway by nitric oxide: impact on neuronal survival. Biochim. Biophys Acta. 2008; 1777 (7-8): 789–793. DOI:10.1016/j.bbabio.2008.04.011.; Archer S. Measurement of nitric oxide in biological models. FASEB J. 1993; 7 (2): 349–360. DOI:10.1096/fasebj.7.2.8440411.; Huang I., Jones J., Khorram O. Human seminal plasma nitric oxide: correlation with sperm morphology and testosterone. Med. Sci. Monitor. 2006; 12 (3): CR103–106. Available at: https://medscimonit.com/abstract/index/idArt/447106; Theam O.C., Dutta S., Sengupta P. Role of leucocytes in reproductive tract infections and male infertility. Chem. Biol. Lett. 2020; 7 (2): 124–130. Available at: https://pubs.thesciencein.org/journal/index.php/cbl/article/view/143; Irez T., Bicer S., Sahin E. et al. Cytokines and adipokines in the regulation of spermatogenesis and semen quality. Chem. Biol. Lett. 2020; 7 (2): 131–139. Available at: https://pubs.thesciencein.org/journal/index.php/cbl/article/view/173; Shiraishi K., Naito K. Nitric oxide produced in the testis is involved in dilatation of the internal spermatic vein that compromises spermatogenesis in infertile men with varicocele. BJU Int. 2007; 99 (5): 1086–1090. DOI:10.1111/j.1464-410X.2007.06800.x.; Mitropoulos D., Deliconstantinos G., Zervas A. et al. Nitric oxide synthase and xanthine oxidase activities in the spermatic vein of patients with varicocele: a potential role for nitric oxide and peroxynitrite in sperm dysfunction. J. Urol. 1996; 156 (6): 1952–1958. DOI:10.1016/S0022-5347(01)65403-X.; Ozbek E., Turkoz Y., Gokdeniz R. et al. Increased nitric oxide production in the spermatic vein of patients with varicocele. Eur. Urol. 2000; 37 (2): 172–175. DOI:10.1159/000020135.; Beckman J.S., Beckman T.W., Chen J. et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. 1990; 87 (4): 1620–1624. DOI:10.1073/pnas.87.4.1620.; Lee N.P., Cheng C.Y. Nitric oxide and cyclic nucleotides: their roles in junction dynamics and spermatogenesis. In: Cheng C.Y., ed. Advances in experimental medicine and biology. 3rd Edn. New York: Springer; 2008; Vol. 636: 172–185. Available at: https://www.scirp.org/reference/referencespapers?referenceid=429451; https://journal.pulmonology.ru/pulm/article/view/4561
-
7Academic Journal
المؤلفون: M. I. Shtaut, N. V. Oparina, M. V. Andreeva, L. F. Kurilo, A. O. Solovova, T. M. Sorokina, N. V. Shilova, A. V. Polyakov, V. B. Chernykh, М. И. Штаут, Н. В. Опарина, М. В. Андреева, Л. Ф. Курило, О. А. Соловова, Т. М. Сорокина, Н. В. Шилова, А. В. Поляков, В. Б. Черных
المساهمون: The study was carried out under the state assignment for the Research Centre for Medical Genetics., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ»
المصدر: Medical Genetics; Том 23, № 2 (2024); 46-54 ; Медицинская генетика; Том 23, № 2 (2024); 46-54 ; 2073-7998
مصطلحات موضوعية: AZF локус, microdeletions, male infertility, sex chromosomes, spermatogenesis, translocations, AZF locus, олигозооспермия, микроделеции, мужское бесплодие, половые хромосомы, сперматогенез, транслокации
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2421/1773; Gardner and Sutherland’s Chromosome abnormalities and genetic counseling. 5th edition. R.J. McKinlay Gardner, D.J. Amor. Oxford University Press 2018.; Nielsen J., Rasmussen K. Y/autosomal translocations. Clin Genet. 1976;9(6):609-617.; Hsu L.Y. Phenotype/karyotype correlations of Y chromosome aneuploidy with emphasis on structural aberrations in postnatally diagnosed cases. Am J Med Genet. 1994;53(2):108-140.; Alitalo T., Tiihonen J., Hakola P., de la Chapelle A. Molecular characterization of a Y;15 translocation segregating in a family. Hum Genet. 1988;79(1):29-35.; Черных В.Б. Макро- и микроструктурные перестройки Y хромосомы. Медицинская генетика. 2007; 10: 45-52.; Onrat S.T., Söylemez Z., Elmas M. 46,XX,der(15),t(Y;15)(q12;p11) karyotype in an azoospermic male. Indian J Hum Genet. 2012;18(2):241-245.; Gonzales J., Lesourd S., Dutrillaux B. Mitotic and meiotic analysis of a reciprocal translocation t(Y;3) in an azoospermic male. Hum Genet. 1981;57(1):111-114.; Viguié F., Romani F., Dadoune J.P. Male infertility in a case of (Y; 6) balanced reciprocal translocation. Mitotic and meiotic study. Hum Genet. 1982;62(3):225-7.; Brisset S., Izard V., Misrahi M. et al. Cytogenetic, molecular and testicular tissue studies in an infertile 45,X male carrying an unbalanced (Y;22) translocation: case report. Hum Reprod. 2005;20(8):2168-2172.; McGowan-Jordan J., Hantings R.J., Moore S. ISCN 2020: an international system for human cytogenomic nomenclature (2020). S. Karger: Medical and Scientific Publishers; 2020.; WHO laboratory manual for the examination and processing of human semen. 5th edition. 2010; Курило Л.Ф., Дубинская В.П., Остроумова Т.В. и др. Оценка сперматогенеза по незрелым половым клеткам эякулята. Проблемы репродукции 1995;3:33-38.; Mekkawy M.K., El Guindi A.M., Mazen I.M. et al. An infertile azoospermic male with 45,X karyotype and a unique complex (Y;14);(Y;22) translocation: cytogenetic and molecular characterization. J Assist Reprod Genet. 2018;35(8):1503-1508.; Mancini A., Zollino M., Leone E. et al. A case of 45,X male: genetic reevaluation and hormonal and metabolic follow-up in adult age. Fertil Steril. 2008;90(5):2011.e17-21.; Bilen S., Okten A., Karaguzel G. et al. A 45 X male patient with 7q distal deletion and rearrangement with SRY gene translocation: a case report. Genet Couns. 2013;24(3):299-305.; Qin S., Wang X., Wang J. et al. Verification of a cryptic t(Y;15) translocation in a male with an apparent 45,X karyotype. Mol Cytogenet. 2022;15(1):3.; Maraschio P., Tupler R., Dainotti E. et al. Molecular analysis of a human Y;1 translocation in an azoospermic male. Cytogenet Cell Genet. 1994;65(4):256-260.; Buonadonna A.L., Cariola F, Caroppo E et al. Molecular and cytogenetic characterization of an azoospermic male with a de-novo Y;14 translocation and alternate centromere inactivation. Hum Reprod. 2002;17(3):564-569.; Jiang Y.T., Zhang H.G., Wang R.X. et al. Novel Y chromosome breakpoint in an infertile male with a de novo translocation t(Y;16): a case report. J Assist Reprod Genet. 2012;29(12):1427-1430.; Pinho M.J., Neves R., Costa P. et al. Unique t(Y;1)(q12;q12) reciprocal translocation with loss of the heterochromatic region of chromosome 1 in a male with azoospermia due to meiotic arrest: a case report. Hum Reprod. 2005;20(3):689-696.; Wang D., Chen R., Kong S. et al. Cytogenic and molecular studies of male infertility in cases of Y chromosome balanced reciprocal translocation. Mol Med Rep. 2017;16(2):2051-2054.; Deng S., Zhang H., Liu X. et al. Cytogenetic and molecular detection of a rare unbalanced Y;3 translocation in an infertile male: A case report. Medicine (Baltimore). 2020;99(26):e20863.; Röpke A., Stratis Y., Dossow-Scheele D. et al. Mosaicism for an unbalanced Y;21 translocation in an infertile man: a case report. J Assist Reprod Genet. 2013;30(12):1553-1558.; Giltay J.C., Kastrop P.M., Tiemessen C.H. et al. Sperm analysis in a subfertile male with a Y;16 translocation, using four-color FISH. Cytogenet Cell Genet. 1999;84(1-2):67-72.; Alves C., Carvalho F., Cremades N. et al. Unique (Y;13) translocation in a male with oligozoospermia: cytogenetic and molecular studies. Eur J Hum Genet. 2002;10(8):467-474.; Vialard F., Molina-Gomes D., Roume J. et al. Case report: Meiotic segregation in spermatozoa of a 46,X,t(Y;10)(q11.2;p15.2) fertile translocation carrier. Reprod Biomed Online. 2009;18(4):549-554.; Delobel B., Djlelati R., Gabriel-Robez O. et al. Y-autosome translocation and infertility: usefulness of molecular, cytogenetic and meiotic studies. Hum Genet. 1998;102(1):98-102.; Mennicke K., Diercks P., Schlieker H. et al. Molecular cytogenetic diagnostics in sperm. Int J Androl. 1997;20 Suppl 3:11-19.; Kékesi A., Erdei E., Török M. et al. Segregation of chromosomes in spermatozoa of four Hungarian translocation carriers. Fertil Steril. 2007;88(1):212.e5-11.; https://www.medgen-journal.ru/jour/article/view/2421
-
8Academic Journal
المؤلفون: M. V. Andreeva, L. F. Kurilo, V. B. Chernykh, М. В. Андреева, Л. Ф. Курило, В. Б. Черных
المساهمون: The work was carried out under the state assignment for the Research Centre for Medical Genetics., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ».
