-
1Academic Journal
المؤلفون: Chahbi, Abdellatif, Kabbaj, Samir, Charifi, Ahmed
مصطلحات موضوعية: keyword:linear preserver problem, keyword:semi-inner product, msc:15A86, msc:46C50
وصف الملف: application/pdf
Relation: mr:MR3475137; zbl:Zbl 06562158; reference:[1] Arias, M. L., Corach, G., Gonzalez, M. C.: Metric properties of projections in semi-Hilbertian spaces.Integral Equations Oper. Theory 62 (2008), 11-28. Zbl 1181.46018, MR 2442900, 10.1007/s00020-008-1613-6; reference:[2] Arias, M. L., Corach, G., Gonzalez, M. C.: Partial isometries in semi-Hilbertian spaces.Linear Algebra Appl. 428 (2008), 1460-1475. Zbl 1140.46009, MR 2388631; reference:[3] Brešar, M., {Š}emrl, P.: Linear maps preserving the spectral radius.J. Funct. Anal. 142 (1996), Article No. 0153, 360-368. Zbl 0873.47002, MR 1423038, 10.1006/jfan.1996.0153; reference:[4] Brešar, M., {Š}emrl, P.: Mappings which preserve idempotents, local automorphisms, and local derivations.Can. J. Math. 45 (1993), 483-496. Zbl 0796.15001, MR 1222512, 10.4153/CJM-1993-025-4; reference:[5] Douglas, R. G.: On the operator equation {$S^{\ast} XT=X$} and related topics.Acta Sci. Math. 30 (1969), 19-32. MR 0250106; reference:[6] Douglas, R. G.: On majorization, factorization, and range inclusion of operators on Hilbert space.Proc. Am. Math. Soc. 17 (1966), 413-415. Zbl 0146.12503, MR 0203464, 10.1090/S0002-9939-1966-0203464-1; reference:[7] Frobenius, G.: Über die Darstellung der endlichen Gruppen durch lineare Substitutionen.Berl. Ber. 1897 German (1897), 994-1015.; reference:[8] Herstein, I. N.: Topics in Ring Theory.Chicago Lectures in Mathematics The University of Chicago Press, Chicago (1969). Zbl 0232.16001, MR 0271135; reference:[9] Li, C.-K., Tsing, N.-K.: Linear preserver problems: A brief introduction and some special techniques.Linear Algebra Appl. 162-164 (1992), 217-235. Zbl 0762.15016, MR 1148401; reference:[10] Mbekhta, M.: Linear maps preserving the generalized spectrum.Extr. Math. 22 (2007), 45-54. Zbl 1160.47033, MR 2368700; reference:[11] Omladič, M., {Š}emrl, P.: Linear mappings that preserve potent operators.Proc. Am. Math. Soc. 123 (1995), 1069-1074. Zbl 0831.47026, MR 1254849, 10.1090/S0002-9939-1995-1254849-4; reference:[12] Palmer, T. W.: Banach Algebras and the General Theory of \mbox{$*$-algebras}, II.Encyclopedia of Mathematics and Its Applications 79 Cambridge University Press, Cambridge (2001). MR 1819503; reference:[13] Palmer, T. W.: $\sp*$-representations of $U\sp*$-algebras.Proc. Int. Symp. on Operator Theory (Indiana Univ., Bloomington, Ind., 1970) 20 Cambridge University Press, Cambridge (2001), 929-933. MR 0410396; reference:[14] Phadke, S. V., Khasbardar, S. K., Thakare, N. K.: On QU-operators.Indian J. Pure Appl. Math. 8 (1977), 335-343. Zbl 0367.47015, MR 0463961; reference:[15] Pierce, S.: General introduction: A survey of linear preserver problems.Linear and Multilinear Algebra 33 (1992), 3-5. MR 1346778; reference:[16] Pt{á}k, V.: Banach algebras with