يعرض 1 - 18 نتائج من 18 نتيجة بحث عن '"lebesgue space with variable exponent"', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المؤلفون: Testici, Ahmet

    المساهمون: Fen Edebiyat Fakültesi, orcid:0000-0002-1163-7037

    وصف الملف: application/pdf

    Relation: Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; https://hdl.handle.net/20.500.12462/10441; 68; 2014; 2025

  5. 5

    المؤلفون: Karlovich, Alexei Yu.

    المساهمون: Universidade do Minho

    وصف الملف: application/pdf

    Relation: "PSEUDO-DIFFERENTIAL equations and some problems of mathematical physics". Rostov-on-Don : Publishing House of Rostov State University, 2005. p. 135-142.

  6. 6
  7. 7
  8. 8
    Dissertation/ Thesis

    المؤلفون: Kırhan, Emine

    المساهمون: İsrafilzade, Daniyal, Fen Bilimleri Enstitüsü

    وصف الملف: application/pdf

    Relation: Tez; Kırhan, Emine. Değişken üslü Lebesgue uzaylarında eşitsizlikler. Yayınlanmamış yüksek lisans tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, 2020.; https://hdl.handle.net/20.500.12462/10888

  9. 9
  10. 10
  11. 11
    Dissertation/ Thesis
  12. 12
    Dissertation/ Thesis
  13. 13
    Academic Journal

    المساهمون: Fen Edebiyat Fakültesi, orcid:0000-0002-1163-7037

    وصف الملف: application/pdf

    Relation: Indagationes Mathematicae-New Series; info:eu-repo/grantAgreement/TUBITAK/114F422; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; https://doi.org/ 10.1016/j.indag.2016.06.001; https://hdl.handle.net/20.500.12462/6787; 27; 914; 922

    الاتاحة: https://hdl.handle.net/20.500.12462/6787
    https://doi.org/ 10.1016/j.indag.2016.06.001

  14. 14
    Academic Journal
  15. 15
    Academic Journal

    المؤلفون: Xu, Jing-shi

    وصف الملف: application/pdf

    Relation: mr:MR2309945; zbl:Zbl 1174.42312; reference:[1] R. Coifman, R. Rochberg and G. Weiss: Factorization theorems for Hardy spaces in several variables.Ann. of Math. 123 (1976), 611–635. MR 0412721; reference:[2] D. Cruz-Uribe, A. Fiorenza and C. Neugebauer: The maximal function on variable $L^p$ spaces.Ann. Acad. Sci. Fenn. Math. 28 (2003), 223–238. MR 1976842; reference:[3] L. Diening: Maximal function on generalized Lebesgue spaces $L^{p(\cdot )}$.Math. Inequal. Appl. 7 (2004), 245–253. MR 2057643; reference:[4] L. Diening and M. Růžička: Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics.J. Reine Angew. Math. 563 (2003), 197–220. MR 2009242; reference:[5] J. Garcia-Cuerva, E. Harboure, C. Segovia and J. Torrea: Weighted norm inequalities for commutators of strongly singular integrals.Indiana Univ. Math. J. 40 (1991), 1397–1420. MR 1142721, 10.1512/iumj.1991.40.40063; reference:[6] S. Janson: Mean oscillation and commutators of singular integral operators.Ark. Mat. 16 (1978), 263–270. Zbl 0404.42013, MR 0524754, 10.1007/BF02386000; reference:[7] A. Karlovich and A. Lerner: Commutators of singular integrals on generalized $L^p$ spaces with variable exponent.Publ. Nat. 49 (2005), 111–125. MR 2140202; reference:[8] V. Kokilashvili and S. Samko: Maximal and fractional operators in weighted $L^{p(x)}$ spaces.Revista Mat. Iberoam. 20 (2004), 493–515. MR 2073129; reference:[9] O. Kovacik and J. Rákosník: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592–618. MR 1134951; reference:[10] A. Lerner: Weighted norm inequalities for the local sharp maximal function.J. Fourier Anal. Appl. 10 (2004), 465–474. Zbl 1098.42013, MR 2093912; reference:[11] B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207–226. Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6; reference:[12] J. Musielak: Orlicz spaces and Modular spaces.Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983. Zbl 0557.46020, MR 0724434; reference:[13] A. Nekvinda: Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$.Math. Inequal. Appl. 7 (2004), 255–265. MR 2057644; reference:[14] C. Perez: Endpoint estimates for commutators of singular integral operators.J. Funct. Anal. 128 (1995), 163–185. Zbl 0831.42010, MR 1317714, 10.1006/jfan.1995.1027; reference:[15] C. Perez and R. Trujillo-Gonzalez: Sharp weighted estimates for multilinear commutators.J. London Math. Soc. 65 (2002), 672–692. MR 1895740, 10.1112/S0024610702003174; reference:[16] L. Pick and M. Růžička: An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded.Expo. Math. 19 (2001), 369–371. MR 1876258, 10.1016/S0723-0869(01)80023-2; reference:[17] M. Růžička: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000. MR 1810360; reference:[18] E. Stein: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integral.Princeton University Press. Princeton, NJ, 1993. MR 1232192

  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18