يعرض 1 - 20 نتائج من 131 نتيجة بحث عن '"[en] CO2"', وقت الاستعلام: 1.05s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Materiales de Construcción; Vol. 74 No. 355 (2024); e351 ; Materiales de Construcción; Vol. 74 Núm. 355 (2024); e351 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2024.v74.i355

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3723/4352; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3723/4353; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3723/4354; Gagg CR. 2014. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 40: 114-140.; Schaefer CE, Kupwade-Patil K, Ortega M, Soriano C, Büyüköztürk O, White AE, Short MP. 2018. Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint. Waste. Manag. 71:426-439.; Yap SP, Alengaram UJ, Mo KH, Jumaat MZ. 2017. High strength oil palm shell concrete beams reinforced with steel fibres. Mater. Construcc. 67(328): e142.; Suoware T, Edelugo S, Ugwu B, Amula E, DigitemieI. 2019. Development of flame retarded composite fiberboard for building applications using oil palm residue. Mater. Construcc. 69(335): e197.; Safiuddin M, Abdus Salam M, Jumaat MZ. 2011. Utilization of palm oil fuel ash in concrete: a review. J. Civ. Eng. Manag. 17(2): 234-247.; Office of the Agricultural Economics [OAE]. 2022. Agricultural Statistics of Thailand crop, Palm oil product statistics year 2019. Retrieved From http://www.oae.go.th. (AccessedDecember,15 2023).; Tangchirapat W, Jaturapitakkul C, Kiattikomol K. 2009. Compressive strength and expansion of blended cement mortar containing palm oil fuel ash. J. Mater. Civ. Eng. 21(8): 426-431.; Jaturapitakkul C, Tangpagasit J, Songmue S, Kiattikomol K. 2011. Filler effect and pozzolanic reaction of ground palm oil fuel ash. Constr. Build. Mater. 25(11): 4287-4293.; Zeyad AM, Johari MM, Tayeh BA, Yusuf MO. 2016. Efficiency of treated and untreated palm oil fuel ash as a supplementary binder on engineering and fluid transport properties of high-strength concrete. Constr. Build. Mater. 125: 1066-1079.; Mujedu KA, Ab-Kadir MA, Ismail M. 2020. A review on self-compacting concrete incorporating palm oil fuel ash as a cement replacement. Constr. Build. Mater. 258: 119541.; Chalee W, Cheewaket T, Jaturapitakkul C. 2021. Enhanced durability of concrete with palm oil fuel ash in a marine environment. J. Mater. Res. Technol. 13: 128-137.; Hamada HM, Thomas BS, Yahaya FM, Muthusamy K, Yang J, Abdalla JA, Hawileh RA. 2021. Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review. J. Build. Eng. 40: 102286.; Liu S, Yan P, 2010. Effect of limestone powder on microstructure of concreteJ. Wuhan. Univ. Technol. Mater. Sci. Ed. 25(2):328-331.; Wang D, Shi C, Farzadnia N, Shi Z, Jia H. 2018. A review on effects of limestone powder on the properties of concrete. Constr. Build. Mater.192:153-166.; Zhao L, He T, Niu M, Chang X, Wang L, Wang Y. 2024. Effect of Limestone Powder Mixing Methods on the Performance of Mass Concrete.Mater. 17(3): 617.; Wang D, Shi C, Farzadnia N, Shi Z, Jia H, Ou Z. 2018. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater.181: 659-672.; Han K, Shu X, Ran Q, Shi J, Zhang Z. 2023. Understanding the mechanisms behind the effects of limestone powder on microstructure evolution of cement paste. J. Sustain. Cem. Based Mater. 12(8): 995-1008.; Ramezanianpour AA, Ghiasvand E, Nickseresht I, Mahdikhani M. Moodi F. 2009. Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cem. Concr. Compos.31(10): 715-720.; Bentz DP, Ardani A, Barrett T, Jones SZ, Lootens D, Peltz MA, Sato T, Stutzman PE, Tanesi J, Weiss WJ. 2015. Multi-scale investigation of the performance of limestone in concrete. Constr. Build. Mater. 75:1-10.; Wang X-Y. 2018. Analysis of hydration and strength optimization of cement-fly ash-limestone ternary blended concrete. Constr. Build. Mater. 166: 130-140.; Li C, Jiang L. 2020. Utilization of limestone powder as an activator for early-age strength improvement of slag concrete. Constr. Build. Mater. 253: 119257.; Kathirvel P, Saraswathy V, Karthik S, Sekar A. 2013. Strength and durability properties of quaternary cement concrete made with fly ash, rice husk ash and limestone powder. Arab. J. Sci. Eng. 38 (3): 589-598.; TIS 2888-18. 2018. Palm oil ash for use as an admixture in concrete. Thai Industrial Standards Institute. Bangkok; Thailand.; Bernal SA, Juenger MC, Ke X, Matthes W, Lothenbach B, De Belie N, Provis JL. 2017. Characterization of supplementary cementitious materials by thermal analysis. Mater. Struct. 50 (1):1-13.; ACI 363R. 2010. Report on High-Strength Concrete, ACI Committee. American Concrete Institute & International Organization for Standardization, Farmington Hills; Michigan.; ASTM C39-16. 2016. Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken; PA.; ASTM C469-14. 2014. Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression, ASTM International, West Conshohocken; PA.; ASTM C157-17. 