involution.Manuscr. Math. 6 (1972), 245-290. Zbl 0304.46036, MR 0296705, 10.1007/BF01304613; reference:[17] Russo, B., Dye, H. A.: A note on unitary operators in {$C^{\ast} $}-algebras.Duke Math. J. 33 (1966), 413-416. MR 0193530, 10.1215/S0012-7094-66-03346-1; reference:[18] {Š}emrl, P.: Two characterizations of automorphisms on {$B(X)$}.Stud. Math. 105 (1993), 143-149. Zbl 0810.47001, MR 1226624, 10.4064/sm-105-2-143-149; reference:[19] Watkins, W.: Linear maps that preserve commuting pairs of matrices.Linear Algebra Appl. 14 (1976), 29-35. Zbl 0329.15005, MR 0480574, 10.1016/0024-3795(76)90060-4
-
2Academic Journal
المؤلفون: Misiak, Aleksander, Ryż, Alicja
مصطلحات موضوعية: keyword:$n$-inner product space, keyword:$n$-normed space, keyword:$n$-norm of projection, msc:46C05, msc:46C50
وصف الملف: application/pdf
Relation: mr:MR1752081; zbl:Zbl 0970.46013; reference:[1] C. Diminnie S. Gähler A. White: 2-inner product spaces.Demonstratio Math. 6 (1973), 525-536. MR 0365099; reference:[2] S. Gähler: Lineare 2-normierte Räume.Math. Nachr. 28 (1965), 1-43. MR 0169021, 10.1002/mana.19640280102; reference:[3] S. Gähler Z. Żekanowski: Tensors, 2-inner products and projections.Demonstratio Math. 19 (1986), 747-766. MR 0902931; reference:[4] S. Gähler Z. Żekanowski: Remarks on tensors and families of projections.Math. Nachr. 143 (1989), 277-290. MR 1018248, 10.1002/mana.19891430121; reference:[5] A. Misiak: n-inner product spaces.Math. Nachr. 140 (1989), 299-319. Zbl 0708.46025, MR 1015402, 10.1002/mana.19891400121; reference:[6] A. Misiak: Orthogonality and orthonormality in n-inner product spaces.Math. Nachr. 143 (1989), 249-261. Zbl 0708.46025, MR 1018246, 10.1002/mana.19891430119; reference:[7] A. Misiak: Simple n-inner product spaces.Prace Naukowe Politechniki Szczecińskiej 12 (1991), 63-74. Zbl 0754.15027; reference:[8] Z. Żekanowski: On some generalized 2-inner products in the Riemannian manifolds.Demonstratio Math. 12 (1979), 833-836. MR 0560371
-
3Academic Journal
المؤلفون: Marques, João de Deus
وصف الملف: application/pdf
Relation: mr:MR1777475; zbl:Zbl 1079.46503; reference:[1] E. Coimbra: Aproximação em Espaços V-Métricos.Ph.D. Thesis, Dept. Mathematics, FCT, UNL, 1979.; reference:[2] W. A. J. Luxemburg, A. C. Zaanen: Riesz Spaces I.North-Holland, 1971.; reference:[3] J. D. Marques: Normas Vectoriais e Espaços V-Métricos.P.A.P.C.C., FCT, UNL, 1988.; reference:[4] J. D. Marques: Normas Vectoriais Hermíticas com Valores em Álgebras de Yosida $\mathcal B$-Regulares.Ph.D. Thesis, Dept. Mathematics, FCT, UNL, 1993.; reference:[5] J. D. Marques: A Representation Theorem in Vectorially Normed Spaces.Trabalhos de Investigação - No. 1 Dept. Mathematics, FCT, UNL, 1995. Zbl 0851.46004, MR 1377735; reference:[6] F. Robert: Étude et Utilization de Normes Vectorielles en Analyse Numérique Linéaire.These Grenoble, 1968.; reference:[7] A. C. Zaanen: Riesz Spaces II.North Holland, 1983. Zbl 0519.46001, MR 0704021
-
4Academic Journal
المؤلفون: Dragomir, S. S., Koliha, J. J.
