-
1Academic Journal
المؤلفون: Mbah, C.N.1, Igboji, P.O., Mbah, E.C.1, Igberi, C.2, Olaolu, M.2, Orji, J.2, Iroegbu, C.2, Abam, P.3, Awere, S.U.4, Okechukwu, G.C.E.4, Ustu, S.U.5
المصدر: Indian Journal of Ecology 50(6):1987-1993. 2023
-
2Academic Journal
المؤلفون: B Unagwu, M Igwemmadu, V Osadebe
المصدر: International Journal of Recycling of Organic Waste in Agriculture, Vol 12, Iss Special Issue, Pp 119-128 (2023)
مصطلحات موضوعية: cow bone meal, degraded soil, physicochemical properties, yield performance, Agriculture (General), S1-972, Environmental technology. Sanitary engineering, TD1-1066
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Nguyen Tuan Khoi
المصدر: Norwegian Journal of development of the International Science, 131, (2024-04-26)
مصطلحات موضوعية: Soil improvement, biochar, coir, soybean stalk, NK4300, degraded soil
Relation: https://zenodo.org/communities/njd-iscience; https://doi.org/10.5281/zenodo.11087649; https://doi.org/10.5281/zenodo.11087650; oai:zenodo.org:11087650
-
4Academic Journal
المصدر: Journal of Degraded and Mining Lands Management, Vol 10, Iss 2, Pp 4245-4254 (2023)
مصطلحات موضوعية: degraded soil, grain yield, humic acid, soil fertility, Environmental effects of industries and plants, TD194-195
وصف الملف: electronic resource
-
5Academic Journal
المؤلفون: Souza Rezende J, Freire FJ, Araújo Filho JC, dos Santos Freire MBG, Gomes de Almeida B, Costa Santos LR
المصدر: iForest - Biogeosciences and Forestry, Vol 15, Iss 1, Pp 465-475 (2022)
مصطلحات موضوعية: Degraded Soil, Forest Soil, Land Use Change, Soil Quality, Forestry, SD1-669.5
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Robert Pokluda, Lucia Nedorost Ragasová, Miloš Jurica, Andrzej Kalisz, Monika Komorowska, Marcin Niemiec, Gianluca Caruso, Maciej Gąstoł, Agnieszka Sekara
المصدر: Frontiers in Plant Science, Vol 14 (2023)
مصطلحات موضوعية: Allium cepa L., mycorrhiza, Azospirillum brasilense, degraded soil, stress biomarkers, Plant culture, SB1-1110
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Anderson Santos de Freitas, Luís Felipe Guandalin Zagatto, Gabriel Silvestre Rocha, Franciele Muchalak, Solange dos Santos Silva, Aleksander Westphal Muniz, Rogério Eiji Hanada, Siu Mui Tsai
المصدر: Frontiers in Soil Science, Vol 3 (2023)
مصطلحات موضوعية: degraded soil restoration, forest restoration, land use change, microbiota biodiversity, tropical native trees, Chemistry, QD1-999, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, TA703-712
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: Pereira, Inés, Alcalde Aparicio, Sara, Ferrer Julia, Montserrat, Carreño, María Francisca, García Meléndez, Eduardo
المساهمون: Edafologia y Quimica Agricola, Escuela de Ingeniería Agraria y Forestal
مصطلحات موضوعية: Ingeniería agrícola, Geomorphology, Iron oxides, Mine degraded soil, Mineral distribution, Multispectral, Rambla del Beal, Remote sensing, Water erosion, 2511 Ciencias del Suelo (Edafología), 2511.07 Ingeniería de Suelos
Relation: info:eu-repo/grantAgreement/AEI/ISGEOMIN - ESP2017-89045-R; info:eu-repo/grantAgreement/AEI/HYPOPROCKS-PDC2021-121352-100; Pereira, I., Alcalde-Aparicio, S., Ferrer-Julià, M., Carreño, M. F., & García-Meléndez, E. (2023). Monitoring sedimentary areas from mine waste products with Sentinel-2 satellite images: A case study in the SE of Spain. European Journal of Soil Science, 74( 1), e13336. https://doi.org/10.1111/ejss.13336; http://hdl.handle.net/10612/15394
