-
1Academic Journal
المصدر: AIMS Mathematics, Vol 9, Iss 6, Pp 14487-14503 (2024)
مصطلحات موضوعية: conformal $ \eta $-ricci soliton, string cloud spacetime, strange quark matter, $ \varphi(\mathcal{r}ic $)-vector field, schrödinger-ricci equation, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2473-6988
-
2Academic Journal
المؤلفون: Sardar, A., Sarkar, A.
المصدر: Carpathian Mathematical Publications; Vol. 16 No. 2 (2024); 539-547 ; Карпатські математичні публікації; Том 16 № 2 (2024); 539-547 ; 2313-0210 ; 2075-9827
مصطلحات موضوعية: Einstein soliton, $\eta$-Einstein soliton, $\eta$-Ricci soliton, gradient $\eta$-Ricci soliton, $\eta$-Yamabe soliton, $\alpha$-cosymplectic manifold, солітон Айнштайна, $\eta$-солітон Айнштайна, $\eta$-солітон Річчі, ґрадієнтний $\eta$-солітон Річчі, $\eta$-солітон Ямабе, $\alpha$-косимплектичний многовид
وصف الملف: application/pdf; text/html
Relation: https://journals.pnu.edu.ua/index.php/cmp/article/view/5770/8842; https://journals.pnu.edu.ua/index.php/cmp/article/view/5770/8843; https://journals.pnu.edu.ua/index.php/cmp/article/view/5770
-
3Academic Journal
المؤلفون: Mert, Tugba, Atceken, Mehmet, Uygun, Pakize
المصدر: Asian Journal of Mathematics and Computer Research; Vol. 31 No. 1 (2024): 2024- Volume 31 [Issue 1]; 64-75 ; 2395-4213
مصطلحات موضوعية: Ricci-pseudosymmetric manifold, \(\eta\)-Ricci soliton, Schouten-van Kampen connection
وصف الملف: application/pdf
Relation: https://ikprress.org/index.php/AJOMCOR/article/view/8585/7728; https://ikprress.org/index.php/AJOMCOR/article/view/8585/7729; https://ikprress.org/index.php/AJOMCOR/article/view/8585
-
4Academic Journal
المؤلفون: Mert, Tuğba, Atçeken, Mehmet
المصدر: Earthline Journal of Mathematical Sciences; Vol 14 No 6 (2024): In progress; 1239-1257 ; 2581-8147
مصطلحات موضوعية: Lorentzian manifold, $\eta$-Ricci soliton, conformal Ricci soliton, $\eta $-Ricci Bourguignon soliton
وصف الملف: application/pdf
Relation: https://earthlinepublishers.com/index.php/ejms/article/view/943/569; https://earthlinepublishers.com/index.php/ejms/article/view/943
-
5Academic Journal
المؤلفون: Siddiqi, Mohd Danish, Bahadır, Oğuzhan
المصدر: Facta Universitatis, Series: Mathematics and Informatics; Vol. 35, No 2 (2020); 295-310 ; 2406-047X ; 0352-9665
مصطلحات موضوعية: Kenmotsu manifold, Generalized symmetric metric connection, $\eta$-Ricci soliton, Ricci soliton, Einstein manifold, 53C05, 53D15, 53C25
وصف الملف: application/pdf
Relation: http://casopisi.junis.ni.ac.rs/index.php/FUMathInf/article/view/4374/pdf; http://casopisi.junis.ni.ac.rs/index.php/FUMathInf/article/view/4374
-
6Academic Journal
المؤلفون: Mandal, Krishanu, Mandal, Dhananjoy
المساهمون: Università del Salento - Coordinamento SIBA
المصدر: Note di Matematica; Volume 38, Issue 2 (2018); 21-34
مصطلحات موضوعية: $N(k)$-paracontact, conformally flat, $\eta$-Ricci soliton, gradient Ricci soliton, para-Sasakian manifold
Time: Lecce, Italy
وصف الملف: application/pdf
-
7Academic Journal
المؤلفون: Mert, Tuğba, Atçeken, Mehmet, Uygun, Pakize, Pandey, Shashikant
المصدر: Earthline Journal of Mathematical Sciences; Vol 13 No 2 (2023); 291-311 ; 2581-8147
مصطلحات موضوعية: $\left(LCS\right)_{n}-$manifold, Ricci-pseudosymmetric manifold, $\eta-$Ricci soliton
وصف الملف: application/pdf
Relation: https://earthlinepublishers.com/index.php/ejms/article/view/739/455; https://earthlinepublishers.com/index.php/ejms/article/view/739
