يعرض 1 - 20 نتائج من 20 نتيجة بحث عن '"msc:65M55"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Conference

    المساهمون: Laboratoire de Mécanique et Technologie (LMT), École normale supérieure - Cachan (ENS Cachan)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Michel Raous, Philippe Pasquet, Christian Rey

    المصدر: Actes du neuvième colloque national en calcul des structures ; Neuvième colloque national en calcul des structures ; https://hal.science/hal-00437253 ; Neuvième colloque national en calcul des structures, May 2009, Giens (Var), France. pp.393-398

    جغرافية الموضوع: Giens (Var), France

  2. 2
    Conference

    المساهمون: Laboratoire de Mécanique et Technologie (LMT), École normale supérieure - Cachan (ENS Cachan)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Michel Raous, Philippe Pasquet, Christian Rey

    المصدر: Actes du neuvième colloque national en calcul des structures ; Neuvième colloque national en calcul des structures ; https://hal.science/hal-00437258 ; Neuvième colloque national en calcul des structures, May 2009, Giens (Var), France. pp.405-410

    جغرافية الموضوع: Giens (Var), France

  3. 3
    Report
  4. 4
    Academic Journal

    المؤلفون: Sousedík, Bedřich

    وصف الملف: application/pdf

    Relation: mr:MR3956175; zbl:Zbl 07088743; reference:[1] Aarnes, J. E., Gimse, T., Lie, K.-A.: An introduction to the numerics of flow in porous media using Matlab.Geometric Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF Springer, Berlin (2007), 265-306. Zbl 1330.76004, MR 2348925, 10.1007/978-3-540-68783-2_9; reference:[2] Aarnes, J. E., Krogstad, S., Lie, K.-A.: A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids.Multiscale Model. Simul. 5 (2006), 337-363. Zbl 1124.76022, MR 2247754, 10.1137/050634566; reference:[3] Aarnes, J. E., Krogstad, S., Lie, K.-A.: Multiscale mixed/mimetic methods on corner-point grids.Comput. Geosci. 12 (2008), 297-315. Zbl 1259.76065, MR 2434946, 10.1007/s10596-007-9072-8; reference:[4] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods.Springer Series in Computational Mathematics 15, Springer, New York (1991). Zbl 0788.73002, MR 1115205, 10.1007/978-1-4612-3172-1; reference:[5] Christie, M. A., Blunt, M. J.: Tenth SPE comparative solution project: A comparison of upscaling techniques.SPE Reservoir Eval. Eng. 4 (2001), 308-317. 10.2118/72469-pa; reference:[6] Cowsar, L. C., Mandel, J., Wheeler, M. F.: Balancing domain decomposition for mixed finite elements.Math. Comput. 64 (1995), 989-1015. Zbl 0828.65135, MR 1297465, 10.2307/2153480; reference:[7] Cros, J.-M.: A preconditioner for the Schur complement domain decomposition method.14th Int. Conf. on Domain Decomposition Methods in Science and Engineering I. Herrera et al. National Autonomous University of Mexico (UNAM), México (2003), 373-380. Zbl 1103.65004, MR 2093729; reference:[8] Demmel, J. W.: Applied Numerical Linear Algebra.Society for Industrial and Applied Mathematics, Philadelphia (1997). Zbl 0879.65017, MR 1463942, 10.1137/1.9781611971446; reference:[9] Dohrmann, C. R.: A preconditioner for substructuring based on constrained energy minimization.SIAM J. Sci. Comput. 25 (2003), 246-258. Zbl 1038.65039, MR 2047204, 10.1137/S1064827502412887; reference:[10] Dohrmann, C. R.: A substructuring preconditioner for nearly incompressible elasticity problems.Technical report SAND 2004-5393, Sandia National Laboratories (2004).; reference:[11] Dohrmann, C. R., Widlund, O. B.: Some recent tools and a BDDC algorithm for 3D problems in $H( curl)$.Domain Decomposition Methods in Science and Engineering XX Lecture Notes Computational Science and Engineering 91, Springer, Heidelberg (2013), 15-25. Zbl 06125818, MR 3242973, 10.1007/978-3-642-35275-1_2; reference:[12] Efendiev, Y., Hou, T. Y.: Multiscale Finite Element Methods: Theory and Applications.Surveys and Tutorials in the Applied Mathematical Sciences 4, Springer, New York (2009). Zbl 1163.65080, MR 2477579, 10.1007/978-0-387-09496-0; reference:[13] Ewing, R. E., Wang, J.: Analysis of the Schwarz algorithm for mixed finite elements methods.RAIRO, Modélisation Math. Anal. Numér. 26 (1992), 739-756. Zbl 0765.65104, MR 1183415, 10.1051/m2an/1992260607391; reference:[14] Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method.Int. J. Numer. Methods Eng. 50 (2001), 1523-1544. Zbl 1008.74076, MR 1813746, 10.1002/nme.76; reference:[15] Farhat, C., Lesoinne, M., Pierson, K.: A scalable dual-primal domain decomposition method.Numer. Linear Algebra Appl. 7 (2000), 687-714. Zbl 1051.65119, MR 1802366, 10.1002/1099-1506(200010/12)7:7/83.0.CO;2-S; reference:[16] Fragakis, Y., Papadrakakis, M.: The mosaic of high performance domain decomposition methods for structural mechanics: formulation, interrelation and numerical efficiency of primal and dual methods.Comput. Methods Appl. Mech. Eng. 192 (2003), 3799-3830. Zbl 1054.74069, 10.1016/S0045-7825(03)00374-8; reference:[17] Glowinski, R., Wheeler, M. F.: Domain decomposition and mixed finite element methods for elliptic problems.First International Symposium on Domain Decomposition Methods for Partial Differential Equations SIAM, Philadelphia (1988), 144-172. Zbl 0661.65105, MR 0972516; reference:[18] Golub, G. H., Loan, C. F. Van: Matrix Computations.Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore (1996). Zbl 0865.65009, MR 1417720; reference:[19] Hanek, M., Šístek, J., Burda, P.: The effect of irregular interfaces on the BDDC method for the Navier-Stokes equations.Proc. Int. Conf. Domain Decomposition Methods in Science and Engineering XXIII Lecture Notes Computational Science and Engineering 116, Springer, Cham (2017), 171-178. Zbl 06747817, MR 3718352, 10.1007/978-3-319-52389-7_16; reference:[20] Karypis, G., Kumar, V.: METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0.Technical report, Department of Computer Science, University of Minnesota (1998).; reference:[21] Klawonn, A., Kühn, M., Rheinbach, O.: Adaptive coarse spaces for FETI-DP in three dimensions.SIAM J. Sci. Comput. 