-
9Academic Journal
المؤلفون: Vladimir M. Kosolapov, Vladmir I. Cherniavskih, Elena V. Dumacheva, Luiza D. Sajfutdinova, Alexey A. Zavalin, Alexey P. Glinushkin, Valentina G. Kosolapova, Bakhyt B. Kartabaeva, Inna V. Zamulina, Valery P. Kalinitchenko, Michail G. Baryshev, Michail A. Sevostyanov, Larisa L. Sviridova, Victor A. Chaplygin, Leonid V. Perelomov, Saglara S. Mandzhieva, Marina V. Burachevskaya, Lenar R. Valiullin
المصدر: Forests; Volume 14; Issue 7; Pages: 1492
مصطلحات موضوعية: Pinus sylvestris L., Pinus sylvestris var. cretacea (Kalen.) Kom., degraded soil on chalk outcrops, heavy metals, biological product Biogor KM, Biogeosystem Technique
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Forest Ecology and Management; https://dx.doi.org/10.3390/f14071492
الاتاحة: https://doi.org/10.3390/f14071492
-
10Academic Journal
المؤلفون: Mădălina Trușcă, Ștefania Gâdea, Roxana Vidican, Vlad Stoian, Anamaria Vâtcă, Claudia Balint, Valentina Ancuța Stoian, Melinda Horvat, Sorin Vâtcă
المصدر: Agriculture; Volume 13; Issue 3; Pages: 734
مصطلحات موضوعية: abiotic stress, climate change, degraded soil, photosynthesis, osmotic stress
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Crop Production; https://dx.doi.org/10.3390/agriculture13030734
-
11Academic Journal
المؤلفون: Adusu, D., Abugre, S.1, Dei-Kusi, D.
المصدر: Agricultural Science Digest - A Research Journal 41(1):61-65. 2021
-
12Academic Journal
المؤلفون: Giacomini, Luciana Aparecida, Siqueira Junior, Carlos Aparecido de, Ré, Gustavo Padovani, Santos, André Cordeiro Alves dos
المصدر: Hoehnea. January 2021 48
مصطلحات موضوعية: degraded soil, ecological restoration, glomeromycota, organic matter
وصف الملف: text/html
-
13Academic Journal
المؤلفون: M Mardhiana, Dwi Apriyani, Muh Adiwena, Ankardiansyah Pandu Pradana
المصدر: Journal of Degraded and Mining Lands Management, Vol 8, Iss 2, Pp 2653-2660 (2020)
مصطلحات موضوعية: bonanza f1, cobs, degraded soil, nutrients, organic matter, Environmental effects of industries and plants, TD194-195
وصف الملف: electronic resource
-
14Academic Journal
المصدر: International Journal of Agronomy and Agricultural Research | IJAAR, 21(2), 1-7, (2022-08-10)
مصطلحات موضوعية: Rice straw, Rice hull, Amelioration, Mine degraded soil, Wastes, Mining
Relation: https://innspub.net/ameliorative-potential-of-rice-hull-and-straw-in-the-ecological-restoration-of-mine-degraded-soils/; https://doi.org/10.5281/zenodo.7989887; https://doi.org/10.5281/zenodo.7989888; oai:zenodo.org:7989888
-
15Academic Journal
المؤلفون: Rosa, José M. de la, Santa Olalla, Arturo, Campos Díaz de Mayorga, Paloma, López Núñez, Rafael, González Pérez, José Antonio, Almendros, Gonzalo, Knicker, Heike E., Sánchez Martín, Águeda, Fernández Boy, María Elena
المساهمون: Universidad de Sevilla. Departamento de Cristalografía, Mineralogía y Química Agrícola
مصطلحات موضوعية: pyrogenic C, humic acids, heavy metals, carbon sequestration, soil organic matter, degraded soil
Relation: International Journal of Environmental Research and Public Health, 19 (4), 2140.; COOPB20365 (Ref. COOPA20334) I-COOP-2018; http://dx.doi.org/10.3390/ijerph19042140; https://idus.us.es/handle//11441/130615
