يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"O. Buganov V."', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 56, № 4 (2020); 470–479 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 56, № 4 (2020); 470–479 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2020-56-4

    وصف الملف: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/555/461; Leznoff, C. C. Phthalocyanines: properties and applications / C. C. Leznoff, A. B. P. Lever. – Weinheim: VCH, 1996. – Vol. 4. – 536 p.; Hohnholz, D. Applications of phthalocyanines in organic light emitting devices / D. Hohnholz, S. Steinbrecherb, M. Hanack // J. Mol. Struct. – 2000. – Vol. 521, № 1/3. – P. 231–237. https://doi.org/10.1016/s0022-2860(99)00438-x; 4.2% efficient organic photovoltaic cells with low series resistances / J. Xue [et al.] // Appl. Phys. Lett. – 2004. – Vol. 84, № 16. – P. 3013–3015. https://doi.org/10.1063/1.1713036; Van Flassen, E. Explanation of the low oxigen sensitivity of thin film phthalocyanine gas sensors / E. Van Flassen, H. Kerp // Sens. Actuators B: Chemical. – 2003. – Vol. 88, № 3. – P. 329–333. https://doi.org/10.1016/s0925-4005(02)00379-9; Surface-enhanced non-linear Raman scattering at the single-molecule level / K. Kneipp [et al.] // Chem. Phys. – 1999. – Vol. 247, № 1. – P. 155–162. https://doi.org/10.1016/s0301-0104(99)00165-2; Optimization of nanoparticle size for plasmonic enhancement of fluorescence / O. Stranik [et al.] // Plasmonics. – 2007. – Vol. 2, № 1. – P. 15–22. https://doi.org/10.1007/s11468-006-9020-9; Замковец, А. Д. Влияние эффектов ближнего поля на спектральные свойства слоистых нанокомпозитов серебро-фталоцианин меди / А. Д. Замковец, А. Н. Понявина // Журн. приклад. спектроскопии. – 2012. – Т. 79, № 6. – C. 907–912.; Plasmon-Related Modification of Spectral Kinetic Properties of Copper Phthalocyanine Thin Films in the Presence of Silver Nanoparticles / O. V. Buganov [et al.] // J. App. Spectrosc. – 2014. – Vol. 81, № 1. – P. 92–96. https://doi.org/10.1007/s10812-014-9892-y; Charge transfer process determines ultrafast excited state deactivation of thioflavin T in low-viscosity solvents / V. I. Stsiapura [et al.] // J. Phys. Chem. A. – 2010. – Vol. 114, № 32. – P. 8345−8350. https://doi.org/10.1021/jp105186z; Sergeeva, N. N. Photochemical Transformations Involving Porphyrins and Phthalocyanines / N. N. Sergeeva, M. O. Senge // CRC Handbook of Organic Photochemistry and Photobiology. – 2012 – P. 831–879. https://doi.org/10.1201/b12252-35; Mack, J. Assignment of the optical spectra of metal phthalocyanines through spectral band deconvolution analysis and ZINDO calculations / J. Mack, M. J. Stillman // Coord. Chem. Rev. – 2001. – Vol. 219, № 221. – P. 993–1032. https://doi.org/10.1016/s0010-8545(01)00394-0; Влияние структуры молекул фталоцианинов меди на характер их упорядочения в тонких пленках, спектры фотолюминесценции и поглощения / В. Л. Берковиц [и др.] // Физика твердого тела. – 2007. – Т. 49, № 2. – С. 262–266.; Vincett, P. S. Phosphorescence and Fluorescence of Phthalocyanines / P. S. Vincett, E. M. Voigt, K. E. Rieckhoff // J. Chem. Phys. – 1971. –Vol. 55, № 8. – P. 4131–4140. https://doi.org/10.1063/1.1676714; https://vestifm.belnauka.by/jour/article/view/555

  2. 2
    Academic Journal

    المساهمون: This work was supported by COST Action TD1401 “Fast Advanced Scintillator Timing (FAST)” and MSC RICE INTELUM Project and the Belarus Foundation for Fundamental Research.

    المصدر: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; № 4 (2017); 72-78 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; № 4 (2017); 72-78 ; 2524-2415 ; 1561-2430 ; undefined