38 (2016), A2880--A2911 (2016). Zbl 1346.74168, MR 3546980, 10.1137/15m1049610; reference:[22] Klawonn, A., Kühn, M., Rheinbach, O.: A closer look at local eigenvalue solvers for adaptive FETI-DP and BDDC.Technical report, Universität zu Köln (2018). Available at https://kups.ub.uni-koeln.de/9020/.; reference:[23] Klawonn, A., Rheinbach, O., Widlund, O. B.: An analysis of a FETI-DP algorithm on irregular subdomains in the plane.SIAM J. Numer. Anal. 46 (2008), 2484-2504. Zbl 1176.65135, MR 2421044, 10.1137/070688675; reference:[24] Knyazev, A. V.: Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method.SIAM J. Sci. Comput. 23 (2001), 517-541. Zbl 0992.65028, MR 1861263, 10.1137/S1064827500366124; reference:[25] Christensen, M. la Cour, Villa, U., Engsig-Karup, A. P., Vassilevski, P. S.: Numerical multilevel upscaling for incompressible flow in reservoir simulation: an element-based algebraic multigrid (AMGe) approach.SIAM J. Sci. Comput. 39 (2017), B102--B137. Zbl 1360.65247, MR 3612903, 10.1137/140988991; reference:[26] Li, J., Tu, X.: Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems.Numer. Linear Algebra Appl. 16 (2009), 745-773. Zbl 1224.65248, MR 2554500, 10.1002/nla.639; reference:[27] Li, J., Widlund, O. B.: BDDC algorithms for incompressible Stokes equations.SIAM J. Numer. Anal. 44 (2006), 2432-2455. Zbl 1233.76077, MR 2272601, 10.1137/050628556; reference:[28] Li, J., Widlund, O. B.: FETI-DP, BDDC, and block Cholesky methods.Int. J. Numer. Methods Eng. 66 (2006), 250-271. Zbl 1114.65142, MR 2224479, 10.1002/nme.1553; reference:[29] Mandel, J., Sousedík, B.: Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods.Comput. Methods Appl. Mech. Eng. 196 (2007), 1389-1399. Zbl 1173.74435, MR 2277024, 10.1016/j.cma.2006.03.010; reference:[30] Mandel, J., Sousedík, B., Dohrmann, C. R.: Multispace and multilevel BDDC.Computing 83 (2008), 55-85. Zbl 1163.65091, MR 2457352, 10.1007/s00607-008-0014-7; reference:[31] Mandel, J., Sousedík, B., Šístek, J.: Adaptive BDDC in three dimensions.Math. Comput. Simul. 82 (2012), 1812-1831. Zbl 1255.65225, MR 2967935, 10.1016/j.matcom.2011.03.014; reference:[32] Mathew, T. P.: Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems. I. Algorithms and numerical results.Numer. Math. 65 (1993), 445-468. Zbl 0801.65106, MR 1231895, 10.1007/BF01385762; reference:[33] Oh, D.-S., Widlund, O. B., Zampini, S., Dohrmann, C. R.: BDDC algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields.Math. Comput. 87 (2018), 659-692. Zbl 1380.65065, MR 3739213, 10.1090/mcom/3254; reference:[34] Pechstein, C.: Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems.Lecture Notes in Computational Science and Engineering 90, Springer, Berlin (2013). Zbl 1272.65100, MR 3013465, 10.1007/978-3-642-23588-7; reference:[35] Pechstein, C., Dohrmann, C. R.: A unified framework for adaptive BDDC.ETNA, Electron. Trans. Numer. Anal. 46 (2017), 273-336. Zbl 1368.65043, MR 3678572; reference:[36] Pechstein, C., Scheichl, R.: Analysis of FETI methods for multiscale PDEs. Part II: interface variation.Numer. Math. 118 (2011), 485-529. Zbl 1380.65388, MR 2810804, 10.1007/s00211-011-0359-2; reference:[37] Šístek, J., Březina, J., Sousedík, B.: BDDC for mixed-hybrid formulation of flow in porous media with combined mesh dimensions.Numer. Linear Algebra Appl. 22 (2015), 903-929. Zbl 1389.76057, MR 3426321, 10.1002/nla.1991; reference:[38] Sousedík, B.: Nested BDDC for a saddle-point problem.Numer. Math. 125 (2013), 761-783. Zbl 1282.65167, MR 3127330, 10.1007/s00211-013-0548-2; reference:[39] Sousedík, B., Šístek, J., Mandel, J.: Adaptive-multilevel BDDC and its parallel implementation.Computing 95 (2013), 1087-1119. Zbl 1307.65175, MR 3125603, 10.1007/s00607-013-0293-5; reference:[40] Spillane, N., Rixen, D. J.: Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms.Int. J. Numer. Methods Eng. 95 (2013), 953-990. Zbl 1352.65553, MR 3093793, 10.1002/nme.4534; reference:[41] Toselli, A., Widlund, O.: Domain Decomposition Methods---Algorithms and Theory.Springer Series in Computational Mathematics 34, Springer, Berlin (2005). Zbl 1069.65138, MR 2104179, 10.1007/b137868; reference:[42] Tu, X.: A BDDC algorithm for a mixed formulation of flow in porous media.ETNA, Electron. Trans. Numer. Anal. 20 (2005), 164-179. Zbl 1160.76368, MR 2175341; reference:[43] Tu, X.: A BDDC algorithm for flow in porous media with a hybrid finite element discretization.ETNA, Electron. Trans. Numer. Anal. 26 (2007), 146-160. Zbl 1170.76034, MR 2366094; reference:[44] Tu, X.: Three-level BDDC in three dimensions.SIAM J. Sci. Comput. 29 (2007), 1759-1780. Zbl 1163.65094, MR 2341811, 10.1137/050629902; reference:[45] Tu, X.: Three-level BDDC in two dimensions.Int. J. Numer. Methods Eng. 69 (2007), 33-59. Zbl 1134.65087, MR 2282536, 10.1002/nme.1753; reference:[46] Tu, X.: A three-level BDDC algorithm for a saddle point problem.Numer. Math. 119 (2011), 189-217. Zbl 1230.65136, MR 2824859, 10.1007/s00211-011-0375-2; reference:[47] Tu, X., Li, J.: A balancing domain decomposition method by constraints for advection-diffusion problems.Commun. Appl. Math. Comput. Sci. 3 (2008), 25-60. Zbl 1165.65402, MR 2425545, 10.2140/camcos.2008.3.25; reference:[48] Vecharynski, E., Saad, Y., Sosonkina, M.: Graph partitioning using matrix values for preconditioning symmetric positive definite systems.SIAM J. Sci. Comput. 36 (2014), A63--A87. Zbl 1290.65025, MR 3151390, 10.1137/120898760; reference:[49] Yang, Y., Fu, S., Chung, E. T.: A two-grid preconditioner with an adaptive coarse space for flow simulations in highly heterogeneous media.Available at https://arxiv.org/abs/1807.07220 (2018), 17 pages. MR 3942719; reference:[50] Zampini, S., Tu, X.: Multilevel balancing domain decomposition by constraints deluxe algorithms with adaptive coarse spaces for flow in porous media.SIAM J. Sci. Comput. 39 (2017), A1389--A1415. Zbl 06760251, MR 3682184, 10.1137/16M1080653