-
16Academic Journal
المؤلفون: Gonçalves, Janaína, Moreno Fruto, Carolina, Jaraba Barranco, Mauricio, Silva Oliveira, Marcos Leandro, Gindri Ramos, Claudete
مصطلحات موضوعية: Technosol, Artificial soil, Sustainability, Solid waste, Degraded soil recovery, Clean production
وصف الملف: 13 páginas; application/pdf
Relation: Sustainability; 1. Hoang, A.T.; Nižeti´c, S.; Olcer, A.I.; Ong, H.C.; Chen, W.-H.; Chong, C.T.; Thomas, S.; Bandh, S.A.; Nguyen, X.P. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 2021, 154, 112322. [CrossRef] [PubMed]; 2. Chofreh, A.G.; Goni, F.A.; Klemeš, J.J.; Moosavi, S.M.S.; Davoudi, M.; Zeinalnezhad, M. COVID-19 shock: Development of strategic management framework for global energy. Renew. Sustain. Energy Rev. 2021, 139, 110643. [CrossRef]; 3. Hoang, A.T.; Nguyen, T.H.; Nguyen, H.P. Scrap tire pyrolysis as a potential strategy for waste management pathway: A review. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1–18. [CrossRef]; 4. Gonçalves, J.O.; da Silva, K.A.; Rios, E.C.; Crispim, M.M.; Dotto, G.L.; de Almeida Pinto, L.A. Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int. J. Biol. Macromol. 2020, 142, 85–93. [CrossRef]; 5. Silva, L.F.; Lozano, L.P.; Oliveira, M.L.; da Boit, K.; Gonçalves, J.O.; Neckel, A. Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects. Mar. Pollut. Bull. 2021, 168, 112425. [CrossRef] [PubMed]; 6. Gonçalves, J.O.; Crissien, T.J.; Sampaio, C.H.; Oliveira, M.L.; Silva, L.F. The role of roots plants and soil characteristics in coal mining areas: Geochemical and nanomineralogy information still without details. J. Environ. Chem. Eng. 2021, 9, 106539. [CrossRef]; 7. Andrade, G.R.P.; Furquim, S.A.C.; Nascimento, T.T.V.; Brito, A.C.; Camargo, G.R.; de Souza, G.C. Transformation of clay minerals in salt-affected soils, Pantanal wetland, Brazil. Geoderma 2020, 371, 114380. [CrossRef]; 8. Bujor, L.; Benciu, F.; Vilcu, D.M.; Bogan, E.; Constantin, D.; Grigore, E. Evaluation of the Anthropic Impact on the Environmental– Soil Factor Case Study: Alba Iulia Forest District, Romania. Int. J. Acad. Res. Environ. Geogr. 2021, 8, 11–29.; 9. Zamulina, I.V.; Gorovtsov, A.V.; Minkina, T.M.; Mandzhieva, S.S.; Bauer, T.V.; Burachevskaya, M.V. The influence of long-term Zn and Cu contamination in Spolic Technosols on water-soluble organic matter and soil biological activity. Ecotoxicol. Environ. Saf. 2021, 208, 111471. [CrossRef] [PubMed]; 11. Bolaños-Guerrón, D.; Capa, J.; Flores, L.C. Retention of heavy metals from mine tailings using Technosols prepared with native soils and nanoparticles. Heliyon 2021, 7, e07631. [CrossRef] [PubMed]; 12. IUSS Working Group. WRB World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports N; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Volume 106, ISBN 978-92-5-108369-7.; 13. Asensio, V.; Guala, S.; Vega, F.A.; Covelo, E.F. A soil quality index for reclaimed mine soils. Environ. Toxicol. Chem. 2013, 32, 2240–2248. [CrossRef]; 14. Hafeez, F.; Spor, A.; Breuil, M.-C.; Schwartz, C.; Martin-Laurent, F.; Philippot, L. Distribution of bacteria and nitrogen-cycling microbial communities along constructed Technosol depth-profiles. J. Hazard. Mater. 