المصدر: Medical Genetics; Том 23, № 3 (2024); 3-11 ; Медицинская генетика; Том 23, № 3 (2024); 3-11 ; 2073-7998
مصطلحات موضوعية: фертильность, male infertility, meiosis, germ cells, spermatogenesis, fertility, мужское бесплодие, мейоз, половые клетки, сперматогенез
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2451/1775; Zegers-Hochschild F., Adamson G.D., de Mouzon J., et al. International Committee for Monitoring Assisted Reproductive Technology; World Health Organization. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril. 2009;92(5):1520-4. doi:10.1016/j.fertnstert.2009.09.009.; Sharlip I.D., Jarow J.P., Belker A.M., et al. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873-82. doi:10.1016/s0015-0282(02)03105-9.; Thonneau P., Marchand S., Tallec A., et al. Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988-1989). Hum Reprod. 1991;6(6):811-6. doi:10.1093/oxfordjournals.humrep.a137433.; WHO laboratory manual for the examination and processing of human semen. 5th ed. WHO, 2010. 271 p.; Chandley A.C. The chromosomal basis of human infertility. Br Med Bull. 1979;35(2):181-6. doi:10.1093/oxfordjournals.bmb.a071567.; Mattei M.G., Mattei J.F., Ayme S., Giraud F. X-autosome translocations: cytogenetic characteristics and their consequences. Hum Genet. 1982;61(4):295-309. doi:10.1007/BF00276593.; McKinlay Gardner R.J., Amor D.J. Gardner and Sutherland’s Chromosome Abnormalities and Genetic Counseling, 5 edn, Oxford Monographs on Medical Genetics (New York, 2018; online edn, Oxford Academic, 1 Feb. 2018), https://doi.org/10.1093/med/9780199329007.001.0001; Madan K. Balanced structural changes involving the human X: effect on sexual phenotype. Hum Genet. 1983;63(3):216-21. doi:10.1007/BF00284652.; Diedrich U., Hansmann I. A familial X-autosome translocation with the breakpoint in the “critical region”. Hum Genet. 1985;70(3):281-3. doi:10.1007/BF00273458.; Choi L., Levy G., Donlon T., et al. Azoospermia Secondary to a Novel X-Autosomal Reciprocal Translocation: 46,Y, t(X:16) (p22.1:p11.2). Mil Med. 2020;185(9-10):e1860-e1863. doi:10.1093/milmed/usaa047.; Karaer K., Ergun M.A., Weise A., et al. The case of an infertile male with an uncommon reciprocal X-autosomal translocation: how does this affect male fertility? Genet Couns. 2010;21(4):397-404. PMID: 21290969.; Leichtman D.A., Schmickel R.D., Gelehrter T.D., et al. Familial Turner syndrome. Ann Intern Med. 1978;89(4):473-6. doi:10.7326/0003-4819-89-4-473.; Li Y., Sha Y., Wei Z., et al. A familial analysis of two brothers with azoospermia caused by maternal 46,Y, t(X;1)(q28;q21) chromosomal abnormality. Andrologia. 2021;53(1):e13867. doi:10.1111/and.13867.; Dutrillaux B., Couturier J., Rotman J., et al. Stérilité et translocation familiale t (1q-;Xq+ [Sterility and familial t (1q-;Xq+) translocation]. C R Acad Hebd Seances Acad Sci D. 1972 12;274(24):3324-7. French. PMID: 4626028.; Quack B., Speed R.M., Luciani J.M., et al. Meiotic analysis of two human reciprocal X-autosome translocations. Cytogenet Cell Genet. 1988;48(1):43-7. doi:10.1159/000132583.; Solari A.J., Rahn I.M., Ferreyra M.E., Carballo M.A. The behavior of sex chromosomes in two human X-autosome translocations: failure of extensive X-inactivation spreading. Biocell. 2001;25(2):155-66. PMID: 11590891.; Perrin A., Vialard F., Douet-Guilbert N., et al. Meiotic segregation of X-autosome translocation in two carriers and implications for assisted reproduction. Reprod Biomed Online. 2009;18(6):850-5. doi:10.1016/s1472-6483(10)60036-3.; Dong Y., Pan Y., Wang R., et al. Copy number variations in spermatogenic failure patients with chromosomal abnormalities and unexplained azoospermia. Genet Mol Res. 2015;14(4):16041-9. doi:10.4238/2015.December.7.17.; Chamayou S., Sicali M., Lombardo D., et al. The decision on the embryo to transfer after Preimplantation Genetic Diagnosis for X-autosome reciprocal translocation in male carrier. Mol Cytogenet. 2018;11:63. doi:10.1186/s13039-018-0409-x.; Kalz-Füller B., Sleegers E., Schwanitz G., Schubert R. Characterisation, phenotypic manifestations and X-inactivation pattern in 14 patients with X-autosome translocations. Clin Genet. 1999;55(5):362-6. doi:10.1034/j.1399-0004.1999.550511.x.; Cantú J.M., Díaz M., Möller M., et al. Azoospermia and duplication 3qter as distinct consequences of a familial t(X;3) (q26;q13.2). Am J Med Genet. 1985;20(4):677-84. doi:10.1002/ajmg.1320200413.; Stengel-Rutkowski S., Zankl H., Rodewald A., et al. Aspermia, associated with a presumably balanced X/autosomal translocation karyotype 46,Y,t(X;5)(q28;q11). Hum Genet. 1976 28;31(1):97-106. doi:10.1007/BF00270405.; Требка Е.Г., Богачева А.В., Гусина Н.Б. Хромосомные транслокации как причина олигозооспермии тяжелой степени и необструктивной азооспермии у мужчин. Молекулярная и прикладная генетика. 2019;26:115-125.; Lee S., Lee S.H., Chung T.G., et al. Molecular and cytogenetic characterization of two azoospermic patients with X-autosome translocation. J Assist Reprod Genet. 2003;20(9):385-9. doi:10.1023/a:1025437329427.; Zhang H.G., Wang R.X., Li L.L., et al. Male carriers of balanced reciprocal translocations in Northeast China: sperm count, reproductive performance, and genetic counseling. Genet Mol Res. 2015;14(4):18792-8. doi:10.4238/2015.; Alhalabi M., Jaber B., Al-Baroudi B., Alchamat G.A. A Rare Inherited Reciprocal Translocation Found in Two Male Infertile Siblings. JFIV Reprod Med Genet 2014; 2:1 doi:10.4172/2375-4508.1000120; Ishikawa T., Kondo Y., Yamaguchi K., et al. An unusual reciprocal X-autosome translocation in an infertile azoospermic man. Fertil Steril. 2007;88(3):705.e15-7. doi:10.1016/j.fertnstert.2006.12.067.; Buckton K.E., Jacobs P.A., Rae L.A., et al. An inherited X-autosome translocation in man. Ann Hum Genet. 1971;35(2):171-8. doi:10.1111/j.1469-1809.1956.tb01390.x.; Hwang S.H., Lee S.M., Seo E.J., et al. [A case of male infertility with a reciprocal translocation t(X;14)(p11.4;p12)]. Korean J Lab Med. 2007;27(2):139-42. Korean. doi:10.3343/kjlm.2007.27.2.139.; Fraccaro M., Maraschio P., Pasquali F., Scappaticci S. Women heterozygous for deficiency of the (p21 leads to pter) region of the X chromosome are fertile. Hum Genet. 1977;39(3):283-92. doi:10.1007/BF00295421.; Szvetko A., Martin N., Joy C., et al. Detection of chromosome x;18 breakpoints and translocation of the xq22.3;18q23 regions resulting in variable fertility phenotypes. Case Rep Genet. 2012;2012:681747. doi:10.1155/2012/681747.; Ma S., Yuen B.H., Penaherrera M., et al. ICSI and the transmission of X-autosomal translocation: a three-generation evaluation of X;20 translocation: case report. Hum Reprod. 2003;18(7):1377-82. doi:10.1093/humrep/deg247.; Ghieh F., Barbotin A.L., Prasivoravong J., et al. Azoospermia and reciprocal translocations: should whole-exome sequencing be recommended? Basic Clin Androl. 2021;31(1):27. doi:10.1186/s12610-021-00145-5.; Faed M.J., Robertson J., Lamont M.A., et al. A cytogenetic survey of men being investigated for subfertility. J Reprod Fertil. 1979;56(1):209-16. doi:10.1530/jrf.0.0560209.; Cuoco C., Gimelli G., Maraschio P., Pasquali F. X-autosomal translocations and male sterility. Clin Genet. 1980;17:61-62.; Grzesiuk J.D., Pereira C.S., Grangeiro C.H., et al. Familial chromosomal translocation X; 22 associated with infertility and recurrent X mosaicism. Mol Cytogenet. 2016 Jun 15;9:45. doi:10.1186/s13039-016-0249-5. Erratum in: Mol Cytogenet. 2016;9:53.; Marmor D., Taillemite J.L., Van den Akker J., et al. Semen analysis in subfertile balanced-translocation carriers. Fertil Steril. 1980;34(5):496-502. doi:10.1016/s0015-0282(16)45144-7.; Jalbert P., Sele B., Jalbert H. Reciprocal translocations: a way to predict the mode of imbalanced segregation by pachytene-diagram drawing. Hum Genet. 1980;55(2):209-22. doi:10.1007/BF00291769.; Alavattam K.G., Maezawa S., Andreassen P.R., Namekawa S.H. Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cell Mol Life Sci. 2021;79(1):18. doi:10.1007/s00018-021-04075-3.; Oliver-Bonet M., Ko E., Martin R.H. Male infertility in reciprocal translocation carriers: the sex body affair. Cytogenet Genome Res. 2005;111(3-4):343-6. doi:10.1159/000086908.; Gabriel-Robez O., Ratomponirina C., Dutrillaux B., et al. Meiotic association between the XY chromosomes and the autosomal quadrivalent of a reciprocal translocation in two infertile men, 46,XY,t(19;22) and 46,XY,t(17;21). Cytogenet Cell Genet. 1986;43(3-4):154-60. doi:10.1159/000132314.; Perrin A., Douet-Guilbert N., Le Bris M.J., et al. Segregation of chromosomes in sperm of a t(X;18)(q11;p11.1) carrier inherited from his mother: case report. Hum Reprod. 2008;23(1):227-30. doi:10.1093/humrep/dem359.; https://www.medgen-journal.ru/jour/article/view/2451
-
9Academic Journal
المؤلفون: A. A. Abramov, А. А. Абрамов
المصدر: Epidemiology and Vaccinal Prevention; Том 23, № 2 (2024); 25-35 ; Эпидемиология и Вакцинопрофилактика; Том 23, № 2 (2024); 25-35 ; 2619-0494 ; 2073-3046
مصطلحات موضوعية: мужское бесплодие, sexually transmitted infections, urogenital chlamydia, gonorrhea, complications, pelvic inflammatory diseases, female infertility, male infertility, инфекции, передающиеся половым путём, урогенитальный хламидиоз, гонорея, осложнения, воспалительные заболевания органов малого таза, женское бесплодие
وصف الملف: application/pdf