-
8
المؤلفون: BEYENDİ, Selahattin
المصدر: Volume: 10, Issue: 4 208-216
Mathematical Sciences and Applications E-Notesمصطلحات موضوعية: $\mathcal{W}_{8}$-curvature tensor, $\alpha$-cosymplectic manifold, $\eta$-Ricci soliton, Matematik, Mathematics
وصف الملف: application/pdf
-
9Academic Journal
المؤلفون: KAR, Debabrata, MAJHİ, Pradip
المصدر: Volume: 70, Issue: 2 569-581 ; 1303-5991 ; 2618-6470 ; Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
مصطلحات موضوعية: Einstein manifold,Ricci soliton,$\eta$-Ricci soliton,Cotton tensor,Sasakian manifold
وصف الملف: application/pdf
Relation: https://dergipark.org.tr/tr/download/article-file/1201713; https://dergipark.org.tr/tr/pub/cfsuasmas/issue/62873/769405
-
10
المؤلفون: Debabrata Kar, Pradip Majhi
المصدر: Volume: 70, Issue: 2 569-581
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statisticsمصطلحات موضوعية: Physics, Sasakian manifold, Einstein manifold,Ricci soliton,$\eta$-Ricci soliton,Cotton tensor,Sasakian manifold, Matematik, Uygulamalı, Cotton tensor, Mathematics, Applied, General Medicine, Einstein manifold, Mathematics::Differential Geometry, Mathematics::Geometric Topology, Mathematics::Symplectic Geometry, Mathematical physics, Ricci soliton
وصف الملف: application/pdf
-
11
المؤلفون: Selcen Yüksel Perktaş, Ahmet Yildiz
المصدر: Volume: 13, Issue: 2 62-74
International Electronic Journal of Geometryمصطلحات موضوعية: Physics, Pure mathematics, Matematik, Applied Mathematics, Mathematics::Algebraic Topology, Connection (mathematics), Mathematics::Quantum Algebra, Quasi-Sasakian manifolds,Schouten-van Kampen connection,Ricci soliton,\eta-Ricci soliton,Yamabe soliton, Geometry and Topology, Mathematics::Differential Geometry, Nonlinear Sciences::Pattern Formation and Solitons, Mathematics::Symplectic Geometry, Mathematical Physics, Mathematics
وصف الملف: application/pdf
-
12Academic Journal
المؤلفون: YÜKSEL PERKTAŞ, Selcen, YILDIZ, Ahmet
المصدر: Volume: 13, Issue: 2 62-74 ; 1307-5624 ; International Electronic Journal of Geometry
مصطلحات موضوعية: Quasi-Sasakian manifolds,Schouten-van Kampen connection,Ricci soliton,\eta-Ricci soliton,Yamabe soliton
وصف الملف: application/pdf
Relation: https://dergipark.org.tr/tr/download/article-file/1117735; https://dergipark.org.tr/tr/pub/iejg/issue/56935/742073
-
13Academic Journal
المؤلفون: Hui, Shyamal Kumar, Chakraborty, Debabrata
مصطلحات موضوعية: keyword:$\eta $-Ricci soliton, keyword:$\eta $-Einstein manifold, keyword:$(LCS)_n$-manifold, msc:53B30, msc:53C15, msc:53C25
وصف الملف: application/pdf
Relation: zbl:Zbl 1365.53022; reference:[1] Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G.: Certain results on Ricci solitons in $\alpha $-Sasakian manifolds. Geometry 2013, ID 573925 (2013), 1–4. Zbl 1314.53116, MR 3100666; reference:[2] Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G.: A geometry on Ricci solitons in $(LCS)_{n}$-manifolds. Diff. Geom.-Dynamical Systems 16 (2014), 50–62. Zbl 1331.53045, MR 3226604; reference:[3] Atceken, M.: On geometry of submanifolds of $(LCS)_n$-manifolds. International Journal of Mathematics and Mathematical Sciences 2012, ID 304647 (2014), 1–11. MR 2888754; reference:[4] Atceken, M., Hui, S. K.: Slant and pseudo-slant submanifolds of LCS-manifolds. Czechoslovak Math. J. 63 (2013), 177–190. MR 3035505, 10.1007/s10587-013-0012-6; reference:[5] Bagewadi, C. S., Ingalahalli, G.: Ricci solitons in Lorentzian-Sasakian manifolds. Acta Math. Acad. Paeda. Nyire. 