  5. 5
    Academic Journal

    المؤلفون: Tezaur, Radek, Vaněk, Petr

    وصف الملف: application/pdf

    Relation: mr:MR3893003; zbl:Zbl 07031680; reference:[1] Brandt, A.: Algebraic multigrid theory: The symmetric case.Appl. Math. Comput. 19 (1986), 23-56. Zbl 0616.65037, MR 0849831, 10.1016/0096-3003(86)90095-0; reference:[2] Brousek, J., Franková, P., Hanuš, M., Kopincová, H., Kužel, R., Tezaur, R., Vaněk, P., Vastl, Z.: An overview of multilevel methods with aggressive coarsening and massive polynomial smoothing.ETNA, Electron. Trans. Numer. Anal. 44 (2015), 401-442. Zbl 1327.65058, MR 3392685; reference:[3] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4, North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1016/S0168-2024(08)70174-7; reference:[4] Hackbusch, W.: Multi-Grid Methods and Applications.Springer Series in Computational Mathematics 4, Springer, Berlin (1985). Zbl 0595.65106, MR 0814495, 10.1007/978-3-662-02427-0; reference:[5] Tezaur, R., Vaněk, P.: Improved convergence bounds for two-level methods with an aggressive coarsening and massive polynomial smoothing.ETNA, Electron. Trans. Numer. Anal. 48 (2018), 264-285. Zbl 06932099, MR 3844102, 10.1553/etna_vol48s264; reference:[6] Toselli, A., Widlund, O.: Domain Decomposition Methods---Algorithms and Theory.Springer Series in Computational Mathematics 34, Springer, Berlin (2005). Zbl 1069.65138, MR 2104179, 10.1007/b137868; reference:[7] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregation.Numer. Math. 88 (2001), 559-579. Zbl 0992.65139, MR 1835471, 10.1007/s002110000226; reference:[8] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes.SIAM J. Sci. Comput. 21 (1999), 900-923. Zbl 0952.65099, MR 1755171, 10.1137/S1064827596297112