2012, 231–232, 88–97. [CrossRef]; 15. Xunta de Galicia. 2008. Available online: https://www.xunta.gal/dog/Publicados/2008/20080125/Anuncio58E2_es.html (accessed on 10 October 2021).; 16. Macias, F. Recuperación de Suelos Degradados, Reutilización de Residuos Y Secuestro de Carbono. Una Alternativa Integral de Mejora de la Calidad Ambiental; Recursos Rurais Serie Cursos 1; Instituto de Biodiversidade Agraria e Desenvolvemento Rural (IBADER): Lugo, Spain, 2004; pp. 49–56.; 17. Macías, F.; Macías-García, F.; Bao, M.; Camps, M. Tecnosoles, Biocarbones Y Humedales Reactivos Diseñados, Formulados Y Elaborados “A la Carta Y a Imagen de Suelos Naturales” Para la Recuperación de Suelos, Aguas Y Ecosistemas Degradados O Contaminados; Laboratorio de Tecnología Ambiental, Instituto de Investigaciones Tecnológicas, USC. Dpto. Ingeniería Química, USC. Centro de Valorización Ambiental del Norte, Massey University: Palmerston, New Zealand, 2016.; 18. VATOP. 2020. Available online: https://cvatop.es/restauracion-mina-touro (accessed on 12 October 2021).; 19. Ruiz, F.; Perlatti, F.; Oliveira, D.P.; Ferreira, T.O. Revealing Tropical Technosols as an Alternative for Mine Reclamation and Waste Management. Minerals 2020, 10, 110. [CrossRef]; 20. Villenave, C.; Séré, G.; Schwartz, C.; Watteau, F.; Jimenez, A.; Cortet, J. Rapid Changes in Soil Nematodes in the First Years after Technosol Construction for the Remediation of an Industrial Wasteland. Eurasian Soil Sci. 2018, 51, 1266–1273. [CrossRef]; 21. Asensio, V.; Flórido, F.G.; Ruiz, F.; Perlatti, F.; Otero, X.L.; Oliveira, D.P.; Ferreira, T.O. The potential of a Technosol and tropical native trees for reclamation of copper-polluted soils. Chemosphere 2019, 220, 892–899. [CrossRef]; 22. FAO. World Reference Base for Soil Resources; FAO: Rome, Italy, 2006.; 23. Martinat, S.; Dvorak, P.; Frantal, B.; Klusacek, P.; Kunc, J.; Navratil, J.; Osman, R.; Tureckova, K.; Reed, M. Sustainable urban development in a city affected by heavy industry and mining? Case study of brownfields in Karvina, Czech Republic. J. Clean. Prod. 2016, 118, 78–87. [CrossRef]; 24. Kozłowski, M.; Otremba, K.; Tatu´sko-Krygier, N.; Komisarek, J.; Wiatrowska, K. The effect of an extended agricultural reclamation on changes in physical properties of technosols in post-lignite-mining areas: A case study from central Europe. Geoderma 2022, 410, 115664. [CrossRef]; 25. Forján, R.; Rodríguez-Vila, A.; Covelo, E.F. Increasing the Nutrient Content in a Mine Soil Through the Application of Technosol and Biochar and Grown with Brassica juncea L. Waste Biomass Valorization 2019, 10, 103–119. [CrossRef]; 26. Soria, R.; González-Pérez, J.A.; de la Rosa, J.M.; Emeterio, L.M.S.; Domene, M.A.; Ortega, R.; Miralles, I. Effects of technosols based on organic amendments addition for the recovery of the functionality of degraded quarry soils under semiarid Mediterranean climate: A field study. Sci. Total Environ. 2021, 151572. [CrossRef] [PubMed]; 27. Slukovskaya, M.V.; Vasenev, V.I.; Ivashchenko, K.V.; Morev, D.V.; Drogobuzhskaya, S.V.; Ivanova, L.A.; Kremenetskaya, I.P. Technosols on mining wastes in the subarctic: Efficiency of remediation under Cu-Ni atmospheric pollution. Int. Soil Water Conserv. Res. 2019, 7, 297–307. [CrossRef]; 28. Vidal-Beaudet, L.; Rokia, S.; Nehls, T.; Schwartz, C. Aggregation and availability of phosphorus in a Technosol constructed from urban wastes. J. Soils Sediments 2018, 18, 456–466. [CrossRef]; 29. Ahirwal, J.; Kumar, A.; Pietrzykowski, M.; Maiti, S.K. Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: A case study from India. Environ. Sci. Pollut. Res. 2018, 25, 27992–28003. [CrossRef]; 30. Fourvel, G.J.; Vidal-Beaudet, L.; Le Bocq, A.; Thery, F.; Brochier, V.; Cannavo, P. Fertilidad de tecnosoles construidos con sedimentos de presas para el enverdecimiento urbano y la recuperación de tierras. J. Soils Sediments 2019, 19, 3178–3192. [CrossRef]; 31. Cortinhas, A.; Caperta, A.D.; Teixeira, G.; Carvalho, L.; Abreu, M.M. Harnessing sediments of coastal aquaculture ponds through technosols construction for halophyte cultivation using saline water irrigation. J. Environ. Manag. 2020, 261, 109907. [CrossRef]; 32. Ruiz, F.; Cherubin, M.R.; Ferreira, T.O. Soil quality assessment of constructed Technosols: Towards the validation of a promising strategy for land reclamation, waste management and the recovery of soil functions. J. Environ. Manag. 2020, 276, 111344. [CrossRef] [PubMed]; 33. Uzarowicz, Ł.; Woli ´nska, A.; Bło ´nska, E.; Szafranek-Nakonieczna, A.; Ku ´zniar, A.; Słodczyk, Z.; Kwasowski, W. Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: Microbiological activity as an indicator of soil development following land reclamation. Appl. Soil Ecol. 2020, 156, 103699. [CrossRef]; 34. Santorufo, L.; Joimel, S.; Auclerc, A.; Deremiens, J.; Grisard, G.; Hedde, M.; Nahmani, J.; Pernin, C.; Cortet, J. Early colonization of constructed technosol by microarthropods. Ecol. Eng. 2021, 162, 106174. [CrossRef]; 35. Pruvost, C.; Mathieu, J.; Nunan, N.; Gigon, A.; Pando, A.; Lerch, T.Z.; Blouin, M. Tree growth and macrofauna colonization in Technosols constructed from recycled urban wastes. Ecol. Eng. 2020, 153, 105886. [CrossRef]; 36. Foti, L.; Dubs, F.; Gignoux, J.; Lata, J.-C.; Lerch, T.Z.; Mathieu, J.; Nold, F.; Nunan, N.; Raynaud, X.; Abbadie, L.; et al. Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Sci. Total Environ. 2017, 598, 938–948. [CrossRef] [PubMed]; 37. Benhabylès, L.; Djebbar, R.; Miard, F.; Nandillon, R.; Morabito, D.; Bourgerie, S. Biochar and compost effects on the remediative capacities of Oxalis pes-caprae L. growing on mining technosol polluted by Pb and As. Environ. Sci. Pollut. Res. 2020, 27, 30133–30144. [CrossRef]; 38. Lebrun, M.; Miard, F.; Nandillon, R.; Morabito, D.; Bourgerie, S. Biochar Application Rate: Improving Soil Fertility and Linum usitatissimum Growth on an Arsenic and Lead Contaminated Technosol. Int. J. Environ. Res. 2021, 15, 125–134. [CrossRef]; 39. Bodlák, L.; K´rováková, K.; Kobesová, M.; Štástny, J.; Pecharov ˆ á, E. SOC content—An appropriate tool for evaluating the soil quality in a reclaimed post-mining landscape. Ecol. Eng. 2012, 43, 53–59. [CrossRef]; 40. Yin, N.; Zhang, Z.; Wang, L.; Qian, K. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ashreconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ. Sci. Pollut. Res. 2016, 23, 17840–17849. [CrossRef] [PubMed]; 41. Halecki, W.; Klatka, S. Aplication of Soil Productivity Index after Eight Years of Soil Reclamation with Sewage Sludge Amendments. Environ. Manag. 