28 (2012), 59–68. MR 2942704; reference:[6] Bejan, C. L., Crasmareanu, M.: Ricci solitons in manifolds with quasi constant curvature. Publ. Math. Debrecen 78 (2011), 235–243. Zbl 1274.53097, MR 2777674, 10.5486/PMD.2011.4797; reference:[7] Blaga, A. M.: $\eta $-Ricci solitons on para-kenmotsu manifolds. Balkan J. Geom. Appl. 20 (2015), 1–13. Zbl 1334.53017, MR 3367062; reference:[8] Blaga, A. M., Crasmareanu, M.: Torse forming $\eta $-Ricci solitons in almost para-contact $\eta $-Einstein geometry. Filomat, (to appear).; reference:[9] Chandra, S., Hui, S. K., Shaikh, A. A.: Second order parallel tensors and Ricci solitons on $(LCS)_n$-manifolds. Commun. Korean Math. Soc. 30 (2015), 123–130. Zbl 1338.53055, MR 3346486, 10.4134/CKMS.2015.30.2.123; reference:[10] Chen, B. Y., Deshmukh, S.: Geometry of compact shrinking Ricci solitons. Balkan J. Geom. Appl. 19 (2014), 13–21. Zbl 1316.53052, MR 3223305; reference:[11] Chen, B. Y., Deshmukh, S.: Ricci solitons and concurrent vector fields. arXiv:1407.2790 [math.DG] 2014 (2014), 1–12. MR 3367063; reference:[12] Cho, J. T., Kimura, M.: Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. 61 (2009), 205–212. Zbl 1172.53021, MR 2541405, 10.2748/tmj/1245849443; reference:[13] Deshmukh, S., Al-Sodais, H., Alodan, H.: A note on Ricci solitons. Balkan J. Geom. Appl. 16 (2011), 48–55. Zbl 1220.53060, MR 2785715; reference:[14] Hamilton, R. S.: Three Manifold with positive Ricci curvature. J. Differential Geom. 17, 2 (1982), 255–306. MR 0664497, 10.4310/jdg/1214436922; reference:[15] Hamilton, R. S.: The Ricci flow on surfaces. Contemporary Mathematics 71 (1988), 237–261. Zbl 0663.53031, MR 0954419, 10.1090/conm/071/954419; reference:[16] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vektor fields in Riemannian spaces. Arch. Math. 5 (2008), 385–390. MR 2501574; reference:[17] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vector fields on conformally flat spaces. AIP Conf. Proc. 1191 (2009), 98–103.; reference:[18] Hui, S. K.: On $\phi $-pseudo symmetries of $(LCS)_n$-manifolds. Kyungpook Math. J. 53 (2013), 285–294. MR 3078089, 10.5666/KMJ.2013.53.2.285; reference:[19] Hui, S. K., Atceken, M.: Contact warped product semi-slant submanifolds of $(LCS)_n$-manifolds. Acta Univ. Sapientiae Mathematica 3, 2 (2011), 212–224. Zbl 1260.53081, MR 2915836; reference:[20] Hui, S. K., Chakraborty, D.: Some types of Ricci solitons on $(LCS)_n$-manifolds. J. Math. Sciences: Advances and Applications 37 (2016), 1–17.; reference:[21] Hui, S. K., Lemence, R. S., Chakraborty, D.: Ricci solitons on three dimensional generalized Sasakian-space-forms. Tensor, N. S. 76 (2015).; reference:[22] Ingalahalli, G., Bagewadi, C. S.: Ricci solitons in $\alpha $-Sasakian manifolds. ISRN Geometry 2012, ID 421384 (2012), 1–13. Zbl 1247.53052, MR 3100666, 10.5402/2012/421384; reference:[23] Matsumoto, K.: On Lorentzian almost paracontact manifolds. Bull. Yamagata Univ. Nat. Sci. 12 (1989), 151–156. MR 0994289; reference:[24] Mihai, I., Rosca, R.: On Lorentzian para-Sasakian manifolds. In: Classical Anal., World Sci. Publ., Singapore, 1992, 155–169. MR 1173650; reference:[25] Mikeš, J., Rachůnek, L.: Torse forming vector fields in T-semisymmetric Riemannian spaces. In: Steps in Diff. Geom., Proc. of