  6. 6
    Conference
  7. 7
    Conference
  8. 8
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3419960; zbl:Zbl 06486909; reference:[1] Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions.Math. Comput. 57 (1991), 23-45. Zbl 0727.65101, MR 1079008, 10.1090/S0025-5718-1991-1079008-4; reference:[2] Bramble, J. H., Pasciak, J. E., Xu, J.: Parallel multilevel preconditioners.Math. Comput. 55 (1990), 1-22. Zbl 0725.65095, MR 1023042, 10.1090/S0025-5718-1990-1023042-6; reference:[3] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4 North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174; reference:[4] Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operators.Appl. Math., Praha 37 (1992), 265-274. MR 1180605; reference:[5] Vaněk, P.: Fast multigrid solver.Appl. Math., Praha 40 1-20 (1995). Zbl 0824.65016, MR 1305645; reference:[6] Vaněk, P., Brezina, M.: Nearly optimal convergence result for multigrid with aggressive coarsening and polynomial smoothing.Appl. Math., Praha 58 369-388 (2013). Zbl 1289.65064, MR 3083519, 10.1007/s10492-013-0018-2; reference:[7] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregation.Numer. Math. 88 559-579 (2001). Zbl 0992.65139, MR 1835471, 10.1007/s211-001-8015-y; reference:[8] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes.SIAM J. Sci. Comput. 21 (1999), 900-923. MR 1755171, 10.1137/S1064827596297112; reference:[9] Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.Computing 56 (1996), 179-196. MR 1393006, 10.1007/BF02238511; reference:[10] Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid on unstructured meshes.UCD/CCM Report 34, Center for Computational Mathematics, University of Colorado at Denver, http://www.math.cudenver.edu/ccmreports/rep34.ps.gz, 1994.

  9. 9
    Academic Journal

    المؤلفون: Vaněk, Petr, Brezina, Marian

    وصف الملف: application/pdf

    Relation: mr:MR3083519; zbl:Zbl 06221236; reference:[1] Bornemann, F. A., Deuflhard, P.: The cascadic multigrid method for elliptic problems.Numer. Math. 75 (1996), 135-152. Zbl 0873.65107, MR 1421984, 10.1007/s002110050234; reference:[2] Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions.Math. Comput. 57 (1991), 23-45. Zbl 0727.65101, MR 1079008, 10.1090/S0025-5718-1991-1079008-4; reference:[3] Brezina, M., Heberton, C., Mandel, J., Vaněk, P.: An iterative method with convergence rate chosen a priori.Center for Computational Mathematics, University of Colorado at Denver (UCD/CCM) Report 140 (1999), http://ccm.ucdenver.edu/reports/rep140.pdf.; reference:[4] Brezina, M., Vaněk, P., Vassilevski, P. S.: An improved convergence analysis of smoothed aggregation algebraic multigrid.Numer. Linear Algebra Appl. 19 (2012), 441-469. Zbl 1274.65315, MR 2911383, 10.1002/nla.775; reference:[5] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications.North-Holland Amsterdam (1978). MR 0520174; reference:[6] Křížková, J., Vaněk, P.: Two-level preconditioner with small coarse grid appropriate for unstructured meshes.Numer. Linear Algebra Appl. 3 (1996), 255-274. Zbl 0906.65114, MR 1399492, 10.1002/(SICI)1099-1506(199607/08)3:43.0.CO;2-2; reference:[7] Vaněk, P.: Smoothed prolongation multigrid with rapid coarsening and massive smoothing.Appl. Math., Praha 57 (2012), 1-10. Zbl 1249.65272, MR 2891302, 10.1007/s10492-012-0001-3; reference:[8] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregation.Numer. Math. 88 (2001), 559-579. Zbl 0992.65139, MR 1835471, 10.1007/s211-001-8015-y; reference:[9] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes.SIAM J. Sci. Comput. 21 (1999), 900-923. MR 1755171, 10.1137/S1064827596297112; reference:[10] Vassilevski, P. S.: Multilevel Block Factorization Preconditioners. Matrix-Based Analysis and Algorithms for Solving Finite Element Equations.Springer New York (2008). Zbl 1170.65001, MR 2427040; reference:[11] Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space.J. Am. Math. Soc. 15 (2002), 573-597. Zbl 0999.47015, MR 1896233, 10.1090/S0894-0347-02-00398-3

  10. 10
    Conference
  11. 11
    Academic Journal

    المؤلفون: Vaněk, Petr

    وصف الملف: application/pdf

    Relation: mr:MR2891302; zbl:Zbl 1249.65272; reference:[1] Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions.Math. Comput. 57 (1991), 23-45. Zbl 0727.65101, MR 1079008, 10.1090/S0025-5718-1991-1079008-4; reference:[3] Brezina, M., Heberton, C., Mandel, J., Vaněk, P.: An iterative method with convergence rate chosen a priori UCD/CCM.Report No. 140 (1999).; reference:[2] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes.SIAM J. Sci Comput. 21 (1999), 900-923. MR 1755171, 10.1137/S1064827596297112; reference:[4] Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.Computing 56 (1996), 179-196. MR 1393006, 10.1007/BF02238511; reference:[5] Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operators.Appl. Math. 37 (1992), 265-274. MR 1180605; reference:[6] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregations.Numer. Math. 88 (2001), 559-579. MR 1835471, 10.1007/s211-001-8015-y