2021, 67, 822–832. [CrossRef]; 42. Forján, R.; Rodríguez-Vila, A.; Cerqueira, B.; Covelo, E.F. Effects of compost and technosol amendments on metal concentrations in a mine soil planted with Brassica juncea L. Environ. Sci. Pollut. Res. 2018, 25, 19713–19727. [CrossRef] [PubMed]; 43. Nandillon, R.; Lebrun, M.; Miard, F.; Gaillard, M.; Sabatier, S.; Villar, M.; Bourgerie, S.; Morabito, D. Capability of amendments (biochar, compost and garden soil) added to a mining technosol contaminated by Pb and As to allow poplar seed (Populus nigra L.) germination. Environ. Monit. Assess. 2019, 191, 465. [CrossRef] [PubMed]; 44. Uzarowicz, Ł. Microscopic and microchemical study of iron sulphide weathering in a chronosequence of technogenic and natural soils. Geoderma 2013, 197, 137–150. [CrossRef]; 45. Séré, G.; Schwartz, C.; Ouvrard, S.; Renat, J.-C.; Watteau, F.; Villemin, G.; Morel, J.L. Early pedogenic evolution of constructed Technosols. J. Soils Sediments 2010, 10, 1246–1254. [CrossRef]; 46. Huot, H.; Simonnot, M.-O.; Morel, J.L. Pedogenetic Trends in Soils Formed in Technogenic Parent Materials. Soil Sci. 2015, 180, 182–192. [CrossRef]; 47. Rennert, T.; Kaufhold, S.; Händel, M.; Schuth, S.; Meißner, S.; Totsche, K.U. Characterization of a Technosol developed from deposited flue-dust slurry and release of inorganic contaminants. J. Plant Nutr. Soil Sci. 2011, 174, 721–731. [CrossRef]; 48. Huot, H.; Simonnot, M.-O.; Watteau, F.; Marion, P.; Yvon, J.; De Donato, P.; Morel, J.L. Early transformation and transfer processes in a Technosol developing on iron industry deposits. Eur. J. Soil Sci. 2014, 65, 470–484. [CrossRef]; 49. Scalenghe, R.; Ferraris, S. The First Forty Years of a Technosol. Pedosphere 2009, 19, 40–52. [CrossRef]; 50. 5Hoang, A.T.; Nižeti´c, S.; Cheng, C.K.; Luque, R.; Thomas, S.; Banh, T.L.; Nguyen, X.P. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 2022, 287, 131959.; 51. Weiler, J.; Firpo, B.A.; Schneider, I.A. Technosol as an integrated management tool for turning urban and coal mining waste into a resource. Miner. Eng. 2020, 147, 106179. [CrossRef]; 52. Pereira, H.A.; Hernandes, P.R.T.; Netto, M.S.; Reske, G.D.; Vieceli, V.; Oliveira, L.F.S.; Dotto, G.L. Adsorbents for glyphosate removal in contaminated waters: A review. Environ. Chem. Lett. 2020, 19, 1525–1543. [CrossRef]; 53. Streit, A.F.; Collazzo, G.C.; Druzian, S.P.; Verdi, R.S.; Foletto, E.L.; Oliveira, L.F.; Dotto, G.L. Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere 2021, 262, 128322. [CrossRef] [PubMed]; 54. Sellaoui, L.; Hessou, E.P.; Badawi, M.; Netto, M.S.; Dotto, G.L.; Silva, L.F.O.; Tielens, F.; Ifthikar, J.; Bonilla-Petriciolet, A.; Chen, Z. Trapping of Ag+ , Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chem. Eng. J. 2021, 420, 127712. [CrossRef]; 55. Ferrari, V.; Taffarel, S.R.; Espinosa-Fuentes, E.; Oliveira, M.L.; Saikia, B.K.; Oliveira, L.F. Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. J. Clean. Prod. 2019, 208, 297–306. [CrossRef]; 56. Oliveira, M.L.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F.O. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [CrossRef]; 57. Rodriguez-Iruretagoiena, A.; de Vallejuelo, S.F.