    وصف الملف: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/283/274; Gundacker S., Auffray E., Pauwels K., Lecoq P. Measurement of intrinsic rise times for various LYSO and LuAG scintillators with a general study 430 of prompt photons to achieve 10 ps in TOF-PET. Physics in Medicine and Biology, 2016, vol. 61, no. 7, pp. 2802–2837. Doi:10.1088/0031-9155/61/7/2802; Kamada K., Endo T., Tsutumi K., Yanagida T., Fujimoto Y., Fukabori A., Yoshikawa, Pejchal A. J., Nikl M. Composition Engineering in Cerium-Doped (Lu,Gd)3 (Ga,Al)5 O12 Single-Crystal Scintillators. Crystal Growth and Design, 2011, vol. 11, no. 10, pp. 4484–4490. Doi:10.1021/cg200694a; Kamada K., Yanagida T., Pejchal J., Nikl M., Endo T., Tsutsumi K., Fujimoto Y., Fukabori A., Yoshikawa A. Crystal Growth and Scintillation Properties of Ce Doped rmGd3 (rmGa,rmAl)5 rmO12 Single Crystals. IEEE Transactions on Nuclear Science, 2012, vol. 59, no. 5, pp. 2112–2115. Doi:10.1109/tns.2012.2197024; Yadav S. K., Uberuaga B. P., Nikl M., Jiang C., Stanek C. R. Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles. Physical Review Applied, 2015, vol. 4, no. 5, pp. 054012. Doi: 1103/phys revapplied.4.054012; Fasoli M., Vedda A., Nikl M., Jiang C., Uberuaga B. P., Andersson D. A., McClellan K. J., Stanek C. R. Band-gap engineering for removing shallow traps in rare-earth Lu3 Al5 O12 garnet scintillators using Ga3+ doping. Physical Review B, 2011, vol. 84, no. 8, p. 081102. Doi:10.1103/physrevb.84.081102; Auffray E., Augulis R., Borisevich A., Gulbinas V., Fedorov A., Korjik M., Lucchini M. T., Mechinsky V., Nargelas S., Songaila E., Tamulaitis G., Vaitkevičius A., Zazubovich S. Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3 Al2 Ga3 O12 scintillation crystals. Journal of Luminescence, 2016, vol. 178, pp. 54–60. Doi:10.1016/j.jlumin.2016.05.015; Lucchini M., Gundacker S., Lecoq P., Benaglia A., Nikl M., Kamada K., Yoshikawa A., Auffray E. Timing capabilities of garnet crystals for detection of high energy charged particles. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, vol. 852, pp. 1–9. Doi:10.1016/j.nima. 2017.02.008; Lucchini M., Babin V., Bohacek P., Gundacker S., Kamada K., Nikl M., Petrosyan A., Yoshikawa A., Auffray E. Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3 Al2 Ga3 O12 crystals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, vol. 816, pp. 176–183. Doi:10.1016/j.nima.2016.02.004; Auffray E., Korjik M., Lucchini M. T., Nargelas S., Sidletskiy O., Tamulaitis G., Yratsiak Y. T., Vaitkevičius A. Free carriers absorption in self-activated PbWO4 and Ce-doped Y3 (Al0.25Ga0.75) 3 )O12, and Gd3 Al2Ga3 O12 garnet scintillators. Optical Materials, 2016, vol. 58, pp. 461–465. Doi:10.1016/j.optmat.2016.06.040; Tamulaitis G., Vaitkevičius A., Nargelas S., Augulis R., Gulbinas V., Bohacek P., Nikl M., Borisevich A., Fedorov A., Korjik M., Auffray E. Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator. Nuclear Instrum ents and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, vol. 870, pp. 25–29. Doi:10.1016/j.nima.2017.07.015; https://vestifm.belnauka.by/jour/article/view/283; undefined

  3. 3
    Academic Journal

    المصدر: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; № 3 (2015); 91-97 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; № 3 (2015); 91-97 ; 2524-2415 ; 1561-2430 ; undefined

    وصف الملف: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/124/125; The CERN Large Hadron Collider: Accelerator and Experiments. – Geneva: CERN, 2009. – Vol. 1–2.; Lecoq, P. Inorganic Scintillators for Detector Systems / P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik. – [S. l.]: Springer, 2006.; Lecoq, P. Can Transient Phenomena help improving Time Resolution in Scintillators? / P. Lecoq, M. Korzhik, A. Vasiliev // IEEE Trans. Nucl. Sci. – 2014. – Vol. 61. – P. 229–234.; Picosecond transient absorption rise time for ultrafast tagging of the interaction of ionizing radiation with scintillating crystals in high energy physics experiments [Electronic resource] / E. Auffray [et al.] // J. Instrum. – 2014. – Vol. 9. – Mode of access: doi:10.1088/1748-0221/9/07/P07017. – Date of access: 04.15.2015.; Electrets / ed. G. M. Sessler. – Berlin: Springer-Verlag, 1980.; Barisnikov, V. I. Femtosecond mechanisms of electronic excitation of crystalline materials / V. I. Barisnikov, T. A. Kolesnikova // Solid State Phys. – 2005. – Vol. 47. – P. 1776–1780.; Annenkov, A. Lead tungstate scintillation material / A. Annenkov, M. Korzhik, P. Lecoq // Nucl. Instrum. Methods. Phys. Res. A. – 2002. – Vol. 490. – P. 30–50.; Roth, T. Absorption of free carriers in diamond determined from the visible to the mid-infrared by femtosecond twophoton absorption spectroscopy / T. Roth, R. Laenen // Opt. Commun. – 2001. – Vol. 189. – P. 289–296.; Zhang, Y. Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4 / Y. Zhang, N. A. W. Holzwarth, R. T. Williams // Phys. Rev. B. – 1998. – Vol. 57. – P. 12738–12750.; https://vestifm.belnauka.by/jour/article/view/124; undefined