يعرض 1 - 15 نتائج من 15 نتيجة بحث عن '"keyword:a posteriori error estimates"', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
    Conference
  2. 2
    Conference
  3. 3
    Conference
  4. 4
    Conference
  5. 5
    Conference
  6. 6
    Conference
  7. 7
    Conference
  8. 8
    Conference
  9. 9
    Academic Journal

    المؤلفون: Yan, Ningning

    وصف الملف: application/pdf

    Relation: mr:MR2530543; zbl:Zbl 1212.65256; reference:[1] Alt, W.: On the approximation of infinite optimisation problems with an application to optimal control problems.Appl. Math. Optimization 12 (1984), 15-27. MR 0756510, 10.1007/BF01449031; reference:[2] Atkinson, K. E.: The Numerical Solution of Integral Equations of the Second Kind.Cambridge University Press Cambridge (1997). Zbl 0899.65077, MR 1464941; reference:[3] Babuška, I., A. K. Aziz \rm(eds.): The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations.Academic Press New York (1972). MR 0347104; reference:[4] Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept.SIAM J. Control Optim. 39 (2000), 113-132. Zbl 0967.65080, MR 1780911, 10.1137/S0363012999351097; reference:[5] Brunner, H., Yan, N.: On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations.J. Comput. Appl. Math. 67 (1996), 185-189. Zbl 0857.65145, MR 1388148, 10.1016/0377-0427(96)00012-X; reference:[6] Brunner, H., Yan, N.: Finite element methods for optimal control problems governed by integral equations and integro-differential equations.Numer. Math. 101 (2005), 1-27. Zbl 1076.65057, MR 2194716, 10.1007/s00211-005-0608-3; reference:[7] Chen, Y., Liu, W.: Error estimates and superconvergence of mixed finite element for quadratic optimal control.Int. J. Numer. Anal. Model. 3 (2006), 311-321. Zbl 1125.49026, MR 2237885; reference:[8] Chen, Y., Yi, N., Liu, W.: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations.SIAM J. Numer. Anal. 46 (2008), 2254-2275. Zbl 1175.49003, MR 2421035, 10.1137/070679703; reference:[9] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.North-Holland Amsterdam (1978). Zbl 0383.65058, MR 0520174; reference:[10] Du, L., Yan, N.: High-accuracy finite element method for optimal control problem.J. Syst. Sci. Complex. 14 (2001), 106-110. Zbl 0983.49022, MR 1836999; reference:[11] Falk, F. S.: Approximation of a class of optimal control problems with order of convergence estimates.J. Math. Anal. Appl. 44 (1973), 28-47. Zbl 0268.49036, MR 0686788, 10.1016/0022-247X(73)90022-X; reference:[12] French, D. A., King, J. T.: Approximation of an elliptic control problem by the finite element method.Numer. Funct. Anal. Appl. Optim. 12 (1991), 299-314. Zbl 0724.65069, MR 1143001, 10.1080/01630569108816430; reference:[13] Ge, L., Liu, W., Yang, D.: An equivalent a posteriori error estimate for a constrained optimal control problem.(to appear).; reference:[14] Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E.: Integral Operators in Spaces of Summable Functions.Noordhoff International Publishing Leyden (1976). MR 0385645; reference:[15] Kress, R.: Linear Integral Equations, 2nd Edition.Springer New York (1999). MR 1723850; reference:[16] Li, R., Liu, W., Yan, N.: A posteriori error estimates of recovery type for distributed convex optimal control problems.J. Sci. Comput. 33 (2007), 155-182. Zbl 1128.65048, MR 2342593, 10.1007/s10915-007-9147-7; reference:[17] Yan, Q. Lin N.: Structure and Analysis for Efficient Finite Element Methods.Publishers of Hebei University Hebei (1996), Chinese.; reference:[18] Lin, Q., Zhang, S., Yan, N.: An acceleration method for integral equations by using interpolation post-processing.Adv. Comput. Math. 9 (1998), 117-129. Zbl 0920.65087, MR 1662762, 10.1023/A:1018925103993; reference:[19] Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations.Springer Berlin (1971). Zbl 0203.09001, MR 0271512; reference:[20] Lions, J.-L.: Some Methods in the Mathematical Analysis of Systems and their Control.Science Press Beijing (1981). Zbl 0542.93034, MR 0664760; reference:[21] Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs.Science Press Beijing (2008).; reference:[22] Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems.SIAM J. Numer. Anal. 39 (2001), 73-99. Zbl 0988.49018, MR 1860717, 10.1137/S0036142999352187; reference:[23] Liu, W. B., Yan, N.: A posteriori error estimates for distributed convex optimal control problems.Adv. Comput. Math. 15 (2001), 285-309. Zbl 1008.49024, MR 1887737, 10.1023/A:1014239012739; reference:[24] Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems.SIAM J. Control Optim. 43 (2004), 970-985. Zbl 1071.49023, MR 2114385, 10.1137/S0363012903431608; reference:[25] Neittaanmäki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications.Marcel Dekker New York (1994). MR 1275836; reference:[26] Tiba, D.: Lectures on the Optimal Control of Elliptic Equations.University of Jyväskylä Press Jyväskylä (1995).; reference:[27] Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods.Science Press Beijing (2008).; reference:[28] Yan, N.: Superconvergence and recovery type a posteriori error estimates for constrained convex optimal control problems.Advances in Scientific Computing and Applications Y. Lu, W. Sun, T. Tang Science Press Beijing/New York (2004), 408-419.; reference:[29] Zabreiko, P. P., Koshelev, A. I., Krasnosel'skii, M. A., Mikhlin, S. G., Rakovshchik, L. S., Stet'senko, V. Ya.: Integral Equations. A Reference Text.Noordhoff International Publishing Leyden (1975).; reference:[30] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates.Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. Zbl 0769.73085, 10.1002/nme.1620330702; reference:[31] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates.Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. Zbl 0769.73085, 10.1002/nme.1620330702