-O.; Gredilla, A.; Ramos, C.G.; Oliveira, M.L.S.; Arana, G.; de Diego, A.; Madariaga, J.M.; Silva, L.F. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 2015, 508, 374–382. [CrossRef] [PubMed]; 58. Sánchez-Peña, N.E.; Narváez-Semanate, J.L.; Pabón-Patiño, D.; Fernández-Mera, J.E.; Oliveira, M.; da Boit, K.; Tutikian, B.; Crissien, T.J.; Pinto, D.; Serrano, I.D.; et al. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 2018, 191, 1048–1055. [CrossRef] [PubMed]; 59. Sehn, J.L.; De Leão, F.B.; Da Boit, K.; Oliveira, M.; Hidalgo, G.E.; Sampaio, C.H.; Silva, L.F. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 2016, 147, 439–443. [CrossRef] [PubMed]; 60. Martinello, K.; Oliveira, M.; Molossi, F.A.; Ramos, C.G.; Teixeira, E.C.; Kautzmann, R.M.; Silva, L.F. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 2014, 470–471, 444–452. [CrossRef]; 13; 14; Gonçalves, J.O.; Fruto, C.M.; Barranco, M.J.; Oliveira, M.L.S.; Ramos, C.G. Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review. Sustainability 2022, 14, 993. https://doi.org/10.3390/su14020993; https://hdl.handle.net/11323/9209; https://doi.org/10.3390/su14020993; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
17Academic Journal
المؤلفون: Rizki Maftukhah, Rosana M. Kral, Axel Mentler, Ngadisih Ngadisih, Murtiningrum Murtiningrum, Katharina M. Keiblinger, Michael Gartner, Rebecca Hood-Nowotny
المصدر: Agronomy; Volume 13; Issue 1; Pages: 50
مصطلحات موضوعية: agriculture, climate change, crop performance, degraded soil, mining
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Soil and Plant Nutrition; https://dx.doi.org/10.3390/agronomy13010050
-
18Academic Journal
المؤلفون: Hassan El-Ramady, Eric C. Brevik, Zakaria F. Fawzy, Tamer Elsakhawy, Alaa El-Dein Omara, Megahed Amer, Salah E.-D. Faizy, Mohamed Abowaly, Ahmed El-Henawy, Attila Kiss, Gréta Törős, József Prokisch, Wanting Ling
المصدر: Plants; Volume 11; Issue 18; Pages: 2392
مصطلحات موضوعية: soil–plant nexus, soil degradation, soil conservation, waterlogged soil, salt-affected soil, polluted soil, degraded soil
جغرافية الموضوع: agris
وصف الملف: application/pdf
-
19Academic Journal
المؤلفون: Hassan El-Ramady, Peter Hajdú, Gréta Törős, Khandsuren Badgar, Xhensila Llanaj, Attila Kiss, Neama Abdalla, Alaa El-Dein Omara, Tamer Elsakhawy, Heba Elbasiouny, Fathy Elbehiry, Megahed Amer, Mohammed E. El-Mahrouk, József Prokisch
المصدر: Sustainability; Volume 14; Issue 14; Pages: 8329
مصطلحات موضوعية: climate change, salinity, drought, biofortified crop, nutrients, degraded soil, plant secondary metabolites, elevated CO 2
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Sustainable Agriculture; https://dx.doi.org/10.3390/su14148329
الاتاحة: https://doi.org/10.3390/su14148329
-
20Academic Journal
المؤلفون: José M. De la Rosa, Arturo Santa-Olalla, Paloma Campos, Rafael López-Núñez, José A. González-Pérez, Gonzalo Almendros, Heike E. Knicker, Águeda Sánchez-Martín, Elena Fernández-Boy
المصدر: International Journal of Environmental Research and Public Health; Volume 19; Issue 4; Pages: 2140
مصطلحات موضوعية: pyrogenic C, soil organic matter, humic acids, heavy metals, carbon sequestration, degraded soil
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Environmental Science and Engineering; https://dx.doi.org/10.3390/ijerph19042140