  12. 12
    Academic Journal

    المؤلفون: Voigt, Axel, Witkowski, Thomas

    وصف الملف: application/pdf

    Relation: mr:MR2663603; zbl:Zbl 1195.65135; reference:[1] Backofen, R., Rätz, A., Voigt, A.: Nucleation and growth by a phase-field crystal (PFC) model.Phil. Mag. Lett. 87 (2007), 813–820. 10.1080/09500830701481737; reference:[2] Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., Zhang, H.: PETSc Web page.http://www.mcs.anl.gov/petsc (2009).; reference:[3] Davis, T. A.: Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method.ACM Trans. Math. Software 30 (2004), 2 196–199. MR 2075981, 10.1145/992200.992206; reference:[4] Dziuk, G., Elliott, C. M.: Finite elements on evolving surfaces.IMA J. Numer. Anal. 27 (2007), 262–292. Zbl 1120.65102, MR 2317005, 10.1093/imanum/drl023; reference:[5] Elder, K. R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth.Phys. Rev. Lett. 88 (2002), 245701. 10.1103/PhysRevLett.88.245701; reference:[6] Gottschling, P., Wise, D. S., Adams, M. D.: Representation-transparent matrix algorithms with scalable performance.In: ICS ’07: Proc. 21st Annual Internat. Conference on Supercomputing 2007, pp. 116–125.; reference:[7] Kotakemori, H., Hasegawa, H.: Performance evaluation of a parallel iterative method library using OpenMP.In: ACM Proc. Eighth Internat. Conference on High-Performance Computing in Asia–Pacific Region 2005, pp. 432–437.; reference:[8] Li, B., Lowengrub, J., Rätz, A., Voigt, A.: Geometric evolution laws for thin crystalline films: Modeling and numerics.Comm. Comput. Phys. 6 (2009), 433–482. MR 2535657; reference:[9] Rätz, A., Ribalta, A., Voigt, A.: Surface evolution of elastically stressed films under deposition by a diffuse interface model.J. Comput. Phys. 214 (2006), 187–208. MR 2208676, 10.1016/j.jcp.2005.09.013; reference:[10] Schloegel, K., Karypis, G., Kumar, V.: Parallel static and dynamic multi-constraint graph partitioning.Concurrency and Computation: Practice and Experience 14 (2002), 3, 219–240. Zbl 1012.68146, 10.1002/cpe.605; reference:[11] Schmidt, A., Siebert, K. G.: Design of adaptive finite element software.(Lecture Notes in CSE 42.) Springer, Heidelberg 2005. Zbl 1068.65138, MR 2127659; reference:[12] Teeffelen, S. van, Backofen, R., Voigt, A., Löwen, H.: Derivation of the phase field crystal model for colloidal solidification.Phys. Rev. E. 79 (2009), 051404. 10.1103/PhysRevE.79.051404; reference:[13] Vey, S., Voigt, A.: Adaptive full domain covering meshes for parallel finite element computations.Computing 81 (2007), 53–75. Zbl 1132.65107, MR 2369421, 10.1007/s00607-007-0243-1; reference:[14] Vey, S., Voigt, A.: AMDiS – adaptive multidimensional simulations.Comput. Visual Sci. 10 (2007), 57–67. MR 2295934, 10.1007/s00791-006-0048-3