the Colloquium on Diff. Geom., Univ. Debrecen, Debrecen, Hungary, 2000, 219–229. MR 1859300; reference:[26] Mikeš, J.: Differential Geometry of Special Mappings. Palacky Univ. Press, Olomouc, 2015. Zbl 1337.53001, MR 3442960; reference:[27] Nagaraja, H. G., Premlatta, C. R.: Ricci solitons in Kenmotsu manifolds. J. Math. Analysis 3 (2012), 18–24. MR 2966274; reference:[28] Narain, D., Yadav, S.: On weak concircular symmetries of $(LCS)_{2n+1}$-manifolds. Global J. Sci. Frontier Research 12 (2012), 85–94. MR 2850604; reference:[29] O’Neill, B.: Semi Riemannian geometry with applications to relativity. Academic Press, New York, 1983. Zbl 0531.53051, MR 0719023; reference:[30] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159 [Math.DG] 2002 (2002), 1–39. Zbl 1130.53001; reference:[31] Perelman, G.: Ricci flow with surgery on three manifolds. arXiv:math/0303109 [Math.DG] 2003 (2013), 1–22.; reference:[32] Prakasha, D. G.: On Ricci $\eta $-recurrent $(LCS)_n$-manifolds. Acta Univ. Apulensis 24 (2010), 109–118. Zbl 1224.53061, MR 2663680; reference:[33] Shaikh, A. A.: On Lorentzian almost paracontact manifolds with a structure of the concircular type. Kyungpook Math. J. 43 (2003), 305–314. Zbl 1054.53056, MR 1983436; reference:[34] Shaikh, A. A.: Some results on $(LCS)_n$-manifolds. J. Korean Math. Soc. 46 (2009), 449–461. Zbl 1193.53094, MR 2515129, 10.4134/JKMS.2009.46.3.449; reference:[35] Shaikh, A. A., Ahmad, H.: Some transformations on $(LCS)_n$-manifolds. Tsukuba J. Math. 38 (2014), 1–24. Zbl 1296.53056, MR 3261910, 10.21099/tkbjm/1407938669; reference:[36] Shaikh, A. A., Baishya, K. K.: On concircular structure spacetimes. J. Math. Stat. 1 (2005), 129–132. Zbl 1142.53326, MR 2197611, 10.3844/jmssp.2005.129.132; reference:[37] Shaikh, A. A., Baishya, K. K.: On concircular structure spacetimes II. American J. Appl. Sci. 3, 4 (2006), 1790–1794. MR 2220732, 10.3844/ajassp.2006.1790.1794; reference:[38] Shaikh, A. A., Basu, T., Eyasmin, S.: On locally $\phi $-symmetric $(LCS)_n$-manifolds. Int. J. Pure Appl. Math. 41, 8 (2007), 1161–1170. Zbl 1136.53030, MR 2384602; reference:[39] Shaikh, A. A., Basu, T., Eyasmin, S.: On the existence of $\phi $-recurrent $(LCS)_n$-manifolds. Extracta Mathematicae 23, 1 (2008), 71–83. MR 2449997; reference:[40] Shaikh, A. A., Binh, T. Q.: On weakly symmetric $(LCS)_n$-manifolds. J. Adv. Math. Studies 2 (2009), 75–90. Zbl 1180.53033, MR 2583641; reference:[41] Shaikh, A. A., Hui, S. K.: On generalized $\phi $-recurrent $(LCS)_n$-manifolds. AIP Conf. Proc. 1309 (2010), 419–429.; reference:[42] Shaikh, A. A., Matsuyama, Y., Hui, S. K.: On invariant submanifold of $(LCS)_n$-manifolds. J. Egyptian Math. Soc. 24 (2016), 263–269. MR 3488908, 10.1016/j.joems.2015.05.008; reference:[43] Sharma, R.: Second order parallel tensor in real and complex space forms. International J. Math. and Math. Sci. 12 (1989), 787–790. Zbl 0696.53012, MR 1024982; reference:[44] Sharma, R.: Certain results on k-contact and $(k,\mu )$-contact manifolds. J. of Geom. 89 (2008), 138–147. Zbl 1175.53060, MR 2457028, 10.1007/s00022-008-2004-5; reference:[45] Tripathi, M. M.: Ricci solitons in contact metric manifolds. arxiv:0801.4221 [Math.DG] 2008 (2008), 1–9.; reference:[46] Yano, K.: Concircular geometry I, concircular transformations. Proc. Imp. Acad. Tokyo 16 (1940), 195–200. MR 0003113, 10.3792/pia/1195579139