  10. 10
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2476018; zbl:Zbl 1212.65434; reference:[1] Babuška, I., Osborn, J. F.: Estimate for the errors in eigenvalue and eigenvector approximation by Galerkin methods with particular attention to the case of multiple eigenvalue.SIAM J. Numer. Anal. 24 (1987), 1249-1276. MR 0917451, 10.1137/0724082; reference:[2] Babuška, I., Osborn, J. F.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems.Math. Comput. 52 (1989), 275-297. MR 0962210, 10.1090/S0025-5718-1989-0962210-8; reference:[3] Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the Stokes problem in the primitive variables.Numer. Math. 33 (1979), 211-224. Zbl 0423.65058, MR 0549450, 10.1007/BF01399555; reference:[4] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics Vol. 15.Springer New York (1991). MR 1115205, 10.1007/978-1-4612-3172-1_1; reference:[5] Chen, W., Lin, Q.: Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method.Appl. Math. 51 (2006), 73-88. Zbl 1164.65489, MR 2197324, 10.1007/s10492-006-0006-x; reference:[6] Chen, W., Lin, Q.: Asymptotic expansion and extrapolation for the eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme.Adv. Comput. Math. 27 (2007), 95-106. Zbl 1122.65106, MR 2317923, 10.1007/s10444-007-9031-x; reference:[7] Chen, Z.: Finite Element Methods and Their Applications.Springer Berlin (2005). Zbl 1082.65118, MR 2158541; reference:[8] Ciarlet, P.: The Finite Element Method for Elliptic Problems.North-Holland Amsterdam (1978). Zbl 0383.65058, MR 0520174; reference:[9] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Berlin (1986). Zbl 0585.65077, MR 0851383; reference:[10] Glowinski, R., Pironneau, O.: On a mixed finite element approximation of the Stokes problem. I. Convergence of the approximate solution.Numer. Math. 33 (1979), 397-424. MR 0553350; reference:[11] Han, H.: Nonconforming elements in the mixed finite element method.J. Comput. Math. 2 (1984), 223-233. Zbl 0573.65083, MR 0815417; reference:[12] Jia, S., Xie, H., Yin, X., Gao, S.: Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods.Numer. Methods Partial Differ. Equations 24 (2008), 435-448. Zbl 1151.65086, MR 2382790, 10.1002/num.20268; reference:[13] Křížek, M.: Conforming finite element approximation of the Stokes problem.Banach Cent. Publ. 24 (1990), 389-396. MR 1097422, 10.4064/-24-1-389-396; reference:[14] Lin, Q., Huang, H., Li, Z.: New expansion of numerical eigenvalue for $-\Delta u=\lambda\rho u$ by nonconforming elements.Math. Comput. 77 (2008), 2061-2084. MR 2429874, 10.1090/S0025-5718-08-02098-X; reference:[15] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement.China Sci. Press Beijing (2006).; reference:[16] Lin, Q., Lü, T.: Asymptotic expansions for finite element eigenvalues and finite element solution.Bonn. Math. Schrift 158 (1984), 1-10. MR 0793412; reference:[17] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods.Hebei University Press Hebei (1996), Chinese.; reference:[18] Lin, Q., Zhang, S., Yan, N.: Extrapolation and defect correction for diffusion equations with boundary integral conditions.Acta Math. Sci. 17 (1997), 405-412. Zbl 0907.65096, MR 1613231, 10.1016/S0252-9602(17)30859-7; reference:[19] Lin, Q., Zhu, Q.: Preprocessing and Postprocessing for the Finite Element Method.Shanghai Sci. Tech. Publishers Shanghai (1994), Chinese.; reference:[20] Mercier, B., Osborn, J., Rappaz, J., Raviat, P.-A.: Eigenvalue approximation by mixed and hybrid method.Math. Comput. 36 (1981), 427-453. MR 0606505, 10.1090/S0025-5718-1981-0606505-9; reference:[21] Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element.Numer. Methods Partial Differ. Equations 8 (1992), 97-111. Zbl 0742.76051, MR 1148797, 10.1002/num.1690080202; reference:[22] Shaidurov, V.: Multigrid Methods for Finite Elements.Kluwer Academic Publishers Dordrecht (1995). Zbl 0837.65118, MR 1335921; reference:[23] Wang, J., Ye, X.: Superconvergence of finite element approximations for the Stokes problem by projection methods.SIAM J. Numer. Anal. 39 (2001), 1001-1013. Zbl 1002.65118, MR 1860454, 10.1137/S003614290037589X; reference:[24] Yang, Y.: An Analysis of the Finite Element Method for Eigenvalue Problems.Guizhou People Public Press Guizhou (2004), Chinese.; reference:[25] Ye, X.: Superconvergence of nonconforming finite element method for the Stokes equations.Numer. Methods Partial Differ. Equations 18 (2002), 143-154. Zbl 1003.65121, MR 1902289, 10.1002/num.1036; reference:[26] Zhou, A., Li, J.: The full approximation accuracy for the stream function-vorticity-pressure method.Numer. Math. 68 (1994), 427-435. Zbl 0823.65110, MR 1313153, 10.1007/s002110050070