  13. 13
    Dissertation/ Thesis
  14. 14
  15. 15
    Academic Journal

    المؤلفون: Marek, Ivo

    وصف الملف: application/pdf

    Relation: mr:MR2121000; zbl:Zbl 1249.65070; reference:[1] Benzi M., Frommer A., Nabben, R., Szyld D.: Algebraic theory of multiplicative Schwarz methods.Numer. Math. 89 (2002), 605–639 Zbl 0991.65037, MR 1865505, 10.1007/s002110100275; reference:[2] Benzi M., Szyld D. B.: Existence and uniqueness of splittings for stationary iterative methods with applications to alterning methods.Numer. Math. 76 (1997), 309–321 MR 1452511, 10.1007/s002110050265; reference:[3] Berman A., Plemmons R.: Non-negative Matrices in the Mathematical Sciences.Academic Press, New York 1979 MR 0544666; reference:[4] Bohl E.: A boundary layer phenomenon for linear systems with a rank deficient matrix.Z. Angew. Math. Mech. 7/8 (1991), 223–231 Zbl 0792.65057, MR 1121486, 10.1002/zamm.19910710707; reference:[5] Bohl E.: Constructing amplification via chemical circuits.In: Biomedical Modeling Simulation (J. Eisarfeld, D. S. Leonis, and M. Witken, eds.), Elsevier Science Publ. B. V. 1992, pp. 331–334; reference:[6] Bohl E.: Structural amplification in chemical networks.In: Complexity, Chaos and Biological Evolution (E. Mosekilde and L. Mosekilde, eds.), Plenum Press, New York 1991, pp. 119–128; reference:[7] Bohl E., Boos W.: Quantitative analysis of binding protein-mediated ABC transport system.J. Theoret. Biol. 186 (1997), 65–74 10.1006/jtbi.1996.0342; reference:[8] Bohl E., Lancaster P.: Perturbation of spectral inverses applied to a boundary layer phenomenon arizing in chemical networks.Linear Algebra Appl. 180 (1993), 65–74 MR 1206409, 10.1016/0024-3795(93)90524-R; reference:[9] Bohl E., Marek I.: A model of amplification.J. Comput. Appl. Math. 63 (1995), 27–47 Zbl 0845.92003, MR 1365549, 10.1016/0377-0427(95)00052-6; reference:[10] Bohl E., Marek I.: A nonlinear model involving M-operators.An amplification effect measured in the cascade of vision. J. Comput. Appl. Math. 60 (1994), 13–28 MR 1354645, 10.1016/0377-0427(94)00081-B; reference:[11] Bohl E., Marek I.: A stability theorem for a class of linear evolution problems.Integral Equations Operator Theory 34 (1999), 251–269 MR 1689389, 10.1007/BF01300579; reference:[12] Bohl E., Marek I.: Existence and uniqueness results for nonlinear cooperative systems.Oper. Theory: Adv. Appl. 130 (2001), 153–170 Zbl 1023.47052, MR 1902006; reference:[13] Hille E., Phillips R. S.: Functional Analysis and Semigroups (Amer.Math. Society Coll. Publ. Vol. XXXI). Third printing of Revised Edition Providence, RI 1968; reference:[14] Krein M. G., Rutman M. A.: Linear operators leaving invariant a cone in a Banach space.Uspekhi Mat. Nauk III (1948), 1, 3–95. (In Russian.) English translation in Amer. Math. Soc. Transl. 26 (1950) Zbl 0030.12902, MR 0027128; reference:[15] Marek I.: Frobenius theory of positive operators.Comparison theorems and applications. SIAM J. Appl. Math. 19 (1970), 608–628 Zbl 0219.47022, MR 0415405, 10.1137/0119060; reference:[16] Marek I., Szyld D.: Algebraic Schwarz methods for the numerical solution of Markov chains.Linear Algebra Appl. Submitted Zbl 1050.65030, MR 2066608; reference:[17] Marek I., Žitný K.: Analytic Theory of Matrices for Applied Sciences, Vol 1.(Teubner Texte zur Mathematik Band 60.) Teubner, Leipzig 1983 MR 0731071; reference:[18] Ortega J. M., Rheinboldt W.: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, New York – San – Francisco – London 1970 Zbl 0949.65053, MR 0273810; reference:[19] Schaefer H. H.: Banach Lattices and Positive Operators.Springer–Verlag, Berlin – Heidelberg – New York 1974 Zbl 0296.47023, MR 0423039; reference:[20] Stewart W. J.: Introduction to the Numerical Solution of Markov Chains.Princeton University Press, Princeton, NJ 1994 Zbl 0821.65099, MR 1312831; reference:[21] Taylor A. E., Lay D. C.: Introduction to Functional Analysis.Second edition. Wiley, New York 1980 Zbl 0654.46002, MR 0564653; reference:[22] Tralau C., Greller G., Pajatsch M., Boos, W., Bohl E.: Mathematical treatment of transport data of bacterial transport system to estimate limitation in diffusion through the outer membrane.J. Theoret. Biol. 207 (2000), 1–14 10.1006/jtbi.2000.2140; reference:[23] Varga R. S.: Matrix Iterative Analysis.Prentice–Hall, Englewood Cliffs, NJ 1962. Second edition, revised and expanded. Springer–Verlag, Berlin – Heidelberg – New York 2000 MR 1753713

  16. 16
    Dissertation/ Thesis

    المؤلفون: Pieper, Stefan

    المساهمون: Kassel, Universität, FB 18, Naturwissenschaften, Institut für Physik, Lein, Manfred (Prof. Dr.), Garcia, Martin (Prof. Dr.)

    وصف الملف: 2536936 bytes; application/pdf

    Relation: http://nbn-resolving.org/urn:nbn:de:hebis:34-2009051427537; urn:nbn:de:hebis:34-2009051427537