2017. Standard test method for length change of hardened cement mortar and concrete, ASTM International, West Conshohocken; PA.; Cordeiro GC, Toledo Filho RD, Tavares LM, and Fairbairn EMR. 2009. Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39(2): 110-115.; TGO. 2022. Greenhouse gas emission factor: Emission factor. Thailand greenhouse gas management organization. Bangkok; Thailand.; Braga AM, Silvestre JD, de Brito J. 2017. Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. J. Clean. Prod. 162: 529-543.; Turner LK, Collins FG. 2013. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concreteConstr. Build. Mater. 43: 125-130.; Kim Y-J, Leeuwen RV, Cho B-Y, Sriraman V, Torres A. 2018. Evaluation of the Efficiency of Limestone Powder in Concrete and the Effects on the Environment. Sustain. 10(2): 550.; Sripan T, Haruehansapong S, Kroehong W, Senawang W, Namarak C, Jaturapitakkul C, Tangchirapat W. 2024. Assessment of bonding strength of steel bar in recycled aggregate concrete containing ground palm oil fuel ash. Innov. Infrastruct. Solut. 9(3): 59.; Herath C, Gunasekara C, Law DW, Setunge S. 2020. Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Constr. Build. Mater. 258: 120606.; Chindaprasirt P, Kroehong W, Damrongwiriyanupap N, Suriyo W, Jaturapitakkul C. (2020) Mechanical properties, chloride resistance and microstructure of Portland fly ash cement concrete containing high volume bagasse ash. J. Build. Eng. 31:101415.; Klathae T, Tran TNH, Men S, Jaturapitakkul C, Tangchirapat W. 2021. Strength, chloride resistance, and water permeability of high volume sugarcane bagasse ash high strength concrete incorporating limestone powder. Constr. Build. Mater. 311: 125326.; Siddique R. 2004. Performance characteristics of high-volume Class F fly ash concrete. Cem. Concr. Res. 34(3): 487-493.; Chen H-J, Shih N-H, Wu C-H, Lin S-K. 2019. Effects of the loss on ignition of fly ash on the properties of high-volume fly ash concrete. Sustain. 11(9): 2704.; Meddah MS, Lmbachiya MC, Dhir RK. 2014. Potential use of binary and composite limestone cements in concrete production. Constr. Build. Mater. 58: 193-205.; Huang C-H, Lin S-K, Chang C-S, Chen H-J. 2013. Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Constr. Build. Mater. 46: 71-78.; Dinakar P, Babu K, Santhanam M. 2008. Mechanical properties of high-volume fly ash self-compacting concrete mixtures. Struct. Concr. 9(2): 109-116.; Rerkpiboon A, Tangchirapat W, Jaturapitakkul C. 2015. Strength, chloride resistance, and expansion of concretes containing ground bagasse ash. Constr. Build. Mater. 101(1): 983-989.; Meenyut B, Tanchirapat W, Jaturapitakkul C. 2019. High-strength concrete containing high volume of ground bottom ash. J. Thai. Conc. Assoc. 7(2): 14-24.; ACI 318M. 2014. Building code requirements for structural concrete (ACI 318M-14) and commentary: ACI Committee. American Concrete Institute & International Organization for Standardization, Farmington Hills; Michigan.; Aıtcin P. 2003. The durability characteristics of high performance concrete: a review. Cem Concr Compos. 25(4-5):409-420.; Kristiawan SA, Aditya MTM. 2015. Effect of high volume fly ash on shrinkage of self-compacting concrete. Procedia. Eng. 125: 705-712.; Kumar B, Tike G, Nanda P. 2007. Evaluation of properties of high-volume fly-ash concrete for pavements. J. Mater. Civ. Eng. 19(10):906-911.; De Weerdt K, Haha MB, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B. 2011. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 41(3): 279-291.; Amnadnua K, Tangchirapat W, Jaturapitakkul C. 2013. Strength, water permeability, and heat evolution of high strength concrete made from the mixture of calcium carbide residue and fly ash. Mater. Des. 51:894-901.; Atiş CD. 2002. Heat evolution of high-volume fly ash concrete. Cem. Concr. Res. 32(5): 751-756.; Djenaoucine L, Picazo Á, de la Rubia MÁ, Moragues A, Gálvez JC. 2024. Influence of graphene oxide on mechanical properties and durability of cement mortar. Mater. 17(6): 1445.; Piasta W, Góra J, Budzyński W. 2017. Stress-strain relationships and modulus of elasticity of rocks and of ordinary and high performance concretes. Constr. Build. Mater. 153: 728-739.; Limbachiya M, Meddah MS, Ouchagour Y. 2012. Performance of Portland/Silica Fume Cement Concrete Produced with Recycled Concrete Aggregate. ACI Mater. J. 109(1): 91-100.; Amin M, Abu el-Hassan K. 2015. Effect of using different types of nano materials on mechanical properties of high strength concrete. Constr. Build. Mater. 80:116-124.; Ridzuan A, Ibrahim A, Ismail A, Diah A. 2005. Durablity performance of recycled aggregate concrete. Achieving Sustainability in Construction: Proceedings of the International Conference held at the University of Dundee, Scotland, UKon 5–6 July 2005. Thomas Telford Publishing: 193-202.; Donza H, Cabrera O, Irassar E. 2002. High-strength concrete with different fine aggregate. Cem. Concr. Res. 32(11):1755-1761.; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3723