  11. 11
    Academic Journal

    المؤلفون: Chen, Wei, Lin, Qun

    وصف الملف: application/pdf

    Relation: mr:MR2197324; zbl:Zbl 1164.65489; reference:[1] I. Babuška, J. Osborn: Eigenvalue problems.Handbook of Numerical Analysis, Vol. II, Finite Element Method (Part I), P. G. Ciarlet, J. L. Lions (eds.), North-Holland Publ., Amsterdam, 1991, pp. 641–787. MR 1115240; reference:[2] M. Bercovier, O. Pironneau: Error estimates for finite element method solution of the Stokes problem in the primitive variables.Numer. Math. 33 (1979), 211–224. MR 0549450, 10.1007/BF01399555; reference:[3] P. E. Bjørstad, B. P. Tjøstheim: High precision solutions of two fourth order eigenvalue problems.Computing 63 (1999), 97–107. MR 1736662, 10.1007/s006070050053; reference:[4] D. Boffi, F. Brezzi, and L. Gastaldi: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form.Math. Comput. 69 (2000), 121–140. MR 1642801, 10.1090/S0025-5718-99-01072-8; reference:[5] D. Boffi, F. Brezzi, and L. Gastaldi: On the convergence of eigenvalues for mixed formulations.Ann. Sc. Norm. Super. Pisa, Cl. Sci. 25 (1997), 131–154. MR 1655512; reference:[6] F. Brezzi, M. Fortin: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics Vol. 15.Springer-Verlag, New York, 1991. MR 1115205; reference:[7] B. M. Brown, E. B. Davies, P. K. Jimack, and M. D. Mihajlović: A numerical investigation of the solution of a class of fourth-order eigenvalue problems.Proc. R. Soc. Lond. A 456 (2000), 1505–1521. MR 1808762, 10.1098/rspa.2000.0573; reference:[8] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland Publ., Amsterdam, 1978. Zbl 0383.65058, MR 0520174; reference:[9] P. G. Ciarlet, P.-A. Raviart: A mixed finite element method for the biharmonic equation.Aspects finite Elem. partial Differ. Equat., Proc. Symp. Madison, C. de Boor (ed.), Academic Press, New York, 1974, pp. 125–145. MR 0657977; reference:[10] V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer-Verlag, Berlin, 1986. MR 0851383; reference:[11] R. Glowinski, O. Pironneau: On a mixed finite element approximation of the Stokes problem. I: Convergence of the approximate solution.Numer. Math. 33 (1979), 397–424. MR 0553350, 10.1007/BF01399323; reference:[12] V. Heuveline, R. Rannacher: A posteriori error control for finite element approximations of elliptic eigenvalue problems.Adv. Comput. Math. 15 (2001), 107–138. MR 1887731, 10.1023/A:1014291224961; reference:[13] Q. Hu, J. Zou: Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems.Numer. Math. 93 (2002), 333–359. MR 1941400, 10.1007/s002110100386; reference:[14] K. Ishihara: A mixed finite element method for the biharmonic eigenvalue problem of plate bending.Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978), 399–414. MR 0509196, 10.2977/prims/1195189071; reference:[15] M. Křížek: Comforming finite element approximation of the Stokes problem.Banach Cent. Publ. 24 (1990), 389–396. 