مصطلحات موضوعية: keyword:lower and upper semi-inner product, keyword:semi-inner products, keyword:Schwarz inequality, keyword:smooth normed spaces, keyword:Birkhoff orthogonality, keyword:best approximants, msc:41A50, msc:46B20, msc:46B99, msc:46C50, msc:46C99
وصف الملف: application/pdf
Relation: mr:MR1777019; zbl:Zbl 0996.46007; reference:[1] D. Amir: Characterizations of Inner Product Spaces.Birkhäuser, Basel, 1986. Zbl 0617.46030, MR 0897527; reference:[2] K. Deimling: Nonlinear Functional Analysis.Springer, Berlin, 1985. Zbl 0559.47040, MR 0787404; reference:[3] S. S. Dragomir: A characterization of the elements of best approximation in real normed spaces.Studia Univ. Babeş-Bolyai Math. 33 (1988), 74–80. MR 1027362; reference:[4] S. S. Dragomir: On best approximation in the sense of Lumer and applications.Riv. Mat. Univ. Parma 15 (1989), 253–263. Zbl 0718.41037, MR 1064263; reference:[5] S. S. Dragomir: On continuous sublinear functionals in reflexive Banach spaces and applications.Riv. Mat. Univ. Parma 16 (1990), 239–250. Zbl 0736.46007, MR 1105746; reference:[6] S. S. Dragomir: Characterizations of proximinal, semičebyševian and čebyševian subspaces in real normed spaces.Numer. Funct. Anal. Optim. 12 (1991), 487–492. MR 1159922, 10.1080/01630569108816444; reference:[7] S. S. Dragomir: Approximation of continuous linear functionals in real normed spaces.Rend. Mat. Appl. 12 (1992), 357–364. Zbl 0787.46012, MR 1185896; reference:[8] S. S. Dragomir: Continuous linear functionals and norm derivatives in real normed spaces.Univ. Beograd. Publ. Elektrotehn. Fak. 3 (1992), 5–12. Zbl 0787.46011, MR 1218612; reference:[9] S. S. Dragomir, J. J. Koliha: The mapping $\gamma _{x,y}$ in normed linear spaces and applications.J. Math. Anal. Appl. 210 (1997), 549–563. MR 1453191, 10.1006/jmaa.1997.5413; reference:[10] S. S. Dragomir, J. J. Koliha: Mappings $\Phi ^p$ in normed linear spaces and new characterizations of Birkhoff orthogonality, smoothness and best approximants.Soochow J. Math. 23 (1997), 227–239. MR 1452846; reference:[11] S. S. Dragomir, J. J. Koliha: The mapping $v_{x,y}$ in normed linear spaces with applications to inequality in analysis.J. Ineq. Appl. 2 (1998), 37–55. MR 1671658; reference:[12] J. R. Giles: Classes of semi-inner-product spaces.Trans. Amer. Math. Soc. 129 (1967), 436–446. Zbl 0157.20103, MR 0217574, 10.1090/S0002-9947-1967-0217574-1; reference:[13] V. I. Istrǎţescu: Inner Product Structures.D. Reidel, Dordrecht, 1987. MR 0903846; reference:[14] G. Lumer: Semi-inner-product spaces.Trans. Amer. Math. Soc. 100 (1961), 29–43. Zbl 0102.32701, MR 0133024, 10.1090/S0002-9947-1961-0133024-2; reference:[15] I. Singer: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces.Die Grundlehren der math. Wissen. 171, Springer, Berlin, 1970. Zbl 0197.38601, MR 0270044; reference:[16] I. Singer: The Theory of Best Approximation and Functional Analysis.CBMS-NSF Regional Series in Appl. Math. 13, SIAM, Philadelphia, 1974. Zbl 0291.41020, MR 0374771; reference:[17] S. S. Dragomir, J. J. Koliha: The mapping $\Psi ^p_{x,y}$ in normed linear spaces and its applications in the theory of inequalities.Math. Ineq. Appl. 2 (1999), 367–381. MR 1698381