-
1Academic Journal
المؤلفون: Harasim, Petr, Valdman, Jan
مصطلحات موضوعية: keyword:obstacle problem, keyword:a posteriori error estimate, keyword:functional majorant, keyword:finite element method, keyword:variational inequalities, keyword:Raviart–Thomas elements, msc:34B15, msc:65K15, msc:65L60, msc:74K05, msc:74M15, msc:74S05
وصف الملف: application/pdf
Relation: mr:MR3301782; zbl:Zbl 06416870; reference:[1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis.Wiley and Sons, New York 2000. Zbl 1008.65076, MR 1885308; reference:[2] Babuška, I., Strouboulis, T.: The finite Element Method and its Reliability.Oxford University Press, New York 2001. MR 1857191; reference:[3] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations.Birkhäuser, Berlin 2003. Zbl 1020.65058, MR 1960405; reference:[4] Braess, D., Hoppe, R. H. W., Schöberl, J.: A posteriori estimators for obstacle problems by the hypercircle method.Comput. Vis. Sci. 11 (2008), 351-362. MR 2425501, 10.1007/s00791-008-0104-2; reference:[5] Brezi, F., Hager, W. W., Raviart, P. A.: Error estimates for the finite element solution of variational inequalities I.Numer. Math. 28 (1977), 431-443. MR 0448949, 10.1007/BF01404345; reference:[6] Buss, H., Repin, S.: A posteriori error estimates for boundary value problems with obstacles.In: Proc. 3nd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170. Zbl 0968.65041, MR 1936177; reference:[7] Carstensen, C., Merdon, C.: A posteriori error estimator competition for conforming obstacle problems.Numer. Methods Partial Differential Equations 29 (2013), 667-692. MR 3022903, 10.1002/num.21728; reference:[8] Dostál, Z.: Optimal Quadratic Programming Algorithms.Springer 2009. MR 2492434; reference:[9] Falk, R. S.: Error estimates for the approximation of a class of variational inequalities.Math. Comput. 28 (1974), 963-971. Zbl 0297.65061, MR 0391502, 10.1090/S0025-5718-1974-0391502-8; reference:[10] Fuchs, M., Repin, S.: A posteriori error estimates for the approximations of the stresses in the Hencky plasticity problem.Numer. Funct. Anal. Optim. 32 (2011), 610-640. MR 2795532, 10.1080/01630563.2011.571802; reference:[11] Glowinski, R., Lions, J. L., Trémolieres, R.: Numerical Analysis of Variational Inequalities.North-Holland 1981. Zbl 0463.65046, MR 0635927; reference:[12] Gustafsson, B.: A simple proof of the regularity theorem for the variational inequality of the obstacle problem.Nonlinear Anal. 10 (1986), 12, 1487-1490. Zbl 0612.49005, MR 0869557, 10.1016/0362-546X(86)90119-7; reference:[13] Valdman, P. Harasim AD J.: Verification of functional a posteriori error estimates for obstacle problem in 1D.Kybernetika 49 (2013), 5, 738-754. MR 3182637; reference:[14] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of variational inequalities in mechanics.Applied Mathematical Sciences 66, Springer-Verlag, New York 1988. Zbl 0654.73019, MR 0952855; reference:[15] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.Academic Press, New York 1980. Zbl 0988.49003, MR 0567696; reference:[16] Lions, J. L., Stampacchia, G.: Variational inequalities.Comm. Pure Appl. Math. 20 (1967), 493-519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302; reference:[17] Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation (Error Control and A Posteriori Estimates).Elsevier, 2004. Zbl 1076.65093, MR 2095603; reference:[18] Nochetto, R. H., Seibert, K. G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems.Numer. Math. 95 (2003), 631-658. MR 1993943, 10.1007/s00211-002-0411-3; reference:[19] Rahman, T., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements.Appl. Math. Comput. 219 (2013), 7151-7158. Zbl 1288.65169, MR 3030557, 10.1016/j.amc.2011.08.043; reference:[20] Repin, S.: A posteriori error estimation for variational problems with uniformly convex functionals.Math. Comput. 69 (230) (2000), 481-500. Zbl 0949.65070, MR 1681096, 10.1090/S0025-5718-99-01190-4; reference:[21] Repin, S.: A posteriori error estimation for nonlinear variational problems by duality theory.Zapiski Nauchn. Semin. POMI 243 (1997), 201-214. Zbl 0904.65064, MR 1629741; reference:[22] Repin, S.: Estimates of deviations from exact solutions of elliptic variational inequalities.Zapiski Nauchn. Semin, POMI 271 (2000), 188-203. Zbl 1118.35320, MR 1810617; reference:[23] Repin, S.: A Posteriori Estimates for Partial Differential Equations.Walter de Gruyter, Berlin 2008. Zbl 1162.65001, MR 2458008; reference:[24] Repin, S., Valdman, J.: Functional a posteriori error estimates for problems with nonlinear boundary conditions.J. Numer. Math. 16 (2008), 1, 51-81. Zbl 1146.65054, MR 2396672, 10.1515/JNUM.2008.003; reference:[25] Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-plasticity.Centr. Eur. J. Math. 7 (2009), 3, 506-519. Zbl 1269.74202, MR 2534470, 10.2478/s11533-009-0035-2; reference:[26] Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces.SIAM, 2011. Zbl 1235.49001, MR 2839219; reference:[27] Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on $H(div)$ multigrid-preconditioned CG method.Adv. Numer. Anal. (2009). Zbl 1200.65095, MR 2739760, 10.1155/2009/164519; reference:[28] Zou, Q., Veeser, A., Kornhuber, R., Gräser, C.: Hierarchical error estimates for the energy functional in obstacle problems.Numer. Math. 117 (2012), 4, 653-677. Zbl 1218.65067, MR 2776914, 10.1007/s00211-011-0364-5