10.4064/-24-1-389-396; reference:[16] M. Křížek, P. Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175–198. MR 0900263, 10.1007/BF00047538; reference:[17] Q. Lin, J. Lin: Finite Element Methods: Accuracy and Improvement.China Sci. Tech. Press, Beijing, 2005.; reference:[18] Q. Lin, T. Lu: Asymptotic expansions for finite element eigenvalues and finite element solution.Bonn Math. Schr. 158 (1984), 1–10. Zbl 0549.65072, MR 0793412; reference:[19] Q. Lin, N. Yan: High Efficiency FEM Construction and Analysis.Hebei Univ. Press, , 1996.; reference:[20] B. Mercier, J. Osborn, J. Rappaz, and P.-A. Raviart: Eigenvalue approximation by mixed and hybrid methods.Math. Comput. 36 (1981), 427–453. MR 0606505, 10.1090/S0025-5718-1981-0606505-9; reference:[21] J. Osborn: Spectral approximation for compact operators.Math. Comput. 29 (1975), 712–725. Zbl 0315.35068, MR 0383117, 10.1090/S0025-5718-1975-0383117-3; reference:[22] J. Osborn: Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations.SIAM J. Numer. Anal. 13 (1976), 185–197. Zbl 0334.76010, MR 0447842, 10.1137/0713019; reference:[23] R. Rannacher, S. Turek: Simple noncomforming quadrilateral Stokes element.Numer. Methods Partial Differ. Equations 8 (1992), 97–111. MR 1148797, 10.1002/num.1690080202; reference:[24] R. Rannacher: Noncomforming finite element methods for eigenvalue problems in linear plate theory.Numer. Math. 33 (1979), 23–42. MR 0545740, 10.1007/BF01396493; reference:[25] R. Stenberg: Postprocess schemes for some mixed finite elements.RAIRO Modélisation Math. Anal. Numér. 25 (1991), 151–168. MR 1086845, 10.1051/m2an/1991250101511; reference:[26] R. Verfürth: Error estimates for a mixed finite element approximation of the Stokes equations.RAIRO, Anal. Numér. 18 (1984), 175–182. 10.1051/m2an/1984180201751; reference:[27] J. Wang, X. Ye: Superconvergence of finite element approximations for the Stokes problem by the projection methods.SIAM J. Numer. Anal. 39 (2001), 1001–1013. MR 1860454, 10.1137/S003614290037589X; reference:[28] C. Wieners: Bounds for the $N$ lowest eigenvalues of fourth-order boundary value problems.Computing 59 (1997), 29–41. Zbl 0883.65082, MR 1465309, 10.1007/BF02684402; reference:[29] J. Xu, A. Zhou: A two-grid discretization scheme for eigenvalue problems.Math. Comput. 70 (2001), 17–25. MR 1677419, 10.1090/S0025-5718-99-01180-1; reference:[30] X. Ye: Superconvergence of nonconforming finite element method for the Stokes equations.Numer. Methods Partial Differ. Equations 18 (2002), 143–154. Zbl 1003.65121, MR 1902289, 10.1002/num.1036; reference:[31] A. Zhou, J. Li: The full approximation accuracy for the stream function-vorticity-pressure method.Numer. Math. 68 (1994), 427–435. Zbl 0823.65110, MR 1313153, 10.1007/s002110050070