  2. 2
  3. 3
  4. 4
    Academic Journal

    المؤلفون: Damineli, Bruno Luís

    المصدر: Risco Revista de Pesquisa em Arquitetura e Urbanismo (Online); v. 19 (2021); 1-12 ; Risco Revista de Pesquisa em Arquitetura e Urbanismo (Online); 巻 19 (2021); 1-12 ; Risco Revista de Pesquisa em Arquitetura e Urbanismo (Online); Том 19 (2021); 1-12 ; Risco - Revue de Recherche en Architecture et Urbanisme; Vol. 19 (2021); 1-12 ; Risco Revista de Pesquisa em Arquitetura e Urbanismo (Online); 卷 19 (2021); 1-12 ; Risco Revista de Pesquisa em Arquitetura e Urbanismo (Online); Bd. 19 (2021); 1-12 ; Risco - Revista de Investigación en Arquitectura y Urbanismo; Vol. 19 (2021); 1-12 ; Risco ....

    وصف الملف: application/pdf

  5. 5
  6. 6
  7. 7
    Dissertation/ Thesis

    المؤلفون: Mahmud, Mubarak

    المساهمون: Ecologie Systématique et Evolution (ESE), AgroParisTech-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), CLAND Convergence Institute, France (ANR-16-CONV-0003)Kano State Government of Nigeria, Université Paris-Saclay, Laure Barthes, Nicolas Delpierre, Paul Leadley, Stéphane Bazot, Isabelle BERTRAND, UMR ECO&Sols, INRAE Montpellie

    المصدر: https://hal.science/tel-04417489 ; Life Sciences [q-bio]. Université Paris-Saclay, 2023. English. ⟨NNT : 2023UPASB074⟩.

    Relation: NNT: 2023UPASB074

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16

    المؤلفون: Cyril Abadie, Guillaume Tcherkez

    المساهمون: Institut de Recherche en Horticulture et Semences (IRHS), Université d'Angers (UA)-Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)

    المصدر: Communications Biology, Vol 2, Iss 1, Pp 1-7 (2019)
    Communications Biology
    Communications Biology, Nature Publishing Group, 2019, 2 (1), pp.379. ⟨10.1038/s42003-019-0616-y⟩
    Communications Biology 1 (2), . (2019)

    وصف الملف: application/pdf

  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Conference

    المساهمون: Laboratoire Agronomie et Environnement Nancy, Institut National de la Recherche Agronomique (INRA)-Institut National Polytechnique de Lorraine (INPL), Institute of Plant Science, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich)

    المصدر: 5èmes journées d'écologie fonctionnelle
    https://hal.univ-lorraine.fr/hal-04504302
    5èmes journées d'écologie fonctionnelle, Mar 2004, Nancy, France. Recueil de résumés, 2P02, pp.76, 2004

    جغرافية الموضوع: Nancy, France

  20. 20