Relation: https://www.epidemvac.ru/jour/article/view/1969/1021; Workowski KA, Bachmann LH, Chan PA, et al. Sexually Transmitted Infections Treatment Guidelines, 2021. MMWR Recomm Rep. 2021;70(4):1-187. doi:10.15585/mmwr.rr7004a1; Ross J, Guaschino S, Cusini M, Jensen J. 2017 European guideline for the management of pelvic inflammatory disease. Int J STD AIDS. 2018 Vol. 29, N2. P. 108-114.; Ross J, Cole M, Evans C, et al. United Kingdom national guideline for the management of pelvic inflammatory disease (2019 interim update) United Kingdom: British association for sexual health and HIV BASHH; 2019. URL: Guidelines for the Management of Pelvic Infection and Perihepatitis (bashh.org) (дата обращения 25.04.2024); Адамян, Л. В., Андреева, Е. Н., Артымук, Н. В. и др. Воспалительные болезни женских тазовых органов: Клинические рекомендации. Российское общество акушеров-гинекологов. 2021 C.46.; Скворцов, В. В., Скворцова, Е. М., Бангаров, Р. Ю., Матвеев, Н. Д. Современные представления о диагностике и лечении воспалительных заболеваний органов малого таза. Лечащий врач. 2022 №. 5-6. С.9-13.; Munro, K, Gharaibeh, A, Nagabushanam, S, Martin, C. Diagnosis and management of tubo-ovarian abscesses. The Obstetrician & Gynaecologist. 2018 N20. P. 11–9.; Mitchell CM, Anyalechi GE, Cohen CR, et al. Etiology and Diagnosis of Pelvic Inflammatory Disease: Looking Beyond Gonorrhea and Chlamydia. J Infect Dis. 2021 Vol. 224, N12 Suppl 2. P. S29-S35.; Mitchell C, Prabhu M. Pelvic inflammatory disease: current concepts in pathogenesis, diagnosis and treatment. Infect Dis Clin North Am. 2013 Vol. 27, N4. P. 793-809.; Heinonen PK, Miettinen A. Laparoscopic study on the microbiology and severity of acute pelvic inflammatory disease. Eur J Obstet Gynecol Reprod Biol. 1994 Vol. 57, N2. P. 85-89.; Short VL, Totten PA, Ness RB, et al. Clinical presentation of Mycoplasma genitalium Infection versus Neisseria gonorrhoeae infection among women with pelvic inflammatory disease. Clin Infect Dis. 2009 Vol. 48, N1 P. 41-47.; Moore MS, Golden MR, Scholes D, Kerani RP. Assessing Trends in Chlamydia Positivity and Gonorrhea Incidence and Their Associations With the Incidence of Pelvic Inflammatory Disease and Ectopic Pregnancy in Washington State, 1988-2010. Sex Transm Dis. 2016 Vol. 43, N1. P. 2-8.; Haggerty CL, Gottlieb SL, Taylor BD, et al. Risk of sequelae after Chlamydia trachomatis genital infection in women. J Infect Dis. 2010 Vol. 201, N.Suppl 2. P. S134–55.; Бебнева Т. Н., Дамирова К. Ф. К. Воспалительные заболевания органов малого таза. Гинекология. 2019 Т. 21, №. 5. С.39-44.; Герасимова, Н. А., Евстигнеева, Н. П., Малишевская, Н. П. и др. Заболеваемость гонококковой инфекцией, воспалительными заболеваниями органов малого таза и бесплодием в Российской Федерации и Уральском федеральном о. Лечащий врач. 2019 №. 4. С. 63-67.; Jennings LK, Krywko DM. Pelvic Inflammatory Disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing; March 13, 2023.; Штах А. Ф., Баулина Н. В., Володина М. Ю. Динамика оказания стационарной медицинской помощи пациенткам с сальпингоофоритом в Пензенской области в 2015-2016 гг. Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2018 №. 3 (47). С. 104-114.; Ross JD. Pelvic inflammatory disease. BMJ Clin Evid. 2013 Vol. 2013, N1606.; Westrom L. Effect of pelvic inflammatory disease on fertility. Venereology. Official Publication of the National Venereology Council of Australia. 1995 Vol.8, N4. P. 219-222.; Tsevat DG, Wiesenfeld HC, Parks C, Peipert JF. Sexually transmitted diseases and infertility. Am J Obstet Gynecol. 2017 Vol. 216, N1 P. 1-9.; Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015 Vol. 21, N4. P. 411-426.; Toomey KE, Collins JL, Lehnherr JR, et al. 2006 assisted reproductive technology success rates: national summary and fertility clinic reports. Atlanta: US Department of Health and Human Services. – 2013. URL: https://www.cdc.gov/art/Archived-PDF-Reports/2006ART.pdf; Инкарбек, Ж., Турсынбеков, Ж., Чакен, Е. и др. Роль урогенитальных инфекций в патогенезе развития мужского бесплодия. Вестник Казахского Национального медицинского университета. 2021 №.2. С.160-164.; https://www.epidemvac.ru/jour/article/view/1969
-
10Academic Journal
المؤلفون: O. V. Payushina, D. A. Tsomartova, Ye. V. Chereshneva, M. Yu. Ivanova, M. S. Pavlova, S. L. Kuznetsov, О. В. Паюшина, Д. А. Цомартова, Е. В. Черешнева, М. Ю. Иванова, М. С. Павлова, С. Л. Кузнецов
المصدر: Andrology and Genital Surgery; Том 25, № 1 (2024); 31-39 ; Андрология и генитальная хирургия; Том 25, № 1 (2024); 31-39 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: эректильная дисфункция, regenerative medicine, male infertility, prostate diseases, erectile dysfunction, регенеративная медицина, мужское бесплодие, заболевания предстательной железы
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/733/564; Jovic D., Yu Y., Wang D. et al. A brief overview of global trends in MSC-based cell therapy. Stem Cell Rev Rep 2022;18(5):1525–45. PMID: 35344199. DOI:10.1007/s12015-022-10369-1.; Thanaskody K., Jusop A.S., Tye G.J. et al. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022;10:1005926. PMID: 36407112. DOI:10.3389/fcell.2022.1005926.; Maldonado V.V., Patel N.H., Smith E.E. et al. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy. J Biol Eng 2023;17(1):44. PMID: 37434264. DOI:10.1186/s13036-023-00361-9.; Han Y., Li X., Zhang Y. et al. Mesenchymal stem cells for regenerative medicine. Cells 2019;8(8):886. PMID: 31412678. DOI:10.3390/cells8080886.; Ghasemzadeh-Hasankolaei M., Eslaminejad M.B., Sedighi-Gilani M. Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. In Vitro Cell Dev Biol Anim 2016;52(1):49–61. PMID: 26395124. DOI:10.1007/s11626-015-9945-4.; Salem M., Mirzapour T., Bayrami A., Sagha M. Germ cell differentiation of bone marrow mesenchymal stem cells. Andrologia 2019;51(4):e13229. PMID: 30746735. DOI:10.1111/and.13229.; Malekmohamadi N., Abdanipour A., Ghorbanlou M. et al. Differentiation of bone marrow derived mesenchymal stem cells into male germ-like cells in co-culture with testicular cells. Endocr Regul 2019;53(2):93–9. PMID: 31517623. DOI:10.2478/enr-2019-0011.; Ghaem Maghami R., Mirzapour T., Bayrami A. Differentiation of mesenchymal stem cells to germ-like cells under induction of Sertoli cell-conditioned medium and retinoic acid. Andrologia 2018;50(3). PMID: 28944567. DOI:10.1111/and.12887.; Luo Y., Xie L., Mohsin A. et al. Efficient generation of male germ-like cells derived during co-culturing of adipose-derived mesenchymal stem cells with Sertoli cells under retinoic acid and testosterone induction. Stem Cell Res Ther 2019;10(1):91. PMID: 30867048. DOI:10.1186/s13287-019-1181-5.; Cakici C., Buyrukcu B., Duruksu G. et al. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. Biomed Res Int 2013;2013:529589. PMID: 23509736. DOI:10.1155/2013/529589.; Ghasemzadeh-Hasankolaei M., Batavani R., Eslaminejad M.B., Sayahpour F. Transplantation of autologous bone marrow mesenchymal stem cells into the testes of infertile male rats and new germ cell formation. Int J Stem Cells 2016;9(2):250–63. PMID: 27430978. DOI:10.15283/ijsc16010.; Monsefi M., Fereydouni B., Rohani L., Talaei T. Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran J Reprod Med 2013;11(7):537–44. PMID: 24639788; Lu J., Liu Z., Shu M. et al. Human placental mesenchymal stem cells ameliorate chemotherapy-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. Stem Cell Res Ther 2021;12(1):199. PMID: 33743823. DOI:10.1186/s13287-021-02275-z.; Zickri M.B., Moustafa M.H., Fasseh A.E., Kamar S.S. Antioxidant and antiapoptotic paracrine effects of mesenchymal stem cells on spermatogenic arrest in oligospermia rat model. Ann Anat 2021;237:151750. PMID: 33940119. DOI:10.1016/j.aanat.2021.151750.; Abdelaziz M.H., Salah El-Din E.Y., El-Dakdoky M.H., Ahmed T.A. The impact of mesenchymal stem cells on doxorubicininduced testicular toxicity and progeny outcome of male prepubertal rats. Birth Defects Res 2019;111(13):906–19. PMID: 31210400. DOI:10.1002/bdr2.1535.; AbdRabou M.A., Mehany A.B.M., Farrag I.M. et al. Therapeutic effect of murine bone marrow-derived mesenchymal stromal/stem cells and human placental extract on testicular toxicity resulting from doxorubicin in rats. Biomed Res Int 2021;2021:9979670. PMID: 34409109. DOI:10.1155/2021/9979670.; Sherif I.O., Sabry D., Abdel-Aziz A., Sarhan O.M. The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. Stem Cell Res Ther 2018;9(1):196. PMID: 30021657. DOI:10.1186/s13287-018-0946-6.; Meligy F.Y., Abo Elgheed A.T., Alghareeb S.M. Therapeutic effect of adipose-derived mesenchymal stem cells on Cisplatin induced testicular damage in adult male albino rat. Ultrastruct Pathol 2019;43(1):28–55. PMID: 30741078. DOI:10.1080/01913123.2019.1572256.; Hassen M.T., Mohamed H.K., Montaser M.M. et al. Molecular, immunomodulatory, and histopathological role of mesenchymal stem cells and beetroot extract on cisplatin induced testicular damage in albino rats. Animals (Basel) 2021;11(4):1142. PMID: 33923635. DOI:10.3390/ani11041142.; G., Basalova N., Kirpatovsky V. et al. A magic kick for regeneration: role of mesenchymal stromal cell secretome in spermatogonial stem cell niche recovery. Stem Cell Res Ther 2019;10(1):342. PMID: 31753023. DOI:10.1186/s13287-019-1479-3.; Safitri E., Purnobasuki H. Effectiveness of mesenchymal stem cells cultured under hypoxia to increase the fertility rate in rats (Rattus norvegicus). Vet World 2021;14(11):3056–64. PMID: 35017856. DOI:10.14202/vetworld.2021.3056-3064.; Abdollahifar M.A., Azad N., Faraji Sani M. et al. Impaired spermatogenesis caused by busulfan is partially ameliorated by treatment with conditioned medium of adipose tissue derived mesenchymal stem cells. Biotech Histochem 2022;97(2):107–17. PMID: 33843374. DOI:10.1080/10520295.2021.1905182.; Önen S., Köse S., Yersal N., Korkusuz P. Mesenchymal stem cells promote