  12. 12
    Academic Journal

    المؤلفون: Vejchodský, Tomáš

    وصف الملف: application/pdf

    Relation: mr:MR1966345; zbl:Zbl 1099.65091; reference:[1] A. Adjerid, J. E. Flaherty and Y. J. Wang: A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems.Numer. Math. 65 (1993), 1–21. MR 1217436, 10.1007/BF01385737; reference:[2] J. C. Butcher: A transformed implicit Runge-Kutta method.J. Assoc. Comput. Mach. 26 (1979), 731–738. Zbl 0439.65057, MR 0545546, 10.1145/322154.322163; reference:[3] K. Burrage: A special family of Runge-Kutta methods for solving stiff differential equations.BIT 18 (1978), 22–41. Zbl 0384.65034, MR 0483458, 10.1007/BF01947741; reference:[4] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174; reference:[5] S. Fučík, A. Kufner: Nonlinear Differential Equations.Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1980. MR 0558764; reference:[6] H. Gajevski, K. Gröger and K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie-Verlag, Berlin, 1974. MR 0636412; reference:[7] I. Hlaváček, M. Křížek and J. Malý: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type.J. Math. Anal. Appl. 184 (1994), 168–189. MR 1275952, 10.1006/jmaa.1994.1192; reference:[8] S. Larsson, V. Thomée and N. Y. Zhang: Interpolation of coefficients and transformation of the dependent variable in the finite element methods for the nonlinear heat equation.Math. Methods Appl. Sci. 11 (1989), 105–124. MR 0973559, 10.1002/mma.1670110108; reference:[9] P. K. Moore: A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension.SIAM J. Numer. Anal. 31 (1994), 149–169. Zbl 0798.65089, MR 1259970, 10.1137/0731008; reference:[10] P. K. Moore, J. E. Flaherty: High-order adaptive solution of parabolic equations I. Singly implicit Runge-Kutta methods and error estimation.Rensselaer Polytechnic Institute Report 91-12, Troy, NY, Department of Computer Science, Rensselaer Polytechnic Institute, 1991.; reference:[11] P. K. Moore, J. E. Flaherty: High-order adaptive finite element-singly implicit Runge-Kutta methods for parabolic differential equations.BIT 33 (1993), 309–331. MR 1326022, 10.1007/BF01989753; reference:[12] T. Roubíček: Nonlinear differential equations and inequalities.Mathematical Institute of Charles University, Prague, in preparation.; reference:[13] K. Segeth: A posteriori error estimation with the finite element method of lines for a nonlinear parabolic equation in one space dimension.Numer. Math. 33 (1999), 455–475. Zbl 0936.65113, MR 1715561, 10.1007/s002110050459; reference:[14] B. Szabó, I. Babuška: Finite Element Analysis.John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1991. MR 1164869; reference:[15] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems.Springer, Berlin, 1997. MR 1479170