  17. 17
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1844270; zbl:Zbl 0980.35132; reference:[1] C. A. Coclici: Domain decomposition methods and far-field boundary conditions for two-dimensional compressible flows around airfoils.Doctoral Thesis, Math. Inst. A, University of Stuttgart, 1998. Zbl 0940.76032; reference:[2] C. A. Coclici, I. L. Sofronov, W. L. Wendland: Far-field boundary conditions for 2D compressible viscous flows.In Numerical Modelling in Continuum Mechanics, M. Feistauer et al. (eds.) vol. 1, Matfyzpress Univerzita Karlova Praha, 1997, pp. 212–220.; reference:[3] C. A. Coclici, W. L. Wendland: Analysis of a heterogeneous domain decomposition for compressible viscous flow.4 (2001) (to appear). MR 1832994; reference:[4] D. Colton, R. Kress: Integral Equation Methods in Scattering Theory.John Wiley & Sons, New York, 1983. MR 0700400; reference:[5] M. Feistauer: Mathematical Methods in Fluid Dynamics.Pitman Monographs and Surveys in Pure and Applied Math., Longman Sci. & Technical, Harlow, 1993. Zbl 0819.76001; reference:[6] M. Feistauer, J. Felcman, M. Lukáčová-Medvidová: Combined finite element-finite volume solution of compressible flow.J. Comp. Appl. Math. 63 (1995), 179–199. MR 1365559, 10.1016/0377-0427(95)00051-8; reference:[7] M. Feistauer, J. Nečas: On the solvability of transonic potential flow problems.Z. Anal. Anw. 4 (1985), 305–329. MR 0807140, 10.4171/ZAA/155; reference:[8] L. Ferm: Open boundary conditions for external flow problems.J. Comput. Phys. 91 (1990), 55–70. Zbl 0711.76006, 10.1016/0021-9991(90)90004-K; reference:[9] F. Gastaldi, A. Quarteroni: On the coupling of hyperbolic and parabolic systems: analytical and numerical approach.Appl. Num. Math. 6 (1990), 3–31. MR 1045016; reference:[10] C. Hirsch: Numerical Computation of Internal and External Flows.Wiley, Chichester, 1988. Zbl 0662.76001; reference:[11] A. Quarteroni, L. Stolcis: Homogeneous and heterogeneous domain decomposition for compressible fluid flows at high Reynolds numbers.Numerical Methods for Fluid Dynamics V, K. W. Morton, M. J. Baines (eds.), Oxford Univ. Press, 1995, pp. 113–128.; reference:[12] V. S. Ryaben’kii, S. V. Tsynkov: Artificial boundary conditions for the numerical solution of external viscous flow problems.SIAM J. Numer. Anal. 32 (1995), 1355–1389. MR 1352195, 10.1137/0732063; reference:[13] I. L. Sofronov: Coupling of potential and Euler equations to describe far field in 3D transonic flows.Book of Abstracts of the 2nd Seminar on Euler and Navier-Stokes Equations held in Prague, 1996, pp. 69–70.; reference:[14] I. L. Sofronov, W. L. Wendland: Exact linear far-field conditions for three-dimensional aerodynamic stationary transonic flows.Preprint 99–16, Math. Inst. A, University of Stuttgart (1999). MR 1855901; reference:[15] A. Verhoff, D. Stookesberry, S. Agrawal: Far-field computational boundary conditions for two-dimensional external flow problems.AIAA Journal 30 (1992), 2585–2594. 10.2514/3.11271

  18. 18
    Academic Journal

    المؤلفون: Cimrman, Robert

    وصف الملف: application/pdf

    Relation: mr:MR1727980; zbl:Zbl 1060.65647; reference:[angot94:paralmultileveldomaindecommethod] P. Angot: Parallel Multi-Level and Domain Decomposition Methods.Calculateurs Parallèles L.T.C.P. 6(4) (1994).; reference:[kortas96:practicmodelprogram] S. Kortas and P. Angot: A practical and portable model of programming for iterative solvers on distributed memory machines.Parallel Computing 22 (1996), 478–512.; reference:[le94:domaindecommethodcomputmechan] P. Le Tallec: Domain Decomposition Methods in Computational Mechanics.Comput. Mech. Adv. (1994). Zbl 0802.73079, MR 1263805; reference:[roache72:computfluiddynam] P. J. Roache: Computational Fluid Dynamics.Hermosa Publishers, 1972. Zbl 0251.76002, MR 0411358; reference:[smith96:domaindecom] B. Smith, P. Bjœrstad, and W. Gropp: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations.Cambridge Univ. Press, 1996. MR 1410757; reference:[vandervorst92:bicgstab] H. A. Van der Vorst: Bi-CGSTAB: A fast and smoothly converging variant of BiCG for the solution of non-symmetric linear systems.SIAM J. Sci. Statist. Comput. 13 (1992), 631–644. MR 1149111, 10.1137/0913035