spermatogonial stem/progenitor cell pool and spermatogenesis in neonatal mice in vitro. Sci Rep 2022;12(1):11494. PMID: 35798781. DOI:10.1038/s41598-022-15358-5.; Cai Y.T., Xiong C.L., Liu T.S. et al. Secretions released from mesenchymal stem cells improve spermatogenesis restoration of cytotoxic treatment with busulfan in azoospermia mice. Andrologia 2021;53(8):e14144. PMID: 34143903. DOI:10.1111/and.14144.; Gong D., Zhang C., Li T. et al. Are Sertoli cells a kind of mesenchymal stem cells? Am J Transl Res 2017;9(3):1067–74. PMID: 28386334.; Hou L., Dong Q., Wu Y.J. et al. Gonadotropins facilitate potential differentiation of human bone marrow mesenchymal stem cells into Leydig cells in vitro. Kaohsiung J Med Sci 2016;32(1):1–9. PMID: 26853168. DOI:10.1016/j.kjms.2015.10.008.; Ji W., Chen Y., Wang L. et al. Differentiation of human umbilical cord mesenchymal stem cells into Leydig-like cells with defined molecular compounds. Hum Cell 2020;33(2):318–29. PMID: 32034722. DOI:10.1007/s13577-020-00324-y.; Zhang Z.Y., Xing X.Y., Ju G.Q. et al. Mesenchymal stem cells from human umbilical cord ameliorate testicular dysfunction in a male rat hypogonadism model. Asian J Androl 2017;19(5):543–7. PMID: 27586027. DOI:10.4103/1008-682X.186186.; Safitri E., Hariadi M. Comparison of biotechnological culture of hypoxia-conditioned rat mesenchymal stem cells with conventional in vitro culture of normoxia-conditioned rat mesenchymal stem cells for testicular failure therapy with low libido in rats. Vet World 2019;12(6):916–24. PMID: 31440014. DOI:10.14202/vetworld.2019.916-924.; Peak T.C., Haney N.M., Wang W. et al. Stem cell therapy for the treatment of Leydig cell dysfunction in primary hypogonadism. World J Stem Cells 2016;8(10):306–15. PMID: 27822338. DOI:10.4252/wjsc.v8.i10.306.; Hsiao C.H., Ji A.T., Chang C.C. et al. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res Ther 2015;6(1):113. PMID: 26025454. DOI:10.1186/s13287-015-0079-0.; Hsiao C.H., Ji A.T., Chang C.C. et al. Mesenchymal stem cells restore the sperm motility from testicular torsion-detorsion injury by regulation of glucose metabolism in sperm. Stem Cell Res Ther 2019;10(1):270. PMID: 31445515. DOI:10.1186/s13287-019-1351-5.; Zhong L., Yang M., Zou X. et al. Human umbilical cord multipotent mesenchymal stromal cells alleviate acute ischemiareperfusion injury of spermatogenic cells via reducing inflammatory response and oxidative stress. Stem Cell Res Ther 2020;11(1):294. PMID: 32680554. DOI:10.1186/s13287-020-01813-5.; Chen Y.T., Chuang F.C., Yang C.C. et al. Combined melatoninadipose derived mesenchymal stem cells therapy effectively protected the testis from testicular torsion-induced ischemiareperfusion injury. Stem Cell Res Ther 2021;12(1):370. PMID: 34187560. DOI:10.1186/s13287-021-02439-x.; Sharifian P., Yari S., Hasanein P., Manteghi Nezhad Y. Conditioned medium of bone marrow mesenchymal stem cells improves sperm parameters and reduces histological alteration in rat testicular ischaemia/reperfusion model. Andrologia 2022;54(11):e14624. PMID: 36270637. DOI:10.1111/and.14624.; Aghamir S.M., Salavati A., Yousefie R. et al. Does bone marrow-derived mesenchymal stem cell transfusion prevent antisperm antibody production after traumatic testis rupture? Urology 2014;84(1):82–6. PMID: 24797037. DOI:10.1016/j.urology.2014.03.009.; ClinicalTrials.gov. NCT02414295. Sperm production in Kleinfelter syndrome patients after mesenchymal stem cell injection. Available from: https://clinicaltrials.gov/study/NCT02414295.; ClinicalTrials.gov. NCT02025270. MSCs for treatment of azoospermic patients. Available from: https://clinicaltrials.gov/study/NCT02025270.; ClinicalTrials.gov. NCT02008799. Intra testicular artery injection of bone marrow stem cell in management of azoospermia. Available from: https://clinicaltrials.gov/study/NCT02008799.; ClinicalTrials.gov. NCT02041910. Testicular injection of autologous stem cells for treatment of patients with azoospermia. Available from: https://clinicaltrials.gov/study/NCT02041910.; ClinicalTrials.gov. NCT02641769. Intra-testicular transplantation of autologous stem cells for treatment of non-obstructive azoospermia male infertility. Available from: https://clinicaltrials.gov/study/NCT02641769.; ClinicalTrials.gov. NCT03762967. Autologous adipose-derived adult stromal vascular cell administration for male patients with infertility. Available from: https://clinicaltrials.gov/study/NCT03762967.; Han G.W., Liu C.C., Gao W.H. et al. [Bone marrow mesenchymal stem cells suppress E coli-induced bacterial prostatitis in rats]. Zhonghua Nan Ke Xue 2015;21(4):294–9. (In Chinese). PMID: 26027094.; Liu H., Zhu X., Cao X. et al. IL-1β-primed mesenchymal stromal cells exert enhanced therapeutic effects to alleviate Chronic Prostatitis/Chronic Pelvic Pain Syndrome through systemic immunity. Stem Cell Res Ther 2021;12(1):514. PMID: 34563249. DOI:10.1186/s13287-021-02579-0.; Goudarzi F., Kiani A., Moradi M. et al. Intraprostatic injection of exosomes isolated from adipose-derived mesenchymal stem cells for the treatment of chronic non-bacterial prostatitis. J Tissue Eng Regen Med 2021;15(12):1144–54. PMID: 34559469. DOI:10.1002/term.3251.; Wang L., Xie L., Tintani F. et al. Aberrant transforming growth factor-β activation recruits mesenchymal stem cells during prostatic hyperplasia. Stem Cells Transl Med 2017;6(2):394–404. PMID: 28191756. DOI:10.5966/sctm.2015-0411.; Brennen W.N., Isaacs J.T. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat Rev Urol 2018;15(11):703–15. PMID: 30214054. DOI:10.1038/s41585-018-0087-9.; Rahimi Tesiye M., Abrishami Kia Z., Rajabi-Maham H. Mesenchymal stem cells and prostate cancer: A concise review of therapeutic potentials and biological aspects. Stem Cell Res 2022;63:102864. PMID: 35878578. DOI:10.1016/j.scr.2022.102864.; Takahara K., Ii M., Inamoto T. et al. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis. Biochem Biophys Res Commun 2014;446(4):1102–7. PMID: 24680678. DOI:10.1016/j.bbrc.2014.03.080.; Safari F., Shakery T., Sayadamin N. Evaluating the effect of secretome of human amniotic mesenchymal stromal cells on apoptosis induction and epithelial-mesenchymal transition inhibition in LNCaP prostate cancer cells based on 2D and 3D cell culture models. Cell Biochem Funct 2021;39(6):813–20. PMID: 34128234. DOI:10.1002/cbf.3654.; Schweizer M.T., Wang H., Bivalacqua T.J. et al. A phase I study to assess the safety and cancer-homing ability of allogeneic bone marrow-derived mesenchymal stem cells in men with localized prostate cancer. Stem Cells Transl Med 2019;8(5):441–9. PMID: 30735000. DOI:10.1002/sctm.18-0230.; Bivalacqua T.J., Deng W., Kendirci M. et al Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am J Physiol Heart Circ Physiol 2007;292(3):H1278–90. PMID: 17071732. DOI:10.1152/ajpheart.00685.2006.; Qiu X., Lin H., Wang Y. et al. Intracavernous transplantation of bone marrow-derived mesenchymal stem cells restores erectile function of streptozocin-induced diabetic rats. J Sex Med 2011;8(2):427–36. PMID: 21091881. DOI:10.1111/j.1743-6109.2010.02118.x.; Sun C., Lin H., Yu W. et al. Neurotrophic effect of bone marrow mesenchymal stem cells for erectile dysfunction in diabetic rats. Int J Androl 2012;35(4):601–7. PMID: 22428616. DOI:10.1111/j.1365-2605.2012.01250.x.; Zhu J.Q., Lu H.K., Cui Z.Q. et al. Therapeutic potential of human umbilical cord blood mesenchymal stem cells on erectile function in rats with cavernous nerve injury. Biotechnol Lett 2015;37(7):1515– 25. PMID: 25801670. DOI:10.1007/s10529-015-1816-2.; Ouyang X., Han X., Chen Z. et al. MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum smooth muscle apoptosis in a rat model of cavernous nerve injury. Stem Cell Res Ther 2018;9(1):246. PMID: 30257719. DOI:10.1186/s13287-018-1003-1.; Yang J., Zhang Y., Zang G. et al. Adipose-derived stem cells improve erectile function partially through the secretion of IGF-1, bFGF, and VEGF in aged rats. Andrology 2018;6(3):498–509. PMID: 29603682. DOI:10.1111/andr.12483.; Chen Z., Han X., Ouyang X. et al. Transplantation of induced pluripotent stem cell-derived mesenchymal stem cells improved erectile dysfunction induced by cavernous nerve injury. Theranostics 2019;9(22):6354–68. PMID: 31588222. DOI:10.7150/thno.34008.; Liu Y., Zhao S., Luo L. et al. Mesenchymal stem cell-derived exosomes ameliorate erection by reducing oxidative stress damage of corpus cavernosum in a rat model of artery injury. J Cell Mol Med 2019;23(11):7462–73. PMID: 31512385. DOI:10.1111/jcmm.14615.; Qiu X., Villalta J., Ferretti L. et al. Effects of intravenous injection of adipose-derived stem cells in a rat model of radiation therapyinduced erectile dysfunction. J Sex Med 2012;9(7):1834–41. PMID: 22548750. DOI:10.1111/j.1743-6109.2012.02753.x.; Kim J.H., Yun J.H., Song E.S. et al. Improvement of damaged cavernosa followed by neuron-like differentiation at injured cavernous nerve after transplantation of stem cells seeded on the PLA nanofiber in rats with cavernous nerve injury. Mol Biol Rep 2021;48(4):3549–59. PMID: 33866496. DOI:10.1007/s11033-021-06332-x.; Bahk J.Y., Jung J.H., Han H. et al. Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant: Preliminary report of 7 cases. Exp Clin Transplant 2010;8:150–60. PMID: 20565373.; Al Demour S., Jafar H., Adwan S. et al. Safety and potential therapeutic effect of two intracavernous autologous bone marrow derived mesenchymal stem cells injections in diabetic patients with erectile dysfunction: an open label phase I clinical trial. Urol Int 2018;101(3):358–65. PMID: 30173210. DOI:10.1159/000492120.; Al Demour S., Adwan S., Jafar H. et al. Safety and efficacy of 2 intracavernous injections of allogeneic Wharton’s jellyderived mesenchymal stem cells in diabetic patients with erectile dysfunction: Phase 1/2 clinical trial. Urol Int 2021;105(11–12):935– 43. PMID: 34384079. DOI:10.1159/000517364.; Mirzaei M., Bagherinasabsarab M., Pakmanesh H. et al. The effect of intracavernosal injection of stem cell in the treatment of erectile dysfunction in diabetic patients: A randomized single-blinded clinical trial. Urol J 2021;18(6):675–81. 6503. PMID: 34655071. DOI:10.22037/uj.v18i.; You D., Jang M.J., Song G. et al. Safety of autologous bone marrow-derived mesenchymal stem cells in erectile dysfunction: an open-label phase 1 clinical trial. Cytotherapy 2021;23(10):931–38. PMID: 34326007.DOI:10.1016/j.jcyt.2021.06.001.; Haahr M.K., Harken Jensen C., Toyserkani N.M. et al. A 12-month follow-up after a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: An open-label phase I clinical trial. Urology 2018; 121:203.e6–13. PMID: 29958973. DOI:10.1016/j.urology.2018.06.018.63.; Levy J.A., Marchand M., Iorio L. et al. Effects of stem cell treatment in human patients with Peyronie disease. J Am Osteopath Assoc 2015;115(10):e8–13. PMID: 26414724. DOI:10.7556/jaoa.2015.124.; Castiglione F., Hedlund P., Van der Aa F. et al. Intratunical injection of human adipose tissue-derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie’s disease. Eur Urol 2013;63(3):551–60. PMID: 23040209. DOI:10.1016/j.eururo.2012.09.034.; ClinicalTrials.gov. NCT02414308. Management of Peyronie’s disease with adipose tissue stem cell. Available from: https://clinicaltrials.gov/study/NCT02414308.; ClinicalTrials.gov. NCT05147779. Safety of cultured allogeneic adult umbilical cord stem cells for Peyronie’s disease, ED, and interstitial cystitis. Available from: https://clinicaltrials.gov/study/NCT05147779.; ClinicalTrials.gov. NCT04771442. Stem cell treatment of Peyronie´s disease. Available from: https://clinicaltrials.gov/study/NCT04771442.; Xie X., Du X., Li K. et al. Construction of engineered corpus cavernosum with primary mesenchymal stem cells in vitro. Sci Rep 2017;7(1):18053. PMID: 29273785. DOI:10.1038/s41598-017-18129-9.; Laks M., Freitas-Filho L.G., Sayeg K. et al. Penile reconstruction using mesenchymal stem cells. Acta Cir Bras 2015;30(8):529–36. PMID: 26352332. DOI:10.1590/S0102-865020150080000003.; https://agx.abvpress.ru/jour/article/view/733
-
11Academic Journal
المؤلفون: S. I. Gamidov, A. Yu. Popova, T. V. Shatylko, A. V. Vedenyapin, C. И. Гамидов, А. Ю. Попова, Т. В. Шатылко, А. В. Веденяпин
المصدر: Andrology and Genital Surgery; Том 25, № 1 (2024); 147-158 ; Андрология и генитальная хирургия; Том 25, № 1 (2024); 147-158 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: метаболический синдром, male infertility, fragmentation of sperm DNA, BESTFertil, oxidative stress, spermogram, metabolic syndrome, мужское бесплодие, фрагментация ДНК сперматозоидов, «БЕСТФертил», оксидативный стресс, спермограмма
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/746/577; Gual-Frau J, Abad C, Amengual MJ et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum Fertil (Camb). 2015 Sep;18(3):225-9. doi:10.3109/14647273.2015.1050462. Epub 2015 Jun 19. PMID: 26090928.; Balercia G, Regoli F, Armeni T et al. Placebo-controlled double-blind randomized trial on the use of L-carnitine, L-acetylcarnitine, or combined L-carnitine and L-acetylcarnitine in men with idiopathic asthenozoospermia. Fertil Steril. 2005 Sep;84(3):662-71. doi:10.1016/j.fertnstert.2005.03.064. PMID: 16169400.; Busetto GM, Agarwal A, Virmani A et al. Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: A double-blind placebo-controlled study. Andrologia. 2018 Apr;50(3). doi:10.1111/and.12927. Epub 2018 Jan 7. PMID: 29315686.; Адъювантная антиоксидантная терапия у больных бесплодием при варикоцеле / С. И. Гамидов, Р. И. Овчинников, А. Ю. Попова [и др.] // Урология. – 2017. – № 2-S2. – С. 64-72. – DOI 10.18565/urol.2017.2(suppl.2)64-72.; Корнеев И.А. Мужское бесплодие, метаболический синдром и ожирение / И. А. Корнеев, И. А. Мацуева // Урологические ведомости. 2021. Т. 11, № 2. С. 153–162. – DOI:10.17816/uroved61509.; Engin-Ustun Y, Yílmaz N, Akgun N et al. Body Mass Index Effects Kruger’s Criteria in Infertile Men. Int J Fertil Steril. 2018 Jan;11(4):258-262. doi:10.22074/ijfs.2018.4888. Epub 2017 Oct 12. PMID: 29043700; PMCID: PMC5641456.; Abdali D, Samson SE, Grover AK. How effective are antioxidant supplements in obesity and diabetes? Med Princ Pract. 2015;24(3):201-15. doi:10.1159/000375305. Epub 2015 Mar 14. PMID: 25791371; PMCID: PMC5588240.; Jeulin C, Lewin LM. Role of free L-carnitine and acetyl-Lcarnitine in post-gonadal maturation of mammalian spermatozoa. Hum Reprod Update. 1996 Mar-Apr;2(2):87-102. doi:10.1093/humupd/2.2.87. PMID: 9079406.; Showell MG, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2011 Jan 19;(1):CD007411. doi:10.1002/14651858.CD007411. pub2. Update in: Cochrane Database Syst Rev. 2014;12:CD007411. PMID: 21249690.; Li Y, Xie Y, Qiu C, Yu B, Yang F, Cheng Y, Zhong W, Yuan J. Effects of L-carnitine supplementation on glucolipid metabolism: a systematic review and meta-analysis. Food Funct. 2023 Mar 6;14(5):2502-2517. doi:10.1039/d2fo02930h. PMID: 36815696.; Choi M, Park S, Lee M. L-Carnitine’s Effect on the Biomarkers of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2020 Sep 12;12(9):2795. doi:10.3390/nu12092795. PMID: 32932644; PMCID: PMC7551203.; Martínez-Soto JC, Domingo JC, Cordobilla B et al. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Syst Biol Reprod Med. 2016 Dec;62(6):387-395. doi:10.1080/19396368.2016.1246623. Epub 2016 Oct 28. PMID: 27792396.; González-Ravina C, Aguirre-Lipperheide M, Pinto F et al. Effect of dietary supplementation with a highly pure and concentrated docosahexaenoic acid (DHA) supplement on human sperm function. Reprod Biol. 2018 Sep;18(3):282-288. doi:10.1016/j.repbio.2018.06.002. Epub 2018 Jun 20. PMID: 29934046.; Попова А.Ю., Гамидов С.И., Овчинников Р.И. и др. Опыт применения докозагексаеновой кислоты (БрудиПлюс) у пациентов с повышенным индексом фрагментации ДНК сперматозоидов в Научном центре акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова. Андрология и генитальная хирургия. 2015;16(2):51-55. https://doi.org/10.17650/2070-9781-2015-16-2-51-55; Виноградов И.В., Живулько А.Р. Докозагексаеновая кислота в лечении мужского бесплодия, вызванного высоким уровнем фрагментации ДНК сперматозоидов. Андрология и генитальная хирургия. 2020;21(4):89-97. https://doi.org/10.17650/2070-9781-2020-21-4-89-97; Nashivochnikova NA, Krupin VN, Leanovich VE. [The role of antioxidants in the therapy of metabolic syndrome in men]. Urologiia. 2023 Sep;(4):90-97. Russian. PMID: 37850287.; Zhang JJ, Wu ZB, Cai YJ et al. L-carnitine ameliorated fastinginduced fatigue, hunger, and metabolic abnormalities in patients with metabolic syndrome: a randomized controlled study. Nutr J. 2014 Nov 26;13:110. doi:10.1186/1475-2891-13-110. PMID: 25424121; PMCID: PMC4258024.; Talenezhad N, Mohammadi M, Ramezani-Jolfaie N et al. Effects of l-carnitine supplementation on weight loss and body composition: A systematic review and meta-analysis of 37 randomized controlled clinical trials with dose-response analysis. Clin Nutr ESPEN. 2020 Jun;37:9-23. doi:10.1016/j.clnesp.2020.03.008. Epub 2020 Apr 18. PMID: 32359762.; Alberti KG, Eckel RH, Grundy SM et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009 Oct 20;120(16):1640-5. doi:10.1161/CIRCULATIONAHA.109.192644. Epub 2009 Oct 5. PMID: 19805654.; Корнеев И.А. Персонифицированный подход к назначению антиоксидантной терапии мужчинам, состоящим в бесплодном браке / И. А. Корнеев // Клинический разбор в общей медицине. 2023. Т. 4, № 4. С. 82–88. DOI:10.47407/kr2023.4.4.00260.; Корнеев И.А. Изучение показателей эякулята и результатов лечения с применением вспомогательных репродуктивных технологий мужчин с избыточным весом и ожирением, состоящих в бесплодном браке / И. А. Корнеев // Урологические ведомости. 2022. Т. 12, № 1. С. 41-48. DOI:10.17816/uroved99867.; Saleh AAEW, Amin EM, Elfallah AA et al. Insulin resistance and idiopathic infertility: A potential possible link. Andrologia. 2020 Dec;52(11):e13773. doi:10.1111/and.13773. Epub 2020 Aug 20. PMID: 32816339.; Verit A, Verit FF, Oncel H et al. Is there any effect of insulin resistance on male reproductive system? Arch Ital Urol Androl. 2014 Mar 28;86(1):5-8. doi:10.4081/aiua.2014.1.5. PMID: 24704923.; Ma J, Han RY, Mei XA et al. [Correlation of insulin resistance with male reproductive hormone levels and semen parameters]. Zhonghua Nan Ke Xue. 2018 Aug;24(8):695-699. Chinese. PMID: 30173427.; La Vignera S, Condorelli RA, Duca Y et al. FSH treatment for normogonadotropic male infertility: a synergistic role for metformin? Eur Rev Med Pharmacol Sci. 2019 Jul;23(13): 5994-5998. doi:10.26355/eurrev_201907_18346. PMID: 31298351.; Xu Y, Jiang W, Chen G, Zhu W et al. L-carnitine treatment of insulin resistance: A systematic review and meta-analysis. Adv Clin Exp Med. 2017 Mar-Apr;26(2):333-338. doi:10.17219/acem/61609. PMID: 28791854.; Zamani M, Pahlavani N, Nikbaf-Shandiz M et al. The effects of L-carnitine supplementation on glycemic markers in adults: A systematic review and dose-response meta-analysis. Front Nutr. 2023 Jan 10;9:1082097. doi:10.3389/fnut.2022.1082097. PMID: 36704801; PMCID: PMC9871499.; Гамидов С.И. Мужское здоровье и ожирение Э диагностика и терапевтические подходы / С.И. Гамидов, Т.В. Шатылко, Н.Г. Гасанов // Ожирение и метаболизм. 2019. Т. 16, № 3. С. 29–36. DOI:10.14341/omet10314.; Епанчинцева Е.