  13. 13
    Academic Journal

    المؤلفون: Tran, Van Bon

    وصف الملف: application/pdf

    Relation: mr:MR0934370; zbl:Zbl 0638.65077; reference:[1] I. Hlaváček: Dual finite element analysis for semi-coercive unilateral boundary value problems.Apl. Mat. 23 (1978), 52-71. MR 0480160; reference:[2] I. Hlaváček: Dual finite element analysis for elliptic problems with obstacles on the boundary.Apl. Mat. 22 (1977), 244-255. MR 0440958; reference:[3] J. Haslinger I. Hlaváček: Convergence of a finite element method based on the dual variational formulation.Apl. Mat. 21 (1976), 43-65. MR 0398126; reference:[4] R. S. Falk: Error estimate for the approximation of a class of variational inequalities.Math. Comp. 28 (1974), 963-971. MR 0391502, 10.1090/S0025-5718-1974-0391502-8; reference:[5] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities. Part I: Primal Theory.Numer. Math. 28 (1977), 431-443. MR 0448949, 10.1007/BF01404345; reference:[6] J. Haslinger: Finite element analysis for unilateral problem with obstacles on the boundary.Apl. Mat. 22 (1977), 180-188. MR 0440956; reference:[7] I. Hlaváček: Dual finite element analysis for unilateral boundary value problems.Apl. Mat. 22 (1977), 14-51. MR 0426453; reference:[8] I. Hlaváček: Convergence of dual finite element approximations for unilateral boundary value problems.Apl. Mat. 25 (1980), 375-386. MR 0590491; reference:[9] J. Céa: Optimisation, théorie et algorithmes.Dunod, Paris 1971. MR 0298892

  14. 14
    Academic Journal

    المؤلفون: Hlaváček, Ivan

    وصف الملف: application/pdf

    Relation: mr:MR0440958; zbl:Zbl 0422.65065; reference:[1] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584; reference:[2] G. N. Jakovlev: Boundary properties of functions of class $W_p^{(1)}$ on the domains with angular points.(in Russian). DAN SSSR, 140 (1961), 73-76. MR 0136988; reference:[3] I. Hlaváček: Dual finite element analysis for unilateral boundary value problems.Aplikace matematiky 22 (1977), 14-51. MR 0426453; reference:[4] J. Céa: Optimisation, théorie et algorithmes.Dunod, Paris 1971. MR 0298892; reference:[5] U. Mosco G. Strang: One-sided approximations and variational inequalities.Bull. Am. Soc. 80 (1974), 308-312. MR 0331818, 10.1090/S0002-9904-1974-13477-4; reference:[6] I. Hlaváček: Some equilibrium and mixed models in the finite element method.Proceedings of the Banach Internat. Math. Center, Warsaw (to appear). MR 0514379

  15. 15
    Academic Journal

    المؤلفون: Hlaváček, Ivan

    وصف الملف: application/pdf

    Relation: mr:MR0426453; zbl:Zbl 0416.65070; reference:[1] J. P. Aubin H. G. Burchard: Some aspects of the method of the hypercircle applied to elliptic variational problems.Num. sol. PDE-II, SYNSPADE (1970), 1-67. MR 0285136; reference:[2] I. Hlaváček: Some equilibrium and mixed models in the finite element method.Proceedings of the St. Banach Internat. Math. Center, Warsaw, (1976).; reference:[3] J. Haslinger I. Hlaváček: Convergence of a finite element method based on the dual variational formulation.Apl. mat. 21 (1976), 43 - 65. MR 0398126; reference:[4] G. Fichera: Boundary value problems of elasticity with unilateral constraints.Encyclopedia of Physics, ed. S. Flügge, Vol. VIa/2, Springer, Berlin 1972.; reference:[5] J. Céa: Optimisation, théorie et algorithmes.Dunod, Paris 1971. MR 0298892; reference:[6] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584; reference:[7] U. Mosco G. Strang: One-sided approximations and variational inequalities.Bull. Am. Math. Soc. 80 (1974), 308-312. MR 0331818, 10.1090/S0002-9904-1974-13477-4; reference:[8] J. H. Bramble M. Zlámal: Triangular elements in the finite element method.Math. Соmр. 24 (1970), 809-820. MR 0282540; reference:[9] G. Zoutendijk: Methods of feasible directions.Elsevier, Amsterdam 1960. Zbl 0097.35408; reference:[10] I. Hlaváček: Dual finite element analysis for elliptic problems with obstacles on the boundary.Apl. mat. 22 (to appear).