  19. 19
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1332312; zbl:Zbl 0833.65139; reference:[1] T. Arbogast, A. Chilakapati, and M. F. Wheeler: A characteristic-mixed method for contaminant transport and miscible displacement.Computational Methods in Water Resources IX, Vol. 1: Numerical Methods in Water Resources, Russell, Ewing, Brebbia, Gray, and Pindar (eds.), Computational Mechanics Publications, Southampton, U.K., 1992, pp. 77–84. MR 1195358; reference:[2] T. Arbogast, C. N. Dawson, P. T. Keenan, M. F. Wheeler, and I. Yotov: Implementation of mixed finite element methods for elliptic equations on general geometry (submitted).; reference:[3] T. Arbogast, C. Dawson, D. Moore, F. Saaf, C. San Soucie, M. F. Wheeler, and I. Yotov: Validation of the PICS transport code.Technical Report, Department of Computational and Applied Mathematics, Rice University, 1993.; reference:[4] T. Arbogast, and M. F. Wheeler: A characteristics-mixed finite element method for advection dominated transport problems.SIAM J. Numerical Analysis (in press) (1995). MR 1324295; reference:[5] T. Arbogast, and M. F. Wheeler: A parallel numerical model for subsurface contaminant transport with biodegradation kinetics.The Mathematics of Finite Elements and Applications, Whiteman, J.R. (ed.), Wiley, New York, 1994, pp. 199–213. MR 1291227; reference:[6] T. Arbogast, M. F. Wheeler, and I. Yotov: Logically rectangular mixed methods for groundwater flow and transport on general geometry.Computational Methods in Water Resources X, Vol. 1, Peters, A., et al. (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp. 149–156.; reference:[7] T. Arbogast, M. F. Wheeler, and I. Yotov: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences (submitted).; reference:[8] C. Y. Chiang, C. N. Dawson and M. F. Wheeler: Modeling of In-situ biorestoration of organic compounds in groundwater.Transport in Porous Media 6 (1991), 667–702. 10.1007/BF00137855; reference:[9] C. N. Dawson: Godunov-mixed methods for advective flow problems in one space dimension.SIAM J. Numer. Anal. 28, (1991), 1282–1309. Zbl 0741.65068, MR 1119271, 10.1137/0728068; reference:[10] C. N. Dawson: Godunov-mixed methods for advection-diffusion equations in multidimensions.SIAM J. Numer. Anal. 30 (1993), 1315–1332. Zbl 0791.65062, MR 1239823, 10.1137/0730068; reference:[11] J. C. Evans, R. W. Bryce, D. J. Bates, and M. L. Kemner: Hanford Site Ground-Water Surveillance for 1989.PNL-7396, Pacific Northwest Laboratory, Richland, Washington, 1990.; reference:[12] M. C. Hagood, and V. J. Rohay: 200 West area carbon tetrachloride expedited response action project plan.WHC-SD-EN-AP-046, Westinghouse Hanford Company, Richland, Washington, 1991.; reference:[13] B. Herrling, J. Stamm, and W. Buermann: Hydraulic circulation system for in situ bioreclamation and/or in situ remediation of strippable contamination.In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation, Hinchee, R.E., and Olfenbuttel, R.F. (eds.), Butterworth-Heinemann Pub., Boston, 1991, pp. 173–195.; reference:[14] P. T. Keenan, and J. Flower: PIERS Timings on Various Parallel Supercomputers.Dept. of Computational and Applied Mathematics Tech. Report #93–29, Rice University, 1993.; reference:[15] G. V. Last, R. J. Lenhard, B. N. Bjornstad, J. C. Evans, K. R. Roberson, F. A. Spane, J. E. Amonette, and M. L. Rockhold: Characteristics of the volatile organic compound-arid integrated demonstration site.PNL-7866, Pacific Northwest Laboratory, Richland, Washington, 1991.; reference:[16] J. C. Parker: Multiphase flow and transport in porous media.Reviews of Geophysics 27 (1989), 311–328. 10.1029/RG027i003p00311; reference:[17] D. W. Peaceman: Fundamentals of Numerical Reservoir Simulation.Elsevier, Amsterdam, 1977.; reference:[18] R. G. Riley: Arid site characterization and technology assessment: volatile organic compounds-arid integrated demonstration.PNL-8862, Batalle, Pacific Northwest Laboratory, 1993.; reference:[19] R. S. Skeen, K. R. Roberson, T. M. Brouns, J. N. Petersen, and M. Shouche: In-situ bioremediation of Hanford groundwater.Proceedings of the 1st Federal Environmental Restoration Conference, Vienna, Virginia, 1992.; reference:[20] J. M. Thomas, M. D. Lee, P. B. Bedient, R. C. Borden, L. W. Canter, and C. H. Ward: Leaking underground storage tanks: remediation with emphasis on in situ biorestoration.Environmental Protection Agency 600/2-87, 008, 1987.; reference:[21] J. A. Wheeler, R. and Smith: Reservoir simulation on a hypercube, SPE 19804.Proceedings of the 64th Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Richardson, Texas, 1989.; reference:[22] M. F. Wheeler, C. N. Dawson, P. B. Bedient, C. Y. Chiang, R. C. Borden, and H. S. Rifai: Numerical simulation of microbial biodegradation of hydrocarbons in groundwater.Proceedings of AGWSE/IGWMCH Conference on Solving Ground Water Problems with Models, National Water Wells Association, 1987, pp. 92–108.

  20. 20
    Academic Journal

    المؤلفون: Práger, Milan

    وصف الملف: application/pdf

    Relation: mr:MR1241450; zbl:Zbl 0804.65035; reference:[1] M. Práger: An iterative method of alternating type for systems with special block matrices.Appl. math. 36 (1991), 72-78. MR 1093483; reference:[2] P. Bjørstad O. Widlund: Iterative methods for the solution of elliptic problems on regions partitioned into substructures.SIAM, J. Numer. Anal 23 (1986), 1097-1120. MR 0865945, 10.1137/0723075; reference:[3] J. Bramble J. Pasciak A. Schatz: An iterative method for elliptic problems on regions partitioned into substructures.Math. Comput. 46 (1986), 361-369. MR 0829613, 10.1090/S0025-5718-1986-0829613-0; reference:[4] : First international symposium on domain decomposition methods for partial differential equations.(R. Glowinski, G. H. Golub, G. A. Meurant, J. Périaux, eds.), SIAM, Philadelphia, 1988. Zbl 0649.00019, MR 0972509; reference:[5] : Domain decomposition methods.(T. Chan, R. Glowinski, G. A. Meurant, J. Périaux, O. Widlund, eds.), SIAM, Philadelphia, 1989. Zbl 0825.65091, MR 0991999; reference:[6] L. D. Marini A. Quarteroni: A relaxation procedure for domain decomposition methods using finite elements.Numer. Math 55 (1989), 575-598. MR 0998911, 10.1007/BF01398917; reference:[7] M. Práger: Algebraic approach to domain decomposition.Banach Center Publ., Warsaw, to appear. MR 1272930