А., Селятицкая В.Г., Корнеев И.А., Бабенко А.Ю. Влияние ингибиторов ароматазы на мужскую фертильность: обзор литературы. Андрология и генитальная хирургия. 2023;24(4):49-58. https://doi.org/10.17650/2070-9781-2023-24-4-49-58; Abbott K, Burrows TL, Acharya S et al. Dietary supplementation with docosahexaenoic acid rich fish oil increases circulating levels of testosterone in overweight and obese men. Prostaglandins Leukot Essent Fatty Acids. 2020 Dec;163:102204. doi:10.1016/j.plefa.2020.102204. Epub 2020 Nov 12. PMID: 33221700.; Kelley DS, Adkins Y, Woodhouse LR et al. Docosahexaenoic acid supplementation improved lipocentric but not glucocentric markers of insulin sensitivity in hypertriglyceridemic men. Metab Syndr Relat Disord. 2012 Feb;10(1):32-8. doi:10.1089/met.2011.0081. Epub 2011 Oct 14. PMID: 21999398.; Sahebkar A. Effect of L-carnitine Supplementation on Circulating C-reactive Protein Levels: A Systematic Review and Meta-Analysis. J Med Biochem. 2015 Apr;34(2):151-159. doi:10.2478/jomb-2014-0030. Epub 2015 Mar 3. PMID: 28356827; PMCID: PMC4922328.; Savica V, Santoro D, Mazzaglia G et al. L-carnitine infusions may suppress serum C-reactive protein and improve nutritional status in maintenance hemodialysis patients. J Ren Nutr. 2005 Apr;15(2):225-30. doi:10.1053/j.jrn.2004.10.002. PMID: 15827896.; Elisia I, Yeung M, Kowalski S et al. Omega 3 supplementation reduces C-reactive protein, prostaglandin E2 and the granulocyte/ lymphocyte ratio in heavy smokers: An open-label randomized crossover trial. Front Nutr. 2022 Dec 1;9:1051418. doi:10.3389/fnut.2022.1051418. PMID: 36532545; PMCID: PMC9751896.; Wang TM, Hsieh SC, Chen JW et al. Docosahexaenoic acid and eicosapentaenoic acid reduce C-reactive protein expression and STAT3 activation in IL-6-treated HepG2 cells. Mol Cell Biochem. 2013 May;377(1-2):97-106. doi:10.1007/s11010-013-1574-1. Epub 2013 Jan 30. PMID: 23361365.; Структурные нарушения хроматина сперматозоидов. Патофизиологические аспекты. Клиническая значимость / М.Н. Коршунов, Е.С. Коршунова, П.С. Кызласов [и др.] // Вестник урологии. 2021. Т. 9, № 1. С. 95-104. DOI:10.21886/2308-6424-2021-9-1-95-104.; Фрагментация ДНК сперматозоидов: клиническая значимость, причины, методы оценки и коррекции / С.Ю. Боровец, В.А. Егорова, А.М. Гзгзян, С. Х. и др.// Урологические ведомости. 2020. Т. 10, № 2. С. 173–180. DOI:10.17816/uroved102173-180.; Лечение бесплодия, ассоциированного с высоким уровнем фрагментации ДНК сперматозоидов / Ю.В. Олефир, М.Н. Коршунов, А.Р. Живулько и др.// Экспериментальная и клиническая урология. 2022. Т. 15, № 1. С. 112–119. DOI:10.29188/2222-8543-2022-15-1-112-119.; Кореньков Д.Г., Павлов А.Л., Казимзаде Э.Д. Влияние препарата БЕСТФертил на репродуктивную функцию у мужчин с идиопатическим бесплодием. Андрология и генитальная хирургия. 2018;19(4):54-59. https://DOI.org/10.17650/2070-9781-2018-19-4-54-59; Гамидов С.И., Попова А.Ю., Гасанов Н.Г. и др. Оценка влияния комплекса «БЕСТФертил» на показатели спермограммы, оксидативного стресса и фрагментации ДНК сперматозоидов у мужчин с бесплодием. Андрология и генитальная хирургия. 2019;20(1):91-98. https://doi.org/10.17650/2070-9781-2019-20-1-91-98; Шатылко Т.В., Гамидов С.И., Попова А.Ю. Оценка влияния антиоксидантного комплекса БЕСТФертил на показатели спермограммы и выраженность астенического синдрома у мужчин, перенесших новую коронавирусную инфекцию (COVID-19). Андрология и генитальная хирургия. 2021;22(4):68-76. https://doi.org/10.17650/1726-9784-2021-22-4-68-76; Оксидативный стресс сперматозоидов: клиническое значение и коррекция / С.И. Гамидов, Т.В. Шатылко, А.Ю. Попова [и др.] // Медицинский совет. 2021. № 3. С. 19–27. DOI 10.21518/2079-701X-2021-3-19-27.; https://agx.abvpress.ru/jour/article/view/746
-
12Academic Journal
المؤلفون: T. M. Sorokina, E. E. Bragina, L. F. Kurilo, O. A. Solovova, M. I. Shtaut, A. O. Sedova, V. B. Chernykh, Т. М. Сорокина, Е. Е. Брагина, Л. Ф. Курило, О. А. Соловова, М. И. Штаут, А. О. Седова, В. Б. Черных
المساهمون: Работа выполнена в рамках государственного задания Министерства образования и науки России.
المصدر: Andrology and Genital Surgery; Том 25, № 2 (2024); 61-68 ; Андрология и генитальная хирургия; Том 25, № 2 (2024); 61-68 ; 2412-8902 ; 2070-9781
مصطلحات موضوعية: астенозооспермия, primary ciliary dyskinesia, Kartagener syndrome, male infertility, asthenozoospermia, первичная цилиарная дискинезия, синдром Картагенера, мужское бесплодие
وصف الملف: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/759/582; Брагина Е.Е., Сорокина Т.М., Арифулин Е.А. и др. Генетически обусловленные формы патозооспермии. Обзор литературы и результаты исследований. Андрология и генитальная хирургия. 2015;16 (3):29-39. https://doi.org/10.17650/2070-9781-2015-16-3-29-393.; Брагина Е.Е., Арифулин Е.А., Сенченков Е.П. Генетически обусловленные и функциональные нарушения подвижности сперматозоидов человека. Онтогенез, 2016; 47(5): 271–286. doi:10.7868/S0475145016050025.; Lucas JSA, Walker WT, Kuehni CE et al. “Chapter 12. Primary ciliary dyskinesia.” (2011). Monograph Orphan Lung Diseases Edited by J-F. Cordier.2011; Vol. 54: 201-217.10.; Kartagener M. Zur Pathogenese der bronchiektasien: bronchiektasien bei situs viscerum inversus. Beitrage zur Klinik der Tuberkulose 1933; 83: 489-501.; Basu B., Brueckner M. Cilia multifunctional organelles at the center of vertebrate left-right asymmetry. Curr Top Dev Biol 2008;85: 151-74. 10.1016/S0070-2153(08)00806-5.; Jayasena CN, Sironen A. Diagnostics and Management of Male Infertility in Primary Ciliary Dyskinesia. Diagnostics (Basel). 2021;11(9):1550. doi:10.3390/diagnostics11091550.; Osinka A, Poprzeczko M, Zielinska MM et al. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells. 2019;8(7):730. doi:10.3390/cells8070730.; Sironen A, Shoemark A, Patel M et al. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci. 2020 ;77(11):2029-2048. doi:10.1007/s00018-019-03389-7.; Leigh M.W., Horani A., Kinghorn B. et al. Primary ciliary dyskinesia (PCD): a genetic disorder of motile cilia. Transl. Sci. Rare Dis. 2019; 4: 51-75.; Kumar N, Singh AK. The anatomy, movement, and functions of human sperm tail: an evolving mystery. Biol Reprod. 2021 ;104(3):508-520. doi:10.1093/biolre/ioaa213.; Wan F, Yu L, Qu X, et al. A novel mutation in PCD-associated gene DNAAF3 causes male infertility due to asthenozoospermia. J Cell Mol Med. 2023;27(20):3107-3116. doi:10.1111/jcmm.17881.; Ozkavukcu S, Celik-Ozenci C, Konuk E, Atabekoglu C. Live birth after Laser Assisted Viability Assessment (LAVA) to detect pentoxifylline resistant ejaculated immotile spermatozoa during ICSI in a couple with male Kartagener's syndrome. Reprod Biol Endocrinol. 2018;16(1):10. doi:10.1186/s12958-018-0321-6.; Liu L, Zhou K, Song Y, Liu X. CCDC40 mutation as a cause of infertility in a Chinese family with primary ciliary dyskinesia. Medicine (Baltimore). 2021;100(51):e28275. doi:10.1097/MD.0000000000028275.; Богорад А.Е., Дьякова С.Э., Мизерницкий Ю.Л. Первичная цилиарная дискинезия: современные подходы к диагностике и терапии. Рос вестн перинатол и педиатр 2019; 64:(5): 123–133. DOI:10.21508/1027–4065–2019–64–5–123–133; Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update. 2014 Jan-Feb;20(1):40-62. doi:10.1093/humupd/dmt046.; Newman L, Chopra J, Dossett C et al. The impact of primary ciliary dyskinesia on female and male fertility: a narrative review. Hum Reprod Update. 2023; 29(3):347-367. doi:10.1093/humupd/dmad003.; Shoemark A, Pinto AL, Patel MP et al. PCD Detect: enhancing ciliary features through image averaging and classification. Am J Physiol Lung Cell Mol Physiol. 2020;319(6):L1048-L1060. doi:10.1152/ajplung.00264.2020.; https://agx.abvpress.ru/jour/article/view/759
-
13Academic Journal
المؤلفون: Антон Игоревич Лесников, Алексей Андреевич Шмелев, Алексей Геннадьевич Тришкин, Лилия Владиславовна Курганова, Константин Александрович Луговой, Алексей Дмитриевич Бушмакин, Галина Павловна Зуева, Светлана Ивановна Елгина, Вадим Гельевич Мозес, Елена Владимировна Рудаева, Кира Борисовна Мозес
المصدر: Medicina v Kuzbasse, Vol 21, Iss 3, Pp 61-64 (2022)
مصطلحات موضوعية: мужское бесплодие, курение, показатели спермограммы, мужской фактор, анализ эякулята, Medicine
وصف الملف: electronic resource
-
14Academic Journal
المؤلفون: Антон Игоревич Лесников, Алексей Андреевич Шмелев, Алексей Геннадьевич Тришкин, Лилия Владиславовна Курганова, Константин Александрович Луговой, Алексей Дмитриевич Бушмакин, Галина Павловна Зуева, Вадим Гельевич Мозес, Елена Владимировна Рудаева, Светлана Ивановна Елгина, Кира Борисовна Мозес, Елена Владимировна Золото
المصدر: Medicina v Kuzbasse, Vol 21, Iss 2, Pp 30-34 (2022)
مصطلحات موضوعية: мужское бесплодие, индекс массы тела, показатели спермограммы, мужской фактор, анализ эякулята, Medicine
وصف الملف: electronic resource
-
15Academic Journal
المؤلفون: Алексей Геннадьевич Тришкин, Антон Игоревич Лесников, Лилия Владиславовна Курганова, Константин Александрович Луговой, Алексей Дмитриевич Бушмакин, Галина Павловна Зуева, Алексей Андреевич Шмелев, Светлана Ивановна Елгина, Вадим Гельевич Мозес, Елена Владимировна Рудаева, Кира Борисовна Мозес
المصدر: Мать и дитя в Кузбассе, Vol 23, Iss 1, Pp 36-40 (2022)
مصطلحات موضوعية: фрагментация днк, мужское бесплодие, показатели спермограммы, мужской фактор, анализ эякулята, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
وصف الملف: electronic resource
-
16Academic Journal
المؤلفون: E. A. Epanchintseva, S. V. Yankovskaya, V. G. Selyatitskaya
المصدر: Сибирский научный медицинский журнал, Vol 42, Iss 1, Pp 62-71 (2022)
مصطلحات موضوعية: мужское бесплодие, возраст, антропометрия, абдоминальное ожирение, биохимический анализ крови., Medicine
وصف الملف: electronic resource
-
17Academic Journal
المؤلفون: D. S. Rogozin, Д. С. Рогозин
المساهمون: The study was not sponsored, Исследование не имело спонсорской поддержки
المصدر: Urology Herald; Том 11, № 2 (2023); 235-242 ; Вестник урологии; Том 11, № 2 (2023); 235-242 ; 2308-6424 ; 10.21886/2308-6424-2023-11-2
مصطلحات موضوعية: необструктивная азооспермия, DNA fragmentation, spermatozoa, ICSI, sperm retrieval, micro-TESE, male infertility, non-obstructive azoospermia, ДНК-фрагментация сперматозоидов, ИКСИ, микро-TESE, мужское бесплодие
وصف الملف: application/pdf
Relation: https://www.urovest.ru/jour/article/view/738/484; Гамидов С.И., Шатылко Т.В., Тамбиев А.Х., Токарева А.О., Чаговец В.В., Бицоев Тб., Стародубцева Н.Л., Попова А.Ю., Франкевич В.Е. Возможности липидомного анализа семенной плазмы в прогнозировании успеха microTESE у мужчин с азооспермией. Урология. 2022;(4):32–7. DOI:10.18565/urology.2022.4.32-37; Paffoni A, Somigliana E, Boeri L, Viganò P. The statistical foundation of the reference population for semen analysis included in the sixth edition of the WHO manual: a critical reappraisal of the evidence. Hum Reprod. 2022;37(10):2237-2245. DOI:10.1093/humrep/deac161; Henkel R, Morris A, Vogiatzi P, Saleh R, Sallam H, Boitrelle F, Garrido N, Arafa M, Gül M, Rambhatla A, Maldonado Rosas I, Agarwal A, Leisegang K, Siebert TI. Predictive value of seminal oxidation-reduction potential analysis for reproductive outcomes of ICSI. Reprod Biomed Online. 2022;45(5):1007-1020. DOI:10.1016/j.rbmo.2022.05.010; Hervás I, Pacheco A, Gil Julia M, Rivera-Egea R, Navarro-Gomezlechon A, Garrido N. Sperm deoxyribonucleic acid fragmentation (by terminal deoxynucleotidyl transferase biotin dUTP nick end labeling assay) does not impair reproductive success measured as cumulative live birth rates per donor metaphase II oocyte used. Fertil Steril. 2022;118(1):79-89. DOI:10.1016/j.fertnstert.2022.04.002; Dai C, Shan G, Jahangiri S, Chen W, Gholamhoseini B, Zhang Z, Moskovtsev S, Librach C, Jarvi K, Sun Y. Staining-free, Automated Sperm Analysis for In Vitro Fertilization Lab Use. J Urol. 2022;208(6):1303-1312. DOI:10.1097/JU.0000000000002903; Liu K, Meng T, Chen Q, Hou G, Wang X, Hu S, Gu X, Li H, Li Y, Xiong C, Cao J. Diurnal rhythm of human semen quality: analysis of large-scale human sperm bank data and timing-controlled laboratory study. Hum Reprod. 2022;37(8):1727-1738. DOI:10.1093/humrep/deac135; Elhakeem A, Taylor AE, Inskip HM, Huang J, Tafflet M, Vinther JL, Asta F, Erkamp JS, Gagliardi L, Guerlich K, Halliday J, Harskamp-van Ginkel MW, He JR, Jaddoe VWV, Lewis S, Maher GM, Manios Y, Mansell T, McCarthy FP, McDonald SW, Medda E, Nisticò L, de Moira AP, Popovic M, Reiss IKM, Rodrigues C, Salika T, Smith A, Stazi MA, Walker C, Wu M, Åsvold BO, Barros H, Brescianini S, Burgner D, Chan JKY, Charles MA, Eriksson JG, Gaillard R, Grote V, Håberg SE, Heude B, Koletzko B, Morton S, Moschonis G, Murray D, O'Mahony D, Porta D, Qiu X, Richiardi L, Rusconi F, Saffery R, Tough SC, Vrijkotte TGM, Nelson SM, Nybo Andersen AM, Magnus MC, Lawlor DA; Assisted Reproductive Technology and Future Health (ART-Health) Cohort Collaboration. Association of Assisted Reproductive Technology With Offspring Growth and Adiposity From Infancy to Early Adulthood. JAMA Netw Open. 2022;5(7):e2222106. DOI:10.1001/jamanetworkopen.2022.22106; Lotti F, Frizza F, Balercia G, Barbonetti A, Behre HM, Calogero AE, Cremers JF, Francavilla F, Isidori AM, Kliesch S, La Vignera S, Lenzi A, Marcou M, Pilatz A, Poolamets O, Punab M, Godoy MFP, Quintian C, Rajmil O, Salvio G, Shaeer O, Weidner W, Maseroli E, Cipriani S, Baldi E, Degl'Innocenti S, Danza G, Caldini AL, Terreni A, Boni L, Krausz C, Maggi M. The European Academy of Andrology (EAA) ultrasound study on healthy, fertile men: An overview on male genital tract ultrasound reference ranges. Andrology. 2022;10 Suppl 2(Suppl 2):118-132. DOI:10.1111/andr.13260; Panner Selvam MK, Baskaran S, O'Connell S, Almajed W, Hellstrom WJG, Sikka SC. Association between Seminal Oxidation-Reduction Potential and Sperm DNA Fragmentation-A Meta-Analysis. Antioxidants (Basel). 2022;11(8):1563. DOI:10.3390/antiox11081563; Jensen CFS, Ohl DA, Fode M, Jørgensen N, Giwercman A, Bruun NH, Elenkov A, Klajnbard A, Andersen CY, Aksglaede L, Grøndahl ML, Bekker MC, Sønksen J. Microdissection Testicular Sperm Extraction Versus Multiple Needle-pass Percutaneous Testicular Sperm Aspiration in Men with Nonobstructive Azoospermia: A Randomized Clinical Trial. Eur Urol. 2022;82(4):377-384. DOI:10.1016/j.eururo.2022.04.030; https://www.urovest.ru/jour/article/view/738
-
18Academic Journal
المؤلفون: Yu. V. Olefir, I. V. Vinogradov, M. A. Rodionov, A. R. Zhyvulko, D. M. Popov, D. M. Monakov, Ю. В. Олефир, И. В. Виноградов, М. А. Родионов, А. Р. Живулько, Д. М. Попов, Д. М. Монаков
المصدر: Urology Herald; Том 11, № 1 (2023); 171-176 ; Вестник урологии; Том 11, № 1 (2023); 171-176 ; 2308-6424 ; 10.21886/2308-6424-2023-11-1
مصطلحات موضوعية: оксидативный стресс, male infertility, sperm motility, oxidative stress, мужское бесплодие, подвижность сперматозоидов
وصف الملف: application/pdf
Relation: https://www.urovest.ru/jour/article/view/683/459; Аполихин О.И., Москвин С.В. Лазерная терапия при мужском бесплодии. Ч. 1. Этиология и патогенез. Экспериментальные исследования. Урология. 2017;(5):115-123. DOI:10.18565/urology.2017.5.115-123; Аполихин О.И., Красняк С.С. Влияние алкоголя на мужскую репродуктивную систему. Общественное здоровье. 2021;1(2):62-69. DOI:10.21045/2782-1676-2021-1-2-62-69; Боровец С.Ю., Москвин С.В. Методики лазерной терапии при мужском бесплодии. Вестник урологии. 2017;5(3):49-61. DOI:10.21886/2308-6424-2017-5-3-49-61; Гамидов С.И., Овчинников Р.И., Попова А.Ю., Наумов Н.П., Гасанов Н.Г. Роль мужского фактора бесплодия в программе вспомогательных репродуктивных технологий (обзор литературы). Андрология и генитальная хирургия. 2017;18(3):28-36. DOI:10.17650/2070-9781-2017-18-3-28-36; World Health Organization (WHO). WHO laboratory manual for the examination and processing of human semen, sixth edition. Geneva: World Health Organization; 2021.; World Health Organization (WHO). WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: WHO; 2010.; Patel AS, Leong JY, Ramasamy R. Prediction of male infertility by the World Health Organization laboratory manual for assessment of semen analysis: A systematic review. Arab J Urol. 2017;16(1):96-102. DOI:10.1016/j.aju.2017.10.005; Esteves SC, Zini A, Aziz N, Alvarez JG, Sabanegh ES Jr, Agarwal A. Critical appraisal of World Health Organization's new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology. 2012;79(1):16-22. DOI:10.1016/j.urology.2011.08.003; Alshahrani S, Aldossari K, Al-Zahrani J, Gabr AH, Henkel R, Ahmad G. Interpretation of semen analysis using WHO 1999 and WHO 2010 reference values: Abnormal becoming normal. Andrologia. 2018;50(2). DOI:10.1111/and.12838; Esteves SC. Clinical relevance of routine semen analysis and controversies surrounding the 2010 World Health Organization criteria for semen examination. Int Braz J Urol. 2014;40(4):443-53. DOI:10.1590/S1677-5538.IBJU.2014.04.02; Murray KS, James A, McGeady JB, Reed ML, Kuang WW, Nangia AK. The effect of the new 2010 World Health Organization criteria for semen analyses on male infertility. Fertil Steril. 2012;98(6):1428-31. DOI:10.1016/j.fertnstert.2012.07.1130; Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, Carson SA, Cisneros P, Steinkampf MP, Hill JA, Xu D, Vogel DL; National Cooperative Reproductive Medicine Network. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345(19):1388-93. DOI:10.1056/NEJMoa003005; Nzisa J. The Evolution of the Worl Health Organization (WHO) Manual on Semen Analysis. EMJ Repro Health. 2021;7(1):23-26. URL: https://doi.org/10.33590/emjreprohealth/21F0810; Agarwal A, Parekh N, Panner Selvam MK, Henkel R, Shah R, Homa ST, Ramasamy R, Ko E, Tremellen K, Esteves S, Majzoub A, Alvarez JG, Gardner DK, Jayasena CN, Ramsay JW, Cho CL, Saleh R, Sakkas D, Hotaling JM, Lundy SD, Vij S, Marmar J, Gosalvez J, Sabanegh E, Park HJ, Zini A, Kavoussi P, Micic S, Smith R, Busetto GM, Bakırcıoğlu ME, Haidl G, Balercia G, Puchalt NG, Ben-Khalifa M, Tadros N, Kirkman-Browne J, Moskovtsev S, Huang X, Borges E, Franken D, Bar-Chama N, Morimoto Y, Tomita K, Srini VS, Ombelet W, Baldi E, Muratori M, Yumura Y, La Vignera S, Kosgi R, Martinez MP, Evenson DP, Zylbersztejn DS, Roque M, Cocuzza M, Vieira M, Ben-Meir A, Orvieto R, Levitas E, Wiser A, Arafa M, Malhotra V, Parekattil SJ, Elbardisi H, Carvalho L, Dada R, Sifer C, Talwar P, Gudeloglu A, Mahmoud AMA, Terras K, Yazbeck C, Nebojsa B, Durairajanayagam D, Mounir A, Kahn LG, Baskaran S, Pai RD, Paoli D, Leisegang K, Moein MR, Malik S, Yaman O, Samanta L, Bayane F, Jindal SK, Kendirci M, Altay B, Perovic D, Harlev A. Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility. World J Mens Health. 2019;37(3):296-312. DOI:10.5534/wjmh.190055; https://www.urovest.ru/jour/article/view/683
-
19Academic Journal
المؤلفون: M. V. Andreeva, L. F. Kurilo, M. I. Shtaut, V. B. Chernykh, М. В. Андреева, Л. Ф. Курило, М. И. Штаут, В. Б. Черных
المساهمون: The work was carried out under the project “Multicenter Research Bioresource Collection “Human Reproductive Health”” No. 15.БРK.21.0008 of the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена в рамках проекта «Многоцентровая исследовательская биоресурсная коллекция “Репродуктивное здоровье человека”» №15.БРК.21.0008 Министерства науки и высшего образования РФ.
المصدر: Medical Genetics; Том 22, № 4 (2023); 44-48 ; Медицинская генетика; Том 22, № 4 (2023); 44-48 ; 2073-7998
مصطلحات موضوعية: сперматогенез, meiotic arrest, male infertility, oligozoospermia, Robertsonian translocations, spermatogenesis, мейотический блок, мужское бесплодие, олигозооспермия, робертсоновские транслокации
وصف الملف: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2285/1710; Krausz C., Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15(6):369-384. doi:10.1038/s41585-018-0003-3.; Nielsen J., Wohlert M. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum Genet. 1991;87(1):81-3. doi:10.1007/BF01213097.; McKinlay Gardner R. J. and others (eds), Robertsonian Translocations, Gardner and Sutherland’s Chromosome Abnormalities and Genetic Counseling, 5 edn, Oxford Monographs on Medical Genetics (New York, 2018; online edn, Oxford Academic, 1 Feb. 2018), https://doi.org/10.1093/med/9780199329007.003.0007; Vincent M.C., Daudin M., De M.P. et al. Cytogenetic investigations of infertile men with low sperm counts: a 25-year experience. J Androl. 2002;23(1):18-22; discussion 4 4-5. doi:10.1002/j.1939-4640.2002.tb02597.x.; Ferfouri F., Selva J., Boitrelle F. et al. The chromosomal risk in sperm from heterozygous Robertsonian translocation carriers is related to the sperm count and the translocation type. Fertil Steril. 2011;96(6):1337-43. doi:10.1016/j.fertnstert.2011.09.008.; Wiland E., Olszewska M., Woźniak T. et al. How much, if anything, do we know about sperm chromosomes of Robertsonian translocation carriers? Cell Mol Life Sci. 2020;77(23):4765-4785. doi:10.1007/s00018-020-03560-5.; Ковалева Н.В. Частота и спектр робертсоновских транслокаций в общей популяции и у пациентов с нарушениями репродукции. Генетика 2018; 54(4):487–492. https://doi.org/10.7868/S0016675818040112; Курило Л.Ф., Дубинская В.П., Остроумова Т.В. и др. Оценка сперматогенеза по незрелым половым клеткам эякулята. Проблемы репродукции 1995;3:33–8.; WHO laboratory manual for the examination and processing of human semen. 5th ed. WHO, 2010. 271 p.; Курило Л.Ф. Способ цитологической диагностики нарушения сперматогенеза. Патент на изобретение № 2328736 от 01.02.2007.; Pastuszek E., Kiewisz J., Kulwikowska P.M. et al. Sperm parameters and DNA fragmentation of balanced chromosomal rearrangements carriers. Folia Histochem Cytobiol. 2015;53(4):314-21. doi:10.5603/fhc.a2015.0032.; Eaker S., Pyle A., Cobb J., Handel M.A. Evidence for meiotic spindle checkpoint from analysis of spermatocytes from Robertsonian-chromosome heterozygous mice. J Cell Sci. 2001;114(Pt 16):2953-65. doi:10.1242/jcs.114.16.2953.; Luciani J.M., Guichaoua M.R., Mattei A., Morazzani M.R. Pachytene analysis of a man with a 13q;14q translocation and infertility. Behavior of the trivalent and nonrandom association with the sex vesicle. Cytogenet Cell Genet. 1984;38(1):14-22. doi:10.1159/000132023.; Rosenmann A., Wahrman J., Richler C. et al. Meiotic association between the XY chromosomes and unpaired autosomal elements as a cause of human male sterility. Cytogenet Cell Genet. 1985;39(1):19-29. doi:10.1159/000132098.; Navarro J., Vidal F., Benet J. et al. XY-trivalent association and synaptic anomalies in a male carrier of a Robertsonian t(13;14) translocation. Hum Reprod. 1991;6(3):376-81. doi:10.1093/oxfordjournals.humrep.a137343.; Johannisson R., Schwinger E., Wolff H.H. et al. The effect of 13;14 Robertsonian translocations on germ-cell differentiation in infertile males. Cytogenet Cell Genet. 1993;63(3):151-5. doi:10.1159/000133524.; Johannisson R., Löhrs U., Wolff H.H., Schwinger E. Two different XY-quadrivalent associations and impairment of fertility in men. Cytogenet Cell Genet. 1987;45(3-4):222-30. doi:10.1159/000132458.; Oliver-Bonet M., Benet J., Sun F. et al. Meiotic studies in two human reciprocal translocations and their association with spermatogenic failure. Hum Reprod. 2005 Mar;20(3):683-8. doi:10.1093/humrep/deh654.; Templado C., Vidal F., Navarro J. et al. Meiotic studies and synaptonemal complex analysis in two infertile males with a 13/14 balanced translocation. Hum Genet. 1984;67(2):162-5. doi:10.1007/BF00272992.; Wiland E., Olszewska M., Huleyuk N. et al. The effect of Robertsonian translocations on the intranuclear positioning of NORs (nucleolar organizing regions) in human sperm cells. Sci Rep. 2019;9(1):2213. doi:10.1038/s41598-019-38478-x.; https://www.medgen-journal.ru/jour/article/view/2285
-
20Academic Journal
المؤلفون: I. D. Kuzhal, O. V. Pribushenya, I. V. Naumchik, I. V. Kurlovich, N. I. Ryabokon, И. Д. Кужель, О. В. Прибушеня, И. В. Наумчик, И. В. Курлович, Н. И. Рябоконь
المساهمون: The work was performed within the framework of project 2.2.5 “Study of the spectrum of sperm DNA damage in reduced male fertility” of the State Research Program “Biotechnology-2” (2021–2025), Работа выполнена в рамках задания 2.2.5 «Изучение спектра повреждений ДНК спермиев при пониженной мужской фертильности» Государственной программы научных исследований «Биотехнологии-2» (2021–2025 гг.)
المصدر: Doklady of the National Academy of Sciences of Belarus; Том 67, № 4 (2023); 307-314 ; Доклады Национальной академии наук Беларуси; Том 67, № 4 (2023); 307-314 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-4
مصطلحات موضوعية: мужское бесплодие, comet assay, normozoospermia, pathozoospermia, male infertility, метод ДНК-комет, нормозооспермия, патозооспермия
وصف الملف: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/1142/1141; O’Neill, C. L. A worldwide profile of the utilization of sperm DNA fragmentation testing in relation to reproductive outcome / C. L. O’Neill, G. D. Palermo // Translational Andrology and Urology. – 2017. – Vol. 6, N 4. – P. 320−321. https://doi.org/10.21037/tau.2017.09.14; Zini, A. The benefits and limitations of sperm DNA testing in clinical practice / A. Zini // Translational Andrology and Urology. – 2017. – Vol. 6, N 4. – P. 326−327. https://doi.org/10.21037/tau.2017.09.09; World Health Organization. WHO laboratory manual for the examination and processing of human semen. 6th ed. – Geneva, Switzerland: World Health Organization; 2021. – 276 p.; The impact of single- and double-strand DNA breaks in human spermatozoa on assisted reproduction / A. Agarwal [et al.] // International Journal of Molecular Sciences. – 2020. – Vol. 21, N 11. – Art. 3882. https://doi.org/10.3390/ijms21113882; Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations / S. C. Esteves [et al.] // Andrologia. – 2021. – Vol. 53, N 2. – Art. e13874. https://doi.org/10.1111/and.13874; Ribas-Maynou, J. Single and double strand sperm DNA damage: different reproductive effects on male fertility / J. Ribas-Maynou, J. Benet // Genes. – 2019. – Vol. 10, N 2. – Art. 105. https://doi.org/10.3390/genes10020105; A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression / J. van den Berg [et al.] // Nucleic Acids Research. – 2018. – Vol. 46, N 19. – P. 10132–10144. https://doi.org/10.1093/nar/gky786; Double-stranded sperm DNA damage is a cause of delay in embryo development and can impair implantation rates / A. Casanovas [et al.] // Fertility and Sterility. – 2019. – Vol. 111, N 4. – P. 699–707. https://doi.org/10.1016/j.fertnstert.2018.11.035; DNA double strand breaks in human spermatozoa can be predictive for assisted reproductive outcome / A. Garolla [et al.] // Reproductive BioMedicine Online. – 2015. – Vol. 31, N 1. – P. 100–107. https://doi.org/10.1016/j.rbmo.2015.03.009; Investigating the level of DNA double-strand break in human spermatozoa and its relation to semen characteristics and IVF outcome using phospho-histone H2AX antibody as a biomarker / O. Coban [et al.] // Andrology. – 2020. – Vol. 8, N 2. – P. 421–426. https://doi.org/10.1111/andr.12689; Double stranded sperm DNA breaks, measured by Comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor / J. Ribas-Maynou [et al.] // PLoS One. – 2012. – Vol. 7, N 9. – Art. e44679. https://doi.org/10.1371/journal.pone.0044679; Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios / A. Agarwal [et al.] // Translational Andrology and Urology. – 2016. – Vol. 5, N 6. – P. 935−950. https://doi.org/10.21037/tau.2016.10.03; Double-stranded DNA breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance / J. Ribas-Maynou [et al.] // Molecular Human Reproduction. – 2014. – Vol. 20, N 4. – P. 330−340. https://doi.org/10.1093/molehr/gat090; The ability of sperm selection techniques to remove single- or double-strand DNA damage / M. Enciso [et al.] // Asian Journal of Andrology. – 2011. – Vol. 13, N 5. – P. 764−768. https://doi.org/10.1038/aja.2011.46; https://doklady.belnauka.by/jour/article/view/1142